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Abstract
The knower paradox states that the statement ‘We know that this statement is false’
leads to inconsistency. This article presents a fresh look at this paradox and some
well-known solutions from the literature. Paul Égré discusses three possible solutions
that modal provability logic provides for the paradox by surveying and compar-
ing three different provability interpretations of modality, originally described by
Skyrms, Anderson, and Solovay. In this article, some background is explained to
clarify Égré’s solutions, all three of which hinge on intricacies of provability logic
and its arithmetical interpretations. To check whether Égré’s solutions are satisfac-
tory, we use the criteria for solutions to paradoxes defined by Susan Haack and we
propose some refinements of them. This article aims to describe to what extent the
knower paradox can be solved using provability logic and to what extent the solu-
tions proposed in the literature satisfy Haack’s criteria. Finally, the article offers some
reflections on the relation between knowledge, proof, and provability, as inspired by
the knower paradox and its solutions.
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1 Introduction: The Knower Paradox

A paradox can be defined as “an apparently unacceptable conclusion derived by
apparently acceptable reasoning from apparently acceptable premises” [37, p. 1].
This is the definition that we use throughout this article; for brevity’s sake we will
sometimes just state that a paradox is a certain “apparently unacceptable conclusion”.

To set the stage, we first give an informal explanation of the knower paradox1,
after which we describe the formal version of the knower paradox as it was pre-
sented originally by Kaplan and Montague [21]. The knower paradox is based on the
following statement:

We know that statement P is false. (P)

Statement P is used to create the apparently unacceptable conclusion that ‘P is true
if and only if P is false’, which is a paradox. We assume the principle of bivalence,
which states that every statement is either true or false.

Suppose P is true. We assume that everything that is known is true2. Since state-
ment P states that ‘we know that statement P is false’, it follows that statement P
is false. So if we suppose that the statement is true, then it follows that the statement
is false. This is a contradiction, thus the assumption that statement P is true cannot
be true. Because this is the case, we infer that statement P is false. Since we are the
ones who proved that P is false, it follows that we know that P is false3. However
‘we know that statement P is false’ is exactly what the statement states, so the state-
ment is true. So first it was shown that the statement is false if it is true, from this we
inferred that it is false, which implies that it is true. This means that P is true if and
only if P is false.

1.1 The Original Formalization of the Knower Paradox

For their 1960 formalization of the knower paradox, Kaplan and Montague [21]
used elementary syntax, by which they understood “a first-order theory containing
(. . .) all standard names (of expressions), means for expressing syntactical relations
between, and operations on, expressions, and appropriate axioms involving these
notions” [21, Footnote 10, p. 89]. Note that by elementary syntax they meant both

1There are some paradoxes that go by names similar to the knower paradox with which the knower paradox
should not be confused. One example is the knowledge or knowability paradox by Fitch [13]. This paradox
of knowability is a logical result implying that, necessarily, if all truths are knowable in principle then all
truths are in fact known.

Another paradox concludes that something immoral ought to be so, based on the assumptions that the
immoral thing happens and the fact that it ought to be the case that the guard knows that the thing happens.
Åqvist [2] writes that this paradox is “known under (. . .) names such as Åqvist’s Knower paradox and
the “Knower””, but in the Stanford Encyclopedia of Philosophy this paradox is called the “Paradox of
Epistemic Obligation” [24].
2It is a common assumption in epistemology that knowledge implies truth. As a reminder, Hintikka
explains that it is “obvious that [this] condition has to be imposed on model sets” [19, p. 43]. The same
principle is stated by Lenzen: “gewußt werden kann nur, was auch wahr ist” [22, p. 52]. Meyer an Van der
Hoek introduce the axiom scheme Kiφ → φ as a property of knowledge [25, p. 23].
3By the principle that having a proof leads to knowledge, see for example [43].
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a formal language and a proof system with axioms and derivation rules. Robinson’s
Arithmetic Q is a minimal formal system that has all elements Kaplan and Montague
mention.

As a reminder, Robinson’s arithmetic Q [36] is a formal theory extending first-
order logic with identity. Its language LA is built by induction from 0, S, +, ·, =. The
axioms of Q are the following.

∀x(0 �= Sx) (1)

∀x∀y(Sx = Sy → x = y) (2)

∀x(x �= 0 → ∃y(x = Sy)) (3)

∀x(x + 0 = x) (4)

∀x∀y(x + Sy = S(x + y)) (5)

∀x(x · 0 = 0) (6)

∀x∀y(x · Sy = (x · y) + x) (7)

A statement ϕ is a theorem of Q if it is (an instance of) an axiom or if it can be derived
from the axioms in the sense that there exists “a sequence ϕ0, . . . , ϕn of [formulae
from LA] such that ϕn is ϕ and for each i ≤ n, either ϕi is an axiom (. . .) or ϕi

follows from some preceding members of the sequence using a rule of inference”
[17, p. 7–8]. The available rules of inference are modus ponens and generalization
[5, p. 19]. If statement ϕ is a theorem of Q, this is denoted by ‘Q � φ’.

Kaplan and Montague used ‘ϕ � ψ’ to express that ψ is derivable from ϕ within
the theory and ‘� ϕ’ means that ϕ is provable within this theory. In addition, they
used names for expressions, where ϕ denotes the name of expression ϕ. These names
can be defined via Gödel numbering [14]. Using this, it is possible to create self-
referential arithmetical statements. The following two formulae are added to the
elementary syntax:

K(ϕ) A knows the expression ϕ

I (ϕ, ψ) ϕ � ψ

In modal multi-agent epistemic logic, Kiϕ is considered as a sentential operator
Ki that can be applied to a sentence ϕ. A predicate K(ϕ) with sentence name ϕ as
argument is called a metalinguistic predicate. In both cases, the result of applying an
operation to a sentence or applying a predicate to a term is a sentence. We consider
the following statement: “A knows that the present statement is false”. According to
Kaplan and Montague [21, p. 87], we can regard some sentence D as expressing this
statement, namely D satisfying

� D ↔ K(¬D).

From this expression, some version of the knower paradox is derived, if the
following three assumptions are made:

E1 := K(¬D) → ¬D (E1)

E2 := K(E1) (E2)

E3 := [I (E1, ¬D) ∧ K(E1)] → K(¬D) (E3)
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These premises are apparently acceptable. The assumption E1 says that if A

knows the expression ¬D, then ¬D is true. This corresponds to the idea that a false-
hood cannot be known (see Footnote 2). Assumption E2 expresses that assumption
E1 is known by A. It is a common assumption that A knows that what she knows
is true, and E2 just expresses that this is the case for knowing ¬D. Finally, E3
expresses that if ¬D is derivable from E1 and A knows E1, then A knows ¬D. This
is an example of the epistemic closure principle: if � ϕ → ψ , then � Kiϕ → Kiψ .
It is not an instance of axiom schema (Kiϕ∧Ki(ϕ → ψ)) → Kiψ , because I (ϕ, ψ)

does not correspond to Ki(ϕ → ψ).
From these assumptions E1, E2 and E3, the knower paradox can be derived as

the apparently unacceptable conclusion ‘� D ↔ ¬D’. In the derivation of this,
we use the notation of rules such as HS for Hypothetical Syllogism, MP for Modus
Ponens and PC for Propositional Calculus. We denote ‘Ei � ϕ’ in proof line (j ) if
the definition of Ei is used to derive the statement in line (j) or a statement in one of
the previous lines (1), (2), . . . , (j − 1). In step (6) we use the following. If ϕ � ψ ,
then � I ((ϕ, ψ)). By the diagonalization lemma [5, 14], it is shown that there exists
a sentence D such that D ↔ K(¬D) is provable for D in the language LA of Peano
Arithmetic and K(y) a formula of LA in which no variable other than y is free. We
derive the knower paradox as follows.

(1) � D ↔ K(¬D) by definition of D

(2) � D → K(¬D) by (1), PC

(3) E1 � K(¬D) → ¬D by definition of E1

(4) E1 � D → ¬D by (2), (3), HS

(5) E1 � ¬D by (4), PC

(6) E1 � I (E1, ¬D) (5), by definition ofI

(7) E1, E2 � K(E1) by definition of E2

(8) E1, E2 � I (E1, ¬D) ∧ K(E1) by (6), (7), PC

(9) E1, E2, E3 � [I (E1, ¬D) ∧ K(E1)] → K(¬D) by definition of E3

(10) E1, E2, E3 � K(¬D) by (8), (9), MP

(11) E1, E2, E3 � K(¬D) → D by (1), PC

(12) E1, E2, E3 � D by (10), (11), MP

(13) E1, E2, E3 � ¬D → D by (12), PC

(14) E1, E2, E3 � D ↔ ¬D by (4), (13), PC

Another way of formulating an apparently unacceptable conclusion from the
assumptions and the definition of D is leaving out (13) and (14) and concluding
‘� ⊥’ from (5) and (12). In both ways, the paradox is used to prove that a system in
which assumptions E1, E2, and E3 are made is inconsistent.
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1.2 The Current Debate on the Knower Paradox

Even though the knower paradox has been introduced by Kaplan and Montague in
1960 and many solutions have been proposed, it is still the subject of heated debates,
to which we now turn. There is only little consensus yet about how the knower para-
dox should be solved. The assumption that knowledge entails truth is accepted, of
which E1 from Section 1.1 is an instance. There are ongoing debates about other
parts of the paradox. Should the syntax be changed in such a way that statements that
lead to paradoxes are eliminated? Should we accept the epistemic closure principle
or not?

For example, Dean and Kurokawa [7, 8] write about a discussion between
Cross [6] and Uzquiano [44]. The discussion is about the status of some assump-
tion Cross uses in a version of the knower paradox which is slightly different from
the original formulation. In the current article, we focus on two contributions to the
debate about the knower paradox, both focusing on solutions that are based on prov-
ability logic and its variants, as well as various interpretations of these modal logics
in formal systems of arithmetic.

The article that we discuss at length is Paul Égré’s [11]. Égré argues that the
knower paradox is solvable when modal provability logic is applied. He uses
three different interpretations of provability logic to solve the paradox, namely
interpretations by Skyrms [38], Anderson [1] and Solovay [42]. We also discuss Pog-
giolesi’s [32]. Poggiolesi compares Anderson’s and Solovay’s solutions to the knower
paradox and comments on Égré’s solution, which she sees as an attempt to connect
the first two. Our main contribution is an assessment of how the three interpretations
by Skyrms, Anderson and Solovay fare in the light of Susan Haack’s criteria for solu-
tions to paradoxes [16], which include both technical and philosophical desiderata.
In this way we hope to advance the debate regarding the knower paradox. In addition,
we formulate an extension of Haack’s criteria.

The rest of this article is structured as follows. In Section 2, we discuss Haack’s
criteria for solutions to paradoxes. We give a short reminder of provability logic and
formal systems of arithmetic in Section 3, to set the stage for the discussion of the
knower paradox. In Section 4, we explain the provability interpretations that Égré
considers as solutions to the knower paradox. In addition, we discuss the quality of
these solutions. We check to what extent they satisfy Haack’s criteria and we evalu-
ate whether some criticism on Égré’s article by Poggiolesi is valid. In this way, we
explain to what extent the knower paradox can be solved using provability logic.

2 Haack’s Criteria for Solutions to Paradoxes

There is extensive literature on almost every paradox, yet often in this literature we
find papers that lack any discussion on what actually constitutes a solution to a para-
dox. In her book Philosophy of Logics [16] Susan Haack offers general criteria for
the solution of paradoxes. This is very worthwhile since it makes clear what is actu-
ally problematic when we are faced with a paradox and it provides a tool with which
we can evaluate proposed solutions to paradoxes.
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There are two different kinds of solutions to paradoxes. As a reminder, a statement
is paradoxical if it is an apparently unacceptable conclusion derived by apparently
acceptable reasoning from apparently acceptable premises [37]. A paradox is solved
if:

1. we discard one of the axioms or rules of inference and accept the resulting theory
in which the ‘apparently unacceptable conclusion’ cannot be derived;

2. in the new theory the conclusion can again be formulated but is not ‘apparently
unacceptable’, which it was in the old system.

An example of a theory which solves certain paradoxes in this second way is dialethe-
ism, which is the view that there are true statements of the form ‘(Px) is true if and
only if (Px) is false’ [33]. Many conclusions that are considered as paradoxical in
other systems are not unacceptable in a dialetheic account. In this article, we focus on
the first kind of solutions, in which the ‘apparently unacceptable conclusion’ cannot
be derived.

Susan Haack describes three requirements on solutions to paradoxes. First, a solu-
tion should provide a consistent formal theory. This theory should indicate which of
the premises or principles of inference from the theory in which the paradox is for-
mulated should be disallowed. The second requirement is that a solution should give
a philosophical explanation of why that particular premise or principle of inference
seems acceptable but is unacceptable. The third requirement is that a solution should
not be too broad or too narrow.4 We consider these requirements in more detail.

2.1 The Formal Part of a Solution (First Requirement)

According to Haack, a solution to a paradox “should give a consistent formal theory
(of semantics or set theory as the case may be) - in other words, indicate which
apparently unexceptionable premises or principle of inference must be disallowed
(the formal solution)” [16, p. 138–139]5 Suppose we want to solve the liar paradox,
then we need a consistent formal theory6 Σ which does not contain the paradox.
Since the paradox exists in the formal theory in which it is formulated, there is a
difference between that theory and the consistent theory. This difference indicates
which apparently acceptable premises or principles of inference are the ones that
should be disallowed.

Because in this article, we consider formal systems consisting of theorems based
on axiom schemes, we add that a system which solves a paradox can also indicate
a set of apparently acceptable theorems which should be disallowed. This system
is consistent if Σ � ⊥ does not hold. Note that this is only a minor adaptation of

4Recent applications of Haack’s criteria to solutions of other semantic paradoxes can be found in
[10, 20, 29].
5Note that for a paraconsistent logician the requirement should be about non-triviality rather than consis-
tency. Switching to a paraconsistent view can solve certain paradoxes, but in the literature we are interested
in consistency and non-triviality coincide, so we do not delve into this issue here.
6Note that a formal theory is not necessarily recursively axiomatized, for example Gupta’s revision theory
of truth [15] and Field’s theory of truth and conditional [12].
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Haack’s ideas to the context of the knower paradox, that is fully in line with her
general approach.

The system in which the paradox is formulated consists of a set of theorems,
defined by premises and rules of inference. This system is defined in a certain lan-
guage. By forming a new system, in which one of the premises or rules of inference
from the old system is rejected or which is based on another language, we arrive at
a new set of theorems. Except the ‘apparently unacceptable conclusion’, there might
be other theorems that are derivable in the old system, but not in the new one. We
explain which requirements should be met by this new set of theorems when we
describe Haack’s third requirement.

2.2 The Philosophical Part of a Solution (Second Requirement)

After stating some requirements to the formal solution to a paradox , Haack continues
that a solution should “supply some explanation of why that premise or principle is,
despite appearances, exceptionable (the philosophical solution)” [16, p. 139]. This
explanation should show that “the rejected premise or principle is of a kind to which
there are (...) objections independent of its leading to paradox”.

To continue the example above, suppose we have a formal theory in which the liar
paradox exists, and we replace this by a new theory which only differs from the origi-
nal one by disallowing the statements that mean the same as “this statement is false”.
The only reason why we say these statements should be disallowed is ‘because they
result in a paradox’. This is a solution that does not satisfy Haack’s philosophical
criterion. According to Haack, we need to find philosophical arguments for disal-
lowing apparently acceptable principles of inference and premises in order to have a
satisfactory solution.

2.3 The Scope of a Solution (Third Requirement)

A solution to a paradox is required to have the right scope, which means that it should
be neither too broad nor too narrow. A solution is too broad if it is “so broad as to
cripple reasoning we want to keep” [16, p. 139], and it is too narrow if it does not
block all paradoxes that are closely related to the paradox under consideration. It is
often somewhat vague which paradoxes are closely related to a given paradox. For
example, if the solution solves a paradox of the form ‘P if and only if ¬P ’, then
should other paradoxes of this form be considered as closely related to it? Obviously
not, but are the liar paradox and the knower paradox closely related because both
involve self-reference? It may depend on the sort of solution that is proposed. If
the solution revolves around an analysis of self-reference, one may consider them
to be closely related. If the solution focusses on the concept of knowledge one may
consider them to be unrelated.

Let us assume that in a certain context we are not bothered by this inherent vague-
ness and it is clear which group of paradoxes are to be solved. We can then explain
the concept of scope in a more formal way. Suppose we consider a certain solution to
a given paradox. Remember that there are two sets of theorems, namely the one from
the system S1 in which the paradox is present and the one from the system S2, which

1107Solutions to the Knower Paradox in the Light of Haack’s Criteria



is proposed as solution to the paradox. Note that S2 may have a different language
than S1. Consider the set S as the union of these two sets of theorems, which are
derived from ‘apparently acceptable premises and principles of inference’, because
S1 and S2 are based on those. We divide set S into two subsets A and B, where A and
B are independent of S1 and S2. Set B contains the paradox itself, together with all
other ‘apparently unacceptable conclusions’ that occur in S1 or in S2. All other the-
orems of S are in A. A solution of a good scope would reject exactly all statements
from set B or its language would not even contain these statements. The solution
is too broad if it rejects a statement from set A or if one of these statements is not
translated into the language of the new system. The solution of a paradox is too nar-
row if one of the statements of set B is still in the language and still an acceptable
conclusion. Note that a solution can be both too broad and too narrow.

To continue the running example, suppose that some system which is proposed to
solve the liar paradox does not contain this paradox, but for some reason does contain
a paradox based on the following two consecutive sentences: ‘The next sentence is
true. The previous sentence is false’.7 Both paradoxes are in set B, but the second one
is not rejected in the new system. This means that the solution is too narrow. If for
example another solution implies that a sentence like ‘this sentence is true’, which is
in set A, cannot be true, then this solution is too broad.

In summary, a solution to a paradox satisfies Haack’s criteria if it has an appro-
priate formal part and a satisfactory philosophical part and if it is neither too broad
nor too narrow. In Section 4, we evaluate three interpretations of provability logic as
solutions to the knower paradox, using Haack’s criteria as our yardstick.

3 Provability Logic and Formal Systems of Arithmetic

Before we consider some solutions to the knower paradox, we look at provability
logic and formal systems of arithmetic. First we consider Peano arithmetic, after
which we define a certain provability logic and its relation to arithmetic. In addition,
we mention the diagonal lemma, which is used in the original formulation of the
knower paradox.

3.1 Peano Arithmetic

Let us give a reminder of the most well-known extension of Robinson arithmetic.
Peano arithmetic (PA) is named after Giuseppe Peano [31], who made a precise for-
mulation of a set of axioms which had been proposed by Richard Dedekind [9]. To
define PA, we need the following Induction Schema.

{ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x) (8)

7The paradox is the apparently unacceptable conclusion of the form ‘P is true if and only if P is false’,
where statement P is one of the two sentences.
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The axioms of PA are exactly all axioms of Q plus each instance of this induction
schema. If statement ϕ is a theorem of PA, this is denoted by ‘PA � φ’.

3.2 Provability Logic

The most widely used provability logic8 is called GL and contains all axiom schemes
from K and the extra scheme GL:

All (instances of) propositional tautologies (A1)

�(ϕ → ψ) → (�ϕ → �ψ) (A2)

�(�ϕ → ϕ) → �ϕ (GL)

The rules of inference of GL are modus ponens and necessitation (if ϕ ∈ GL, then
�ϕ ∈ GL). Note that �ϕ → ��ϕ ∈ GL [45].

There are three conditions that a predicate Prov(ϕ) should satisfy in order to be a
provability predicate for arithmetical theory Σ .

If Σ � ϕ then Σ � Prov(ϕ) (L1)

Σ � Prov(ϕ → ψ) → (P rov(ϕ) → Prov(ψ)) (L2)

Σ � Prov(ϕ) → Prov(P rov(ϕ)) (L3)

These conditions are called the Hilbert-Bernays-Löb derivability conditions9 or just
Löb’s derivability conditions.10 Löb proved that S, satisfying Σ � S ↔ Prov(S),
is provable for Prov(S) satisfying the derivability conditions [23]. This theorem can
also be formulated as follows. If PA � S, then PA � Prov(S) → S. Gödel’s second
incompleteness theorem states that if PA � ⊥, then PA � ¬Prov(⊥) [14]. This can
be proved from Löb’s theorem.

3.3 The Relation between Provability Logic and Peano Arithmetic

Note that the derivability conditions for PA correspond to the principles of GL. To
make this more precise, we now describe the important relation between formal arith-
metic PA and provability logic GL, using the definition of a realization. A realization
is a function that assigns to each propositional atom of modal logic a sentence of the
language of arithmetic. The inductive definition of the realization ∗ is given by the
following clauses.

⊥∗ = ⊥
(ϕ → ψ)∗ = (ϕ∗ → ψ∗)

(�ϕ)∗ = Prov(ϕ∗)

8Instead of GL, this logic is sometimes called KW, KW, K4W, PrL or L.
9See [5, p. 16], [39, p. 223].
10See [41, p. 118], [18, 45].
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Other logical connectives like (ϕ ∧ψ) can be defined by → and ⊥, so ∗ also respects
these. This definition of realization ∗ is used in the defintion of arithmetical sound-
ness and completeness. In 1976, Robert Solovay [42] proved that GL is arithmetically
complete with respect to PA. The arithmetical soundness of GL was already clear. So
GL is arithmetically complete (‘if’) and arithmetically sound (‘only if’) w.r.t. Peano
arithmetic, which means that

GL � ϕ if and only if PA � ϕ∗ for all realizations ∗ .

So GL “prove[s] everything about the notion of provability that can be expressed in
a propositional modal language and can be proved in Peano [a]rithmetic” [45].

We now consider the diagonal lemma11, which makes it possible to introduce
certain self-referential sentences. It proves for example that statement D, which is
used to provide the original knower paradox in Section 1.1, can indeed be defined.
Statement D satisfies Σ � D ↔ K(¬D). The diagonal lemma is stated as follows.

Theorem 1 (Diagonal Lemma, [5, p. 54]12) Suppose that P(y) is a formula of the
language of PA in which no variable other than y is free. Then there exists a sentence
S of the language of PA such that PA � S ↔ P(S).

A clear sketch of the proof can be found in a supplement of an article by
Raatikainen [35].

4 Solutions to the Knower Paradox in the Light of Provability Logic

We try to solve the knower paradox using provability logic. In Section 3.2, we dis-
cussed some theorems by Gödel and Löb, which play an important role in this
logic. As Visser says, one advantage of provability logic is that “it gives us a direct
way to compare notions such as knowledge with the notion of formal provability”
[46, p. 793]. By interpreting knowledge as provability, some elements of the theory
in which the knower paradox holds are rejected. If the resulting theory does not con-
tain the knower paradox, then the paradox is solved. We consider some theories that
solve the knower paradox according to Égré [11]. In addition, we discuss whether
these solutions are satisfactory by discussing some articles that commented on them
and by applying Haack’s requirements, described in Section 2, to the solutions.

4.1 Different Treatments of Modalities as Used in Solutions
to the Knower Paradox

Before we consider the solutions that Égré describes, we define four kinds of
treatments of modalities, namely sentential treatments on the one hand, and

11Smith calls it ‘Diagonalization Lemma’ and explains that it deserves the status of being a theorem rather
than being a lemma [39, p. 173].
12We replace Boolos’ ‘�S�’ by ‘S’.

1110 M. de Vos et al.



metalinguistic, syntactical and arithmetical treatments on the other. Like in the first
section of this article, a sentential operator applies to sentences, but a metalin-
guistic predicate applies to names of sentences. If some metalinguistic predicate is
self-referential, such as a predicate to which the diagonal lemma applies, then we
call it syntactical. Finally, an arithmetical predicate is a specific kind of syntactical
predicate, namely one which is self-referential because it can be diagonalized, and
metalinguistic because it applies to arithmetical names of sentences. The relations
between these four different kinds of operators are shown in Fig. 1.

Important in Égré’s article is that a syntactical treatment, defined by Mon-
tague [27] and Cross [6] without mentioning self-reference, is ambiguous between
metalinguistic and self-referential treatment. When Montague states that a syntacti-
cal treatment of predicates is not possible without creating inconsistencies, he means
a metalinguistic treatment with self-reference, as explained by Égré [11, p. 34]. In
addition, Égré shows that there exist both a consistent non-metalinguistic treatment
with self-reference and a consistent metalinguistic treatment of modalities which is
not self-referential.

As a first interpretation of provability logic used to solve the knower paradox,
Égré mentions a theory by Skyrms [38] as a consistent metalinguistic treatment of
modalities which does not contain self-referential statements like knower sentences
D (satisfying D ↔ K(¬D)). In contrast, Égré describes two examples of self-
referential systems. In a nutshell, Anderson’s system [1] weakens the axiom scheme
K(K(ϕ) → ϕ). Solovay’s system [42] weakens the necessitation rule of inference to
prevent that scheme K(K(ϕ) → ϕ) results from applying necessitation to the axiom
scheme K(ϕ) → ϕ.

We discuss the systems by Skyrms, Anderson and Solovay in Sections 4.2, 4.3
and 4.4 respectively. Although only Anderson published his system with the goal to
contribute to the discussion about the knower paradox, Égré explains that all three
of the theories provide solutions to the knower paradox. We consider the quality of
these solutions in the light of Haack’s criteria.

Fig. 1 The relation between the different kinds of operators as used in treatments of modalities
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4.2 Skyrms’s Interpretation of Provability Logic

We consider Skyrms’s interpretation of provability logic [38] and discuss why
Égré [11] states that this is a solution to the knower paradox. Skyrms himself does
not mention the knower paradox in his article.

By the derivation of the original knower paradox in Section 1.1, we know that
arithmetical treatments of modalities can lead to inconsistencies. Égré explains that
Skyrms shows that there does exist a consistent form of metalinguistic treatment of
modalities. Suppose �ϕ is metalinguistically interpreted as ‘ϕ is provable’. Skyrms
defines modal language LM as follows, where L0 is a finitary language containing
the language of the propositional calculus:

LM : A language containing L0,

closed under Boolean operators,

for which ϕ ∈ LM implies �ϕ ∈ LM

The counterpart of LM is based on the same language L0 and is defined by induction:

L0 : A finitary language containing propositional calculus.

Ln+1 : The smallest extension of Ln such that if ϕ ∈ Ln, then Prov(‘ϕ’) ∈ Ln+1,

closed under Boolean operators.

Lω =
⋃

n∈ω

Ln

The predicate Prov(‘ϕ’) expresses that ϕ is provable, where the quotes are symbols
of the object-language. Skyrms uses ∗Q(S), where the asterisk is the part interpreted
as ‘is valid’ or ‘is provable’. Égré only considers the provability interpretation and
writes ∗Q(S) as Prov(‘ϕ’). Skyrms explains that “[t]he expression consisting of a
sentence prefixed by ‘Q’ is to be thought of as a name for that sentence” [38, p. 369–
370]. So ‘ϕ’ in Prov(‘ϕ’) does not express the numeral corresponding to the name
of ϕ, but expresses just the name of ϕ. This means that the treatment of modalities
in Skyrms’s system is metalinguistic. It is not syntactical, since it does not contain
self-referential statements in which the predicate Prov occurs.

The modal language LM needs to be translated to metalanguage Lω. Each sentence
of LM gets assigned a metalinguistic correlate in Lω via the translation t : LM →
Lω, which satisfies the following criteria:

t (ϕ) = ϕ for all ϕ ∈ L0

t (�ϕ) = Prov(‘t (ϕ)’) for all ϕ ∈ LM

t distributes over the truth-functional connectives

Using this translation, the modal degree of ϕ ∈ LM gives the index of the first
language to which t (ϕ) belongs.

Why is Skyrms’s system, consisting of an hierarchy of languages and a transla-
tion from LM to Lω, a solution to the knower paradox? It is a consistent theory of
language Lω, which does not contain sentences of the form D ↔ Prove(‘¬D’). To
show this, Égré states the following consistency result.
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Theorem 2 (Consistency of Skyrms’s System [11, p. 36–37]) LetL0 be the language
of Robinson arithmetic Q. Let T0 = Q and consider the chain of (deductively closed)
theories Tn in the languages Ln previously specified, where Tn+1 is the smallest
extension of Tn satisfying:

1. If ϕ ∈ Tn, then Prov(‘ϕ’) ∈ Tn+1
2. If ϕ, ψ ∈ Ln, then Prov(‘ϕ → ψ’) → (P rov(‘ϕ’) → Prov(‘ψ’)) ∈ Tn+1
3. If ϕ ∈ Ln, then Prov(‘ϕ’) → ϕ ∈ Tn+1
4. If Prov(‘ϕ’) ∈ Ln, then Prov(‘ϕ’) → Prov(‘Prov(‘ϕ’)’) ∈ Tn+1

The theory Tω = ⋃
n∈ω Tn is consistent if Q is consistent.

According to Égré, who gives a short proof of this theorem, “[t]his consistency
result shows that the theory Tω, although it is an extension of Robinson [a]rithmetic,
can satisfy all the metalinguistic translations of the modal schemata involved in (. . .)
the weak system T-Nec used to present the [knower paradox]” [11, p. 37]. In contrast
to T-Nec, Skyrms’s system treats the predicate Prov in a way that does not contain
self-referential sentences like D ↔ Prov(‘¬D’). This leads to the difference in
consistency of the systems.

Why is D ↔ K(¬D) not contained in Skyrms’s system, meaning that there is
no D of the form D ↔ Prov(‘¬D’) ∈ Lω, satisfying D ↔ Prov(‘¬D’) ∈ Tω?
There is some form of self-refence in Skyrms’s system, because it extends weak arith-
metic, but it does not interfere with the predicate Prov. Égré states that “[t]he core
of Skyrms’s approach is indeed to sever the self-referential apparatus of arithmetic
from the metalinguistic system used to handle the predicate Prov” [11, p. 37–38].
We will show that there is no D of the form D ↔ Prov(‘¬D’) that is in Lω and
such that D ↔ Prov(‘¬D’) ∈ Tω (assuming Robinson arithmetic Q is consistent).
We prove this by contradiction.

Suppose there is some D of the form D ↔ Prov(‘¬D’) in Lω, satisfying D ↔
Prov(‘¬D’) ∈ Tω . Then there exists some n ∈ ω such that D ↔ Prov(‘¬D’) ∈
Tn ⊂ Tω. This means that D → Prov(‘¬D’) ∈ Tn. Since D ∈ Lω, there exists an
m for which D ∈ Lm. Then ¬D ∈ Lm, since Lm is closed under Boolean opera-
tors. Therefore, by requirement 3 of Theorem 2, Prov(‘¬D’) → ¬D ∈ Tm ⊂ Tω

follows. By deductive closure from D → Prov(‘¬D’) ∈ Tω and Prov(‘¬D’) →
¬D ∈ Tω, we have D → ¬D ∈ Tω. This implies ¬D ∈ Tω by propositional
logic. By requirement 1 of Theorem 2, Prov(‘¬D’) ∈ Tω follows. From the original
assumption, we derive Prov(‘¬D’) → D ∈ Tω. Then D ∈ Tω by deductive closure.
Since both ¬D ∈ Tω and D ∈ Tω, Tω is inconsistent. This contradicts with Theorem
2, stating that Tω is consistent if Q is consistent. We conclude that there is no D of
the form D ↔ Prov(‘¬D’) in Lω such that D ↔ Prov(‘¬D’) ∈ Tω.

The first step of the original derivation of the paradox consisted of
‘� D ↔ K(¬D)’ (see Section 1.1, Page 3). Although the derivation by Kaplan and
Montague resembles the one described above in a certain way, there is a crusial
difference. In the original derivation, the existence of such a sentence D followed
from the diagonalization lemma. We do not have this in Skyrms’s system, since
� D ↔ K(¬D) only holds for Tn+1 if D ∈ Tn and not � D ↔ K(¬D) ∈ Tn.
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Since D ↔ Prov(‘¬D’) /∈ Tω, the knower paradox cannot be derived in Skyrms’s
system Tω in the same way as we did in Section 1.1. Therefore, accepting Tω

solves the knower paradox. We discuss the extent to which this solution satisfies the
requirements by Haack [16] in Sections 4.2.1, 4.2.2 and 4.2.3.

4.2.1 The Formal Part of Skyrms’s Theory as a Solution

As we discussed above, Skyrms [38] proposes to treat modalities in a metalinguis-
tic way without self-referential statements of a certain form. No knower sentence is
contained in Skyrms’s system Tω, so the knower paradox cannot be derived in the
original way, described in Section 1.1.

Is Skyrms’s system a consistent formal theory which indicates a premise, inference
principle, or set of theorems that should be disallowed in the theory in which the
knower paradox was originally formulated? As we stated above, Tω is consistent if Q
is consistent.13 Besides, theorems like D ↔ Prov(‘¬D’) are not in this new theory
which describes knowledge. This means that Skyrms’s system satisfies Haack’s first
criterion as a solution to the knower paradox.

4.2.2 The Philosophical Part of Skyrms’s Theory as a Solution

Does Skyrms’s theory also satisfy Haack’s second requirement? This requirement
states that a solution should explain why the rejected set of theorems should be dis-
allowed, independent of its leading to the paradox. In this case, we need arguments
for disallowing statements like D ↔ K(¬D) in the theory that describes knowledge.
The article by Skryms [38] is about modalities in general, but not specifically about
knowledge. It starts with a reference to Quine [34], who takes the view that the most
natural construal of modalities is as predicates applying to names of sentences, so as
metalinguistic predicates . This is an argument for treating modalities metalinguisti-
cally, but not for disallowing D ↔ K(¬D). We can at least appreciate that Skyrms’s
motivation is independent of the paradox.

In addition, Skyrms [38, p. 386–387] argues that “a metalinguistic approach that
avoids self-reference via a hierarchy of metalanguages leads straightforwardly to nat-
ural interpretations of S-4 and S-5”. Skyrms’s provability interpretation leads to an
interpretation of S4. This means that the modal principles which hold for language
L0, defined as finitary language containing propositional calculus, are exactly the
principles of S4. So arguments for accepting S4 as a system to describe knowledge
are also arguments for accepting Skyrms’s system, but this does not directly indicate
why we should disallow self-referential statements like D ↔ K(¬D). So we do not
see arguments for disallowing the rejected set of theorems, which means that Haack’s
second requirement is provisionally not satisfied.

13It is generally assumed by mathematicians that Robinson arithmetic Q, being a sub-theory of PA, is
indeed consistent.
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4.2.3 The Scope of Skyrms’s Theory as a Solution

Haack’s third requirement states that a solution to a paradox should not be too broad
or too narrow. A solution which is consistent satisfies the requirement that it should
not be too narrow, because consistency implies that we have not ended up with a dif-
ferent paradox, such as the liar paradox. As we have seen in Section 4.2.1, Skyrms’s
system is consistent. So this system is not too narrow.

However, Skyrms’s system Tω is too broad as a solution to the knower paradox,
because it does not contain some non-paradoxical statement such as fixed-point state-
ments. Thus, it throws the baby out with the bathwater, as we will proceed to show. A
Gödel equivalence G for Tω, with G ↔ ¬Prov(‘G’), is such a statement. This sen-
tence is relevant for a solution to the knower paradox, because it is a self-referential
sentence about provability.

We show by contradiction that G ↔ ¬Prov(‘G’) is not contained in Tω for all
G ∈ Lω satisfying G ↔ ¬Prov(‘G’). Suppose that G ↔ ¬Prov(‘G’) ∈ Tω =
∪n∈ωTn, then there exists some n ∈ ω such that G ↔ ¬Prov(‘G’) ∈ Tn. This
means that G → ¬Prov(‘G’) ∈ Tn. Since G ∈ Lω, there exists an m for which
G ∈ Lm. By requirement 3 of Theorem 2, Prov(‘G’) → G ∈ Tm ⊂ Tω follows.
By deductive closure from Prov(‘G’) → G ∈ Tω and G → ¬Prov(‘G’) ∈ Tω,
we have Prov(‘G’) → ¬Prov(‘G’) ∈ Tω. This implies ¬Prov(‘G’) ∈ Tω by
propositional logic. From the original assumption, we derive ¬Prov(‘G’) → G ∈
Tω. Since ¬Prov(‘G’) ∈ Tω, it follows that G ∈ Tω. By requirement 1 of Theorem
2, Prov(‘G’) ∈ Tω follows. Since both ¬Prov(‘G’) ∈ Tω and Prov(‘G’) ∈ Tω,
Tω is inconsistent. This contradicts with Theorem 2, stating that Tω is consistent if
Q is consistent. We conclude that there is no G ∈ Lω satisfying G ↔ ¬Prov(‘G’)
such that G ↔ ¬Prov(‘G’) ∈ Tω, so Skyrms’s system Tω misses all fixed-point
sentences with respect to Skyrms’s provability predicate. This means that Skyrms’s
system as a solution to the knower paradox is too broad.14

We conclude that Skyrms’s system as a solution to the knower paradox does have
a sufficient formal part, but the philosophical requirement by Haack is provisionally
not satisfied. The third requirement, which states that the solution should not be too
broad or too narrow, is partly satisfied. Skyrms’s system is not too narrow, but it is
too broad.

4.3 Anderson’s Interpretation of Provability Logic

Let us now consider Anderson’s provability interpretation of epistemic logic and dis-
cuss why both Anderson and Égré state that this provides a solution to the knower
paradox.

Skyrms’s system as a solution to the knower paradox abandoned a certain form
of self-reference in his theory Tω. Anderson [1] argues that we should not aban-
don self-reference, but modify the incompatible axiom schemes that lead to the

14Note that the Gödel sentence with arithmetical provability predicate PrQ for Q itself is contained in Q
and thus in Tω .
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paradox. Anderson considers the following three generalizations of the axioms E1,
E2, and E3 from the original knower paradox by Kaplan and Montague [21] (see
Section 1.1):

K(ϕ) → ϕ (T)

K(K(ϕ) → ϕ) (U)

[I (ϕ, ψ) ∧ K(ϕ)] → K(ψ) (I)

As we will see, Anderson constructs a hierarchy with self-reference in a way in which
T and I still hold, but U is not valid anymore. His hierarchy of languages is defined
as follows15, where LA is the language of Robinson and Peano arithmetic.

L0 : the smallest extension of LA such that

if ϕ, ψ ∈ LA, then K0(ϕ), I0(ϕ, ψ) ∈ L0,

closed under Boolean operators.

Li+1 : the smallest extension of Li such that

if ϕ, ψ ∈ Li , then Ki+1(ϕ), Ii+1(ϕ, ψ) ∈ Li+1,

closed under Boolean operators.

Lω =
⋃

i∈ω

Li

Notice that this Ki does not mean ‘agent i knows’, but indicates a certain level of
knowledge. Anderson gives an “intuitive motivation”, inspired by John Myhill [28],
for accepting more than one knowledge predicate [1, p. 348–349]. The idea is as
follows. Some sentence that cannot be in a set of statements known at level i can still
be provable. By understanding the proof of such a statement, one knows this sentence
at level i + 1.

It is assumed that there is a given Gödel numbering for Lω, and we define
gn(Lω) = {gn(l) | l ∈ Lω}. Then the semantics of Anderson’s hierarchy of lan-
guages is as follows, where Vp is an interpretation of LA on which a chain of
interpretations Vi is based:

V0 extends Vp to L0

Vi+1 extends Vi to Li+1

Vi(Ki) ⊆ gn(Lω)

Vi(Ii) ⊆ gn(Lω) × gn(Lω)

V =
⋃

i∈ω

Vi

15Égré [11, p. 39] defines Li+1 as Li ∪{Ki, Ii}, which implies that L1 = L0∪{K0, I0} = L0. Anderson [1,
p. 351–352] himself states that “language Li is obtained from Lω by omitting all K and I predicates with
subscripts greater than i”. So instead of adding Ki and Ii in language Li+1, we add Ki+1 and Ii+1.
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The hierarchy of theories with sequence of axiom sets (Ti)i∈ω and sequence of
interpretations (Vi)i∈ω are defined as follows:

T0 = Q ∪ {K0(ϕ) → ϕ | ϕ ∈ Lω}
Ti+1 = Ti ∪ {Ki+1(ϕ) → ϕ | ϕ ∈ Lω}

V0(K0(ϕ)) = 1 if and only if Q � ϕ

Vi+1(Ki+1(ϕ)) = 1 if and only if Ti � ϕ

V0(I0(ϕ, ψ)) = 1 if and only if Q � ϕ → ψ

Vi+1(Ii+1(ϕ, ψ)) = 1 if and only if Ti � ϕ → ψ

In this article, we consider axiom set Tω = ∪i∈ωTi as Anderson’s theory or Ander-
son’s system. Anderson’s sequence of provability interpretations of knowledge is
coherent, which means that the following constraints are satisfied for all levels i, j :

Vi(Ki) ⊆ Vi+1(Ki+1)

Vi(Ii) ⊆ Vi+1(Ii+1)

If n = gn(ϕ) ∈ Vi(Ki), then ∃j ≥ i such that Vj (ϕ) = 1.

If n = gn(ϕ), m=gn(ψ), (n, m)∈Vi(Ii), then ∃j ≥ i such that Vj (ϕ → ψ)=1.

If (n, m) ∈ Vi(Ii), n ∈ Vi(Ki), then m ∈ Vi(Ki).

In addition to the fact that the sequence of interpretations is coherent, the following
statements are satisfied for all levels i:

V (Ki(ϕ) → ϕ) = 1

V ([Ii(ϕ, ψ) ∧ Ki(ϕ)] → Ki(ψ)) = 1

V (Ki+1(Ki(ϕ) → ϕ)) = 1

By the first two of these statements, we still have T and I in Anderson’s system.
There are two different forms of U, namely Ki+1(Ki(ϕ) → ϕ) and Ki(Ki(ϕ) → ϕ).
The first one is valid, but if we use this one in the derivation of the knower paradox
as described in Section 1.1 on Page 3, then we will not arrive at an inconsistency.
This is the case, because we get Ki+1(¬D) in Step (10) of the derivation and
Ki(¬D) → D in Step (11), which does not give us D. Therefore, we cannot con-
clude the inconsistency of D with ¬D. Applying the other form, Ki(Ki(ϕ) → ϕ),
would lead to the inconsistency in the same way as described in Section 1.1 by
replacing K with Ki . However, this form of U is not valid in Anderson’s system,
because by definition of theory Tj , Tj � Ki(ϕ) → ϕ holds only for j ≥ i. This
means that Ti−1 � Ki(ϕ) → ϕ does not hold, so by definition of interpretation Vi ,
Vi(Ki(Ki(ϕ) → ϕ)) �= 1. So this second form of U is not valid.

Since this second form of U, which would lead to the knower paradox, is not
valid, the paradox is solved by Anderson’s provability interpretation. Let us consider
the extent to which Anderson’s solution satisfies Haack’s requirements.
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4.3.1 The Formal Part of Anderson’s Solution

In Anderson’s hierarchy of languages, the formula Ki(Ki(ϕ) → ϕ) is rejected, which
implies that no formula representing the knower paradox can be derived in the
way that was shown in Section 1.1. Does this mean that the first requirement from
Haack [16] is satisfied? For this, we need a consistent formal theory indicating which
premise(s), principle(s) of inference, or set of theorems from the theory in which
the paradox was formulated should be disallowed. Anderson’s theory does indicate
which set of theorems we should disallow, namely all instances of the axiom scheme
K(K(ϕ) → ϕ). Is Anderson’s theory also consistent? Dean and Kurokawa [8, p. 221]
write about the consistency proof that Anderson sketches for his theory. The state-
ment “V0(K0(ϕ)) = 1 if and only if Q � ϕ” holds (step (i)). The rest of the proof
sketch is then formulated as “Vi+1(Ki+1(ϕ)) = 1 if and only if Ti � ϕ” for
T0 = Q ∪ {K0(ϕ) → ϕ | ϕ ∈ Lω} and Ti+1 = Ti ∪ {Ki+1(ϕ) → ϕ | ϕ ∈ Lω}.
Step (i) implies that T0 is consistent if Q is consistent. This is the case, because
there is no ψ ∈ Lω such that ψ ∈ Q and ¬ψ ∈ {K0(ϕ) → ϕ | ϕ ∈ Lω}, or
ψ ∈ {K0(ϕ) → ϕ | ϕ ∈ Lω} and ¬ψ ∈ Q. This follows because K0 is not con-
tained in the language LA of Q. In the same way, theories Ti , for i = 1, 2, . . ., are
consistent.16 So Anderson’s solution meets Haack’s first requirement.

4.3.2 The Philosophical Part of Anderson’s Solution

Haack’s second requirement concerns the philosophical part of the solution. What
are the objections to the rejected scheme U, namely K(K(ϕ) → ϕ)? Using articles
by Anderson [1] and Poggiolesi [32], we arrive at an argument for rejecting U.

The following argument to disallow axiom scheme U is given both by Ander-
son [1, p. 350] and Poggiolesi [32, p. 152]. The axiom sceme U is not valid in
a system where provability is considered instead of knowledge. Remember that
the knower paradox followed from the combination of the schemes K(ϕ) → ϕ,
K(K(ϕ) → ϕ), and [I (ϕ, ψ) ∧ K(ϕ)] → K(ψ) (T, U, and I respectively). Pre-
suming a provability interpretation, the schemes Prov(ϕ) → ϕ and [I (ϕ, ψ) ∧
Prov(ϕ)] → Prov(ψ) are valid, while U, interpreted as Prov(P rov(ϕ) → ϕ),
is not. So interpreting knowledge as provability implies that U should be disal-
lowed. The connection between knowledge and provability is further discussed in
Section 5.2.

Poggiolesi [32] argues that Anderson’s intuitive argument for introducing differ-
ent knowledge levels fails, because it uses two different notions of proof. She claims
that “there is no reason for changing the notion of proof on which (. . .) knowledge
is based” [32, p. 157]. We do not agree with Poggiolesi here that the use of differ-
ent notions of proof would be an important problem for Anderson’s solution. On
the contrary, the idea that knowledge can be acquired in different ways supports the
philosophical part of Anderson’s solution. Since we can gain knowledge via both
syntactical proofs and ‘absolute’ ones (which are not formalizable in the system K0),

16We assume that Robinson arithmetic is consistent.
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it is plausible to define at least two different kinds, or levels, of knowledge. As an
analogy, consider the sequence of mathematical theories:

1. PA;
2. PA + Con(PA).
3. PA + Con(PA + Con(PA)), etc.

Based on Gödel’s second completeness theorem, it is immediately clear that these
theories differ from one another. For example, if PA is consistent, then the second
level proves Con(PA), which is true but not provable at the first level, and so on.
To us, provability in these theories does intuitively correspond to increasing levels of
knowledge, thereby saving the philosophical part of Anderson’s solution.

The argument that axiom scheme U is not valid in a system where provability is
considered as knowledge forms the philosophical part of Anderson’s solution to the
knower paradox. This philosophical part indicates objections to the rejected principle
U. The first reason to reject U is because it is not valid if we interpret knowledge
as provability. We think this argument forms enough reason to disallow U, indepen-
dent of the existence of the knower paradox. Therefore, we conclude that Anderson’s
system satisfies Haack’s second criterion.

4.3.3 The Scope of Anderson’s Solution

Haack’s third requirement states that a solution to a paradox should not be too broad
or too narrow, which means that it should not contain any paradoxes, but it has to
contain all non-paradoxical statements which can be formulated in the languages of
the regarded system. Anderson’s solution to the knower paradox is consistent, so just
as Skyrms’s solution, Anderson’s solution is not too narrow.

A statement that is potentially able to show that a solution to a paradox is too broad
is Gödel sentence G, which satisfies G ↔ ¬Ki(G) for some i ∈ ω. Suppose that
Ti=j is the first theory of Anderson’s hierarchy in which G occurs. Then Tj−1 � G,
so Vj (Kj (G)) = 0. Therefore, we have Vj (G) = 1 and Vj (¬Kj(G)) = 1, so
Vj (G ↔ ¬Kj(G)) = 1. This means that there is indeed some i ∈ ω, namely i = j ,
for which G ↔ ¬Ki(G) ∈ Ti . Our provisional conclusion is that Anderson’s system
satisfies Haack’s third requirement, but still someone might find out at some stage
that it does not.

4.3.4 Reflecting on Haack’s Criteria

Summarizing, Anderson’s system satisfies both the formal and the philosophical
requirements formulated by Haack. The system is not too narrow and provisionally
not too broad, so the third requirement is provisionally met. So Anderson’s system,
together with the argument by Poggiolesi [32] that we explained in Section 4.3.2,
satisfies all of Haack’s requirements on solutions to paradoxes at least provisionally.
Still, the idea of more than one level of knowledge has not yet been motivated inde-
pendently of the paradox. Does this mean that Haack’s criteria are not sufficient for
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assessing the quality of a solution to a paradox? It seems that a philosophical solu-
tion that only explains why a premise or principle is to be disallowed, does not by
itself provide a good story for accepting a different premise or principle that is to
replace a problematic one. When we are faced with multiple solutions to a paradox
that all reject the same premise, surely a satisfactory solution would also have to
provide an argument why the new premise is better than its alternatives. Indeed the
implicit premise that Anderson rejects (‘there is exactly one knowledge predicate’)
is also rejected by Dean and Kurokawa, yet their solutions differ significantly in the
number of knowledge predicates that replace the single knowledge predicate in the
system of Kaplan and Montague. So maybe a general requirement to the solution of
paradoxes should be added to Haack’s list, namely the requirement that philosophical
motivation should be provided for a new premise or principle that replaces a rejected
premise or principle.

Égré [11, p. 40] states that “[t]he strength of [Anderson’s] solution, as compared
to [Skyrms’s system], is to license the construction of self-referential statements at
every level of the hierarchy”. We consider another system of modal logic, by Solo-
vay [42], as solution to the knower paradox, which according to Égré [11, p. 38] has
a “significant connection” with Anderson’s system.

4.4 Solovay’s Interpretation of Provability Logic

We discussed Skyrms’s consistent system, in which there is one provability predicate
and self-referential sentences cannot be proved in Tω. We also considered Anderson’s
hierarchy of languages, in which infinitely many provability predicates occur but
self-referential sentences can be valid. According to Égré [11, p. 40], the framework
of modal provability logic combines the possibility of self-reference with the use of
only one provability predicate. Like Skyrms, Solovay did not publish his theory in
the context of the knower paradox.

Remember that the system GL contains the propositional tautologies as axioms
as well as all instances of the schemes �(ϕ → ψ) → (�ϕ → �ψ) and �(�ϕ →
ϕ) → �ϕ, and the inference rules modus ponens and necessitation (see Section 3.2).
The system GLS, defined by Solovay [42, Section 5.1]17, contains all theorems of
GL as axioms as well as all instances of the reflection principle �ϕ → ϕ, and modus
ponens is its single rule of inference. Like for GL, the arithmetical soundness and the
arithmetical completeness of the system GLS can be proved, but with respect to the
standard model 〈ω; +, ·〉 instead of to PA [42].

Why is the knower paradox prevented in GLS? Remember that K(E1), where E1
was defined as K(¬D) → ¬D, was needed in the derivation of the knower paradox
by Kaplan and Montague [21] (see Section 1.1, Page 3, Step (7)). In GLS, we have
�¬D → ¬D as an instance of the reflection principle. Because necessitation is not
an inference rule of GLS, �(�¬D → ¬D) cannot be derived from the reflection
principle here, therefore, Kaplan and Montague’s derivation cannot be repeated in
GLS.

17We follow current conventions as in e.g. [5, 45] in that Solovay’s G is our GL and his G′ is our GLS.

1120 M. de Vos et al.



Égré states more about Solovay’s system, in particular about its connection to the
one by Anderson. We cite18 him and give some comments on it.

The system GLS corresponds to the system PA+ obtained by closure under
modus ponens from PA supplemented with all instances of the reflection prin-
ciple. PA+ is stronger than PA because it can now prove the consistency of PA;
PA+ is therefore the counterpart of the first system T0 in Anderson’s progres-
sion. What this shows however is what remained only hinted at in Anderson’s
treatment, namely the fact that when knowledge is interpreted in terms of
provability, an implicit hierarchy is present within the first stage of the progres-
sion: in order to keep principle T, one needs to restrict the rules of inference
governing its interaction with [necessitation]. [11, p. 43]

By instances of the reflection principle, Égré means all instances of Prov(ϕ) →
ϕ, where Prov means provability in PA. Note that PA+ is not closed under neces-
sitation. Égré makes the following four claims. The first is that GLS corresponds to
PA+. The second claim is that PA+ can prove the consistency of PA. As the last two
claims, Égré states that PA+ is the counterpart of T0 in Anderson’s system (described
in Section 4.3) and that T0 contains an implicit hierarchy. We discuss these four
claims consecutively.

(1) Why does GLS Correspond to PA+? We think Égré means that GLS corresponds
to PA+ in the same way as GL corresponds to PA. The system GL is arithmetically
sound and arithmetically complete with respect to PA, which means that GL � ϕ if
and only if PA � ϕ∗ for all realizations ∗. Is it the case that GLS � ϕ if and only if
PA+ � ϕ∗ for all realizations ∗, so we can say that GLS corresponds to PA+?19

Solovay [42, Section 5.1] proves that GLS is arithmetically sound and arithmeti-
cally complete with respect to the standard model 〈ω; +, ·〉. In addition, PA+ is sound
with respect to this standard model, so PA+ � ϕ implies ω |= ϕ. So if GLS � ϕ,
then by the completeness part of Solovay’s theorem some realization ∗ exists such
that ω �|= ϕ∗. By soundness of PA+ with respect to ω, it follows that PA+

� ϕ∗. So
assuming GLS � ϕ, it follows that PA+

� ϕ∗ for some realization ∗. This means that
GLS is arithmetically complete with respect to PA+.

To prove the arithmetical soundness of GLS with respect to PA+, the arithmetical
soundness of GL with respect to PA can be used. We also use a theorem from Boo-
los [5, p. 131], according to which GLS � ϕ implies that there exist ψ1, . . . ψn such
that GL � ∧{�ψi → ψi | i = 1, . . . , n} → ϕ. Since GL is sound with respect to
PA, it follows that PA � ∧{Prov(ψ∗

i ) → ψ∗
i | i = 1, . . . , n} → ϕ∗ for all realiza-

tions ∗. Because PA+ contains all instances of Prov(ψ∗
i ) → ψ∗

i , we conclude that
PA+ � ϕ∗ for all realizations ∗. This means that GLS is arithmetically sound with
respect to PA+.

18We use our own notation of GLS, PA, T, etc.
19For the answer to this question, personal communication with Paul Égré himself was used, for which we
are very grateful.
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We conclude that GLS is arithmetically complete and arithmetically sound with
respect to PA+. Therefore, GLS corresponds to PA+.

(2) How does PA+ Prove the Consistency of PA? Note that PA+ consists of all theo-
rems of PA and some extra theorems. One of these extra theorems is Prov(⊥) → ⊥,
where Prov denotes provability in PA. It follows that ¬Prov(⊥), which means that
PA is consistent, is proved in PA+.

(3) Why is PA+ the Counterpart of T0 in Anderson’s System? First we need to know
what it means that PA+ is the counterpart of T0. We consider an article by Poggi-
olesi [32], who explains that there are two ways to interpret the correspondence of
GLS with PA+. She argues that both interpretations are incorrect because they imply
PA+ �= T0. We don’t think that PA+ = T0 is meant by stating that “PA+ is the coun-
terpart of T0”. Égré [11, p. 26] also talks about T ′, U ′ and I ′ as counterparts of T,
U, and I (described in Section 4.3), where in T ′, U ′ and I ′, K is replaced by K ′ as
the knowledge-plus predicate20 defined by Cross [6]. Thus T is the axiom scheme
K(ϕ) → ϕ and T ′ is K ′(ϕ) → ϕ. It is not the case that T= T ′, so we think Égré also
does not mean to say that PA+ = T0. In addition, Égré [11, p. 32] considers some
axiom scheme which is “stronger than its tentative propositional counterpart”, from
which we can also conclude that an axiom scheme which is the counterpart of another
scheme is not necessarily equivalent to this other scheme. We think PA+ being the
counterpart of T0 means that PA+ and T0 contain only axioms which are one another’s
counterparts, like the axiom schemes �ϕ → ϕ from PA+ and K0(ϕ) → ϕ from T0.
The counterpart axioms do not need to be equivalent or of the same strength.

Poggiolesi claims that T0 contains the epistemic closure principle [K(ϕ) ∧
I (ϕ, ψ)] → K(ψ) while PA+ does not. PA+ does contain [K(ϕ) ∧ K(ϕ → ψ)] →
K(ψ), but these two schemes are “only equivalent (. . .) in the presence of the
translation of the rule of necessitation, that is not, as we already said, a rule of
PA+” [32, p. 161]. We agree with Poggiolesi that the schemes are not equivalent, but
that does not mean that they cannot be counterpart of each other. In particular, the
epistemic closure principle is stronger than the scheme in PA+.

We think that PA+ is the counterpart of T0, because PA+ extends PA in an analo-
gous way to how T0 extends Q. To arrive at T0 from Q, all instances of K0(ϕ) → ϕ

are added for ϕ ∈ Lω. To arrive at PA+ from PA, all instances of Prov(ϕ) → ϕ

are added for ϕ in the language of PA+, and modus ponens is applied. Like PA, Q is
closed under modus ponens. Since only instances of K0(ϕ) → ϕ are added to Q to
get T0, and K0 is not in the language of Q, we do not need to add anything else to T0
to make sure that it is closed under modus ponens too. So because PA+ is an exten-
sion of PA in the same way as T0 is an extension of Q, we conclude that PA+ can be
seen as counterpart of T0.

20Cross defined K ′(x) as ∃y(K(y) ∧ I (y, x)).
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(4) What is the Implicit Hierarchy that is present within T0 of Anderson’s System?
Anderson defined T0 = Q ∪ {K0(ϕ) → ϕ | ϕ ∈ Lω} and Ti+1 = Ti ∪ {Ki+1(ϕ) →
ϕ | ϕ ∈ Lω} (for i ∈ ω, i �= 0). Alternatively, he could have defined T0 = Q and
Ti+1 = Ti ∪ {Ki(ϕ) → ϕ | ϕ ∈ Lω}. So T0 contains an implicit hierarchy in the
sense that this first part T0 of the hierarchy (Ti)i∈ω is already the small hierarchy of
two systems Q and T0 itself.

We explained four claims by Égré, and these point to a similarity between Ander-
son’s T0 and Solovay’s GLS. In Solovay’s system, we do not have �(�ϕ → ϕ),
because the necessitation rule is not applied to instances of the reflection princi-
ple �ϕ → ϕ. Do we have something like this for Anderson’s system? T0 contains
all instances of K0(ϕ) → ϕ, just like GLS contains all instances of �ϕ → ϕ

and PA+ contains all instances of Prov(ϕ) → ϕ. Similar to the fact that we are
not allowed to apply necessitation on theorems of GLS and PA+ in order to get
instances of counterparts of U, we cannot apply necessitation within T0 to get
instances of K0(K0(ϕ) → ϕ). The only kind of necessitation that can be applied
in Anderson’s system to arrive at something like U, is a rule which concludes
Kn+1(Kn(ϕ) → ϕ) ∈ Tn+1 from Kn(ϕ) → ϕ ∈ Tn. This one does not result in an
instance of U that can be used to derive the knower paradox.

Égré [11, p. 45] calls Anderson’s hierarchy “a generalization to all the finite
degrees of the separation of axiom schemata reflected in Solovay’s system”. We think
that both Anderson’s and Solovay’s systems clearly indicate the rejection of the prin-
ciple U, implying that the knower paradox cannot be derived in these systems in the
way it was originally done by Kaplan and Montague [21]. The similarity between
Anderson’s system and GLS can be argued by stating that both systems, in their
own way, reject the application of the necessitation rule of inference to the reflection
principle T. PA+ is used to show the similarity between the systems in a formal way.

Égré [11, p. 43] adds two last sentences before his concluding remarks. “In GLS,
the [necessitation rule] allows to iterate schemata K and 4 arbitrarily many times.
But the reflection principle [T] cannot be iterated systematically, thereby preventing
the appearance [of] the [k]nower paradox.” Here, K is the axiom scheme Kn(ϕ →
ψ) → (Knϕ → Knψ) and 4 is the scheme Knϕ → KnKnϕ. If we consider GLS as
a set of theorems for which only the inference rule modus ponens holds, this seems
incorrect. However, if Égré considers GLS as a system containing the axioms of GL
together with �ϕ → ϕ for which the necessitation rule only applies to the axioms
of GL and modus ponens to all axioms, then the contents of the quotation is correct.
In GL, necessitation can be applied to K and 4, but in GLS, there is no necessitation
rule available that can be applied to reflection principle T. Let us now asses to which
extent Solovay’s theories satisfy Haack’s criteria for solutions to paradoxes.

4.4.1 The Formal Part of Solovay’s Theory as a Solution

First of all, the solution should contain a consistent formal system indicating an unac-
ceptable premise, principle of inference, or set of theorems. Solovay’s formal system
GLS indicates the rejection of K(K(ϕ) → ϕ), which is achieved by disallowing the
necessitation rule to apply to the reflection principle K(ϕ) → ϕ. Is GLS consistent?
Solovay [42] proved that GLS is arithmetically sound with respect to the standard
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model. Since truth in a model implies consistency, GLS is consistent. So Haack’s
first requirement on solutions to paradoxes is satisfied.

4.4.2 The Philosophical Part of Solovay’s Theory as a Solution

To satisfy Haack’s second requirement, there needs to be an argument for rejecting
K(K(ϕ) → ϕ) or for disallowing the necessitation rule to apply to the reflection
principle K(ϕ) → ϕ. This argumentation should be independent of the existence
of the knower paradox. Solovay [42] did not consider GLS within the context of
the knower paradox. His article is about provability and not about knowledge, so
we do not find arguments for rejecting K(K(ϕ) → ϕ) there. Considering provabil-
ity, there are reasons to reject Prov(P rov(ϕ) → ϕ). Löb’s theorem states that PA
� Prov(P rov(ϕ) → ϕ) → Prov(ϕ). This implies that if Prov(P rov(ϕ) → ϕ)

is accepted as an axiom scheme, then Prov(ϕ) holds for every statement ϕ, even
for false statements. This is an argument to accept GLS as a system to interpret
provability, but not directly to accept it as a system to interpret knowledge.

Égré [11, p. 42] argues that GL can be seen as a “system formalizing the knowl-
edge of an ideal mathematician recursively generating all the theorems of PA and
reflecting on the scope of his knowledge”. If we want to keep axiom T, K(ϕ) → ϕ,
in our representation of knowledge, we should make sure that the necessitation rule is
not allowed to apply to T in order to prevent the knower paradox. This results in the
system GLS. The only reason we can find in [11] for accepting exactly this system
is not independent of the existence of the paradox, because we disallow the neces-
sitation rule to apply to T just to prevent the paradox. Therefore, Haack’s second
requirement is provisionally not satisfied for Solovay’s system. Still reasons to let a
knowledge predicate satisfy the axioms of GLS can be found. Finding such reasons
would imply that the second criterion is satisfied.

4.4.3 The Scope of Solovay’s Theory as a Solution

Haack’s third requirement states that a solution to a paradox should not be too broad
or too narrow. Like we did in the evaluations of both Skyrms’s and Anderson’s sys-
tem (see Sections 4.2 and 4.3), we conclude that a system is not too narrow if it is
consistent. Solovay’s system is consistent, so it is not too narrow.

We conclude provisionally that a solution is not too broad if we do not find an
example of a theorem which should be, but is not, a theorem of the system. We
consider the same example as in Sections 4.2.3 and 4.3.3. Gödel sentence G in PA
satisfies PA � G ↔ ¬Prov(G). Is there a sentence G in GLS that satisfies G ↔
¬�G? Yes there is, namely ¬�⊥. This formula ¬�⊥ is in GLS, because it is an
instantiation of the reflection principle. The formula ¬�⊥ ↔ ¬�¬�⊥ is in GL (as
an instance of De Jongh and Sambin’s fixed-point theorem for provability logic; for
a proof, see [45, Section 2.2]), and thus in GLS. Since �(�⊥ → ⊥) → �⊥ is an
axiom of GL, it follows that GL � �(¬�⊥) → �⊥. So there is some G, namely
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Table 1 Summary of Section 4. The symbol ‘�’ means ‘satisfied’, ‘x’ means ‘not satisfied’, and the
addition of ‘. . . ’ means ‘provisionally’

Skyrms Anderson Solovay

1. Formal � � �
2. Philosophical x. . . �· · · x. . .

3. Scope Not too narrow � � �
Not too broad x �. . . �. . .

¬�⊥, which satisfies GLS � G ↔ ¬�G, which means that a Gödel sentence is a
theorem of Solovay’s system.21 So provisionally, Solovay’s system is not too broad.

Summarizing the discussion about the quality of Solovay’s system as a solution
to the knower paradox, Haack’s first requirement is satisfied and the solution falls
provisionally short of the second criterion. The third criterion is provisionally met,
because the solution is not too narrow and provisionally not too broad.

4.5 Summary

In this section, we explained the three different solutions to the knower paradox
described by Égré [11]. The different solutions reject different parts of the deriva-
tion of the knower paradox by Kaplan and Montague [21] (see Section 1.1, Page 3).
Skyrms abandons the validity of the statement D ↔ K(¬D) and thereby rejects the
first step of the derivation. Anderson’s solution prevents the conclusion D in Step
(12), and Solovay’s solution forbids axiom scheme U such that no instance of it can
be used in Step (7).

All three solutions use the notion of provability, and the goal of this article is to
explain to what extent the knower paradox can be solved using provability logic. We
discussed the quality of the theories of Skyrms [38], Anderson [1] and Solovay [42].
Consider Table 1 for a summary of this discussion.

The systems of Skyrms, Anderson, and Solovay all satisfy Haack’s first require-
ment. The second requirement is met by Anderson’s system in combination with
an argument by Poggiolesi [32], but provisionally not by Skyrms’s and Solovay’s
system. We denote that Anderson’s system only provisionally meets this require-
ment, because there could always arise arguments which take the edge off the current
argument.

Because all systems we considered are consistent, all solutions are not too narrow.
Finally, we tried to find out whether the solutions are too broad. To do this, we con-
sidered the Gödel sentence G, satisfying G ↔ ¬K(G). We concluded that G is not

21This can alternatively be shown by the interesting fact that GL can be alternatively axiomatized without
the modalized Löb axiom GL but as “diagonalization logic”. This is the modal logic S4 plus the new rule:
From ((p ↔ A(p)) ∧ �(p ↔ A(p))) → B, derive B, where all occurrences of p occur under the scope
of � in A(p) and p does not occur in B [40, Theorem 2.5]. We would like to thank one of the anonymous
reviewers for pointing out this alternative proof.
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in Skyrms’s system, but it is in Anderson’s and Solovay’s systems. So Skyrms’s solu-
tion is too broad, but provisionally, the other two solutions are not. So far, the best
solution is Anderson’s system, which best meets Haack’s requirements.

5 Closing Remarks

We want to answer the following question. To what extent can provability logic be
used to solve the knower paradox? In this final section we consider an improve-
ment of one of the solutions discussed in Section 4 and we comment on the idea of
interpreting knowledge as provability in general.

5.1 Trying to Improve Égré’s Solutions

In Section 4, three systems that represent provability were used by Égré to interpret
knowledge. We discussed to what extent these solutions satisfied the requirements
by Haack, described in Section 2. The solution by Anderson [1] satisfies all these
requirements at least provisionally, while the solutions by Skyrms [38] and Solo-
vay [42] do not satisfy the requirement on the philosophical part of the solution. In
this section, we discuss an improvement of the solution that uses Solovay’s system
and compare this to Anderson’s solution.

Improving the Philosophical Part of Solovay’s System as a Solution In Section 4.4,
we noted that Solovay’s solution did not satisfy Haack’s second requirement, that
required arguments for disallowing the rejected premise, principle of inference, or set
of theorems.

In Section 4.3.2, we described a reason by which Anderson’s system satisfies
Haack’s second requirement. This argument to disallow axiom scheme U can also
be used to complete Égré’s idea to use Solovay’s system as a solution to the knower
paradox.

Just like for Anderson’s solution, accepting an interpretation of provability as
knowledge is a good reason to accept Solovay’s system as a solution to the knower
paradox. Solovay’s GLS is a system about provability which is arithmetically com-
plete and arithmetically sound with respect to the standard model ω. This indicates
that GLS describes mathematical knowledge, namely facts about provability in
Peano arithmetic which are known by mathematicians.

We add a second argument to disallow axiom scheme U in GLS. Solovay’s sys-
tem, GLS, is epistemically conservative over PA, meaning that GLS will not prove
any ‘new’ formulas of the form ‘It is known that ϕ’, i.e. �ϕ, for which Peano Arith-
metic does not prove ϕ∗ yet (cf. [8]). We can see this by the following argument.
Since GLS is arithmetically sound with respect to the standard model 〈ω; +, ·〉,
GLS � �ϕ implies ω |= ProvPA(ϕ∗) for all realizations ∗. This means that there
exists a proof of ϕ∗ in PA for all realizations ∗, so PA � ϕ∗ holds for every real-
ization ∗. So for � interpreted as knowledge, GLS is epistemically conservative
over PA, which is an argument to accept this theory as a solution to the knower
paradox.
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These two arguments form a satisfying philosophical part of Égré’s idea to use
Solovay’s system GLS as a formal solution to the knower paradox. Therefore, we
now conclude that this system, together with these arguments, satisfies all of Haack’s
requirements at least provisionally. We explain why we prefer Solovay’s system to
the one by Anderson.

Comparing the Satisfactory Solutions Our provisional conclusion of Section 4 was
that the interpretation of Anderson [1] is the best of these three, because it best meets
the requirements on solutions to paradoxes by Haack [16]. We have found argu-
ments which satisfy the philosophical part of Solovay’s system as a solution to the
knower paradox, so Solovay’s system satisfies all of Haack’s requirements at least
provisionally, just like Anderson’s solution.

We prefer Solovay’s system to Anderson’s, because of the number of different
knowledge levels. In Section 4.3, we mentioned Anderson’s intuitive motivation for
accepting more than one knowledge predicate. Anderson’s use of different kinds of
proofs could be an argument for the different knowledge levels. However, only two
kinds of proofs are used in Anderson’s reasoning, while an infinite number of knowl-
edge predicates occurs in his system. So we do not agree with the idea of more than
two knowledge levels in the way it is defined by Anderson. If we define knowledge
in the way provability is defined in Solovay’s system, we have only one knowledge
level.

We do agree with Anderson’s intuitive motivation to have two different knowl-
edge levels. Do we want to have one extra knowledge level in Solovay’s system?
If we indeed want this, we could add an arithmetical predicate Prov′, interpreted
as provability outside PA. We would need to define this Prov′ in a way such that
the new system is arithmetically complete and arithmetically sound with respect
to some arithmetical model. Such bi-modal logics are discussed for example by
Beklemishev [3] and Smoryński [40, Chapter 4].

Dean and Kurokawa [8] consider the search for even more provability predicates,
which represent provability in many different axiomatic systems like Q, I�0+EXP ,
and extensions of PA. Each different provability predicate could be used as an inter-
pretation of different kinds of knowledge, like logical knowledge, a priori knowledge,
and a posteriori knowledge. Dean and Kurokawa express their doubts as to whether
such a precise classification is possible. We agree with them, but we would like to
add that it might be less doubtful whether such a classification is possible if we do not
consider kinds of knowledge like ‘a priori knowledge’ and ‘a posteriori knowledge’,
but ‘knowledge of statements in X’ for axiomatic systems X. In that case, we could
interpret knowledge of statements in Q as ProvQ, for example by the definition of
Hájek and Pudlák, knowledge of statements in I�0 + EXP as ProvI�0+EXP , for
example by the definition of Hájek and Pudlák, etcetera. Whether such an interpre-
tation of different kinds of knowledge as different kinds of provability is possible,
would be an interesting question for further research.

In this section, we did add some arguments to Solovay’s system that made the
requirement on the philosophical part of the solution satisfactory. So now both Solo-
vay’s and Anderson’s system satisfy all of Haack’s requirements. We argued that we
prefer Solovay’s solution to Anderson’s, because we did not agree with Anderson’s
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motivation for more than two different knowledge levels. We now consider whether
the idea that knowledge can be interpreted as provability, which is used in the philo-
sophical part of both Anderson’s solution and the solution which uses Solovay’s
system, is arguable.

5.2 Interpreting Knowledge as Provability

Three interpretations of provability logic were discussed as solutions to the knower
paradox. The three systems we considered are all used by Égré [11] to interpret
knowledge, applying a certain definition of provability.22 Each of the three solutions
contains provability in a theory which extends Robinson arithmetic. In Skyrms’s sys-
tem, Prov(‘ϕ’) means ‘ϕ is provable in Tω’. In Anderson’s system, Ki(ϕ) means
‘ϕ is known at level i’, which is the case for i = 0 if ϕ is provable in Q′. In Solo-
vay’s system, �ϕ means ‘ϕ is provable in some theory of arithmetic, for example
Peano arithmetic’. Can one maintain that the concepts of knowledge and provability
coincide?

In this section, we consider some arguments for and against the idea that knowl-
edge and provability coincide, where we mean specific kinds of knowledge and
provability. We consider mathematical knowledge, namely facts about (Peano) arith-
metic which are known by at least one mathematician. We say that a statement is
provable if there exists a proof of it in Peano arithmetic.

First we consider why it seems intuitively plausible to interpret knowledge as prov-
ability. If a mathematician has a proof of some statement, then this person knows the
proved statement. Thus, provability seems to imply knowledge. One could argue that
the converse also holds. A statement can only be mathematical knowledge if it is also
provable. If some statement about (Peano) arithmetic is not provable, then there is no
proof of it, so no mathematician can know the statement.

However, there are also arguments against interpreting knowledge as provability.
According to a Platonist, a proof exists independently of mathematicians. This means
that even a theorem which will be proved only next year, is provable independent of
the current time. It seems to be plausible to define provability independent of time
and independent of mathematicians, but knowledge does depend on time, or at least
on (the existence of) mathematicians. So an argument that Platonists can use against
interpreting knowledge as provability is that knowledge seems to be dependent on
mathematicians and on time, while provability does not.

We stated that the existence of a proof implies that there is a person who came
up with it. According to this non-Platonistic view, proofs are constructed by mathe-
maticians, so there exists a proof of a certain statement only if there is (or has been)
some mathematician who proved it. In this way, a statement can only be provable
if it is known. This also means that a statement which will be proved next year,
but is not proved at the moment, is not provable yet. Considering provability in this
time-dependent way seems counterintuitive, at least according to Platonism.

22Only the second system, by Anderson [1], was used to interpret knowledge in the article in which it was
published.
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Technically, there are statements that are known but not provable in PA. There are
also statements that are provable in PA but not known, specifically if we accept the
Platonistic view. An example of the first kind is the Gödel sentence G for PA, with
PA � G ↔ ¬Prov(G). This sentence about arithmetic is not provable in PA, but
via reasoning outside PA, mathematicians can gain the knowledge that G holds. The
same holds for the strengthened finite Ramsey theorem23, whose truth can be shown
in second-order arithmetic, but of which the Paris-Harrington theorem states that it is
not provable in PA [30].

An example of a theorem which was provable in PA but not known, can be found
by considering a theorem which had been a conjecture for some time and finally has
been proved in PA: Catalan’s conjecture. This conjecture states that the unique solu-
tion24 in the natural numbers to xm − yn = 1 is x = 3, y = 2, m = 2, n = 3.
While the conjecture was stated in 1844, a full proof was first given by Mihãilescu
in 2002 [26]. This proof is partly based on logarithmic forms and electronic compu-
tations, but in 2005, Bilu [4] shows that Catalan’s conjecture can be proved without
these. Since this proof is mainly based on basic theorems about cyclotomic fields,
which are provable in PA, we assume that the conjecture is provable in PA. This
means that we have an example of something that is provable in PA, but was not
known before 2002. For a Platonist, the proof always existed, so the conjecture has
always been provable. Before 2002, the provability of this conjecture did not imply
that its content was mathematical knowledge.

Another example of a theorem is Löb’s theorem. The formalized version of this
theorem, PA � Prov(P rov(ϕ) → ϕ) → Prov(ϕ), is a statement which is prov-
able in PA, but one which was not known for a long time. The theorem is even
“utterly astonishing”, as explained by Boolos [5, p. 54], because the mathematical
gap between truth and provability is difficult to understand. Before Löb proved his
theorem, it was not known that it held, but in the Platonistic view of the existence of
mathematical objects such as proofs, it has always been provable. So this is a second
example of a theorem which was not known at a certain time, but which has been
provable in PA all along.

5.3 Conclusion

The main question we set out to answer in this article is: To what extent can prov-
ability logic be used to solve the knower paradox? A summary of the quality of the
three systems which were discussed is presented in Table 2.

We see that for Anderson’s solution and Solovay’s system, all of Haack’s require-
ments are at least provisionally satisfied. We added to Haack’s description of the

23The strengthened finite Ramsey theorem states that for any positive integers n, k, and m one can find an
integer N such that the following holds. If each of the n-element subsets of S = {1, 2, 3, . . . , N} is colored
with one of the k colors, then there exists a subset T of S, consisting of at least m elements, such that
all n-element subsets of T have the same color, and the number of elements of T is at least the smallest
element of T .
24Assuming m, n are integers greater than 1 and x, y are both unequal to 0.
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Table 2 Summary. The symbol ‘�’ means ‘satisfied’, ‘x’ means ‘not satisfied’, and the addition of ‘. . . ’
means ‘provisionally’

Skyrms Anderson Solovay

1. Formal � � �
2. Philosophical x . . . �. . . �. . .

3. Scope Not too narrow � � �
Not too broad x �. . . �. . .

requirement on the formal part of the solution that, besides a rejected premise or prin-
ciple of inference, a rejected set of theorems could be indicated. We also suggested
that a requirement should be added which requires philosophical reasons to accept
premises or theorems that replace rejected premises or theorems.

We provisionally conclude that provability logic can be used to solve the knower
paradox. It can turn out that it is not25, if for both systems an example is found
which proves that the systems are too broad as solutions to the knower paradox.
In addition, the systems by Anderson and Solovay can appear to fail to solve the
paradox if some arguments are found that take down the argument of interpreting
knowledge as provability and the argument of epistemic conservativity. This is the
extent to which interpretations of provability logic solve the knower paradox.
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