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How may we characterise the intrinsic structure of physical quantities
such as mass, length, or electric charge? This paper shows that group-
theoretic methods—specifically, the notion of a free and transitive group
action—provide an elegant way of characterising the structure of scalar quan-
tities, and uses this to give an intrinsic treatment of vector quantities. It also
gives a general account of how different scalar or vector quantities may be
algebraically combined with one another. Finally, it uses this apparatus to
give a simple intrinsic treatment of Newtonian gravitation.
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1. Introduction and motivation

In physics, much use is made of quantities—for example mass, charge, and length. Stan-
dardly, such quantities are represented by real numbers; however, it is generally ac-
knowledged that doing so is merely a convenience, and that the real numbers have
more structure than the quantities they represent. This raises a natural question: what
might an “intrinsic” representation of such quantities look like, and how would laws
formulated in terms of such intrinsic representations compare to more standard for-
mulations? This paper offers an intrinsic account of the structure or scalar and vector
quantities, and shows how this account may be used to offer a unit-independent for-
mulation of Newtonian gravitational theory.

There are two motivations for this project. The first is the intrinsicalist motivation.
If we use numerical representations, then we traffic in “mixed” mathematico-physical
sentences, such as “the mass of this box is 5kg”: that is, predicates which refer to both
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mathematical and physical entities. Even if we put aside questions about the existence
of mathematical entities, there is something potentially unsatisfactory about describing
physical entities in terms of entities external to them—especially when those descrip-
tions are being used for the purposes of explanation and prediction. Presumably, this
practice is licensed insofar as the physical and mathematical entities have some struc-
ture in common, and the explanations and predictions depend only on the structure of
the mathematical entities that is shared by the physical entities. But showing that this is
indeed the case requires giving an intrinsic description of the structure of the physical
entities, and demonstrating that this intrinsic structure is sufficient for the purposes of
physical theorising (albeit, presumably, at some cost in convenience).

Note that there are two ways in which this motivation is not the same as a full-blown
nominalist motivation, of the kind driving Field (1980)’s program. First, as already
mentioned, it applies even if one is a realist about mathematical entities. Second, the
nominalist project is often taken to exclude not only reference to mathematical entities,
but also reference to physical properties—at least, except insofar as such properties are
actually manifested or instantiated. For example, Field writes that

A possible approach to a coordinate-independent treatment of, say, temper-
ature, would be to introduce a continuum of temperature properties, each
one the property of having such and such specific temperature. One could
then describe the structure of that system of properties not via numbers, but
via certain intrinsic relations among them, say the relations of betweenness
and congruence; and one could impose axioms on these notions to guar-
antee that there was a 1–1 function mapping the temperature properties
into the reals, and that such a function was unique up to linear transforma-
tion. There is a certain conception of properties . . . on which this approach
would be at least arguably a nominalistic one; but I prefer a different strat-
egy, which doesn’t invoke temperature properties but which makes do with
space-time points (or more generally, space-time regions) as the only enti-
ties.1

I take the intrinsicalist motivation to be satisfied if we can, indeed, “describe the struc-
ture of [a] system of properties . . . via certain intrinsic relations among them” (and show
that this structure suffices for stating the relevant laws), as that would suffice to delimit
how much structure our theories are permitted to invoke. Whether this should be con-
sidered “nominalist” is not something that I will be concerned with.

1(Field, 1980, p.p. 55–56)
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The second motivation arises from the debate between comparativism and absolutism
about quantity.2 In rough terms, whereas the absolutist takes the fundamental facts
about quantity to consist of facts attributing absolute values of quantities to objects, the
comparativist takes the fundamental facts about quantity to consist of facts attributing
comparative values of quantities to pairs of objects (typically, ratios). So, for example,
the absolutist will consider the fact that this bag of flour has a mass of 500g to be fun-
damental, and in particular to be prior to the fact that it is half the mass of this bag of
lentils. The comparativist, meanwhile, will take the fact of their masses standing in a
1:2 ratio as fundamental; according to taste, they will claim either that the facts about
their individual masses are derivative on the ratio-facts, or that we should not think
that there are any such facts at all.

Comparativists will often contend that absolutism is committed to empirically inac-
cessible structure. To support this claim, it has been argued that doubling (say) the
mass of every object in the world would not induce any empirically accessible changes;
hence, we should not take the masses themselves, but only their ratios (which are, of
course, invariant under such a doubling) as reflecting genuine physical facts.3 The
overall argument here is an instance of a well-known argument from the philosophy
of symmetry, which contends that models of a theory related by a symmetry trans-
formation are empirically equivalent.4 Unfortunately, however, the application of this
argument to the case of a mass-doubling is misguided, since this operation is not a
symmetry transformation—at least, not of the laws with which we are familiar. For ex-
ample, a mass-doubling is not a symmetry of the laws of Newtonian gravitation; thus,
an “overnight doubling” of all masses, in a world governed by such laws, would lead
to empirically noticeable changes in the phenomena (the orbits of the planets would
alter, pendulums would change their periods, etc.).5

That said, although mass-doubling is not a symmetry, certain other kinds of quantity-
rescalings are: for example, it is a symmetry of Newtonian gravitation to double the
masses of all bodies, and double the lengths of all distances, and double the durations
of all processes. In fact, more generally, consider a transformation which rescales all
masses by a factor µ, all lengths by a factor λ, and all durations by a factor τ, in such a
way that λ3 = µτ2. This is a symmetry of Newtonian gravitation, since—via Newton’s
Second Law—it induces a rescaling of all forces by a factor µλ/τ2, which means that

2Dasgupta (2013); (Wolff, 2020, chap. 8).
3Dasgupta (2013).
4Roberts (2008); Dasgupta (2016)
5In the context of the recent absolutism-comparativism debate, this observation was first made by Baker

(nd); for an extended discussion, see Martens (2019).
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Newton’s law of gravitation is preserved: for,

GMm
r2 7→ µ2

λ2
GMm

r2 (1)

and if λ3 = µτ2, then µ2/λ2 = µλ/τ2. Consequently, applying such a joint rescaling of
mass, length and time does not induce any empirically accessible changes.6 So the
argument against absolutism is restored, albeit in a modified form: if an absolutist
regards two models related by a joint rescaling (of this form) as representing different
possible worlds, then she is committed to empirically inaccessible distinctions between
possibilities, and hence (in some sense) to empirically inaccessible structure.

Unfortunately for the comparativist, however, it is not clear that this can be con-
strued as a positive argument for comparativism: the comparativist quantity-ratios are
invariant under any rescaling of mass, length, and time, not just those rescalings where
λ3 = µτ2.7 This leaves the aspiring comparativist with two options. They can give up
on trying to capture the full content of Newtonian gravitation, and seek to find some
(hopefully empirically equivalent) alternative theory which admits arbitrary rescalings
as symmetries, and hence is expressible purely in terms of these ratios.8 Alternatively,
they can seek some larger collection of “comparativist” quantities, such that these quan-
tities are invariants only of the desired rescalings (or of some subclass thereof). For ex-
ample, if the comparativist were to allow themselves not only the mass-, length- and
time-ratios but also the mass-length, length-time and time-mass ratios, then they would
have a collection of quantities invariant only under uniform rescalings—i.e., rescalings
of the form λ = µ = τ. However, formulating a physics in terms of these quantities
would be non-trivial; and even if it could be done, these “trans-quantity” compara-
tivists would be committed to empirically inaccessible differences between possibili-
ties, just as the absolutist is (since a non-uniform rescaling where λ3 = µτ2 would be
a symmetry of the dynamics, but would not leave the trans-quantity ratios invariant).
Perhaps there is some yet more ingenious variant of comparativism that traffics in ex-
actly those quantities invariant under the relevant class of rescalings, but it is not clear

6Empirically accessible, that is, by means of gravitational phenomena.
7The same observation applies to Roberts’ proposal that “The reasonable comparativist will not say that

just any old rescaling of dimensional quantities will leave everything unchanged; she says only that
uniform rescalings do” (Roberts, 2016, p. 11), where a uniform rescaling is (roughly) one which rescales
the relevant constants of nature along with the quantities, in such a way as to preserve the laws. Cer-
tainly, holding that only uniform rescalings leave things the same is a much more compelling position;
but the problem is whether the comparativist can indeed be reasonable in this fashion, given that two
worlds related by a non-uniform rescaling will agree on all quantity-ratios.

8See Martens (nd) for an exposition and critique of such a theory.
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to me what that might look like.
There is, however, an alternative.9 I noted above that we can revive the argument

against absolutism, if the absolutist is committed to regarding models related by joint
rescalings as representing distinct possibilities. Is the absolutist permitted to reject
that commitment? To answer this question, consider the distinction that Dewar (2019)
draws between the “sophisticated” and “reduced” reformulations of theories with sym-
metries. To reduce a theory is to reformulate it purely in terms of symmetry-invariant
quantities, with the result that applying the symmetry transformation to a model yields
a numerically identical model (indeed, in reduced theories, there is a sense in which the
symmetry transformation in question cannot even be expressed). To sophisticate a the-
ory, on the other hand, is to find a formulation of the theory such that symmetry-related
models are isomorphic to one another (rather than, as in the reduced theory, identical).
Thus, for example, suppose that we start with electromagnetism expressed in terms of
the electromagnetic potential; to reduce this theory by its gauge symmetry would be to
reformulate it in terms of the electromagnetic field, whereas to sophisticate it by that
symmetry would be to reformulate it in terms of U(1) fibre bundles.

Dewar (2019) argues—following similar arguments for “sophisticated substantival-
ism”10—that a sophisticated formulation is sufficient for escaping the argument from
empirical inaccessibility, as we may legitimately regard isomorphic models as repre-
senting the same possibility.11 If we accept that claim, then we have a motivation to
seek a formulation of Newtonian gravitation which uses absolute quantities, but is for-
mulated in such a way that models related by a joint rescaling (but not by an arbitrary
rescaling) are isomorphic to one another. Doing this will, in the first instance, require
doing away with the structure of the quantities that goes beyond what is invariant un-
der a rescaling. But this structure presumably coincides with the “intrinsic” structure
of those quantities. So the two motivations push us in the same direction: giving a
formulation of physical theory in terms intrinsic to the quantities in question.

The paper proceeds as follows. In the next section, I introduce “numerical quanti-
ties”, and justify their use for representing “pure” ratio-quantities (e.g. the mass-ratio
between two objects). In section 3, I use numerical quantities to define the structure
of scalar quantities (without any notion of a choice of unit); section 4 shows how such
quantities may be algebraically combined, to form product- and ratio-quantities. Sec-
tions 5 and 6 extend these ideas to include vector quantities: how such quantities are

9Wolff (2020) also defends this “third way” in the absolutism-comparativism debate, and gives a much
more detailed discussion of the metaphysical (and meta-metaphysical) issues that are at stake here.

10Pooley (2006)
11For a critical discussion of this proposal, see Martens and Read (2020).
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to be defined, and how vectors may be multiplied or divided by scalars.12 Section 7
shows how the quantities associated with space, time, and motion can then be defined;
whilst section 8 presents a formulation of Newtonian gravitational theory (for point
masses) in terms of these intrinsic quantities. Section 9 concludes, by evaluating this
theory against the two motivations discussed here.

2. Numerical quantities

The first kind of quantity we will consider is that of numerical quantities. Such quanti-
ties are represented by positive real numbers—without any redundancy or surplus of
representation. More exactly, we may say that such quantities take their values in R+,
where R+ is (by definition) the set of real numbers strictly greater than 0:

R+ = {x : x ∈ R, x > 0} (2)

One might be concerned that this is not a sufficiently intrinsic characterisation of such
quantities, since it proceeds via the real numbers.13 However, it is easy to remedy this
defect: we define a numerical quantity as a quantity whose values take the form of a
complete ordered positive semifield. In Appendix A, it is shown that R+ (equipped
with the usual order, addition, and multiplication structures) is a complete ordered
positive semifield, and that any complete ordered positive semifield is uniquely iso-
morphic to R+. Thus, we may identify the value-range of any numerical quantity with
R+, whilst still abiding by the intrinsicalist scruples of §1: all we are noting is that in
light of the unique isomorphism, we may regard R+ as providing uniquely assigned
labels for the possible values of any numerical quantity. (That is, the requirement that
the labelling scheme be an isomorphism suffices to determine which label belongs to
which numerical quantity-value.)

The paradigmatic examples of numerical quantities are ratio quantities, such as the
mass-ratio between two massive objects. In stating that the bag of lentils is twice as
massive as the bag of flour, we do not make some hidden appeal to a choice of unit,
or standard of measurement: it is simply true that the number 2 is uniquely apt to
represent the mass-ratio in which these two objects stand. Indeed, one can provide a

12There is a notable element missing here: the issue of how one is to multiply vectors by one another, i.e.
how to define scalar or tensor products. I leave this issue for future work.

13This is an interestingly different kind of non-intrinsicality to the kind discussed in §1: the issue is not that
R has surplus structure relative to a given numerical quantity, but rather that it has surplus members.
In model-theoretic terminology, the issue is that we want a numerical quantity to have the form of a
substructure of R, not that we want it to have the form of a reduct of R.
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straightforward argument for the use of the positive real numbers (equivalently, the
use of the elements of a complete ordered positive semifield). I will give the argument
for length-ratios, but it may easily be applied to other extensive ratios such as mass or
charge.14

Suppose that we have two objects A and B, and we wish to determine the ratio be-
tween their lengths. We take it as given that we can determine when two objects are the
same length. Idealising, we assume that given some object, we can produce arbitrarily
many objects of the same length. From this, it follows that we can determine when
an object is half the length of another (by observing that if the former object is placed
end-to-end with an equally long object, the two objects together are the same length as
the latter object).

Without loss of generality, suppose that A is shorter than B. First, we see how many
times A fits in B. Call this number n0. We then determine how many times a rod half
the length of A fits in the remainder of B. Call this n1. We then determine how many
times a rod one-quarter of the length of A fits in the remainder of the remainder, and
call that number n2; and so on, an infinite number of times. It follows that, where lA is
the length of A and lB the length of B,

lA = n0lB +
1
2

n1lB +
1
4

n2lB + · · ·

= n0lB +
∞

∑
k=1

nk

2k lB

For any k > 0, nk is bounded by nk < 2. Therefore, the sum converges. Hence, the ratio
is given by

lA

lB
= n0 +

∞

∑
k=1

nk

2k (3)

It follows that the length-ratios are given, in general, by positive real numbers (i.e.
that length-ratios are a numerical quantity): a convergent sum of rational numbers will
yield some positive real number, since the positive real numbers are the completion of
the positive rational numbers.

14That said, there is one important limitation: this argument is limited to ratios of extensive quantities.
How to justify the structure of intensive quantities, such as temperature, is a further question beyond
the scope of this paper. For a more detailed discussion of the concept of extensive quantity (and an
argument that the above is too glib in treating mass and length analogously), see Perry (2015).
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3. Scalar quantities

Next, we consider scalar quantities. These quantities may also be represented by R+,
but only once a choice of unit has been made: that is to say, once some particular scalar
value has been chosen to be represented by the number 1. This immediately suggests
one way to characterise a scalar structure: regarding R+ as a multiplicative group, a
scalar structure is a principal homogeneous space (also known as a torsor) for this group.
To explain this, we need to recall a little bit of group theory.

First, given a group G and a setΩ, an action of G onΩ is an association of each g ∈ G
with a bijection a 7→ g ∗ a ofΩ to itself, such that gh ∗ a = g ∗ (h ∗ a). This action is said
to be free if for every g 6= h and every a ∈ Ω, g ∗ a 6= h ∗ a; and it is said to be transitive
if for every a, b ∈ Ω, there is a g ∈ G such that g ∗ a = b. If G’s action on Ω is both free
and transitive, then for every a, b ∈ Ω, there is exactly one g ∈ G such that g ∗ a = b; in
such a case, the action is said to be regular. We will refer to this unique group element
g as the ratio of b to a, and denote it by b

a . Ω is a principal homogeneous space for G
exactly if the action of G onΩ is regular.

One useful way to think of such a principal homogeneous spaceΩ is that it looks just
like G, except that we “forget where the origin is”: if we pick (arbitrarily) some point
a ∈ Ω as the origin, then we can regardΩ as a group with group multiplication defined
by

bc :=
(

b
a

c
a

)
∗ a (4)

and show that this group is isomorphic to G, via the isomorphism b 7→ b
a .

Moreover, suppose that G carries some further structure which is compatible with
its group structure, in the sense of being invariant under group multiplication: if this
non-group structure took the form of an n-ary relation R, for instance, then compat-
ibility would require that for any g1, . . . , gn, h ∈ G, R(g1, . . . , gn) iff R(hg1, . . . , hgn).
Then we may regard Ω as also carrying this structure, by transferring said structure
via one of the above-mentioned isomorphisms; the compatibility requirement will en-
tail that the transferred structure is independent of which isomorphism we choose.
The relation R, for instance, would be transferred over by stipulating that for any
a1, . . . , an ∈ Ω, R(a1, . . . , an) iff R( a1

b , . . . , an
b ), for any arbitrarily chosen b ∈ Ω. It

is straightforward to check that this definition is well-formed, since for any c ∈ Ω,
R( a1

b , . . . , an
b ) iff R( a1

c , . . . , an
c ).

Thus, when we say that a scalar quantity S has the structure of a principal homoge-
neous space for the multiplicative group 〈R+, ·〉, we mean that we take as given some
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action a 7→ x ∗ a of R+ on S which is such that for any a, b ∈ S , there is a unique x ∈ R+

for which x ∗ a = b. As in the general case, we shall refer to this x as the ratio of b to
a, and denote it by b

a . And, indeed, the ratio of b to a is just the sort of thing that we
would think of as the ratio of one scalar quantity to another: for instance, if S were a
mass-scale, then these ratios are mass-ratios (in the ordinary sense of the term); and as
we have seen, mass-ratios inhabit R+. Moreover, subject to a choice of unit,15 S may be
identified with R+. This, of course, is just the observation we started this section with.

Being a principal homogeneous space over R+, S inherits any of the structure of
R+ which is invariant under the multiplicative action of R+ on itself. This includes,
in particular, the additive and order structure of R+, as these are both invariant under
multiplication: for any x, y, z ∈ R+,

x · (y + z) = x · y + x · z (5)

x < y iff z · x < z · y (6)

More specifically, the addition of scalars is defined, in terms of the addition of ratios of
scalars (elements of R+) by

a + b =

(
a
c
+

b
c

)
∗ c (7)

where c is an arbitrarily chosen scalar; and the order-relation on scalars is defined, in
terms of the order-relation on ratios of scalars, by

a < b iff
a
c
<

b
c

(8)

where, again, c is an arbitrarily chosen scalar. These definitions are easily shown to be
well-formed, i.e., independent of the choice of c.

By way of contrast, the multiplicative structure of R+ is not transferred to S , since
that structure is not invariant under multiplication: in general, for arbitrary x, y, z ∈
R+,

x · (y · z) 6= (x · y) · (x · z) (9)

Again, this makes intuitive sense: we expect statements about adding masses together,
or about which mass is greater than another, to be well-formed; but not statements
about what mass one obtains by multiplying two masses together.16

15There is something of a pun here: we may read this as the choice of a “unit of quantity” (e.g. the choice
of some particular quantity of mass to serve as our unit of mass), or as the choice of an element of S to
serve as multiplicative unit (i.e. group identity).

16This isn’t to say that no sense can be made of multiplying two masses together: just that the answer,
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However, although characterising scalar structures as principal homogeneous spaces
of a certain kind is a convenient (and potentially illuminating) way of proceeding, one
might feel uncomfortable with it as a method: it might be felt that this treatment is
insufficiently intrinsic, and that we should instead be characterising these structures
through a set of appropriate axioms. I am not wholly convinced by this worry. Ef-
fectively, this approach to scalar structures amounts to claiming that any scalar struc-
ture is characterised by a certain kind of binary relation that holds between pairs of
scalar magnitudes—it is just that the binary relation’s possible values have the struc-
ture of R+, rather than that of the set {True, False}.17 It is, therefore, a relation with a
determinate-determinable structure, just as mass itself is a property with a determinate-
determinable structure.

Nevertheless, for those who do share this worry, an axiomatic treatment of the de-
sired kind is available. In Appendix A, it is shown that scalar structures can alterna-
tively be characterised as complete dense ordered positive semigroups, using a set of
axioms that (in essence) are the same as those given by Hölder (1901). That is, we can
show that any principal homogeneous space over R+ obeys the relevant axioms, and
that any model of the axioms admits a regular action of R+. I will take this to legitimate
the analysis of scalar structures in terms of regular actions of R+.

4. Scalar algebra

Thus, a scalar quantity S is characterised by the fact that it comes equipped with a
regular action of R+. We now use this action to define products and ratios of scalar
quantities: this will enable us to define quantities such as total momentum (the product
of mass with speed) or density (the ratio of mass to volume). We already have—indeed,
we began with—ratios of a given scalar quantity to itself; now, though, we will see how
to define products of scalar quantities, and ratios between distinct scalar quantities. So
suppose that S1 and S2 are two scalar quantities, each equipped with the canonical
action. We will denote the product quantity by S1 · S2. To define it, let (∗, ∗−1) denote
the following action of R+ on S1×S2: for all x ∈ R+, a1 ∈ S1, a2 ∈ S2, acting on (a1, a2)

whatever it is, will not itself be a mass. Indeed, in section 4 we shall see how to construct the quantity
of “mass-squared”, in which the products of masses live.

17Indeed, it has been suggested that the real numbers might be defined as magnitude-ratios, i.e. as the val-
ues of this relation (Forrest and Armstrong, 1987; Michell, 1994). For further discussion of the idea that
scalar quantities may be understood as magnitudes characterised by their standing in ratio-relations,
see Michell (2004).
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with x yields
(x ∗ a1, x−1 ∗ a2) (10)

It is straightforward to verify that this is indeed a group action. We then define S1 · S2

as the quotient of S1 × S2 by this action, that is

S1 · S2 := S1 × S2�(R+/R+) (11)

In other words, we define the product quantity S1 · S2 as a set of pairs—with the proviso
that the product defined by the pair (a1, a2) is the same as the product defined by the
pair (xa1, x−1a2). We will denote elements of S1 · S2 by expressions of the form a1 · a2,
thereby denoting the equivalence class to which the pair (a1, a2) belongs: thus, a1 · a2 =

xa1 · x−1a2.
So far, however, S1 · S2 is a mere set. In order to give it some structure, we now equip

it with an action of 〈R+, ·〉: namely, for any x ∈ R+, a1 ∈ S1, a2 ∈ S2,

x ∗ (a1 · a2) = (x ∗ a1) · a2 (12)

First, this action is well-defined (i.e., is independent of the choice of a1 and a2): a few
lines of algebra shows that for any x, y ∈ R+,

x ∗ (y ∗ a1 · y−1 ∗ a2) = x ∗ (a1 · a2) (13)

Second, the action is regular:

Proposition 1. Consider any two products a1 · a2 and a′1 · a′2 (with a1, a′1 ∈ S1 and a2, a′2 ∈
S2). There is a unique z ∈ R+ such that z ∗ (a1 · a2) = a′1 · a′2.

Proof. Since the action of R+ on S1 and S2 is regular, there exists a unique x such that
x ∗ a1 = a′1, and a unique y such that y ∗ a2 = a′2. So immediately,

(xy) ∗ (a1 · a2) = (xy ∗ a1) · a2

= (x ∗ a1) · (y ∗ a2)

= a′1 · a′2

Thus, we have existence (i.e., the action is transitive). For uniqueness, suppose that
z ∗ (a1 · a2) = a′1 · a′2; i.e., (z ∗ a1) · a2 = a′1 · a′2. This means that there is some r ∈ R+

12



such that

rz ∗ a1 = a′1
r−1 ∗ a2 = a′2

Since x and y are unique, we immediately have that rz = x and r−1 = y; thus, z =

r−1x = xy. So the action is also free.

Hence, this action makes the product quantity S1 · S2 into a principal homoegenous
space for R+: or, in other words, the product of two scalar quantities is itself a scalar
quantity (as one would expect). As a result, S1 · S2 is equipped with both additive and
order structure, just as any scalar quantity is.

The ratio quantity Q1
Q2

is defined by a similar method to that used to define the product.
This time, let (∗, ∗) denote the following action of R+ on S1 × S2: for all x ∈ R+,
a1 ∈ S1, a2 ∈ S2,

x(∗, ∗)(a1, a2) = (x ∗ a1, x ∗ a2) (14)

We then define
S1

S2
:= S1 × S2�(∗, ∗) (15)

Thus, the idea is that the ratio defined by the pair (a1, a2) is the same as the ratio defined
by the pair (x ∗ a1, x ∗ a2); note the analogy to defining the rational numbers in terms
of the natural numbers. Members of Q1

Q2
will be denoted by expressions of the form a1

a2
,

this denoting the equivalence class of (a1, a2).
Again, we define an action of R+ on Q1

Q2
, according to:

r ∗ a1

a2
=

r ∗ a1

a2
(16)

By an analogous proof to that used for the product quantity, we can show that this
action is regular. So Q1

Q2
is also a principal homogeneous space for R+; thus ratios of

scalars are themselves scalars, and any ratio quantity possesses both additive and order
structure.

There is a special case, however, which is worth remarking upon. If S1 = S2, then the
condition a1 = a2 is well-posed. Moreover, this condition is preserved under the action
(∗, ∗); note, by contrast, that the action (∗, ∗−1) does not preserve this condition. This
means that in the ratio quantity SS , the element a

a is naturally privileged. It is therefore a
natural choice of unit, which can be used to upgrade SS from a principal homogeneous
space for R+ to (a canonical copy of) R+ itself, by equipping it with multiplicative
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structure. But this makes sense, since quantities of the form a1
a2

where a1, a2 ∈ S , are the
“pure” ratios that we met earlier: that is, the ones which are not just a scalar quantity,
but a numerical quantity.

5. Vector quantities

Now, we turn to vector quantities.18 We will define a vector quantity to be a quantity
whose values constitute a vector space equipped with a scalar-valued Euclidean norm. For
example, the quantity of spatial displacement takes values in a length-valued three-
dimensional vector space; the quantity of velocity takes values in a three-dimensional
speed-valued vector space; and the quantity of temporal displacement takes values in
a one-dimensional duration-valued vector space. In general, I will use double-struck
typeface to indicate vector quantities, e.g. V, and boldface to indicate values of those
quantities, e.g. v. (Similarly, the zero vector in V will be denoted 0.) I will use the same
letter, but in script, to denote the scalar quantity in which the vector quantity’s norm
takes values: thus, the vector quantity V will have a V-valued norm.

To say that V has a V-valued Euclidean norm means the following. First, we extend
the structure V to its null completion V0: this is an expansion of V to V ∪ {0}, with < and
+ extended to 0 as follows:

• For all a ∈ V , 0 < a

• For all a ∈ V , 0 + a = a + 0 = a

This is necessary to allow for the possibility that a vector has null magnitude. We extend
the action of R+ to V0 by stipulating that

λ · 0 = 0 (17)

and use this definition to extend the scalar algebra of §4 to null completions; we find
that S · V0 = S0 · V0 = (S · V)0, with s · 0 = 0 and 0 · 0 = 0; and V0/S = (V/S)0, with
0/s = 0.

Second, a V-valued norm is a map | • | : V → V0 which obeys the following condi-

18For further discussion of the metaphysics of vector quantities, see Beisbart (2009). The account here is
primarily concerned with vector quantities that arise in classical physics; for an illuminating discussion
of the metaphysics of quantum-mechanical spin, see Wolff (2015).
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tions for any v, w ∈ V, λ ∈ R:

|v + w| ≤ |v|+ |w| (18a)

|λv| = |λ||v| (18b)

|v| = 0 iff v = 0 (18c)

where |λ| is the absolute value of λ. Finally, to say that this norm is Euclidean means
that it obeys the parallelogram law: for any v, w ∈ V,

2|v|2 + 2|w|2 = |v + w|2 + |v−w|2 (19)

Note that this definition makes use of the extension of scalar algebra to null comple-
tions. This has the useful consequence that V carries an inner product 〈·, ·〉 : V×V→
V · V , defined by the polarisation identity

〈v, w〉 = 1
4
(
|v + w|2 − |v−w|2

)
(20)

Indeed, an alternative approach would have been to stipulate that V carries a (V · V)-
valued inner product, rather than a V-valued norm.

If we define (say) velocities as taking values in one vector space, that clearly can’t be
quite the same as the vector space in which forces take values, since velocity and force
are different quantities. Yet we do want to permit certain kinds of comparisons between
forces and velocities: namely, comparisons of direction. For instance, it is physically
well-posed to ask whether the force on a ship is in the same direction as the ship’s
motion, or whether it is at some non-trivial angle, since the answer will affect what
happens to the ship subsequently: if the force is directed along the ship’s direction of
motion, the ship will continue in that direction with increasing speed; if it is angled, the
ship will change direction; if it is directly opposed to the ship’s motion, the ship will
keep the direction but lose speed.

Thus, at certain points in the sequel we will need the notion of a vector quantity’s
space of directions. We therefore define the direction #»v of a vector v as the equivalence
class of v under positive rescaling:

#»v := {w = λv : λ ∈ R+} (21)

The set of directions of V—i.e., the quotient of V under this equivalence relation—will
be denoted

#»

V. If V is n-dimensional, then
#»

V ∼= Sn−1 ∪ {0}, where Sn−1 is the (n− 1)-
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dimensional unit sphere. Hence, any two vector quantities of the same dimension will
have isomorphic spaces of directions; if there is a canonical isomorphism between the
directions of V and those of W (such as in the case of force and velocity), then we will
write

#»

V =
# »

W. (We will see in §7 how such canonical isomorphisms can come about.)
Now that we have the notion of direction, we are able to give precise expression to the

classic concept of a vectorial quantity as “a quantity which is considered as possessing
direction as well as magnitude.”19 In particular, one can uniquely identify any v ∈ V by
specifying |v| and #»v : if |w| = |v| and #»w = #»v , then w = v. Furthermore, given any
magnitude and direction, there exists some vector with that magnitude and direction.
We will use this observation below.

6. Vector algebra

We have seen above how scalar quantities may be combined to form products and
ratios. In this section, we consider how scalar and vector quantities may be combined
with one another.

Suppose that we wish to combine a scalar quantity S with a vector quantity V. In
this case, we can formulate two further vector quantities: the product quantity S ·V
and the ratio quantity V/S . These are defined in essentially the same fashion as above.
Thus, the product quantity S ·V consists of equivalence classes of pairs (a, v) where
a ∈ S and v ∈ V, where the equivalence relation ∼ is

(a, v) ∼ (x ∗ a, x−1v) (22)

for any x ∈ R+. As above, we will denote the equivalence class of (a, v) by a · v.
We wish to show that this constitutes a vector-valued quantity, with a norm taking

values in S · V . So first, we define addition by

a · v + b ·w := a · (v +
b
a
·w) (23)

It immediately follows that a · (u+v) = a ·u+ a ·v. Second, we define “scalar multiplication”—
that is, multiplication of elements of V by elements of R—according to

x(a · v) := a · (xv) (24)

With these definitions, we can prove that S ·V satisfies the axioms of a vector space.

19(Gibbs, 1960, p. 1)
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(The proofs are straightforward, if a little tedious; they mostly involve simply using the
above definitions and applying the fact that V is a vector space.) The zero vector is a · 0,
and the inverse of a · v is a · (−v).

Our second task is to show that S ·V comes equipped with an (S · V)-valued norm.
We define the norm on S ·V as follows:

|sv| := s · |v| (25)

This takes values in S · V0, which is canonically isomorphic to (S · V)0, i.e. the null
completion of S · V . Showing that it is a Euclidean norm is straightforward.

By a similar process, we can define the ratio quantity V/S. This consists of equiva-
lence classes of pairs (v, a), subject to the equivalence relation

(v, a) ∼ (xv, x ∗ a) (26)

We denote the equivalence class of (v, a) by v
a . Addition is defined by

v
a
+

w
b

:=
v + a

b w
a

, (27)

“scalar multiplication” is defined by

x
v
a
=

xv
a

, (28)

and the VS -valued norm is defined by

∣∣∣v
a

∣∣∣ = |v|
a

. (29)

Given any v ∈ V and x ∈ R+, v and xv have (by definition) the same direction. It
follows that we can canonically identify the directions of S ·V and V/S with those in
V, according to

#     »a · v = #»v =
#»v
a

(30)

Hence,
#        »S ·V =

#»

V =

#          »(
V

S

)
(31)
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7. Intrinsic Newtonian kinematics

We are now in a position to give an intrinsic theory of Newtonian spacetime; and, cor-
respondingly, to give an intrinsic account of quantities of motion. The standard way
to define Newtonian spacetime is to first define spatial displacements as forming a
three-dimensional Euclidean vector space, and temporal displacements as forming a
one-dimensional Euclidean vector space. Then, we define space and time as the affine
spaces over these vector spaces. An affine space is the principal homogeneous space for
a vector space (regarded as a group, with vector addition as group multiplication): that
is, it is a set of points, such that for any two points there is a unique vector defining
the “displacement” between them; and if v is the displacement from a to b, and w the
displacement from b to c, then v + w is the displacement from a to c.

We will proceed along similar lines, but rather than using Euclidean vector spaces
(with norms taking values in R+), we will use vector quantities as defined above. So
first, we presume two scalar quantities: the quantity L of length, and the quantity
D of duration. Next, we define the quantity of spatial displacements L to be a three-
dimensional L-valued vector quantity, and the quantity of temporal displacements T to
be a one-dimensional D-valued vector quantity. And finally, we define space to be the
affine space X for L, and time to be the affine space T for T. Given any two points
x, y ∈ X, the spatial displacement between them will be denoted by y− x; and given
any points t, s ∈ T, the temporal displacement between them will be denoted by t− s.

What about quantities of motion, such as velocity or acceleration? In standard math-
ematical physics, one can take the space of velocities through an affine space to be the
vector space over which that affine space is defined; but this is an artefact of the use of
real-valued vector spaces, since the space of displacements has a length-valued norm
but the space of velocities should have a speed-valued norm. So, instead, we define
velocity to be a ratio quantity: specifically, it is the quantity

V :=
L

D (32)

i.e., it is the ratio quantity of spatial displacements and durations. As discussed above,
this means that V is a vector quantity, whose set of directions is identifiable with the
directions for L, and whose magnitudes take values in (the null completion of) the
scalar quantity V := L/D; this scalar quantity is, of course, the quantity of speed.

Next, we want to know how to define the velocity of some body moving through
space over time. To do this, we need to first of all observe that since T is one-dimensional,
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its space of directions is simply a three-element set {↑, 0, ↓} (since S0 ∼= {↑, ↓}). For any
d ∈ D, let d↑ denote the vector inD with magnitude d and direction ↑, and let d↓ denote
the vector in D with magnitude d and direction ↓. The elements ↑ and ↓ represent, of
course, the two temporal directions; we make no judgment, however, about which of
these directions is “past” and which is “future”.

We now define a trajectory as a smooth curve x : T → X. Then, for any t ∈ T, we
define the velocity of this trajectory in direction ↑ at t to be

ẋ↑(t) := lim
ε→0

x(t + ε↑)− x(t)
ε

(33)

where ε takes values in D. The velocity ẋ↓ of the trajectory in direction ↓ at is defined
similarly; given that x is smooth, it follows that ẋ↑ = −ẋ↓. The fact that the velocity
is not determined given the trajectory, but is determined only relative to a direction of
time, is just an instance of the more general fact that a derivative is defined only relative
to a direction. Without a choice for a direction of time, velocities cannot be uniquely
represented by vectors.20

Similarly, we define the quantity of acceleration to be the ratio quantity

A :=
V

D
(34)

From this, it follows that acceleration is a vector quantity with directions identifiable
with the directions for velocity (and hence, with the directions for spatial displacement),
and with magnitudes taking values in the scalar quantity L/D2. And given a trajectory
x : T → X, we define the acceleration at t to be

ẍ(t) := lim
ε→0

ẋ↑(t + ε↑)− ẋ(t)
ε

(35)

where, again, ε takes values in D. Thus, in effect, we define acceleration as the deriva-
tive of ẋ↑ in the ↑ direction; we could equally well have defined it as the derivative of
ẋ↓ in the ↓ direction, which would have yielded the same association of accelerations to
trajectories. (Thus, unlike velocities, accelerations may be uniquely represented by vec-
tors; indeed, it is the fact that Newton’s Second Law speaks only of accelerations that
means that theories with purely position-dependent forces are time-reversal-invariant.)

20See the discussion in (Field, 1980, §8.D) and Malament (2004).
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8. Intrinsic Newtonian dynamics

In order to move from kinematics to dynamics—that is, from the pure theory of abstract
motion to the theory of forces and causes of motion—we need to introduce a third
primitive scalar quantity (to join our two kinematical quantities of length and duration):
that of mass. We will denote this quantity byM. We assume that for every body A, there
is not only an associated trajectory xA : T → X, but also an associated mass mA ∈ M.
This mass is taken to be fixed for all time.

We now use this quantity to define the quantity of force. In order to do so as econom-
ically as possible, we will make use of Newton’s Second Law, and define the quantity
of force as the product of mass with acceleration:

F :=M·A (36)

Again, this means that force is a vector quantity whose directions live in the space of
spatial directions; its magnitudes take values in the scalar quantity F =M·L/D2.

This definition, however, captures only part of the content of Newton’s Second Law.
The full assertion of the law states that for any body a, at any time t, there is a quantity
associated to it of its net force, FA(t); and that this force is related to A’s acceleration at
t via

FA(t) = mAẍA(t) (37)

By itself, this assertion contains essentially no dynamical content. Indeed, as is well-
known, one could even take this as a definition of the notion of “net force”—and in
fact, we will do just that.

However, it acquires dynamical content once one postulates laws concerning how the
net force on an object may be computed: for example, the Law of Universal Gravitation.
This asserts that any two bodies A and B experience a mutual gravitational attractive
force, which is proportional to their masses and inversely proportional to the square of
their distance. We may therefore express it as consisting of the following two assertions.
The first assertion is that there exists an isomorphism of scalar quantities

G :
M·M
L2 → F (38)

Using this, for any (distinct) objects A and B, we let the gravitational force of B on A be
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denoted GB
A, and defined by

|GB
A| := G

(
mA ·mB

|xB − xA|2

)
(39a)

#   »

GB
A := #               »xB − xA (39b)

Second, the gravitational forces on objects must be related to the net forces they expe-
rience (which, by the Second Law, are linked to the accelerations they undergo). We do
this by asserting that the net force on an object is given by the sum of the gravitational
forces on it (from all other objects):

FA = ∑
B 6=A

GB
A (40)

9. Evaluation and conclusion

We can now evaluate this theory against the motivations we had for developing it: does
it serve its desired purpose? Regarding the first motivation, we can see more or less im-
mediately that it does. This theory is empirically equivalent to standard Newtonian
theory, which we can verify by noting that if we make a choice of unit for each ofM,
L, and D, then the equations governing this theory all reduce to their familiar New-
tonian forms. Nor does it appeal to extra-physical entities; only physical magnitudes,
equipped with physically significant structure, appear in the theory.

Proving that it satisfies our second motivation—of having a “sophisticated” version
of absolutism—is a matter of demonstrating that two models related by a scaling are
isomorphic. So, first, suppose that we have a model of intrinsic Newtonian gravitation.
That is, we have:

• primitive scalar quantitiesM, L and D;

• an isomorphism G : M·ML2 → F

• a three dimensionalL-valued vector quantity L, and a one-dimensionalD-valued
quantity D;

• affine spaces X and T, based on L and D respectively; and

• a set of “bodies” A, B, C, . . . , where each body A is associated with a certain mass
mA ∈ M, a smooth trajectory xA : T → X, and a net force function FA : T →
M ·A defined by (37); and

21



• for every pair of bodies A, B, a gravitational force function GB
A : T →M·A given

by (39)

such that equation (40) is obeyed.
Let this model be called K. Suppose that we wish to perform an appropriate joint

rescaling of this model, to obtain some rescaled model K′: that is, K′ will be obtained
by rescalingM, L and T by factors µ, λ and τ respectively, where λ3 = µτ2. We need
to determine what it means to perform such a rescaling, and hence define K′.

It is simple enough to define the rescaling of masses: if a body A has a mass mA in K,
then in K′ it has a mass

m′A = µ ∗mA (41)

For lengths, we define a new action •′ of L on X, related to the old action • by

l •′ y := (λ−1 ∗ l) • y (42)

Let X′ be the affine space which is numerically identical to X, but with the action of L

given by •′ rather than •. As a result, for any points x, y ∈ X, the displacement between
the corresponding points x′, y′ ∈ X′ is related to the displacement between x and y via

y′ − x′ = λ(y− x) (43)

We do the same thing for times: times in A′ take values in an affine space T′, numeri-
cally identical to T but equipped with a different action of D, such that for any t1, t2 ∈ T
and the corresponding t′1, t′2 ∈ T′,

t′2 − t′1 = τ(t2 − t1) (44)

We now stipulate that if a body A has a certain trajectory xA : T → X in K, then its
trajectory in K′ is given by the corresponding trajectory x′A : T′ → X′ (defined by the
condition that for all t ∈ T, the value of x′A at the corresponding point t′ ∈ T′ is the
point in X′ corresponding to xA(t) ∈ X).

These stipulations determine the values of the remaining kinematical quantities in
A′. For any body a, its velocities and acceleration in A′ are related to its velocities and
acceleration in A via

ẋA′
↑ (t′) =

λ

τ
ẋA
↑ (t), ẋA′

↓ (t′) =
λ

τ
ẋA
↓ (t) (45)

and
ẍA′(t′) =

λ

τ2 ẍA(t) (46)
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Next, we can use equations (37) and (39) to calculate the net force and gravitational
force upon any body in A′. For any body A, it follows from equations (37), (41) and (46)
that the net force upon it is given by

F′A =
µλ

τ2 (47)

As for the gravitational force, let A and B be any two bodies. We observe first that

#               »

x′B − x′A =
#               »xB − xA (48)

and so
#     »

GB
A
′
=

#   »

GB
A. Second, since G is an isomorphism (of scalar quantities), it commutes

with the action of R+, and so

|GB
A
′| = G

(
m′A ·m′B

(|xB − xA|′)2

)
(49)

=
µ2

λ2 G
(

mA ·mB

(|xB − xA|)2

)
(50)

=
µ2

λ2 |G
B
A| (51)

It follows that

GB
A
′
=
µ2

λ2 GB
A (52)

Hence, given that λ3 = µτ2, we obtain that

F′A = ∑
b 6=a

GB
A
′

(53)

That is, A′ satisfies (40), and hence is a model.21

It remains only to show that K′ is isomorphic to K. For the sake of uniformity in
notation, let us denote the “copy” ofM in which bodies in K′ take their mass-values as
M′. Then our task is to give isomorphisms f : M→M′, g : X → X′ and h : T → T′,
such that for any body a, m′A = f (mA) and x′A(t

′) = g(xA(h−1(t))). For mass, this is
simple enough: we let f : m 7→ µm, and can see immediately that f is an isomorphism.
For g and h, we take them to be the identity-maps on the underlying point-sets; we
now need to show that these are isomorphisms of (metric) affine spaces, which in turn
requires showing that there is an isomorphism p : L → L such that for any l ∈ L and

21This also makes clear that if λ3 6= µτ2, then K′ is not (in general) a model—i.e., that arbitrary rescalings
are not symmetries, as desired.
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x ∈ X,22

(l • x)′ = p(l) •′ x′ (54)

We let p be given by p : l 7→ λl; the fact that p is an isomorphism of L then follows from
the fact that it is induced by the isomorphism l ∈ L 7→ λl ∈ L. Hence, g : X → X′ is an
isomorphism; by similar reasoning, we can show that h : T → T′ is an isomorphism.
Hence, K is isomorphic to K′.

Hence, if we are willing to grant the legitimacy of the sophisticationist strategy, then
the way is opened up for us to regard models related by a rescaling as representing the
same possible world. Whether we should grant that strategy’s legitimacy, of course,
is a different question. The main purpose of this paper has been to exhibit the formal
apparatus above, and to recommend it as a means of giving an intrinsic treatment of
physical theories. Although I have only discussed the simple case of Newtonian grav-
itation in the above, the framework can be straightforwardly extended to at least some
other theories, as shows in Appendix B. The extension to more complex theories (e.g.
relativity theory, quantum mechanics, or theories set on curved spacetimes) appears
less straightforward; I leave that project for future work.23

A. Complete ordered positive structures

In this Appendix, I describe some simple axioms that can be used to characterise scalar
and numerical quantities (in that order, since that will simplify the presentation, despite
the fact that this is the opposite of the order in which these structures are discussed in
the main text).24

First, scalar structures. A complete dense ordered positive semigroup S consists of a set

22Recall that an isomorphism between metric affine spaces A and B, over normed vector spaces V and
W respectively, consists of an bijection j : A → B and an isomorphism k : V → W such that for any
v ∈ V and a ∈ A,

j(v • a) = k(v) • j(a);

equivalently, such that for any a, b ∈ A,

k(b− a) = j(b)− j(a)

23For intrinsic treatments of relativistic spacetime, see Mundy (1983) and Babic and Cocco (nd); for quan-
tum mechanics, see Balaguer (1996) and Chen (2018); and for curved geometry, see Arntzenius and
Dorr (2012).

24The results cited here are originally due to Hölder (1901) (translated in Michell and Ernst (1996)); for
further discussion, see Clifford (1958), Fuchs (1963), Krantz et al. (1971), Hofmann and Lawson (1996),
Bourbaki (1998, §5.2), (Wolff, 2020, chap. 5) and references therein.
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S equipped with a binary relation < and a binary operation +, obeying the following
axioms:

1. Total Order. < is both transitive (for all a, b, c ∈ S, if a < b and b < c then a < c)
and trichotomous (for all a, b ∈ S, exactly one of a < b, b < a, or a = b is true).

2. Density. For any a, c ∈ S such that a < c, there is some b ∈ S such that a < b < c.

3. (Dedekind) Completeness. Any non-empty subset P ⊆ S that has an upper bound
has a least upper bound.25

4. Associativity. For any a, b, c ∈ S,

(a + b) + c = a + (b + c) (55)

5. Commutativity. For any a, b ∈ S,

a + b = b + a (56)

6. (Strict) Monotonicity. For any a, b, c ∈ S, if a < b then a + c < b + c.

7. Solvability. For any a, b ∈ S such that a < b, there is some c ∈ S such that

a + c = b (57)

8. Positivity. For any a, b ∈ S,
a < a + b (58)

For ease of comparison with the literature, I note here some simple consequences of
these axioms.

Proposition 2. S is weakly monotone: if a ≤ b then a + c ≤ b + c.

Proof. Immediate from Strict Monotonicity.

Proposition 3. S is cancellative: that is, if a + c = b + c then a = b.

Proof. This follows from Strict Monotonicity and Total Order: if a 6= b then a < b or
b < a; hence a + c < b + c or b + c < a + c; in either case, a + c 6= b + c.
25a ∈ R is an upper bound of S if a ≥ b for all b ∈ S; and an upper bound a is a least upper bound of S if, for

any upper bound c of S, a ≤ c. (Where ≤ is defined, as per usual, by the condition that a ≤ b iff a < b
or a = b.)

25



Proposition 4. If a < b, then there is a unique c such that a + c = b; we may therefore
introduce the notion (b− a) to denote this unique c.

Proof. This follows from Solvability and Proposition 3.

Proposition 5. S has no identity element: that is, for any a, b ∈ S , a + b 6= a.

Proof. Immediate from Positivity and Total Order: since a + b > a, a + b 6= a.

Proposition 6. S has no least element: that is, for any a ∈ S , there is some b ∈ S such
that b < a.

Proof. Consider any a ∈ S . By Density, let c be such that a < c < a + a; it follows by
Strict Monotonicity that a + a < a + c. Now consider (a + a) − c. If (a + a) − c ≥ a,
then a + a ≥ a + c (by Propostion 2); so by contradiction, (a + a)− c < a.

Proposition 7. S has the Archimedean property. That is, for any a ∈ S, let Na be the
subset of S defined inductively as the smallest set satisfying the following conditions:

• a ∈ Na

• for any n ∈ Na, n + a ∈ Na

Then: Na has no upper bound (for any choice of a).

Proof. Suppose that Na did have such an upper bound. Then by Completeness, it
would have a least upper bound; call that least upper bound b. Since a + a ∈ Na,
b ≥ a + a; and since a + a > a (by Positivity), b > a. Therefore, (b− a) exists.

Now, for all n ∈ Na, n + a ∈ Na, and so b ≥ n + a. Suppose for reductio that for some
n, (b− a) < n. Then b < n + a (by Strict Monotonicity). So we have a contradiction,
from which it follows that (b− a) ≥ n for all n ∈ Na; i.e., that (b− a) is an upper bound
on Na. But then, since (b− a) < b, b is not the least upper bound after all. So we have
a contradiction, from which the theorem follows.

It is straightforward to verify that 〈R+,<,+〉, where < and + are the usual order and
addition operations, is a complete dense ordered positive semigroup. Hölder (1901)
demonstrated that, up to isomorphism, this is the only complete dense ordered positive
semigroup.
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Theorem 1 (Hölder’s Theorem). Let S = 〈S,≺,⊕〉 be a complete dense ordered positive
semigroup. Then S is isomorphic (as an ordered semigroup) to 〈R+,<,+〉. That is, there is a
bijection f : S → R+, such that

a ≺ b⇔ f (a) < f (b) (59)

f (a⊕ b) = f (a) + f (b) (60)

The isomorphism is unique up to a positive rescaling factor: that is, if f , g : S → R+ are two
such isomorphisms, then there exists some x ∈ R+ such that for any a ∈ S , g(a) = x · f (a).

To connect this to the characterisation of scalar structures in the main text, we desire
to show that an ordered semigroup is a complete dense ordered positive semigroup just
in case it is a principal homogeneous space for the multiplicative group of R+ (with the
order and semigroup operations “imported” from R+ by the procedure described in the
main text). So, first, let S be a principal homogeneous space for the group 〈R+, ·〉. De-
fine an order relation≺ and an addition operation⊕ on S as described in the main text.
Then using the fact that 〈R+,<,+〉 is a complete dense ordered positive semigroup,
we can easily show that 〈S,≺,⊕〉 is a complete dense ordered positive semigroup. For
example, to prove the Density axiom, we suppose that a ≺ c, i.e. that

a
k
<

c
k

(61)

for some arbitrarily chosen k ∈ S. Then by the fact that R+ is dense, there is some
x ∈ R+ such that

a
k
< x <

c
k

(62)

Since x = x∗k
k , it follows that

a < x ∗ k < c (63)

and so, S is dense. The proofs for the other axioms are similar.
Second, suppose that S is a complete dense ordered positive semigroup. By Theorem

1, let f be an isomorphism from S to 〈R+,<,+〉. Now define an action of 〈R+, ·〉 on S
by

x ∗ a := f−1(x · f (a)) (64)

This definition is independent of the choice of f , given that any two isomorphisms are
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related by a positive rescaling factor. Further, it does indeed define a group action, since

(xy) ∗ a = f−1(x · y · f (a))

= f−1(x · f (y ∗ a))

= x ∗ (y ∗ a)

It remains only to show that this action is regular, i.e. that for any a, b ∈ S, there is a
unique x ∈ R+ such that x ∗ a = b. For existence, observe that

f (b)
f (a)

∗ a = f−1
(

f (b)
f (a)

· f (a)
)
= b

For uniqueness, suppose that x ∗ a = b; then,

f−1(x · f (a)) = b

x · f (a) = f (b)

x =
f (b)
f (a)

This suffices to axiomatically characterise the scalar quantities. I now turn to an ax-
iomatic characterisation of the numerical quantities (in case, as discussed in the text,
one does not wish to simply define them as having the structure of the strictly positive
real numbers).

Thus, a complete ordered positive semifield26 R consists of a set R, equipped with a
binary relation < and binary operations + and ·, such that:

1. CDOPS. 〈R,<,+〉 is a complete dense ordered positive semigroup.

2. Associativity (of multiplication). For any x, y, z ∈ S,

(x · y) · z = x · (y · z) (65)

3. Commutativity (of multiplication). For any x, y ∈ S,

x · y = y · x (66)

26The terminology here follows Hebisch and Weinert (1996), according to which a semifield is an algebraic
structure in which addition is a semigroup and multiplication is a group, with addition distributing
over multiplication (i.e. a field, but without the requirement of additive inverses). Note, in particular,
that we do not require that a semifield should contain an additive identity.
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4. Identity. There exists a privileged element 1 ∈ R such that for any x ∈ R,

1 · x = x (67)

5. Inverse. For any x ∈ R, there is a unique element x−1 ∈ R such that

x−1 · x = 1 (68)

6. Distributivity. For any x, y, z ∈ R,

x · (y + z) = x · y + x · z (69)

7. Compatibility. For any x, y, z ∈ R,

x · z < y · z (70)

By Theorem 1, we know that given any complete ordered positive semifield 〈R,≺
,⊕,�〉, there is an isomorphism of ordered semigroups f : 〈R,≺,⊕〉 → 〈R+,<,+〉.
Taking any such f , let i : R→ R+ be defined by the condition that for any a ∈ R,

i(a) = f (1)−1 · f (a) (71)

This yields the following result:

Theorem 2. i is an isomorphism of ordered semifields: that is, for any a, b ∈ R,

a ≺ b⇔ i(a) < i(b) (72)

i(a⊕ b) = i(a) + i(b) (73)

i(a� b) = i(a) · i(b) (74)

The isomorphism is unique: that is, if h : R → R+ is an isomorphism (of ordered semifields),
then h = i.

The proof is merely an adaptation of the proof that there exists a unique isomorphism
(of ordered fields) from any complete ordered field to R.27 Thus, any complete ordered
positive semifield may be (canonically) identified with R+; this demonstrates that by

27For example, that given in (Spivak, 1994, chap. 30).
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axiomatically defining numerical quantities as complete ordered positive semifields,
we are fully entitled to treat such quantities as having the structure of R+.

B. Some other intrinsic theories

Here, I give some further elementary illustrations of the general apparatus developed
above, by showing how to define Galilean spacetime, Maxwell spacetime, and the basic
laws of electrostatics in an intrinsic fashion.

B.1. Galilean and Maxwell spacetime

As is well-known, Newtonian spacetime structure is, in some ways, not the most ap-
propriate setting for Newtonian theories: a better setting is Galilean spacetime (aka neo-
Newtonian spacetime) or Maxwell spacetime (aka Huygensian spacetime). By following
the constructions in Saunders (2013), we can easily specify these spacetimes in intrinsic
terms. In both cases we begin—as is the case for Newtonian spacetime—by assuming
two primitive scalar quantities of length, L, and duration, D.

First, to define Galilean spacetime, we consider a four-dimensional vector space G,
with a privileged three-dimensional subspace L equipped with an L-valued norm.
We then equip the quotient space V�L with a D-valued norm, so that it is a (one-
dimensional) vector quantity. Finally, we take Galilean spacetime to be an affine space
G over G.

Second, to define Maxwell spacetime, we consider an L-valued three-dimensional
vector quantity L and a D-valued vector quantity D. We then take Maxwell spacetime
to be a set H equipped with

• A free but not transitive action of L on H, and

• A free, transitive action of D on the orbits of H under L.

B.2. Electrotatics

In order to treat electrostatics, we need a fourth primitive scalar quantity: electrical
charge magnitude, Q. We then introduce electrical charge Q, a Q-valued one-dimensional
vector quantity. Note that as a one-dimensional vector quantity, its space of directions
consists of three points:

#»

Q = {N, 0,H}. (Note that I use different symbols to the case of
D, in order to make clear that there is no canonical isomorphism between

#»

Q and
#»

D.)
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For the dynamics, we again assume Newton’s Second Law (37). To state how elec-
trostatic forces come about, we first introduce Coulomb’s constant in the guise of an
isomorphism

ke :
Q · Q
L · L →M ·A (75)

We now assert that to any two bodies A and B, there are associated electrical charges
QA and QB. The electrostatic force of B on A is denoted by EB

A. Its magnitude is defined
by

|EB
A| = ke

(
|QA| · |QB|
|xB − xA|2

)
(76)

Its direction is given by the familiar rule: opposite charges attract, like charges repel.
To enable a compact statement of this, let us define the following map ◦ :

#»

Q × #»

Q →
{−1, 1}:

N ◦N = H ◦H = −1 (77)

N ◦H = H ◦N = 1 (78)

Then we can state that the direction of the electrostatic force is given by

#  »

EB
A = (

#   »

QA ◦
#   »

QB) ·
#               »xB − xA (79)

Finally, as with the gravitational theory, we assert that the net force is just the sum of
the electrostatic forces: for any bodies A and B,

FA = ∑
B 6=A

EB
A (80)
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