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Abstract

Suppose that one thinks that certain symmetries of a theory reveal “surplus structure”.

What would a formalism without that surplus structure look like? The conventional answer

is that it would be a reduced theory: a theory which traffics only in structures invariant

under the relevant symmetry. In this paper, I argue that there is a neglected alternative:

one can work with a sophisticated version of the theory, in which the symmetries act as

isomorphisms.
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1 Introduction

It is often claimed that the symmetries of a theory reveal “surplus structure”: structure which,
in some sense, the theory could do without.1 For example, the boost symmetry of Newtonian

1See e.g. (Redhead [1975]), to whom the phrase “surplus structure” is due; or the essays in
(Brading and Castellani [2003]) and references therein.



mechanics indicates the superfluousness of absolute velocities; the gauge symmetry of electro-
magnetism reveals the superfluousness of absolute potentials; and so on and so forth. Moreover,
it is widely held that if this is the case, then some modification of one’s theory is appropriate,
so as to make explicit what structure is not surplus (e.g. the replacement of Newtonian by
Galilean spacetime, in response to the boost symmetry of Newtonian mechanics).2 In this pa-
per, I compare and contrast two ways of making such a modification. The first is to replace the
theory by (what I shall call) a reduced theory: a theory that deals only in quantities which are
invariant under the relevant symmetry. The second is to replace the theory by (what I shall call)
a sophisticated theory: a theory in which models related by a symmetry are isomorphic.

In the next section, I set up some necessary apparatus, by defining what symmetries are of
interest to us in this paper: namely, symmetries of first-order relational theories, and internal
symmetries of local field theories. In section 3, I outline the use of reduction to expunge surplus
structure from a theory, and suggest that it is somewhat problematic as a general strategy—
even though it is standardly assumed to be the ne plus ultra of ways to enact the lessons of
symmetries. In section 4, I outline an alternative way to enact those lessons, which I call
sophistication. In very rough terms (to be made precise later), the idea is that whereas a reduced
theory converts a class of symmetry-related models into a single model, sophistication converts
a class of symmetry-related models into a class of isomorphic models. Finally, in section 5, I
discuss the senses in which sophistication and reduction are or are not alternatives, and how
the original theory relates to its reduced and sophisticated versions: the key result here is that
in typical cases, the categories of models for a sophisticated theory and a reduced theory are
equivalent (and that neither is equivalent to the category of models of the original theory).
Section 6 concludes.

2 Symmetry

Here, I outline the kinds of symmetries that will be the topic of this paper. I consider symmetries
for two kinds of theories: for theories formulated in terms of first-order relational model theory,
and for theories formulated as local field theories.

Here is what I mean by a theory formulated in terms of relational first-order model the-
ory.3 In this context, the basic notion is that of a signature: a set Σ of monadic and polyadic
predicates. Given a signature Σ, one can define the set Form(Σ) of well-formed Σ-formulae,
using the standard compositional rules of predicate logic. The set of Σ-sentences is the set of
closed Σ-formulae (formulae with no free variables). Notation for the logical vocabulary will
be standard, including free variables x, x1, x2, . . . (equipped with this ordering).

The semantics for a language with signature Σ is given by Σ-pictures.4 A Σ-picture M con-

2See (Møller-Nielsen [unpublished]), and references therein.
3Notation and concepts mostly follows (Hodges [1997]).
4This terminology is non-standard. The more standard term is a Σ-structure: I have changed

the terminology in order to avoid confusion between informal use of “structure” and its use as
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sists of a set |M| (the domain of M), equipped with a function ·M with domain Σ. For each n-ary
predicate Π ∈ Σ, ΠM is a set of n-tuples with members drawn from |M|: that is, ΠM ⊆ |M|n.
A Σ-picture M determines the truth or falsity of elements of Form(Σ), relative to a variable-
assignment v for M, via the standard recursive clauses. If M makes a formula φ true relative to
v, we write M |=v φ; if φ is a sentence, then the variable-assignment no longer matters, and we
write simply M |= φ.

A theory T in the signature Σ (for short, Σ-theory) is a set of Σ-sentences.5 A Σ-picture M

is said to be a model of T if it satisfies each member of T ; we denote the class of all models
of T by Mod(T ). Finally, T entails a Σ-sentence φ just in case M |= φ for every M ∈ Mod(T );
this will be denoted by T ` φ.6 For example, consider the theory TH of handedness. Letting
ΣH = {L,R}, TH is the theory consisting of the following sentences:

∀x(Lx ∨ Rx) (1a)

∀x¬(Lx ∧ Rx) (1b)

Think of this as a (very simple) theory about worlds in which there is nothing but gloves:
everything is either left-handed or right-handed, but nothing is both.

For theories formulated in terms of relational first-order model theory, the notion of sym-
metry were are interested in here7 is as follows: a symmetry is a translational equivalence
between a theory and itself.8 First, define a dictionary map from Σ1 to Σ2 to be any function
D : Σ1 → Form(Σ2) such that for any m-ary predicate-symbol Π, DΠ is a formula with pre-
cisely the m variables x1, . . . , xm free. Intuitively, we can think of D as a foreign-language
dictionary, assigning each definiendum (primitive symbol of Σ1) to a definiens (formula of Σ2).
A dictionary map gives us a means of converting any Σ1-formula into a Σ2-formula, through a
process of substitution: given a Σ1-formula φ, simply replace any atomic subformula Πy1 . . . ym

occurring in φ by (DΠ)(y1/x1, . . . , ym/xm).9 Let us denote the result of applying such a sub-

a term of art.
5In accordance with standard practice in model theory, I don’t require theories to be deduc-

tively closed.
6The notion of entailment defined here is semantic rather than syntactic, and would therefore

more standardly be denoted � rather than `; the problem is that the former symbol is rather too
similar to the symbol for satisfaction (� compared to |=). Given that we will only apply this
symbol in the context of first-order theories, the Completeness Theorem means we need not get
too worried about this misuse of notation.

7Which is not to say that there are not other interesting notions of symmetry in model
theory. In particular, most uses of the term “symmetry” in model theory use the term to refer
to automorphisms of models (i.e., isomorphisms from a model to itself). That notion will not
be our focus here.

8The notion of a translational equivalence is taken from (Barrett and Halvorson [unpub-
lished]); it should be noted that—as is shown there—translational equivalence is, modulo trivial
relabellings of predicates, equivalent to definitional equivalence.

9Here, ψ(y/x) denotes the result of uniformly substituting y for x everywhere in ψ(x).
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stitution to φ as Dφ. For the sake of brevity, I will write D : Σ1 → Σ2 to indicate that D is a
dictionary map from Σ1 to Σ2.

Now suppose that we have two theories T1 and T2, in signatures Σ1 and Σ2 respectively. Then
we say that a dictionary map D : Σ1 → Σ2 is a translation of T1 into T2 if, for every φ such that
T1 ` φ, T2 ` Dφ: that is, ifD converts all consequences of T1 into consequences of T2. In such a
case, we will writeD : T1 → T2. Then, theories T1 and T2 are translationally equivalent if there
are translations10 D : T1 → T2 and D′ : T2 → T1 such that, for any Σ1-formula φ(x1, . . . , xm),
and any Σ2-formula ψ(x1, . . . , xn),

T1 ` ∀x1 . . .∀xm(φ(x1, . . . , xm)↔ D′Dφ(x1, . . . , xm)) (2a)

T2 ` ∀x1 . . .∀xn(ψ(x1, . . . , xn)↔ DD′ψ(x1, . . . , xn)) (2b)

That is, T1 and T2 are translationally equivalent if there are translations between them which
are “almost inverse”: the compositions of the two translations need not take every formula back
to itself, but must take it to a formula which is equivalent (modulo T1 or T2, as appropriate). We
will refer to a pair (D,D′) satisfying (2) as a translational equivalence between T1 and T2.11

A symmetry is then simply a translational equivalence for the special case T1 = T2.12 Of
course, for any theory, the trivial translational equivalence (Id, Id) is a symmetry. But many
theories have non-trivial such symmetries. For example, in the theory TH, consider the dictio-
nary map E such that

E(L) = Rx (3a)

E(R) = Lx (3b)

It is easy to see that E is a translational equivalence between TH and itself, with E as its own
inverse.

Here is what I mean by a theory formulated as a local field theory. The role of a signature
is played by a set Ψ of q field-variables ψ1, . . . , ψq, and a set X of n base-variables x1, . . . , xn.
The role of Σ-pictures is played by Ψ-fields, where a Ψ-field is a map from Rn to Rq.13 We will

10It is crucial that D and D′ be translations. For instance, suppose that Σ1 and Σ2 are a pair
of signatures such that D is a one-to-one arity-preserving bijection between them (or rather, is
the dictionary map corresponding to such a bijection), and that D′ is the inverse (strictly, is the
dictionary map corresponding to the inverse). Then the conditions below will be satisfied with
respect to any pair of theories T1 and T2; but D and D′ will not, in general, be translations.

11cf. Glymour’s work on definitional equivalence as a necessary condition for theoretical
equivalence (e.g. Glymour [1970]).

12The general case is also of interest to philosophy of physics. In particular, one promising
way of understanding duality is in terms of intertranslatability: see (Huggett [forthcoming]),
(Rickles [forthcoming]). I will not discuss here whether and to what extent the analysis of this
paper might apply also to the case of dualities.

13As such, I am mostly only considering local field theories where the base space is simply
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use the field-variables as coordinates for the copy of Rq that is the range of the Ψ-fields, and
the base-variables as coordinates for the copy of Rn that is the domain of the Ψ-fields. The role
of Σ-sentences is played by differential equations, constructed by the application of standard
differential operators (associated to the base-variables in X) to the field-variables in Ψ. A Ψ-
field is a solution of a differential equation just in case it satisfies the equation at every point
of Rn. A Ψ-theory T is just a set of differential equations constructed from Ψ in the manner
described. A Ψ-field is a model of T if it is a solution to every member of T ; we will denote
the class of all models of T by Mod(T ).

For example, consider the theory TP of instantaneous electrostatics in terms of potentials.
The field-variables of this theory are ρ and φ (so q = 2), and the base-variables are x1, x2 and
x3 (so n = 3); this theory has one equation,

∇2φ = 4πρ (4)

where ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).
Alternatively, consider the theory TA of electromagnetism in terms of potentials. The field-

variables of this theory are Aµ and Jµ, and the base-variables are xµ, with 0 ≤ µ ≤ 3 (so q = 8
and n = 4); this theory has four equations,

∂µ(∂µAν − ∂νAµ) = Jν (5)

with 0 ≤ ν ≤ 3. In the above, the Einstein summation convention is used, and raised indices
are raised by application of the (inverse) Minkowski matrix gµν (e.g. Aµ := gµνAν), where

gµν =


1 if µ = ν = 0

−1 if µ = ν = 1, 2, 3

0 otherwise

(6)

For such a theory, the notion of symmetry we shall consider is this: a smooth diffeomorphism
η : Rn ×Rq → Rq which maps solutions to solutions. (Thus, we are only considering so-called
internal symmetries.) To spell this out, it is helpful to think of η in terms of its curried form,
i.e. as a map of type Rn → (Rq → Rq): that is, η assigns, to every point p ∈ Rn, a map
ηp : Rq → Rq.14 Any such map η naturally induces a transformation of any Ψ-field into another
Ψ-field: if the original field has the value ψi(p) at point p ∈ Rn (for 1 ≤ i ≤ q), then the new
field has value ηp(ψi(p)) at p. We then say that η is a symmetry of T if η induces a bijection on

connected (though see the discussion of T̃A in §3).
14If we regard the total space Rq×Rn as a (trivial) fibre bundle, then these transformations are

precisely the vertical bundle automorphisms. (Automorphisms, that is, of the bundle structure
alone—not of any of the further structure of Rn × Rq. See the next footnote.)
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the space Mod(T ) of solutions of T .15

For example, in the theory TP, let k be some real number, and let η be the map such that

η(x, φ, ρ) = (φ + k, ρ) (7)

One can quickly verify that (7) transforms solutions of (4) into other solutions. For another
example, in the theory TA, let λ : R4 → R be any smooth scalar function, and let η be the map
such that

η(xµ, Aµ, Jµ) = (Aµ + ∂µλ(xµ), Jµ) (8)

Note that unlike (7), this η depends non-trivially upon the base-variables. Again, one can verify
(although a little less straightforwardly) that this transforms all and only solutions of (5) into
other solutions.

At first, it might seem a little opaque how these two notions of symmetry relate to one
another. In fact, however, there is good reason to think that they are expressions of the same
basic idea. To see this, observe first that a dictionary-map D : Σ → Σ could be thought of as a
map from the “value-space” of a first-order theory to itself: if we regard predicates (both simple
and complex) as indicating ways for n-tuples to be, and think of field-values as indicating ways
for points of a base space to be,16 then we can see how a dictionary-mapD and a vertical bundle
automorphism η do the same kind of thing.17 Furthermore, just as η transforms Ψ-fields into
other Ψ-fields, so D transforms Σ-pictures into other Σ-pictures. In fact, any dictionary map
D : Σ1 → Σ2 naturally induces a dual map D∗ from Σ2-pictures to Σ1-pictures. Given any

15Note that we have put very few restrictions on what structure η is to preserve: it need
not be (pointwise) linear, nor respect the decomposition of Rq into clusters of field-variables,
nor. . . The reason to be liberal is just that we are in the game of using symmetries to figure out
what structure in the theory is important (i.e., as we shall see, invariant under symmetry). So as
far as possible, we should avoid antecedently privileging structures by making them the kinds
of things that symmetries must leave invariant by definition.

16Though this interpretation of field-values is not mandatory. Indeed, in some cases it seems
rather inappropriate: the possible values of a mass density function at a given spacetime point,
for instance, seem most perspicuously described as properties of the matter that could be lo-
cated at that spacetime point, rather than properties of the point itself. I borrow this observation
from Weatherall (unpublished). One could either seek a different way of expressing the anal-
ogy, or just take the analogy to hold only for those fields that are best thought of as expressing
properties over spacetime points.

17Though I’m glossing over an important disanalogy. The points of the base space, unlike
the members of the domain, form a structured set. It is for this reason that I confine my
attention here to internal rather than external symmetries: it is rather more opaque what the
model-theoretic analogue of an external symmetry might be.
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Σ2-picture M, D∗M is the Σ1 picture given by

|D∗M| = |M| (9a)

ΠD
∗M = (DΠ)M (9b)

where the extension in M of an arbitrary formula φ, denoted φM in (9b), is defined as the set
of those n-tuples from |M| which satisfy φ in M (where the order of the n-tuples is fixed by the
ordering of the free variables in φ).

Finally, we have the following important result from model theory:18

Proposition 1. Suppose that we have translations D : T1 → T2 and D′ : T2 → T1. Then D and

D′ implement a translational equivalence between T1 and T2 iff D∗ is a bijection Mod(T2) →
Mod(T1), with (D′)∗ as its inverse.

Proof. See Appendix A. �

Thus, in the special case where T1 = T2, the demand that a dictionary map D be a trans-
lational equivalence is the same as demanding that it (or rather, its induced map D∗) act as a
bijection on Mod(T ). This parallels the characterisation of symmetries in local field theories
as those vertical bundle automorphisms which take solutions to solutions. Hopefully, this is
enough to suggest that we are indeed dealing with a reasonably unified concept here. To some
extent, the remainder of this paper should serve as a further defence of the claim that they are
analogous: as we shall see, the same issues show up in the one case as in the other.

With this setup complete, let us turn to the main task. In this paper, I will suppose that, at
least under certain circumstances and for certain theories, the following claim is true:

For a theory containing symmetries, we should not interpret that theory in such a
way that the symmetry-related models (i.e., models related by a map induced by a
symmetry) represent distinct ways for the world to be.19

What those circumstances might be (indeed, whether there are such circumstances) is con-
tentious, as is the question of why symmetries, under those circumstances, warrant such inter-
pretational circumspection.20 As I have set things up here, there is good reason to think that

18This result is standard (although the statement of it has been tweaked to mesh with the
above definition of translational equivalence): see, for example, (de Bouvère [1965], Theorem
2) or (Hodges [1997], p. 54). The proof is provided for convenience (especially since the
standard proofs are attuned to the statement in terms of definitional rather than translational
equivalence).

19Note that the “should” here is with respect to norms of theory choice, not norms of his-
torical fidelity. The claim is not supposed to be that, when working on Newton’s thought, one
should not interpret the Principia as committed to absolute space. I thank a referee for pressing
me on this point.

20The literature addressing these questions is very large: see, for example, (Saunders
[2003a]; Brading and Castellani [2003]; Baker [2010]; Dasgupta [2016]; Caulton [2015]) and
references therein.
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this lesson should not be applied to all symmetries in the sense defined above: for instance, the
transformation

Aµ 7→ Aµ + Bµ (10)

Jµ 7→ Jµ + ∂ν(∂νBµ − ∂µBν) (11)

is a symmetry of TA, but it is best interpreted as enacting a real physical change.21 (My own
view is that the issue here is not the definition of symmetries, but rather the fact that we are
dealing with partial or incomplete toy theories: the transformation (10), for example, will not
be a symmetry once appropriate continuity equations for the charged matter are included.)
However, let us set this issue aside, and focus instead on the question of what we should do
next. That is, suppose that we do indeed have a theory which contains symmetries, and that
we have become convinced—for whatever reason—that the above applies to (some of) those
symmetries. What should our next move be?

In the next section, I consider one popular account of what the next move should be. This
account says that we should seek a reduced theory: a theory which deals only in quantities
which are invariant under the relevant symmetry. After explicating this account, I offer some
reasons to think that this is not the best way of implementing the above lesson. In section 4,
I consider an alternative way of implementing the lesson above: that of leaving the syntactic
sentences of the theory alone, but seeking instead a different semantics for interpreting it (what
I will call a sophisticated semantics). Section 5 discusses how the results of applying these two
strategies compare to one another.

This all presumes, of course, that there should be a next move at all. Why not take some more
quietist attitude, and remark merely that the symmetry-related models are to be understood as
representing the same way for the world to be? I don’t have any particular beef with such an
attitude; indeed, as we shall see later, providing a sophisticated semantics may be thought of
as a way of taking this attitude in a mathematically careful way. But it would be a mistake
to presume, from the off, that such an attitude can be taken without causing problems. After
all, models related by a symmetry can appear very different: the electromagnetic potential will
take a very different form after a the application of a gauge transformation, for example! So it
behoves us to underwrite this attitude, by appropriate mathematical analysis, and show that it
is of good conceptual standing.

3 Reduction

In many discussions about the proper way to implement the above interpretational principle
for symmetries, it is taken for granted that what we seek is a theory which is the result of a
reduction by the relevant symmetry. In very general terms, the idea is that we (i) identify some

21I thank an anonymous referee for this example.
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collection of invariants of the original theory; (ii) specify a theory in terms of those invariants;
and (iii) show that the new theory captures all the symmetry-invariant content of the old theory.
Before getting more specific, it will be best to introduce examples.

First, consider the case of the handedness theory TH. The invariant which we use to specify
our reduced theory is the congruence relation: that is, we introduce a relation C that is defined
by

∀x∀y(Cxy↔ ((Lx ∧ Ly) ∨ (Rx ∧ Ry))) (12)

Informally, congruence is just the relationship that holds between two objects iff they have the
same handedness. Let us use θC as a shorthand for the formula (12). If we supplement TH by
this definition, then we get its definitional extension T +

H := TH ∪ {θC}, in signature {L,R,C}.
The first observation is that agreement on the congruence relation suffices for agreement on all
invariant content, in the following sense: if M and N are two models of T +

H, such that |M| = |N|
and CM = CN , then either M = N, or else M = E∗N—where E is the “handedness swap”
dictionary map introduced earlier, by equation (3).

Now consider the theory TC, in signature ΣC := {C}, comprised by the following axioms:

∀xCxx (13a)

∀x∀y(Cxy→ Cyx) (13b)

∀x∀y∀z((Cxy ∧Cyz)→ Cxz) (13c)

∀x∀y∀z((¬Cxy ∧ ¬Cyz)→ Cxz) (13d)

Informally, this theory states that C is an equivalence relation, with at most two equivalence
classes. Models of TC closely correspond to models of T +

H (and hence, to models of TH). On
the one hand, for any model M of T +

H, its reduct M|ΣC is a model of TC. Indeed, suppose that
M |= T +

H; then M satisfies the sentences (1) and (12); but the sentences (13) of TC are simply a
consequence of those sentences, and so M must make (13) true as well; since these refer only to
C, it follows that M|ΣC |= TC. On the other hand, for any model N of TC, there is a Σ+

H-expansion
N+ of N (i.e., a Σ+

H-picture N+ such that N+|ΣC = N) which is a model of T +
H. Indeed, if N is a

model of TC, then it is clear from equations (13a)–(13c) that CN is an equivalence relation over
|N|, and from (13d) that it partitions the domain into at most two equivalence classes. So just
let LN+ be one of these equivalence classes, and let RN+

be the other (if such there be). It is then
obvious that N+ satisfies (1) and (12), i.e. that N+ |= T +

H.
Thus, there is a natural sense in which TC captures the “invariant part” of TH. On the one

hand, any models of TH which agree with respect to all the structure invariant under E∗ will
correspond to a single model of TC; and on the other, every model of TC corresponds to some
(indeed, more than one) model of TH.

Second, consider the case of electrostatics. This time, the chosen invariant is the electric
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field E, defined by
E := ∇ϕ (14)

Again, the first thing we want is some kind of indication that the electric field suffices to capture
all the invariant content of the electrostatic theory. So, let T +

P be the definitional extension of
TP by (14), and suppose that M and N are two models of T +

P , such that EM = EN . Then by
elementary integration, their potentials agree to within a symmetry transformation: that is, for
some constant k,

ϕN = ϕM + k (15)

So now consider the following theory, TE. The field-variables of TE are ρ and Ei (where
1 ≤ i ≤ 3); I will use vector notation, E, for the latter. The base-variables are the same as TP.
The equations of the theory are

∇ × E = 0 (16a)

∇ · E = 4πρ (16b)

Again in analogy to the handedness case, we have the following pair of observations about
how the models of TE relate to those of TP. First, for any model M of T +

P , the electric field
EM satisfies equations (16). This is obvious just from plugging the definition (14) into (16).
Second, for any model N of TE, there is a model N+ of T +

P such that EN+

= EN . This is also
standard: an irrotational vector field over a simply connected base space admits some scalar
field of which it is the gradient.

Finally, consider the case of electromagnetism. The invariant we use here is the electromag-
netic field

Fµν := ∂µAν − ∂νAµ (17)

Let T +
A be the result of supplementing TA with the definition (17). Once again, we observe first

that the electromagnetic field determines all gauge-invariant quantities. That is, for any models
(Aµ, Fµν) and (A′µ, F

′
µν) of T +

A , if Fµν = F′µν then for some scalar function λ, A′µ = Aµ + ∂µλ. This
is, again, a standard result.

Now consider the theory TF . The field-variables of TF are Jµ and Fµν, where 0 ≤ µ, ν ≤ 3
(so q = 20), whilst the base-variables are the same as those of TA. The equations are

Fµν = −Fνµ (18a)

∂[µFνρ] = 0 (18b)

∂µFµν = Jν (18c)

where, again, indices (all of which range from 0 to 3) are raised using the Minkowski matrix
(and the square bracket [. . . ] indicates anti-symmetrisation). Then, once more, we find a certain
kind of alignment between the models of TF and the models of T +

A . That is, for any model M
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of T +
A , the field FM

µν is a solution of (18); and for any model N of TF , there is a model N+ of T +
A

such that FN+

µν = FN
µν.

These examples make fairly clear what is meant by a reduced theory; let us now offer a
general definition. Suppose that T is the target theory, admitting some group G of symmetries
(and let us denote the action of g ∈ G on models by M 7→ g∗M). Say that a collection Q of
symmetry-invariant quantities/predicates (in T , or in some definitional extension T +) is com-

plete if agreement on Q guarantees agreement to within G: i.e., if it is the case that for any
models M and N of T (+), if qM = qN for every q ∈ Q, then for some g ∈ G, N = g∗M. A
reduction of T to Q is a theory T ′, of (complete) signature Q, such that:

(i) for any model M of T ′, there exists some model N of T (+) such that for every q ∈ Q,
qM = qN; and

(ii) for any model M of T (+), the reduct of M to Q is a model of T ′

I’ll refer to the pair of conditions (i) and (ii) as the Goldilocks conditions for symmetry reduc-
tion: they state that the class of models of the reduced theory must be neither too big nor too
small.

Many discussions of symmetry assume, implicitly or explicitly, that changing one’s theory
to incorporate the lessons of a symmetry—to get rid of the “surplus structure” the symmetry
reveals—means moving from the original theory to a reduced theory. It is worth pointing out,
however, that there are problems with making reduction the gold standard for expunging surplus
structure. First, it is highly non-trivial to find such a reduced theory—or even to demonstrate
with confidence that such a theory could exist. All the examples above were chosen as cases
where we know how to specify the reduced theory. But doing so required that we could both
find a complete set of invariant quantities Q, and then provide a theory in terms of Q whose
class of models meets the Goldilocks conditions. Note that these tasks are somewhat in tension.
Plausibly, the set of all invariant quantities will always be complete.22 But the more invariant
quantities one wants to use in Q, the harder it is going to be to construct a finitely or recursively
axiomatisable theory out of them (satisfying both the Goldilocks conditions).23

As an illustration of these perils, consider the theory T̃A. The equations of this theory are
precisely the same as those of TA: the only difference is that models of this theory are now taken
to be maps of the form U → R20, where U is permitted to be any open subset of R4. So, in
particular, models of this theory include cases where the base space is topologically non-trivial.

22Note that proving this will not be entirely straightforward: one could imagine certain global
obstructions (e.g. topological issues) that might yield a pair of models agreeing on all invari-
ants, yet lying on different symmetry orbits.

23The rider “finitely or recursively axiomatisable” is necessary to rule out theories consisting
simply of all the logical consequences of T expressible in terms of Q. (I thank Teruji Thomas
for drawing this to my attention.) Of course, in the context of first-order theories, Craig’s
Theorem prevents this from being a serious restriction; but in richer formalisms (such as local
field theory) the rider has bite.
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It is now no longer the case that the set {Fµν} comprises a complete set of quantities: there are
gauge-invariant quantities which are not determined by fixing the value of Fµν everywhere. To
take the best-known example, define the holonomy of a loop γ to be

h(γ) = exp
(∮

γ

Aµdxµ
)

(19)

It is straightforward to verify that holonomies are gauge-invariant. Yet if U is not simply
connected, the value of Fµν everywhere in U underdetermines the values of the holonomies:
two models of T̃ +

A (both with base space U) might agree on the former, yet disagree on the
latter.24 Of course, this does not mean that there can be no reduced theory of T̃A. It certainly
doesn’t mean that there is no complete set of invariant quantities for T̃A: in fact, it can be shown
that the set of all holonomies comprises just such a complete set.25 However, it remains very
much an open question whether one can give some closed-form set of equations for holonomies,
such that the solutions of those equations satisfy the Goldilocks conditions (relative to the
definitional extension of T τ

A by (19)).26

The second problem with insisting that one must provide a reduced theory is that, even if such
a theory can be found, that theory may seem to have explanatory deficits relative to the original
theory. For the reduced theory treats the invariant quantities Q as primitives; this means that
if some q ∈ Q obeys some non-trivial condition as a result of its definition (in the unreduced
theory), it must be asserted to obey that condition (in the reduced theory) as a simple posit. Let
us consider some examples of this phenomenon.

For the handedness theory, note that the reduced theory TC includes axioms to the effect
that C is an equivalence relation. No such axioms are needed in the theory T +

H, since—in that
theory—the definition of C (12) entails that it is an equivalence relation. For example, the claim
that C is symmetric becomes, when translated using (12), the tautology

∀x∀y(((Lx ∧ Ly) ∨ (Rx ∧ Ry))→ ((Ly ∧ Lx) ∨ (Ry ∧ Rx))) (20)

Thus, there is some sense in which the fact that C is an equivalence relation is rendered “more
necessary” in T +

H than in TC: it is, we might say, an analytic or definitional necessity rather than
a “mere” law.27 How seriously one should take this difference will be a matter of taste. But it

24This fact is the essential kernel of the Aharonov-Bohm effect (Aharonov and Bohm
[1959]); for further details, see (Healey [2007]).

25At least, this is true when—as here—we presuppose a fixed coordination on the base
space. In more general contexts, settling issues about the reducibility of gauge potentials
to holonomies turns upon subtleties concerning the base points of the holonomy maps: see
(Rosenstock and Weatherall [unpublished]). (My thanks to a referee for bringing this to my
attention.)

26See (Loll [1994]) for discussion.
27That said, one could argue that T +

H also contains explanatory deficits relative to TC. For
instance, simply by virtue of being a reduced theory, TC need not deal in any primitive claims
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is a prima facie reason for thinking that the passage to the reduced theory has not been entirely
without cost—and so for wondering if there might be some way to remove the surplus structure
without paying these dues.

In the case of electrostatics, one can see that the equation (16b) in TE corresponds to the
equation (4) of TP. Equation (16a) is a new addition, however; again, the reason it is not
needed in TP is because, translated using (14), it becomes the mathematical truth that

∇ × ∇ϕ = 0 (21)

As such, the unreduced theory can be considered to contain an answer to the question “why
does the curl of the electric field vanish?”—namely, that the electric field is the gradient of a
scalar field, and so (like all such gradients) has vanishing curl. Again, the explanatory claim
here is contestable, but the intuition that definitions possess explanatory force is in accord with
popular views about explanation in philosophy of science. The intuition could be made out
in intensional terms (since mathematical truths such as (21) contain a greater degree of modal
force than physical truths such as (16a)), or in hyperintensional terms (if one thinks that (21)
shows that the curl of E vanishes “in virtue of” E’s being a gradient); but either way, at least
some accounts of explanation will want to count its absence in TF as a deficit.

This example also demonstrates, incidentally, that this phenomenon is part of what makes
finding a reduced theory so hard. In trying to find the reduced version of TP, one might be
encouraged by the observation that φ only ever appears in (4) in the form ∇φ—which is a
complete invariant. Even then, though, one still has work to do. It’s not enough to merely
substitute E for ∇φ in (4); one also has to add in further equations to recapture theorems such
as (21).

For electromagnetism, it is the equations (18a) and (18b) which have no counterpart in the
unreduced theory TA; for in that theory, they reduce to the mathematical trivialities that

∂µAν − ∂νAµ = −(∂νAµ − ∂µAν) (22a)

∂[µ∂νAρ] = 0 (22b)

The list goes on. Any attempt to reduce T̃A to holonomies must stipulate that the holonomies
obey various identities;28 relationalist theories of space must posit constraints amongst the
spatial relations (e.g. the Triangle Inequality) that merely follow from the definitions of those

about the behaviour of L and R. (My thanks to an anonymous referee for pressing this point.)
But even if we grant this, the point in the text still stands. For the issue here is not whether TC

or T +
H have a better explanatory status in absolute terms; rather, it is merely that the passage

to TC involves some explanatory loss (whether or not that is compensated for by other gains).
This is sufficient to motivate us to seek a way of expunging surplus structure without incurring
that loss.

28(Arntzenius [2012], chap. 6)
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relations on substantivalist views;29 and so on and so forth.

4 Sophistication

Is there an alternative, then? Is there some other way of taking on board the above interpre-
tational principle, without seeking out a reduced theory? I suggest that there is. In a slogan,
the idea is that we need not insist on finding a theory whose models are invariant under the
application of the symmetry transformation, but can rest content with a theory whose models
are isomorphic under that transformation. That is, if M and N are symmetry-related models of
the unreduced theory, then they give rise to the same model of the reduced theory discussed in
the previous section; the proposal is that we instead look for a theory such that M and N give
rise to distinct but isomorphic models. Often, however, finding such a theory may mean leaving
the syntax of the theory alone, but instead modifying the semantics. To see what I mean by this,
let’s consider some examples.

First, consider the handedness theory. I introduce the concept of a de-handed picture: a
de-handed picture m comprises

• A set |m|

• A two-element set χm

• A function εm : χm → P(|m|)

Intuitively, the set χm (of “chiralities for m”) takes over the role of the set {L,R}; the function ε
(the “extension function”) assigns each chirality to a subset of the domain.30 The point of doing
so comes in the introduction of a new definition of “homomorphism” for such pictures: we take
a homomorphism h : m → n to comprise a map h1 : |m| → |n| and a bijection h2 : χm → χn,
such that for either q ∈ χm,

h1[εm(q)] = εn(h2(q)) (23)

In other words, it is no longer the case that isomorphisms must preserve extensions: indeed,
since each model m carries its own personal set of chiralities χm, there is no longer a well-
defined notion of trans-model identity for extensions, and hence no longer a criterion for what it
would be to preserve extensions. To compose a pair of such homomorphisms, simply compose
the components.

We now stipulate how de-handed pictures are to determine truth-values for sentences of the
first-order language over ΣH. Since there is no model-transcendent set of chiralities, it will no

29See (Maudlin [2007], chap. 3).
30A more elegant semantics for this theory would be one in which each element of the domain

is simply assigned one chirality or the other: that is, in which we use a function γm : |m| →
χm in place of εm. But that would build satisfaction of the axioms of TH into the semantics
themselves—whereas all I want to do here is construct a semantics that is sophisticated with
respect to the symmetries of TH.
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longer be the case that a picture determines an unambiguous truth-value for every sentence of
the handedness language: for a sentence like ∃xLx, for example, there is no privileged way
to determine which of the two chirality-extensions in a de-handed picture ought to count as
the extension of L. But this is as it should be, if we are really interested in doing away with
the structure that is variant under the symmetry: sentences which are not invariant under the
symmetry are defective, if we do not take symmetry-variant structure seriously. Instead, truth
in a de-handed picture m is (generally) relativised to a bijection V : {L,R} → χm. In a certain
sense, it is as though the predicate-letters L and R are being treated as second-order variables
(although they can only range over χm); we will therefore refer to the map V as a second-order
variable-assignment. Relative to such an assignment V , and to a first-order variable-assignment
v, the truth-values of atomic sentences in a model m are determined as follows:

m |=V,v Lx iff v(x) ∈ ε(V(L))

m |=V,v Rx iff v(x) ∈ ε(V(R))
(24)

The clauses for non-atomic sentences are unchanged. (These semantics could fruitfully be
compared to either second-order semantics or supervaluationist semantics.) We then obtain the
following result.

Proposition 2. Suppose that φ is logically equivalent to Eφ, let m be a de-handed picture,

and let v be a first-order variable-assignment for m. Then for any second-order variable-

assignments V and V ′ for m,

m |=V,v φ iff m |=V′,v φ (25)

Proof. See Appendix A. �

As a consequence, the truth-value of any parity-invariant formula is unambiguously deter-
mined by a de-handed picture (together with a first-order variable-assignment). Note that all
the members of TH are (of course) logically equivalent to their “swapped” versions. Hence, we
can define the de-handed models of TH as those de-handed pictures which make TH true. We
then obtain the following.

Proposition 3. Suppose that φ is equivalent modulo TH to Eφ,31 let m be a de-handed model of

TH, and let v be a first-order variable-assignment for m. Then for any second-order variable-

assignments V and V ′ for m,

m |=V,v φ iff m |=V′,v φ (26)

Proof. See Appendix A. �

We can therefore take our new theory to be given by the same set of sentences TH, but
where the semantics for those sentences is that just outlined (i.e. is done in terms of de-handed
pictures, rather than handed pictures).

31Where, again, E is the “handedness swap” map (3).
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Next, consider the electrostatic theory. Again, we retain the same set of equations, but change
what objects are used to semantically interpret those equations. Rather than taking φ to range
over R, we instead take it to range over Φ, where Φ is a one-dimensional, oriented, metric affine
space (such a space could be defined as a set equipped with a free, transitive of R as an additive
group). Φ has sufficient structure to enable ∂φ/∂xi (for i = 1, 2, 3) to be defined: for instance,

∂φ

∂x1 := lim
ε→0

φ(x1 + ε, x2, x3) − φ(x1, x2, x3)
ε

(27)

and similarly for x2 and x3. So ∇φ, and hence ∇2φ, can be defined as well. We can there-
fore continue to use the equation (4), interpreted as equations governing models of this kind
rather than the original kind. The transformation (7) also still makes sense, but is now an au-
tomorphism of Φ. As a result, if two Φ-valued fields are related by the application of such a
transformation, they are isomorphic to one another.32 Moreover, note that it’s not just that the
symmetry transformations of the form (7) are automorphisms of Φ: every automorphism of Φ

is a transformation of the form (7).
Finally, consider the electromagnetic theory. This time, models of the theory are to be con-

nections on a principal U(1)-bundle over R4.33 Once more, we retain the equations (5), but
now interpreted in a way that makes use only of the more minimalist structure available in the
models: Aµ is now interpreted as the vector potential of the target connection relative to some
arbitrarily chosen flat connection on the principal bundle. It is a standard exercise in gauge
theory to show that any two such flat connections will be related by a gauge transformation (a
vertical automorphism of the bundle).34 Hence that it doesn’t matter which flat connection we
choose as a reference-point: if the equations (5) hold with respect to any one such connection,
they hold with respect to all of them. And, since gauge transformations are vertical automor-
phisms of the bundle, the action of (8) on the target connection will yield a model isomorphic to
the original. Finally, the extension to the theory T̃A is straightforward: we simply take models
to be connections on principal U(1)-bundles over U ⊆ R4. Unlike the case of T̃F , these mod-
els do indeed contain all the same gauge-invariant quantities as the unsophisticated models: in
particular, a connection on a principal U(1)-bundles over a topologically nontrivial U fixes the
values of all the holonomies over U.

Hopefully, these examples make clear enough what is intended; let us now seek a general
characterisation. Note that the proposal on the table—that we can do justice to a symmetry
using isomorphism rather than invariance—is a generalisation of the “sophisticated substan-

32Given two functions f : U → V and f ′ : U′ → V ′, the appropriate definition of morphism
is as follows: a pair of morphisms α : U → U′ and β : V → V ′ such that β ◦ f = f ′ ◦ α. An
isomorphism is then an invertible morphism.

33See (Baez and Muniain [1994]), (Healey [2007]), or (Weatherall [2016]) for an introduc-
tion to the fibre bundle formalism.

34See e.g. (Baez and Muniain [1994], §II.2).
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tivalist” method for dealing with spacetime symmetries.35 With that in mind, let us refer to
theories equipped with semantics of this sort as sophisticated (rather than reduced) theories.
The striking thing about our sophisticated theories above was that we altered the semantical

constructs with respect to which the theory’s syntactic conditions were interpreted, rather than
those syntactic conditions themselves (“interpret” here meaning merely assign truth-values to
sentences, rather than anything more philosophically substantive). Given a theory T , subject
to some group G of symmetries, let us use the term “picture” for any object which (like a Σ-
picture or a Ψ-field) can be used to systematically determine the truth-values of sentences in
the language of T ; to provide a semantics is just to specify both what kinds of things count as
pictures, and exactly how it is that pictures assign truth-values to sentences of the language. In
all the cases above, we moved from the original semantics (comprised of pictures upon which
the symmetries of the theory do not act as isomorphisms) to a sophisticated semantics (com-
prised of pictures upon which the symmetries of the theory do act as isomorphisms). This new
semantics assigns determinate truth-values to symmetry-invariant sentences; since the axioms
of the theory are (by definition) so invariant, we may characterise some of the sophisticated
pictures as models of the new theory. Finally, in all cases, the sophisticated pictures could be
systematically obtained from the original ones, through the “forgetting” of structure. So in all
cases, we had an obvious (i.e. “natural” or “canonical”) map from the unsophisticated pictures
to the sophisticated ones.

Thus, let us say that sophistication of a theory T (with symmetries G) is exactly this process:
the provision of a new semantics, comprised of pictures which are

• related to those of the old semantics by some “forgetful” map F;

• adequate to assign truth-values to the G-invariant sentences of T ’s language; and

• such that for any unsophisticated pictures M and M′, M′ = g∗M for some g ∈ G iff
F(M) � F(M′).

However, this remains somewhat vague. Is there a way to precisify what is meant? Here is
one way to do so. Rather than trying to define the objects of the new semantics “internally”,
as mathematical structures of such-and-such a kind (paradigmatically, as sets equipped with
certain relations or operations), we instead define them “externally”: as mathematical struc-
tures of a given kind, but with certain operations stipulated to be homomorphisms (even if
they’re not “really” homomorphisms of the given kind). For example, one way to define vector

35See (Pooley, Pooley [2006, 2013]). Note, however, that sophisticated substantivalism is
often recommended as an attitude to take towards spacetime theories whose diffeomorphism-
related models are already isomorphic (as is the case, for example, with respect to modern
formulations of General Relativity), rather than (as is the case here) urging the introduction of
“new” isomorphisms. But insofar as I’m taking sophistication here to involve the claim that
these isomorphic models represent the same possible world, the analogy is good enough for
our purposes. I thank an anonymous referee for this observation.
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spaces is to define them as sets equipped with operations of addition and scalar multiplication,
obeying appropriate axioms. This is the internal method. The alternative is to define them as
spaces of the form Rk, with the further feature that linear transformations are declared to be
homomorphisms—and in particular, that invertible linear transformations are isomorphisms.
This is the external method. It would also be apposite to refer to the internal method as a
“synthetic” approach, and the external method as an “analytic” approach, following the termi-
nology of synthetic and analytic geometry. Alternatively, one could see the external method as
following in the tradition of Klein’s Erlangen program for geometry, and the internal method
as falling more under the Riemannian tradition.36

Hence, the proposal is that the pictures on the new semantics are simply what we obtain by
taking the old objects, and declaring, by fiat, that the symmetry transformations are now going
to “count” as isomorphisms.37 If we consider our examples above, we can see that—in fact—
the method for introducing the new semantics was often very much in this vein. In the case
of the handedness theory, an alternative way of introducing de-handed models would be to say
that de-handed models are constructed from the same formal materials as handed models (i.e.
from sets equipped with extensions for L and R), but with a new definition for homomorphism:
namely, that a homomorphism h from m to n consists of a map h1 : |m| → |n| and a bijection
h2 : ΣH → ΣH, such that

h1[Lm] = (h2(L))n (28a)

h1[Rm] = (h2(R))n (28b)

In the case of electrostatics, I remarked in passing that the space Φ could be most elegantly
defined as a set equipped with a free transitive additive action of R; the external method of
defining it would simply mean taking that set to be R itself, and the additive action to be
exactly that expressed by (7). The advantage of defining the new semantics externally is that it
offers a relatively easy means of characterising the objects of the semantics, and of the means
by which they accord truth-values to sentences of the formal language: simply (as we saw for
the handedness case) use the old semantics, then construct a supervaluationist semantics over
the members of each equivalence class of isomorphic new objects. So defined, it will certainly
meet the conditions required to be a sophistication.

The main disadvantage of this method is that it might seem far too easy. In general, the
external method of defining some kind of mathematical structure might be thought to offer less
insight into the nature of that structure: it is one thing to know that a vector space consists

36See (Wallace [unpublished]) for a detailed defence of using the external method for defin-
ing spacetime geometry, and for an expansion on the connection to Klein and Riemann.

37In category-theoretic terms, this amounts to introducing arrows into the category of models
corresponding exactly to the symmetry transformations—which is precisely what (Weatherall
[2016]) proposes to do for (gauge) symmetry transformations. I expand upon the relation to
Weatherall’s proposal in section 5.
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of precisely those features of Rk which are invariant under linear transformations, but another
to see that those features are exactly the operations of addition and scalar multiplication, as
codified by the axioms for a vector space. More ecumenically, one might think merely that both
kinds of construction are important for fully understanding the structure—in which case, one
would desire an internal construction as well. And it is often very opaque what kind of internal
construction will correspond to an external construction. Electromagnetism makes this fairly
clear: it is not at all obvious (I contend) that the features of maps R4 → R4 preserved under
gauge transformations (8) are precisely the features of vector potentials between connections on
a U(1) principal bundle. Nevertheless, we could reason as follows. Assuming that one accepts
the external method of definition as mathematically legitimate,38 then its application gives us
a way of defining a sophisticated semantics for the theory, by brute force. It then means that
we do have a precise target for a sophisticated semantics which is internally defined: we are
looking for some internal construction which delivers an equivalent class of structures.39

So, now that we have a decent grip on what sophistication means, we should consider its
virtues (or vices). Let’s begin by considering the two criticisms we levelled at reduced theories:
that they are too hard to find, and that they carry an explanatory cost relative to their unreduced
versions. Regarding the former, we have just seen that finding a sophisticated semantics will
always be easy if we use the external method. And although we don’t have any kind of general
guarantee that we will thereby be able to find some kind of internal characterisation of those
structures, we do—as a matter of fact—generally seem to have success in finding them. This
isn’t terribly mysterious when one appreciates the role that symmetry considerations play in
the construction of theories. If we are demanding that the equations of the theory manifest
certain symmetries, then the easiest way to ensure that they do is to construct them as equations
governing objects upon which the sought-for symmetries act as isomorphisms. As a result,
modern theories are typically born sophisticated. (The paradigm case is the construction of
Yang-Mills theories as theories governing connections on a principal G-bundle, which then
ensures a sophisticated semantics with respect to G acting as a local gauge group.)

As to the latter, we see that the invariants remain definable, even using the sophisticated
semantics: the fact that a sophisticated semantics determines unambiguous truth-values for in-
variant sentences of the language guarantees that the definitions will remain well-posed. As
a result, the explanation of why the invariants manifest such-and-such features are also pre-
served. In the handedness theory, for example, it remains the case that congruence is a matter
of possessing the same handedness property—and, hence, that congruence is an equivalence
relation. The electric field is still definable as the gradient of the potential, even if the latter is
taking values in Φ rather than R; so its irrotationality is still explicable as a consequence of its
being a gradient. In the case of electromagnetism, one can still understand the definition (17) of
Fµν as the antisymmetric part of the four-gradient of the vector potential (of the target connec-

38Which, to be clear, is in accord with standard mathematical practice.
39“Equivalent” here meaning that they are isomorphic (not just equivalent) as categories.
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tion relative to an arbitrarily chosen flat reference connection); although it is more insightful to
appreciate that this is precisely the definition of the curvature of the connection. Either way,
however, the fact that Fµν is antisymmetric (18a) and governed by the homogeneous Maxwell
equation (18b) receives a satisfying explanation.

However, sophistication also raises its own questions. The major issue is simply whether it
really does succeed in implementing the idea that we should get rid of “surplus” (i.e., symmetry-
variant) structure. After all (someone might say) surely the ontology postulated by the sophis-
ticated version is mostly the same as that of the original theory: a pair of properties in the
handedness case, an electrical potential in the electrostatic case, and a vector potential (up to
arbitrary choice of reference connection) in the electromagnetic case? So how on earth could it
be the case that the sophisticated theory is more parsimonious than the original, in the manner
required by the symmetry-interpretation link?

There are two components to the answer: one mathematical, and one more metaphysical.
The mathematical observation is that the standard way to explicate the idea of mathematical
structure is via isomorphism: what it is for a pair of mathematical objects to have the same
structure is for them to be isomorphic to one another.40 Thus, insofar as we want to defend so-
phistication’s credentials as genuinely “expurgating structure”, we can invoke standard mathe-
matical usage in support. This doesn’t mean that there is no alternative construal of “structure”
that would not be so kind to the sophisticate; but the burden is on the opponent of sophistica-
tion to explain what that would be, and to justify their departure from its accepted mathematical
meaning.

The metaphysical answer is to get clear on what ontological commitment has been relin-
quished in the passage from an unsophisticated to a sophisticated semantics. Sophisticated
substantivalism, the view which originally inspired us, reconciles the existence of spacetime
points with a denial of world-multiplicity by appeal to anti-haecceitism.41 Anti-haecceitists
about spacetime points deny that spacetime points are “modally robust”: they deny that there
are worlds which instantiate the same distribution of qualitative properties and relations over
spacetime points, yet differ only over which spacetime points play which qualitative roles.42

This suggests a correlative metaphysical manoeuvre here. We should be anti-quidditists,43 and
deny that physical properties are modally robust: we should not believe that there are worlds
which instantiate the same structure in their laws, and differ only over which properties play

40cf. (Barrett [2015]; Swanson and Halvorson [2012]; Weatherall [forthcoming (b)])
41See (Pooley [2013]). Note that anti-haecceitism seems to be the doctrine relevant to apply-

ing these kinds of thoughts to external symmetries, and anti-quidditism the doctrine required to
make this move for internal symmetries. I hope to expand upon this observation in future work.

42This formulation is a little unhappy, since it doesn’t distinguish the anti-haecceitist from
the essentialist. If there is a difference between them, it comes out in what they say about
what one gets by “permuting” the spacetime points whilst leaving the pattern of qualitative
roles the same: roughly, the essentialist thinks that this delivers an impossibility, whilst the
anti-haecceitist thinks that this delivers back the possibility with which we began.

43See e.g. (Lewis [2009]), (Hawthorne [2001]).
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which nomological roles. As a result, when one has symmetries—i.e., when multiple prop-
erties in the theory play the same nomological role—their permutation does not yield a new
possibility.

Note that this should not be understood as the claim that symmetric properties ought to be
identified with one another. The view is not that properties are individuated by nomological
profile, so that there can be no two properties with the same profile.44 Rather, the view is
that when there are two properties with the same profile, there is no fact of the matter about
which property-instantiation in a given possible world is an instantiation of which property.
The handedness case illustrates this idea nicely: in each world there are two classes of con-
gruence counterparts, each of which is the extension of a handedness property; but there is no
preferred way of matching up a congruence class in one world with one in another world, that
is, of identifying such pairs of congruence classes as the extensions of “the same” handedness
property as one another.45 That said, relative to an (arbitrarily chosen) identification of the
congruence-class in one world with a congruence-class in another, there is a privileged way
of identifying the remaining congruence-classes: they had better be identified with each other,
since the distinction between the classes in each model has to be preserved.

For local field theories, we think of the available values of a particular field as the deter-
minates of a determinable property (so this is a property of spacetime points); it is to these
properties that we apply the anti-quidditist lesson. So, in the case of electrostatics, we are
anti-quidditist about the different potential-values: we deny that there is a privileged way of
identifying the potentials-properties in one world with those in another. As with handedness,
this doesn’t mean collapsing all these properties into one (i.e. taking all points of Φ to repre-
sent the same property). It also doesn’t mean denying that there might be privileged relative

identifications (relative, that is, to some initial arbitrary identification): for although there is a
Φ-automorphism relating any two chosen points of Φ, there is not always a symmetry relating
any two chosen pairs of points in Φ (the pairs 〈φ, φ′〉 and 〈ψ, ψ′〉 can only be mapped to one
another by (7) if φ′−φ = ψ′−ψ). In the electromagnetism case, we can reckon that the available
determinates for a spacetime point are represented by the points in the fibre over (the R4 point
representing) that spacetime point. Note that if we do so, we not only deny that there are priv-
ileged ways to identify such properties across worlds—we also deny that there is a privileged
way to identify such properties across spacetime points!46

44Compare the discussion in (Hawthorne [2001], Part Three). One could say that the two
properties are “weakly discernible” in (some appropriate generalisation of) the sense of (Saun-
ders [2003b]).

45Note that the distinction doing the work here is whether it is possible to engage in
transworld identification of properties, not whether this transworld identification is mediated
by a quiddity or taken as primitive. This suggests that the “quidditism without quiddities” of
(Locke [2012]) is not importantly different from quidditism with quiddities.

46cf. (Maudlin [2007], chap. 3). This will be a somewhat strange metaphysics: a possi-
ble world does not consist in a distribution of properties over spacetime points (which would
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5 Equivalence

We’ve now seen three forms a theory can take (or more carefully, which a formally interpreted
theory can take): an unreduced and unsophisticated form (let’s call it the vulgar form), in which
there are symmetries relating non-isomorphic models; a reduced form, in which there are no
symmetries; and a sophisticated form, in which symmetries relate isomorphic models. I now
want to look more closely at the relationships between these three forms. In particular, let us
look at the question of whether, and to what extent, these theories can be regarded as equivalent.

The only formal criterion of equivalence that we have so far met with in this paper is that
of translational equivalence. This criterion can only be applied to theories formulated in the
framework of first-order model theory.47 The only two examples that we have of theories in this
framework are the (vulgar) handedness theory TH and its reduced counterpart, the congruence
theory TC. For these theories, we can make the following judgment: they are not translationally
equivalent, at least not under the dictionary map

F(C) = ((Lx ∧ Ly) ∨ (Rx ∧ Ry)) (29)

For, as is easily seen, F∗ is not a bijection. This is as far as translational equivalence (strictly
understood) can take us: none of the electrostatic or electromagnetic theories were formulated
in the framework of first-order model theory, nor was the sophisticated handedness theory
(since its semantics are different). We therefore seek a more general framework, into which
both the first-order and field-theoretic cases might be enfolded.

Weatherall has recently observed that category theory offers just such a framework.48 In
order to apply category-theoretic resources, we must specify how to characterise the category
of models for each theory; this amounts to specifying what counts as a morphism between
models. There is a reasonably obvious candidate for the morphisms between models of our
first-order theories: the relevant notion of homomorphism, whether vulgar or sophisticated. So
first, consider the relationship between Mod(TH) and Mod(TC), considered as categories in this
way. We know that the dictionary map F induces a map F∗ on models. Given any h : M → M′

in Mod(TH), let F∗h just be h itself (considered as a function on the base set; this prescription

correspond to a section of the bundle), but rather—very roughly—in a distribution of local
counterpart relations between infinitesimally nearby points (corresponding to a connection on
the bundle). However, this is an artefact of the fact that a connection on a principal bundle
represents a “pure” gauge field: a gauge field represented independently of any matter whose
dynamics is conditioned by the field. So it should be unsurprising that a solution of this pure
theory turns out to represent a pretty strange kind of world.

47Although Glymour ([1970]), in the course of defending translational equivalence as neces-
sary for theoretical equivalence, does make some remarks on how it might be extended to local
field theories. (To be pedantic, Glymour’s concern is with definitional equivalence rather than
translational equivalence; but as can be seen in (Barrett and Halvorson [unpublished]), the two
notions coincide for theories with disjoint vocabulary.)

48(Weatherall [2016])
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works because |F∗M| = |M|). So defined, F∗ is easily shown to be a functor from Mod(TH) to
Mod(TC). However, it is not an equivalence of categories.49 More specifically, it is not full: that
is, there are objects M,M′ of Mod(TH) such that the induced map h ∈ Hom(M,M′) 7→ F∗h ∈
Hom(F∗M,F∗M′) is not surjective.

Proposition 4. F∗ : Mod(TH)→ Mod(TC) is not full.

Proof. See Appendix A. �

Second, consider the relationship between Mod(TC) and mod(TH)—that is, between the cat-
egory of models of TC and the category of sophisticated models of TH. Again, we can regard
the dictionary map F as inducing a functor from mod(TH) → Mod(TC); just to maintain nota-
tional hygiene, call this functor F†. Explicitly, for any m ∈ mod(TH), let F†m be the ΣC-picture
such that

• |F†m| = |m|

• For any a, b ∈ |F†m|, 〈a, b〉 ∈ CF
†m iff a and b are members of the same element of εm[χm]

For any h : m→ n, let F†h be the map H : |F†m| → |F†n| such that H = h1. It is straightforward
to verify that F†m ∈ Mod(TC), and that F†h is a ΣC-homomorphism; that is, that F† really is a
functor. This time, however, we have

Proposition 5. F† is an equivalence of categories: it is full, faithful, and essentially surjective.

Proof. See Appendix A. �

Finally, what about the relationship between Mod(TH) and mod(TH)? For any vulgar model
M, let I∗M be the sophisticated model such that

|I∗M| = |M|

χI
∗M = {L,R}

εI
∗M(L) = LM

εI
∗M(R) = RM

(30)

and for any H : M → N, let I∗H be such that (I∗H)1 = H (considered as maps on sets), and
(I∗H)2 = Id{L,R}. We then find

Proposition 6. I∗ : Mod(TH) is not full.

Proof. See Appendix A. �

49Just to be clear, this is a distinct result from the fact that TH and TC are not definitionally
equivalent.
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So, we have the following results. First, mod(TH) and Mod(TC) are equivalent as categories;
second, although we don’t have a demonstration that Mod(TH) is inequivalent to either mod(TH)
or Mod(TC) (since we have not ruled out there is some appropriate functor between them),
we have at least shown that the obvious functors will not do the job. Let us now consider
local field theories. The relevant notion of morphism between functions f : U → V and
f ′ : U′ → V ′ (where U and U′, and V and V ′, are spaces in the same category) is that of a pair
of morphisms α : U → U′ and β : V → V ′; morphisms, that is, in the ambient categories of
the relevant spaces. Thus, for the case of a local field theory equipped with a vulgar semantics
(i.e., interpreted with respect to functions of type Rn → Rq), we find the following: the only
morphisms are pairs of the kind α = IdRn and β = IdRq!50 That is, we find that the category of
models of such a theory is always a discrete category.51

Let’s see how this plays out in the case of our electrostatic theories. First, consider the re-
lationship between the categories Mod(TP) and Mod(TE). Let G∗ be the functor Mod(TP) →
Mod(TE) whose action on models is given by (taking the dual of) the definition (14); its action
on morphisms is simply G∗(IdM) = IdG∗M, as required by functoriality (which suffices to deter-
mineG∗, given that we are working with discrete categories). Second, consider the relationship
between mod(TP) and Mod(TE). Let G† be the functor mod(TP) → Mod(TE) which acts on
models via the (dual of) (14), and whose action on non-identity morphisms is as follows: given
such a morphism k : M → M′, it must be the case that k is a global potential shift (7), so that
G†M = G†M′; we take G†k := IdG†M. Finally, let K : R → Φ be any bijection such that K−1

is a bijective embedding of Φ into R. We can then define K∗ : Mod(TP) → mod(TP) as the
functor such that φK

∗M = K ◦ φM (and whose action on the only morphisms in Mod(TP)—the
identity morphisms—is to take them to the corresponding identity morphisms in mod(TP)).

We then obtain the following results, in analogy with Propositions 4, 5, and 6.

Proposition 7. G∗ : Mod(TP)→ Mod(TE) is not full.52

Proposition 8. G† : mod(TP) → Mod(TE) is full, faithful and surjective; i.e., it is an equiva-

lence of categories.53

Proposition 9. K∗ : Mod(TP)→ mod(TP) is not full.

50The fact that there are so few morphisms between unsophisticated models is, of course, a
product of our decision to work with coordinatised spaces: since such spaces are very highly
structured, there are very few structure-preserving maps. However, I don’t believe that the
results below hinge on this decision. (Indeed, the remarkable thing is that even in a relatively
austere categorical environment, we are still able to establish useful results.)

51A category is discrete (at least, as I am using the term here) iff its only morphisms are
identity morphisms.

52cf. (Weatherall [forthcoming (b)], Proposition 1).
53cf. (Weatherall [forthcoming (b)], Proposition 2).
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All proofs are given in Appendix A. We can do more or less the same thing for electromag-
netism, establishing the same trinity of results.54 Again, these do not indicate that there are no

categorical equivalences between Mod(TP) and either Mod(TE) or mod(TP). Indeed, it seems
plausible that there will be some functors between these categories which enact such an equiv-
alence: for instance, any functor between Mod(TP) and Mod(TE) which is bijective on objects
will be an equivalence. However, I suspect that any functor which is describable in appro-
priately systematic terms (i.e. which meshes appropriately with respect to the non-categorical
characterisation of the models) will not be an equivalence. (Proving this formally would have
to await a precisification of “appropriately systematic” or “meshes appropriately”.) And we do
unambiguously have the result that the categories of sophisticated models come out equivalent
to the relevant category of reduced models.

All of this suggests some general (if vague) conjectures. Suppose that a theory T admits
some group G of symmetries (and that T is unsophisticated with respect to G). Let T ′ be a
reduction of T to some complete set of G-invariants. Let Mod(T ) and Mod(T ′) be the categories
of models for T and T ′ respectively, and let mod(T ) be a category of sophisticated models for
T . Finally, let’s say that a “reasonable” functor is one which meshes appropriately with the
architecture of the models (whatever exactly that gets made out to mean).55 Then the following
conjectures seem plausible:

• There is a reasonable functor F : mod(T ) → Mod(T ′) which is full, faithful, and essen-
tially surjective.

• There are no reasonable functors from Mod(T ) to either Mod(T ′) or mod(T ) which are
full, faithful and essentially surjective (or perhaps the stronger claim: there are no such
functors which are full).

Making these conjectures precise would require (a) a more thorough treatment of how to char-
acterise reduction and sophistication in category-theoretic terms, and (b) a clarification of the
notion of “reasonableness”. I defer doing so to future work; instead, let us consider the philo-
sophical implications of these technical observations.

Begin with the inequivalence between the reduced and unreduced theories (under vulgar se-
mantics). Prima facie, this may seem in tension with Weatherall’s claim that categorical equiv-
alence (of categories of models) is “a criterion of equivalence that does capture the sense in
which [electromagnetism in terms of fields] and [electromagnetism in terms of potentials] are

54For an explicit discussion of the case of electromagnetism, see (Weatherall [forthcoming
(b)]) and (Weatherall [2016]).

55At least in our examples, reasonableness seems to be a matter of being definable in terms
of the syntactic content (e.g. being generated by a translation between two theories). Hence,
my emphasis on reasonableness accords with recent work on the sometimes-neglected virtues
of the syntactic view of theories (Halvorson [2012], Halvorson [2013], Lutz [2014a], Lutz
[2014b]).
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synonymous.”56 However, there is no serious disagreement here. The equivalence that Weather-
all describes is between electromagnetism formulated in terms of fields—what we have been
calling TF—and electromagnetism formulated in terms of potentials, when gauge transforma-

tions are counted as morphisms in its category of models. In other words, the equivalence
described by Weatherall is precisely the equivalence between the reduced theory on the one
hand, and the unreduced theory under the sophisticated semantics on the other.

However, this does highlight a reason why one has to be careful in the use of categorical
equivalence as a criterion for theory equivalence. Categorical equivalence does not straight-
forwardly pronounce on the equivalence of theories (conceived of syntactically, as sets of sen-
tences), but rather on the equivalence of theories relative to a certain way of characterising the
models of a theory as a category. In other words, categorical equivalence is a criterion that
applies to theories together with a choice of semantics: change the semantics (from a vulgar
to a sophisticated semantics, for example) and one will, in general, change the category of
models. To be clear, all of this is present in Weatherall’s discussion, albeit in a slightly dif-
ferent form. Whereas I have emphasised the need to specify (not just a theory, but also) the
semantic structures one intends to use in formally interpreting the theory, Weatherall speaks of
constructing the category of models of a theory in such a way that we appropriately privilege
“maps that preserve the “physical structure” of a model, in the sense that two models related
by such a map are physically equivalent.”57 I take these to be two ways of getting at the same
idea. If one intends to renounce commitment to a certain amount of structure in one’s models
as “unphysical”, then one had better also think that the role such structure plays in determining
the semantic content of the theory is inessential and/or the product of arbitrary convention.

With these clarifications to hand, it does seem right to say that the reduced and unreduced
theories are not equivalent. Electromagnetism with fields and electromagnetism with potentials
can only feasibly be regarded as equivalent if gauge symmetries are regarded as relating phys-
ically equivalent models; but to judge that they do so is precisely to affirm a commitment to
sophisticated rather than vulgar semantics as embodying the true commitments of the theory.

However, what of the relationship between the reduced and sophisticated categories of mod-
els? In what sense are sophistication and reduction equivalent? In particular, one might be
worried by the fact that I (apparently) introduced sophistication about theories as an alterna-

tive to reduction—and, I suggested, a superior one! So if there is indeed something to choose
between them, surely they can’t be equivalent after all?

Here is what seems to me like the right thing to say: the two theories are equivalent in terms
of their intensional ontology, in terms of the kinds of structures that they postulate as present in
any world aptly described by them; but they differ in their explanatory structure. Electrostatics
in terms of sophisticated potentials, and electrostatics in terms of fields, both agree that there is
a physically significant irrotational vector field; and both agree that this field (as with any such

56(Weatherall [2016], §5)
57(Weatherall [2016], §5)
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field) is representable as the gradient of a scalar field—provided that that scalar field is defined
only up to potential shifts, or (equivalently) that it take values in Φ rather than R. However,
they disagree over what kind of explanation can be given of why this vector field is irrotational.
For the theory in terms of fields, its irrotationality is simply a brute fact—a fact which usefully
permits the field’s representation as a certain kind of gradient, but not arising from anything
else. For the theory in terms of sophisticated potentials, the field is the derivative object, and so
admits of an explanation in terms of what is fundamental (i.e., the potential): it is irrotational
because it is a gradient, and gradients always have vanishing curl.

As a result, whether the two theories are “really” equivalent will turn on what one wants
to say about the role of explanation in theory equivalence. On some accounts,58 two theo-
ries cannot be equivalent if they offer different explanations of the phenomena. This will be
particularly true if one is inclined to view explanations of this sort as arising from some kind
of ontological structure out there in the world, such as if one is committed to some notion
of grounding—conceived of as a genuine part of the world’s architecture, and responsible for
answering in-virtue-of questions (e.g. “in virtue of what is the electric field irrotational?”).59

If, however, one is sceptical of grounding (and cognate notions), then there is space for some
more quietist or deflationary attitude towards the relevant explanations. On this kind of view,
there need not always be some fact of the matter about what kind of explanatory architecture
is correct. It is certainly illuminating to see that some feature in a theory can be explained
by another, if the theory is set up a particular way; but (in general) there is no compulsion
towards setting the theory up one way rather than another, or towards accepting one pattern of
explanation amongst its parts as uniquely privileged.60

On either account, though, the case can be made for valuing sophistication over reduction.
On some more realist account of explanation (e.g. the grounding account), the explanatory
virtues of sophistication make it more likely to be the correct account of the (objective) ground-
ing structure of the world. On a more deflationary picture, those virtues make it a more helpful
or convenient way of characterising the structure of the world; even if a reduced theory is
picking out the same structure, it will generally do so in a less tractable way. And of course,
both accounts will appreciate the fact that sophistication is typically easier to come by than
reduction.

6 Conclusion

To wrap up, I will make two remarks about what I have sought to do in this paper—and a
comment on something I’ve not done, but that would be worth doing. The main aim has sim-

58e.g. (Putnam [1983]), (Schroeren [unpublished])
59See e.g. the essays in (Correia and Schnieder [2012]).
60I read Weatherall’s “puzzleball” account of the foundations of physical theories (Weatherall

[2012]) as expressing this kind of picture; it is also closely related to Cartwright’s “dappled-
world” conception of inter-theoretic relationships (Cartwright [1999]).
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ply been to convince you that fixating on reduction as the only acceptable means of dealing
with symmetries is a mistake.61 If, as I’ve argued, sophistication rather than reduction is a
legitimate way to seek to expurgate symmetry-variant structure, then a number of interesting
consequences follow. One is that carrying out that expurgation becomes (in general) somewhat
more straightforward: if all we are required to do is provide a sophisticated understanding of
the theory (especially if we do so using the external method), then our lives are made sub-
stantially easier than if we need to find a reduced theory. Moreover, with more expurgatory
options on the table, we can open up new approaches to classic problems concerning symme-
try. The debate on the Aharonov-Bohm effect, for example, is often characterised as requiring
us to choose between a trilemma of unpalatable ontologies: a locally acting62 and separable
(but not gauge-invariant) ontology of potentials; a locally acting and gauge-invariant (but non-
separable) ontology of holonomies; or a separable and gauge invariant (but non-locally acting)
ontology of fields. But the argument here suggests another option: adopting the “sophisticated”
ontology of connections of a principal bundle (or, more carefully, of whatever the metaphysical
correlate of such a connection is).63 I don’t claim that doing so will magically resolve these
problems;64 but it at least enlivens the conceptual geography.

Second, on a more methodological note, I claim that the above illustrates the value of an
eclectic approach to formalisms. Rather than alighting on some framework—first-order logic,
differential geometry, category theory, or whatever—as the be-all and end-all, we should be
pluralistic about what tools are best applied to the formal study of scientific theories. For
example, if we want a tight grip on how the derivable consequences of some axioms relate to
the models of those axioms, then we should make use of model theory; but, we should bear in
mind that virtually no realistic theory will be expressible in those terms. If we want to abstract
away and apply a uniform condition for equivalence, then we should characterise our theories
as categories; but, we should bear in mind that not all of the essential information about a theory
is likely to reside in that category we have rendered it as. By shifting between methods and
means as circumstances demand, we can discern similarities and analogues between different
formalisms, and use these to cross-fertilise our investigations into one area with insights from
another.

Finally, something I’ve not touched on here is the issue of quantisation. In the context of
gauge theory, one standard reason to reduce a theory is in preparation for quantising it; how
this process should be undertaken, and how it is to be understood, are longstanding topics of

61In this regard, cf. (Pooley [2013]), (Weatherall [forthcoming (a)]), and (Weatherall [forth-
coming (b)]).

62In the sense of having no “action at a distance”.
63cf. footnote 46.
64In the Aharonov-Bohm case, for instance, there will be significant subtleties about the

sense in which connections are separable: note that specifying a connection on a region U, and
a connection on an overlapping region V , generally underdetermines the connection on U ∪ V
(absent information about how things stand in U ∪ V).
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discussion in philosophy of physics.65 So a natural question is how sophistication and quanti-
sation relate to one another. Can a sophisticated theory be quantised in the same way a reduced
theory can? And if so, is the same quantum theory obtained as a result? Although these are
important and interesting questions, there is no space to address them here; I leave them for
future work.

Appendix A Proofs of propositions

Proposition 1. Suppose that we have translations D : T1 → T2 and D′ : T2 → T1. Then D and

D′ implement a translational equivalence between T1 and T2 iff D∗ is a bijection Mod(T2) →
Mod(T1), with (D′)∗ as its inverse.

Proof. First, it is easy to establish by induction that for any Σ2-picture M, any Σ1-formula φ,
and any variable-assignment v over |M|,

M |=v Dφ ⇐⇒ D
∗M |=v φ (31)

Now, assume first that D and D′ implement a translational equivalence between T1 and T2.
I show that for any M ∈ Mod(T2), (D′)∗D∗M = M, i.e., that (D′)∗D∗ acts on Mod(T2) as the
identity. The proof that D∗(D′)∗ acts on Mod(T1) as the identity goes similarly.

So consider any such M. We have immediately that |(D′)∗D∗M| = |D∗M| = |M|. So now
consider any relation-symbol π ∈ Σ2. By the above lemma,

(D′)∗D∗M |=v πx iff D∗M |=v D
′πx

iff M |=v DD
′πx

But since M |= T2 and D,D′ implement a translational equivalence,

M |= ∀x(πx↔ DD′πx)

and so M |=v DD
′πx iff M |=v πx, for any assignment v. Thus, π(D′)∗D∗M = πM. Thus,

(D′)∗D∗M = M.
Now, assume that D∗ and (D′)∗ are mutually inverse. I show that for any Σ2-formulae ψ,

T2 ` ∀x(ψ(x)↔ DD′ψ(x)) (32)

So suppose that (32) did not hold. Then there would be some model M of T2 such that M 6|=

∀x(ψ(x)↔ DD′ψ(x)); i.e., such that for some variable-assignment v for M, either M |=v ψ and
M 6|=v DD

′ψ, or vice versa. But by the above lemma, M |=v ψ iff M |=v DD
′ψ. So by reductio,

65See, for example, (Henneaux and Teitelboim [1992]), (Thébault [2012]), or (Pitts [2014]).
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(32) holds. By similar reasoning, we can show that the parallel claim for T1 holds; hence, D
and D′ are a translational equivalence. �

Proposition 2. Suppose that φ is logically equivalent to Eφ, let m be a de-handed picture,

and let v be a first-order variable-assignment for m. Then for any second-order variable-

assignments V and V ′ for m,

m |=V,v φ iff m |=V′,v φ (25)

Proof. Clearly, there only are two second-order variable-assignments for m (since χm has only
two members); so unless V = V ′ (in which case the proposition is trivial), then we have that
V(L) = V ′(R) and V(R) = V ′(L). Let M and M′ be ΣH-pictures defined as follows:

|M| = |M′| = |m| (33a)

LM = εm(V(L() (33b)

RM = εm(V(R)) (33c)

LM′ = εm(V ′(L)) = εm(V(R)) = RM (33d)

RM′ = εm(V ′(R)) = εm(V(L)) = LM (33e)

In other words, M′ = E∗M. But clearly, m |=V,v φ iff M |=v φ, and m |=V′,v φ iff M′ |=v φ.
Hence (suppressing reference to v), m |=V φ iff M |= φ iff M |= Eφ iff E∗M |= φ iff M′ |= φ iff
m |=V′ φ. �

Proposition 3. Suppose that φ is equivalent modulo TH to Eφ,66 let m be a de-handed model of

TH, and let v be a first-order variable-assignment for m. Then for any second-order variable-

assignments V and V ′ for m,

m |=V,v φ iff m |=V′,v φ (26)

Proof. As above, but restricting to models of TH. �

Proposition 4. F∗ : Mod(TH)→ Mod(TC) is not full.

Proof. Let M be as follows:

|M| = {0, 1, 2}

LM = {0}

RM = {1, 2}

Since F∗M = F∗(E∗M), we know that IdF∗M ∈ Hom(F∗M,F∗(E∗M)). If there was some h :
M → E∗M such that F∗h = IdF∗M, then h would need to act as the identity on the underlying
set |M|. But there is no homomorphism from M to E∗M which does this. So there is no such h;
thus, the induced map is not surjective. �

66Where, again, E is the “handedness swap” map (3).
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Proposition 5. F† is an equivalence of categories: it is full, faithful, and essentially surjective.

Proof. First, I introduce a helpful abbreviation. For any m ∈ mod(TH), and any a ∈ |m|, a is in
the extension of one element of χm or the other (but not both). So let am denote the element of
χm of whose extension a is a member (i.e., let am denote the chirality of a).

Now, consider any m, n ∈ mod(TH), and let H be any homomorphism from F†m to F†n.
Now define h1 : |m| → |n| by the condition that h1 = H (as a map on sets). Then, letting
a be some arbitrary element of |m|, define h2 : χm → χn as the (unique) bijection such that
h2(am) = (h1(a))n; it is easily seen that this does indeed uniquely determine h2, and that it does
so independently of the choice of a. So, for each q ∈ χm and any b ∈ |m|, if b ∈ εm(q), then
bm = q, so h2(q) = (h1(b))n, so h1(b) ∈ h2(q). Thus, h := (h1, h2) is a homomorphism m → n,
and H = F†h. So F† induces a surjective map on morphisms between any m and n, i.e. F† is
full.

Now consider any m, n ∈ mod(TH), and let h, h′ : m → n such that F†h = F†h′. Clearly,
h1 = h′1. Furthermore, since h and h′ are homomorphisms, it follows that for any a ∈ |m|,
h2(am) = (h1(a))n = (h′1(a))n = h′2(am); hence, h′2 = h2. So h = h′. So F† induces an injective
map on morphisms between any m and n, i.e., F† is faithful.

Finally, let M by any member of Mod(TC). Define a de-handed picture m by setting |m| = |M|,
letting the members of χm be the two congruence classes in M, and setting εm to the identity.
Clearly, F†m = M. So F† is surjective, and therefore essentially surjective. �

Proposition 6. I∗ : Mod(TH) is not full.

Proof. It is clear by inspection that I∗ = (F†)−1 ◦ F∗; hence, since F∗ is not full and (F†)−1 is
an equivalence, I∗ is not full either.

�

Proposition 7. G∗ : Mod(TP)→ Mod(TE) is not full.67

Proof. Let C∗ be the functor on Mod(TP) induced by the symmetry transformation (7). Let M

be any model of TP. Given the setup, we know that C∗M , M, and hence that Hom(M,C∗M) =

∅. Yet we also know that G∗(C∗M) = G∗M, and hence that Hom(G∗(C∗M),G∗M) , ∅ (since
it contains IdG∗M). So, the map on arrows induced by G∗ is not surjective for the pair of objects
M,C∗M; that is, G∗ is not full. �

Proposition 8. G† : mod(TP) → Mod(TE) is full, faithful and surjective; i.e., it is an equiva-

lence of categories.68

Proof. Consider any m, n ∈ mod(TP), and let H by any morphism from G†m to G†n. It must be
the case that H = IdG†m (since Mod(TE) is discrete). So there are two possibilities: either m = n,

67cf. (Weatherall [forthcoming (b)], Proposition 1).
68cf. (Weatherall [forthcoming (b)], Proposition 2).
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or m and n are related by some global potential shift k. If the former, then G†Idm = IdG†m; if the
latter, then G†k = IdG†m. Either way, therefore, G† induces a surjective map on arrows between
m and n; so G† is full.

Now consider any m, n ∈ mod(TP), and any morphisms h, h′ : m → n. If m = n, then
Hom(m, n) = {Idm}; if m , n, then Hom(m, n) = {k} where k is the (unique) global potential
shift relating them; either way, h = h′. So (trivially) ifG†h = G†h′, then h = h′. SoG† induces
an injective map on arrows between m and n; so G† is faithful.

Finally, let M ∈ Mod(TE). As already discussed, for any such model there is some m ∈

mod(TP) such that G†m = M. So G† is surjective, and hence essentially surjective. �

Proposition 9. K∗ : Mod(TP)→ mod(TP) is not full.

Proof. It is clear by inspection that K∗ = (G†)−1 ◦ G∗. Since G∗ is not full, and (G†)−1 is an
equivalence, K∗ is not full. �
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