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Abstract. This paper investigates an extended grey rela-

tional analysis method for multiple attribute decision 

making problems under interval neutrosophic uncertain 

linguistic environment. Interval neutrosophic uncertain 

linguistic variables are hybridization of uncertain linguis-

tic variables and interval neutrosophic sets and they can 

easily express the imprecise, indeterminate and incon-

sistent information which normally exist in real life situa-

tions. The rating of performance values of the alterna-

tives with respect to the attributes is provided by the de-

cision maker in terms of interval neutrosophic uncertain 

linguistic variables in the decision making situation. The 

weights of the attributes have been assumed to be incom-

pletely known or completely unknown to the decision 

maker and the weights have been calculated by employ-

ing different optimization models. Then, an extended 

grey relational analysis method has been proposed to de-

termine the ranking order of all alternatives and select the 

best one. Finally, a numerical example has been solved to 

check the validity and applicability of the proposed 

method and compared with other existing methods in the 

literature. 

Keywords: Multiple attribute decision making, Interval neutrosophic set, Interval neutrosophic uncertain linguistic variables, Grey 

relational analysis.

1 Introduction 

Multiple attribute decision making (MADM) is a pro-
cedure for a decision maker (DM) to get the most desirable 
alternative from a set of feasible alternatives with respect 
to some predefined attributes. MADM, an important deci-

sion making apparatus have been applied in many kinds of 
practical fields such as engineering technology, economics, 
operations research, management science, military, urban 
planning, etc. However, in real decision making, due to 
time pressure, complexity of knowledge or data, ambiguity 
of people’s thinking, the performance values of the alterna-

tives regarding the attributes cannot always be represented 
by crisp values and it is reasonable to describe them by 
fuzzy information. Zadeh [1] proposed the notion of fuzzy 
set theory by incorporating the degree of membership to 
deal with impreciseness. Atanassov [2] extended the con-
cept of Zadeh [1] and defined intuitionistic fuzzy set by in-

troducing the degree of non-membership in dealing with 
vagueness and uncertainty. However, in many real world 

decisions making, we often encounter with indeterminate 

and inconsistent information about alternatives with re-
spect to attributes. In order to handle indeterminate and in-
consistent information, the theory of neutrosophic set was 
incorporated by Smarandache [3-6] by introducing the de-
gree of indeterminacy or neutrality as an independent 
component. After the ground-breaking work of 

Smarandache [3-6], Wang et al. [7] proposed single valued 
neutrosophic set (SVNS) from real scientific and engineer-
ing point of view. Wang et al. [8] introduced interval neu-
trosophic set (INS) which is more realistic and flexible 
than neutrosophic set and it is characterized by the degree 
of membership, degree of non-membership and a degree of 

indeterminacy, and they are intervals rather than real num-
bers. 

In interval neutrosophic decision making environment, 
Chi and Liu [9] proposed extended technique for order 
preference by similarity to ideal solution (TOPSIS) method 
for solving MADM problems in which the attribute 

weights are unknown and attribute values are expressed in 
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terms of INSs. Ye [10] defined Hamming and Euclidean 
distances between INSs  and proposed a multi-criteria 
decision making (MCDM) method based on the distance 
based similarity measures. Broumi and Smarandache [11] 
defined a new cosine similarity between two INSs based 
on Bhattacharya’s distance [12] and applied the concept to 

a pattern recognition problem.  Zhang et al. [13] developed 
two interval neutrosophic number aggregation operators 
for solving MCDM problems. Liu and Shi [14] defined 
some aggregation operators for interval neutroshic hesitant 
fuzzy information and developed a decision making 
method for MADM problems. Zhang et al. [15] further 

proposed several outranking relations on interval 
neutrosophic numbers (INNs) based on ELETRE IV and 
established an outranking approach for MCDM problems 
using INNs. Ye [16] investigated an improved cross 
entropy measures for SVNSs and extended it to INSs.  
Then, the proposed cross entropy measures of SVNSs and 

INSs are employed to MCDM problems. Şahin and Liu 
[17] developed a maximizing deviation method for 
MADM problems with interval-valued neutrosophioc 
informations. Tian et al. [18] explored a novel and 
comprehensive approach for MCDM problems based on a 
cross entropy with INSs. Mondal and Pramanik [19] 

developed cosine, Dice and Jaccard similarity measures 
based on interval rough neutrosophic sets and developed 
MADM methods based on the proposed similarity 
measures. Ye [20] defined a credibily-induced interval 
neutrosophic weighted arithmetic averaging operator and a 
credibily-induced interval neutrosophic weighted geometic 

averaging operator and established their properties. In the 
same study, Ye [20]  also presented the projection measure 
between INNs the projection measure based ranking 
method for solving MADM problems with interval 
neutrosophic information and credibility information.     

Deng [21] initiated grey relational analysis (GRA) 

method which has been applied widely for solving many 
MADM problems [22-34] in diverse decision making envi-
ronments. GRA has been identified as an important deci-
sion making device for dealing with the problems with 
complex interrelationship between various aspects and var-
iables [25-27]. Biswas et al. [28] first studied GRA tech-

nique to MADM problems with single valued neutrosophic 
assessments in which weights of the attributes are com-
pletely unknown. Biswas et al. [29] further proposed an 
improved GRA method for MADM problems under neu-
trosophic environment. They formulated a deviation based 
optimization model to find incompletely known attribute 

weights. They also established an optimization model by 
using Lagrange functions to compute completely unknown 
attribute weights. Mondal and Pramanik [30] studied rough 
neutrosophic MADM through GRA method. Pramanik and 
Mondal [32] proposed a GRA method for interval neutro-

sophic MADM problems where the unknown attribute 
weights are obtained by using information entropy method. 
Recently, Dey et al. [34] developed an extended GRA 
based interval neutrosophic MADM for weaver selection 
in Khadi institution. 

Ye [35] introduced interval neutrosophic linguistic 

variables by combining linguistic variables and the idea of 
INSs. In the same study Ye [35] proposed aggregation 
operatos for interval neutrosophic linguistic information 
and presented a decision making method for MADM 
problems.  Broumi et al. [36] studied an extended TOPSIS 
method for MADM problems where the attribute values 

are described in terms of interval neutrosophic uncertain 
linguistic information and attribute weights are unknown. 
However, literature review reveals that there has been no 
work on extending GRA with  interval neutrosophic 
uncertain linguistic information. In this study, we have 
developed a new GRA method for MADM problems under 

interval neutrosophic uncertain linguistic assessments 
where the information about attribute weights are partially 
known or completely unknown to the DM.   

Rest of the paper is designed as follows; In Section 2, 
we have summarized some basic concepts which are essen-
tial for the presentation of the paper. Section 3 has been 

devoted to develop an extended GRA method for solving 
MADM problems under interval neutrosophic uncertain 
linguistic information where the information about attrib-
ute weights is partially known or completely unknown. In 
Section 4, an algorithm of the proposed method has been 
presented. In Section 5, we have solved a MADM problem 

to validate the developed method and compared the results 
with the results of other accessible methods in the literature. 
Finally, the last Section 6 concludes the paper with future 
scope of research. 

2 Preliminaries 

In the Section, we present several concepts regarding 

neutrosophic sets, single-valued neutrosophic sets, interval 
neutrosophic sets, uncertain linguistic variable, interval 
linguistic neutrosophic set, and interval neutrosophic un-
certain linguistic set. 

2.1 Neutrosophic set 

Definition 2.1 [3-6]: Let U be a space of objects, then a 

neutrosophic set N is defined as follows: 

N = {x, )(F),(I),(T xxx NNN   x U}     (1) 

where, )(T xN : U  ]-0, 1+[; )(I xN : U  ]-0, 1+[; )(F xN : 

U  ]-0, 1+[ are the truth-membership function, indetermi-

nacy-membership function, and falsity-membership func-

tion, respectively with the condition 
-0  sup )(T xN + sup )(I xN + sup )(F xN  3+. 
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2.2 Single – valued neutrosophic set 

Definition 2.2 [7]: Assume U be a universal space of ob-

jects with generic element in U represented by x, then a 

SVNS S   U is defined as follows: 

S = {x, )(F),(I),(T xxx SSS   x U}                               (2) 

where, )(T xS ; )(I xS ; )(F xS : U  [0, 1] are the degree of 

truth-membership, the degree of indeterminacy-

membership, and the degree of falsity-membership respec-

tively of the element x U to the set S with the condition 

0  )(T xS + )(I xS + )(F xS  3. 

2.3 Interval neutrosophic set 

Definition 2.3 [8]: Assume that U be a universal space of 

points with generic element in U denoted by x. Then an 

INS A is defined as follows: 

A = {x, )(F),(I),(T xxx AAA   x U}        (3) 

where, )(T xA , )(I xA , )(F xA are the truth-membership 

function, indeterminacy-membership function, and falsity-

membership function, respectively with 

),x(TA  ),x(IA )(F xA  [0, 1] for each point x U and 

0  sup )(T xA + sup )(I xA + sup )(F xA  3. For convenience, 

an INN is represented by a~  = ([T-, T+], [I-, I+], [F-, F+]).

2.4 Uncertain linguistic variable 

A linguistic set P = (p0, p1, p2, ..., pu-1) is a finite and com-

pletely ordered discrete term set, where u is odd. For ex-

ample, when u = 7, the linguistic term set P can be defined 

as given below [36]. 

P = {p0 (extremely low); p1 (very low); p2 (low); p3 (medi-

um); p4 (high); p5 (very high); p6 (extremely high)}. 

Definition 2.4 [36]: Let p~ = [ βα p,p ], where 

βα p,p  P
~

with α  β be respectively the lower and upper 

limits of P, then, p~ is said to be an uncertain linguistic var-

iable.  

Definition 2.5 [36]: Consider 1p~ = [
11 βα p,p ] and 2p~ = 

[
22 βα p,p ] be two uncertain linguistic variables, then the 

distance between 1p~ and 2p~ is defined as given below. 

D ( 1p~ , 2p~ ) = 
1)2(u

1


(| 2α - 1α | + | 2β - 1β |)         (4) 

2.5 Interval neutrosophic linguistic set 

Ye [35] proposed interval neutrosophic linguistic set based 

on interval neutrosophic set and linguistic variables. 

Definition 2.6 [35]: An interval neutrosophic linguistic set 

L in U is defined as follows: 

L = {x, 
)(φp x
, )(F),(I),(T xxx LLL   x U}      (5) 

where )(T xL  = [ )(T - xL , )(T xL


]  [0, 1], )(I xL  = 

[ )(I - xL , )(I xL


]  [0, 1], )(F xL  = [ )(F- xL , )(F xL


]  [0, 1] 

denote respectively, truth-membership degree, 

indeterminacy-membership degree, and falsity-

membership degree of the element x in U to the linguistic 

variable )(φp x  p̂ with the condition 

 0  )(T xL


+ )(I xL


+ )(F xL


 3. 

2.6 Interval neutrosophic uncertain linguistic set 
Broumi et al. [36] extended the concept of interval neutro-

sophic linguistic set [35] and proposed interval 

neutrosophic uncertain linguistic set based on interval neu-

trosophic set and uncertain linguistic variables. 

Definition 2.7 [36]: An interval neutrosophic uncertain 

linguistic set C in U is defined as follows: 

C = {x, [ )(φp x , )(ψp x ], )(F),(I),(T xxx CCC   x U}  (6) 

where )(T xC  = [ )(T - xC , )(T xC


]  [0, 1], )(I xC  = 

[ )(I - xC , )(I xC


]  [0, 1], )(F xC  = [ )(F - xC , )(F xC


]  [0, 1] 

represent respectively, truth-membership degree, 

indeterminacy-membership degree, and falsity-

membership degree of the element x in U to the uncertain 

linguistic variable [ )(φp x , )(ψp x ] with the condition 

0  )(T xC


+ )(I xC


+ )(F xC


 3. 

Definition 2.8 [36]: Consider 1a~ = < [ )a~(φ 1
p , )a~(ψ 1

p ], 

([ )a~(T 1

-
, )a~(T 1


], [ )a~(I 1

-
, )a~(I 1


], [ )a~(F 1

-
, )a~(F 1


]) > 

and 2a~ = < [ )a~(φ 2
p , )a~(ψ 2

p ], ([ )a~(T 2

-
, )a~(T 2


], 

[ )a~(I 2

-
, )a~(I 2


], [ )a~(F 2

-
, )a~(F 2


]) > be two interval neu-

trosophic uncertain linguistic variables (INULVs) 

and μ 0, then the operational laws of INULVs are defined 

as given below. 

1. 1a~  2a~ = < [ )a~(φ)a~(φ 21
p  , )a~(ψ)a~(ψ 21

p  ], 

([ )a~(T 1

-
+ )a~(T 2

-
- )a~(T 1

-
. )a~(T 2

-
, )a~(T 1


+ )a~(T 2


-

)a~(T 1


. )a~(T 2


], [ )a~(I 1

-
. )a~(I 2

-
, )a~(I 1


. )a~(I 2


], 

[ )a~(F 1

-
. )a~(F 2

-
, )a~(F 1


. )a~(F 2


]) > 

2. 1a~  2a~ = < [ )a~(φ)a~(φ 21
p  , )a~(ψ)a~(ψ 21

p  ], 

([ )a~(T 1

-
. )a~(T 2

-
, )a~(T 1


. )a~(T 2


], [ )a~(I 1

-
+ )a~(I 2

-
-

)a~(I 1

-
. )a~(I 2

-
, )a~(I 1


+ )a~(I 2


- )a~(I 1


. )a~(I 2


], 

[ )a~(F 1

-
+ )a~(F 2

-
- )a~(F 1

-
. )a~(F 2

-
, )a~(F 1


+ )a~(F 2


-

)a~(F 1


. )a~(F 2


]) > 

3. μ . 1a~ = < [ )a~(φμ 1
p , )a~(ψμ 1

p ], ([1 – (1- )a~(T 1

-
)
μ

, 1- (1-

)a~(T 1


)
μ

], [( )a~(I 1

-
)
μ

, ( )a~(I 1


)
μ

], [( )a~(F 1

-
)
μ

,

( )a~(F 1


)
μ

]) >
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4. μ

1a~ = < [
)a~(φ 1

μp ,
)a~(ψ 1

μp ], ([( )a~(T 1

-
) μ , ( )a~(T 1


) μ ], [1 

– (1 - )a~(I 1

-
) μ , 1 – (1 - )a~(I 1


) μ ], [1 – (1 - )a~(F 1

-
) μ , 

1 – (1 - )a~(F 1


) μ ]) >. 

Definition 2.9 [36]: Consider 1p~ = < [
11 βα p,p ], ([

-TA ,


AT ], 

[
-I A ,



AI ], [
-FA ,



AF ]) > and 2p~ = < [
22 βα p,p ], ([

-TB ,


BT ], 

[
-I B ,



BI ], [
-FB ,



BF ]) >  be two INULVs, then the Hamming 

distance between them is defined as follows: 

DHam ( 1p~ , 2p~ ) = 
1)12(u

1


(| 1α 

-TA - 2α 
-TB | + 

| 1α 


AT - 2α 


BT | + | 1α 
-I A - 2α 

-I B | + | 1α 


AI -

2α 


BI | + | 1α 
-FA - 2α 

-FB | + | 1α  

AF - 2α 


BF | + 

| 1β 
-TA - 2β 

-TB | + | 1β 


AT - 2β 


BT | + | 1β 
-I A -

2β 
-I B | + | 1β 



AI - 2β 


BI | + | 1β 
-FA - 2β 

-FB | 

+| 1β  

AF - 2β  

BF |)       (7) 

Definition 2.10: Let 1p~ = < [
11 βα p,p ], ([

-TA ,


AT ], [
-I A ,



AI ], 

[
-FA ,



AF ]) > and 2p~ = < [
22 βα p,p ], ([

-TB ,


BT ], [
-I B ,



BI ], 

[
-FB ,



BF ]) >  be two INULVs, then we define the Euclidean 

distance between them as follows: 

DEuc ( 1p~ , 2p~ ) = 
1)12(u

1


[( 1α 

-TA - 2α 
-TB )2 +

( 1α 


AT - 2α 


BT )2 + ( 1α  -I A - 2α  -I B )2 + ( 1α  

AI -

2α 


BI )2 + ( 1α  -FA - 2α  -FB )2 + ( 1α 


AF - 2α 


BF )2 + 

( 1β  -TA - 2β  -TB )2 + ( 1β 


AT - 2β 


BT )2 + ( 1β  -I A -

2β 
-I B )2 + ( 1β 



AI - 2β 


BI )2 + ( 1β 
-FA - 2β 

-FB )2 +

( 1β 


AF - 2β 


BF )2] 2
1

       (8) 

3 Extended GRA for MADM problems with interval 
neutrosophic uncertain linguistic information 

Let G = {G1, G2, …, Gm}, (m  2) be a discrete set of al-

ternatives and H ={H1, H2, …, Hn}, (n  2) be the set of at-

tributes in a MADM problem with interval neutrosophic 

uncertain linguistic information. Also consider ω = { 1ω , 

2ω , …, nω } be the weighting vector of the attributes with 

0  jω  1 and 


n

1j
jω = 1. Suppose the performance values 

of alternatives with respect to the attributes are represented 

by INULV vij = < [ 

ijij , xx ], ([ -

ijT , 

ijT ], [ -

ijI , 

ijI ], [ -

ijF , 

ijF ]) 

>; (i = 1, 2, …, m;  j = 1, 2, …, n). Here, [ 

ijij , xx ] repre-

sents uncertain linguistic variable and 

ijij , xx    P = (p0, p1, 

p2, ..., pu-1),
-

ijT , 

ijT , -

ijI , 

ijI , -

ijF , 

ijF  [0, 1] with the 

condition 0  )(Tij x + )(I ij x + )(Fij x  3. Now, the steps 

for ranking the alternatives based on extentended GRA 

method are described as follows: 

Step 1. Normalize the decision matrix 

Benefit type and cost type attributes are two types of at-

tributes which exist in real world decision making prob-

lems. In order to eradicate the impact of the attribute types, 

we normalize [36] the decision matrix. Suppose Q = (qij) 

be the normalized decision matrix, where qij = < [ 

ijij q,q ], 

([ -

ijT , 

ijT ], [ -

ijI , 

ijI ], [ -

ijF , 

ijF ]) >; (i = 1, 2, …, m;  j = 1, 2,

…, n), then 

For benifit type attribute 


ijq = 

ijx , 

ijq = 

ijx for (i = 1, 2, …, m;  j = 1, 2, …, n) 

-

ijT = -

ijT , 

ijT = 

ijT , -

ijI = -

ijI , 

ijI = 

ijI , -

ijF = -

ijF , 

ijF = 

ijF  (9) 

(i) For cost type attribute 


ijq = neg ( 

ijx ), 

ijq = neg ( 

ijx ) for (i = 1, 2, …, m;  j = 1, 2, 

…, n) 
-

ijT = -

ijT , 

ijT = 

ijT , -

ijI = -

ijI , 

ijI = 

ijI , -

ijF = -

ijF , 

ijF = 

ijF     (10) 

Step 2. Identify the positive ideal solution (PIS) BQ = 

(
B

1q ,
B

2q , ..., 
B

nq ) and negative ideal solution WQ = 

(
W

1q ,
W

2q , ..., 
W

nq ) 

Broumi et al. [36] defined PIS ( BQ ) and NIS ( WQ ) in 

interval neutrosophic uncertain linguistic environment as 

follows: 
BQ = (

B

1q ,
B

2q , ..., 
B

nq ) = [< [
 B

1

B

1 q,q ], ([
-B

1T ,
B

1T ],

[
-B

1I ,
B

1I ], [
-B

1F ,
B

1F ]) >; < [
 B

2

B

2 q,q ], ([
-B

2T ,
B

2T ],

[
-B

2I ,
B

2I ], [
-B

2F ,
B

2F ]) >; ...; < [
 B

n

B

n q,q ], ([
-B

nT ,
B

nT ],

[
-B

nI ,
B

nI ], [
-B

nF ,
B

nF ]) >]        (11) 

WQ = (
W

1q ,
W

2q , ..., 
W

nq ) = [< [
 W

1

W

1 q,q ], ([
-W

1T ,
W

1T ],

[
-W

1I ,
W

1I ], [
-W

1F ,
W

1F ]) >; < [
 W

2

W

2 q,q ], ([
-W

2T ,
W

2T ],

[
-W

2I ,
W

2I ], [
-W

2F ,
W

2F ]) >; ...; < [
 W

n

W

n q,q ], 

([
-W

nT ,
W

nT ], [
-W

nI ,
W

nI ], [
-W

nF ,
W

nF ]) >]    (12) 

where B

jq = Maxi 


ijq , B

jq = Maxi 


ijq , -B

jT =Maxi
-

ijT , B

jT =

Maxi


ijT , -B

jI = Mini
-

ijI , B

jI = Mini


ijI ,
-B

1F = Mini
-

ijF ,
B

1F =

Mini


ijF ;
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W

jq = Mini


ijq , W

jq = Mini


ijq , -W

jT = Mini
-

ijT , W

jT = 

Mini


ijT , -W

jI = Maxi
-

ijI , W

jI = Maxi


ijI , -W

jF = 

Maxi
-

ijF , W

jF = Maxi


ijF .

Step 3. Determine the neutrosophic grey relational co-

efficient of each alternative from PIS and NIS 

The grey relational coefficient of each alternative from PIS 

is defined as follows: 

 ij =








ij
ii

ij

ij
ii

ij
ii

ρMaxMaxσρ

ρMaxMaxσρMinMin
,    (13) 

where 

ijρ  = D (qij,
B

ijq ), (i = 1, 2, …, m;  j = 1, 2, …, n) 

and the grey relational coefficient of each alternative from 

NIS is defined as given below 

 ij =








ij
ii

ij

ij
ii

ij
ii

ρMaxMaxσρ

ρMaxMaxσρMinMin
,    (14) 

where 

ijρ  = D (qij,
W

ijq ), (i = 1, 2, …, m;  j = 1, 2, …, n). 

Here, σ [0, 1] represents the distinguishing coefficient 

and generally, σ= 0.5 is considered in the decision making 

context. 

Step 4. Determination of weights of the attributes 

The main idea of GRA method is that the chosen alterna-

tive should have the maximal degree of grey relation from 

the PIS. So, the maximal grey relational coefficient pre-

sents the most suitable alternative for the given weight vec-

tor. Here, we assume that the weight vector of the attrib-

utes is partially known to the DM. Now, the grey relational 

coefficient between PIS and itself is (1, 1, …, 1), similarly, 

grey relational coefficient between NIS and itself is also (1, 

1, …, 1). The corresponding comprehensive deviations are 

given below. 



iD (ω ) = j

n

1j
ij )ω(1



  (15) 



iD (ω ) = j

n

1j
ij )ω(1



  (16) 

Smaller values of 


iD (ω ) and 


iD (ω ) represent the better 

alternative. Now we use the max-min operator of Zim-

mermann and Zysco [37] to integrate all the distances 


iD (ω ) and 


iD (ω ), i = 1, 2, …, m separately. Then, we 

construct the following programming model [29] for in-

completely known weight information as: 

(M-1A)






















X.ω

m...,2,1,i,α)ω(1

tosubject

αMin

n

1j
jij

 (17) 

(M-1B)






















X.ω

m...,2,1,i,α)ω(1

tosubject

αMin

n

1j
jij

      (18) 

where 
α = 




n

1i
jij

i
)ω(1Max ; 

α = 



n

1i
jij

i
)ω(1Max , i = 

1, 2, …, m. 

By solving the model (M-1A) and model (M-1B), we get 

the optimal solutions
ω = (



1ω ,


2ω , …,


nω ) and 
ω = 

(


1ω ,


2ω , …,


nω ) respectively. 

Finally, we obtain the weight vector (ω ) by combining the 

above two optimal solutions as follows: 

ω=  ω + (1 -  )
ω ;  [0, 1]        (19) 

However, if the information about weights of the attributes 

are completely unknown, we can formulate another 

programming model [29] as follows: 

(M-2) 

 

























.m...,2,1,i,1ω

tosubject

)ωρ(1)(ωDMin

n

1j
j

n

1j

2

jiji

  (20) 

Now we can aggregate the above multiple objective opti-

mization models with same weights into the single objec-

tive optimization model as follows: 

(M-3)

 
































.1ω

tosubject

)ω(1)(ωD)(ωDMin

n

1j
j

n

1j

2

jij

m

1i

m

1i
ii

   (21) 

In order to solve the above model, we formulate the La-

grange function as given below. 

L (ω , ζ ) =  






m

1i

n

1j

2

jij )ω(1 + 2 ζ ( 



n

1j
j 1ω )       (22) 

Here, ζ is the Lagrange multiplier. 

Now we differentiate the Eq. (22) with respect to jω (j = 1, 

2, ..., n) and ζ . Then, by equating the partial derivatives to 

zero, we obtain the set of equations as follows: 

j

j

ω

)ζ,ω(L




= 2 




m

1i
j

2

ij ω)(1 + 2 ζ = 0, 

ζ

)ζ,ω(L j




= 




n

1j
j 1ω = 0 

By solving the aboveequatins, we obtain 

ω =

  
 



























m

1i

2

ij

1
n

1j

1m

1i

2

ij

1

1

 (23) 
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Similarly, we can get the attribute weight ω by consider-

ing NIS as follows: 

-ω = 

  
 



























m

1i

2

ij

1
n

1j

1m

1i

2

ij

1

1

        (24) 

Finally, we can calculate the j-th attribute weight by using 

the Eq. (19). 

Step 5. Determine the degree of neutrosophic grey rela-

tional coefficient 

The degree of neutrosophic grey relational coefficient of 

each alternative from PIS and NIS are obtained by the 

equations (25) and (26) respectively. 

 i = 


n

1j
jω  ij ; i = 1, 2, ..., m    (25) 

 i = 


n

1j
jω  ij ; i = 1, 2, ..., m    (26) 

Step 6. Determine the neutrosophic relative relational 

degree 

We compute the neutrosophic relative relational degree of 

each alternative from PIS by using the following Eq. 

i =








ii

i , i = 1, 2, …, m.   (27) 

Step 7. Rank the alternatives 

The ranking order of the alternatives is obtained according 

to the decreasing order of the neutrosophic relative rela-

tional degree. The maximal value of i , i = 1, 2, …, m re-

flects the most desirable alternative. 

4 Proposed GRA based algorithm for MADM prob-
lems with interval neutrosophic uncertain linguis-
tic information 

In the following steps, we develop a new GRA based algo-

rithm for solving MADM problems under interval neutro-

sophic uncertain linguistic information 

Step 1. Assune vij = < [ 

ijij , xx ], ([ -

ijT , 

ijT ], [ -

ijI , 

ijI ], 

[ -

ijF , 

ijF ]) >; (i = 1, 2, …, m;  j = 1, 2, …, n) be an interval 

neutrosophic uncertain linguistic decision matrix provided 

by the DM, for the alternative Gi with respect to the attrib-

ute Hj, where [ 

ijij , xx ] denotes uncertain linguistic varia-

ble. 

Step 2. If the attributes are benefit-type, then we normalize 

the decision matrix by using the Eq. (9), or we utilize the 

Eq. (10) in case of cost-type attributes. 

Step 3. Identify PIS ( BQ ) and NIS ( WQ ) from the 

decision matrix by using Eqs (11) and (12) respectively. 

Step 4. Use the distance measures to determine the  

distances of all alternatives from PIS and NIS. 

Step 5. Compute neutrosophic grey relational coefficient 

of each alternative from PIS and NIS by using the equa-

tions. (13) and (14) respectively. 

Step 6. If the attribute weights are partially known to the 

DM, then we solve the models (M-1A) and (M-1B) to find 

the optimal solutions
ω = ( ,ω+

1 ,ω+
2  …,



nω ) and 
ω = 

(


1ω ,


2ω , …,


nω ) respectively. Then, weight vector (ω ) is 

obtained by utilizing the Eq. (19). If the information about 

attribute weights are completely unknown, we solve the 

model (M-3) to determine
ω and

-ω . Finally the weight 

vector (ω ) is calculated by employing the Eq. (19). 

Step 7. Find the degree of neutrosophic grey relational co-

efficient of each alternative from PIS and NIS by employ-

ing the equations (25) and (26) respectively. 

Step 8. Determine the neutrosophic relative relational de-

gree ( i ) of each alternative from PIS by using the Eq. 

(27). 

Step 9. Rank all the alternatives Gi (i = 1, 2, …, m) based 

on i and choose the best alternative. 

Step 10. End. 

5 Numerical example 

A MADM problem with interval neutrosophic uncertain 

linguistic information studied by Broumi et al. [36] has 

been considered in this Section to show the applicability 

and the effectiveness of the proposed extended GRA ap-

proach. Assume that an investment company desires to in-

vest a sum of money in the best option. Suppose there are 

four possible alternatives to invest the money: (1) G1 is a 

car company; (2) G2 is a food company; (3) G3 is a com-

puter company; (4) G4 is an arm company. The company 

must take a decision based on the following attributes: (1) 

H1 is the risk; (2) H2 is the growth analysis; (3) H3 is the 

environmental impact analysis. The rating of performance 

values of the four alternatives with respect to the three at-

tributes are presented by the DM in terms of INULVs un-

der the linguistic term set P= {p0 = extremely poor; p1 = 

very poor; p2 = poor; p3 = medium; p4 = good; p5 = very 

good; p6 = extremely good [36]. The decision matrix with 

interval neutrosophic uncertain linguistic variables is pre-

sented in Table 1 as follows: 

Table 1. The decision matrix in terms of interval neutrosophic 

uncertain linguistic variables [36] 
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





































































0.2])[0.1,0.2],[0.1,0.4],([0.3,],p,[p

0.3])[0.1,0.3],[0.1,0.6],([0.5,],p,[p

0.2])[0.1,0.2],[0.2,0.7],([0.5,],p,[p

0.6])[0.5,0.2],[0.1,0.3],([0.2,],p,[p

0.3])[0.2,0.2],[0.1,0.7],([0.5,],p,[p0.2])[0.1,0.1],[0.0,0.8],([0.7,],p,[p

0.4])[0.3,0.3],[0.1,0.6],([0.5,],p,[p0.4])[0.3,0.2],[0.1,0.5],([0.3,],p,[p

0.3])[0.2,0.2],[0.1,0.7],([0.6,],p,[p0.3])[0.2,0.2],[0.1,0.7],([0.5,],p,[p

0.4])[0.2,0.2],[0.1,0.6],([0.4,],p,[p0.4])[0.3,0.3],[0.2,0.5],([0.4,],p,[p

65

44

54

54

4343

6565

5465

6554

Now the proposed approach is described in the following 

steps. 

Step 1. Normalization 

The attributes of the given MADM problem are considered 

as benefit types. Therefore, we don’t require the normali-

zation of the decision matrix. 

Step 2. Identify the PIS and NIS from the given decision 

matrix 

The PIS (
BQ ) is obtained from the decision matrix as fol-

lows: 
BQ = (<[p5, p6], [0.7, 0.8], [0.0, 0.1], [0.1, 0.2]>; <[p5, p6], 

[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]>; <[p5, p6], [0.5, 0.7], [0.1, 

0.2], [0.1, 0.2]>) 

The NIS (
WQ ) is obtained from the decision matrix as 

follows: 
WQ =(<[p3, p4], [0.3, 0.5], [0.2, 0.3], [0.3, 0.4]>; <[p3, p4], 

[0.4, 0.6], [0.1, 0.3], [0.3, 0.4]>; <[p4, p4], [0.2, 0.3], [0.2, 

0.3], [0.5, 0.6]>) 

Step 3. Determination of neutrosophic grey relational 

coefficient of each alternative from PIS and NIS 

We calculate the Hamming distance between each 

alternative and PIS by utilizing the Eq. (7). Then, the 

neutrosophic grey relational coefficient of each alternative 

from PIS can be obtained by using the Eq. (13) as follows: 

 ij = 



















8956.07065.07745.0

9024.08956.05414.0

0000.19917.07699.0

5051.09755.05294.0

We also evaluate the Hamming distance between each 

alternative and NIS by using the Eq. (7). Then, the  

neutrosophic grey relational coefficient of each alternative 

from NIS can be determined with the help of  the Eq. (14) 

as follows: 

 ij = 



















5534.00000.15343.0

5134.05670.06995.0

4510.07444.06000.0

9333.07103.08314.0

Step 4. Determination of the weights of the attributes 

Case 1. The partially known weight information is present-

ed as follows: 

0.25  1ω  0.4, 0.2  2ω  0.35, 0.4  3ω  0. 5 such 

that 



3

1j
j 1ω and jω  0, j = 1, 2, 3. 

Now we construct the single objective programming model 

by using the model (M-1A) and model (M-1B) as given 

below. 

Model (M-1A). 

Min 
α

subject to 

0.4706 1ω +0.0245 2ω +0.4949 3ω 
α , 

0.2301 1ω +0.0083 2ω 
α , 

0.4586 1ω +0.1044 2ω +0.0976 3ω 
α , 

0.2255 1ω +0.2935 2ω +0.1044 3ω  α , 

0.25  1ω  0.4, 0.2 2ω  0.35, 0.4 3ω  0. 5, 





3

1j
j 1ω and jω  0, j = 1, 2, 3. 

Model (M-1B). 

Min 
-α

subject to 

0.1686 1ω + 0.2897 2ω + 0.0667 3ω 
α , 

0.4 1ω + 0.2556 2ω + 0.549 3ω 
α , 

0.3005 1ω + 0.433 2ω + 0.4866 3ω 
α , 

0.4657 1ω + 0.4466 3ω 
α , 

0.25 1ω  0.4, 0.2 2ω  0.35, 0.4 3ω  0. 5, 





3

1j
j 1ω and jω  0, j = 1, 2, 3. 

Solving the above two models (M-1A and M-1B), we get 

the weight vectors respectively as given below. 
ω = (0.25, 0.35, 0.40) and

ω = (0.294, 0.306, 0.40) 

For  = 0.5, the combined weight vector of the attributes is 

obtained asω= (0.272, 0.328, 0.4). 

Case 2. Consider the information about the attribute 

weights be completely unknown to the DM. Then, we can 

get the unknown weights of the attributes by using the rela-
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tions (23) and (24). The weights of the attributes are ob-

tained respectively as follows: 
ω = (0.118, 0.645, 0.237) and

ω = (0.318, 0.468, 0.213) 

 Therefore, the resulting weight vector of the attributes by 

taking  = 0.5 is  ω= (0.218, 0.557, 0.225). 

Step 5. Calculate the degree of neutrosophic grey rela-

tional coefficient  

The degree of neutrosophic grey relational coefficient of 

each alternative from PIS for Case 1 and Case 2 are 

presented as follows: 

Case 1:
1 = 0.6660, 

 2 = 0.9347, 
 3 = 0.8020, 

 4 = 

0.8000 

Case 2:
1 = 0.7724, 

 2 = 0.9452, 
 3 = 0.8199, 

 4 = 

0.7639. 

Similarly, the degree of neutrosophic grey relational coef-

ficient of each alternative from NIS for Case 1 and Case 2 

are demonstrated as follows: 

Case 1: 
1 = 0.8324, 

 2 = 0.5878, 
 3 = 0.5816, 

 4 = 

0.6947 

Case 2: 
1 = 0.7869, 

 2 = 0.6469, 
 3 = 0.5838, 

 4 = 

0.7980. 

Step 6. Evaluate the neutrosophic relative relational 

degree 

We calculate the neutrosophic relative relational degree of 

each alternative from PIS for Case 1 and Case 2 are 

presented as follows: 

Case 1: 1 = 0.4448, 2 = 0.6139, 3 = 0.5796, 4 = 

0.5354 

Case 2: 1 = 0.4954, 2 = 0.5937, 3 = 0.5841, 4 = 

4891. 

Step 7. Rank the alternatives 

The ranking order of the alternatives for Case 1 and Case 2 

are presented according to the values of the neutrosophic 

relative relational degrees as given below. 

Case 1: 2 > 3 > 4 > 1

Case 2: 2 > 3 > 1 > 4

We observe that the Arms Company is the best alternative 

for investment purpose for both the cases (see Table 2). 

Note 1. Broumi et al. [36] consider the weight vector ω= 

(0.35, 0.25, 0.4) and use TOPSIS method to rank the 

alternatives. If we consider the same weight structure  i.e. 

ω = (0.35, 0.25, 0.4), then the ranking order of the 

alternatives based on the proposed GRA method is 

obtained as follows:  

G2 > G3 > G4 > G1 and obviously, G2 would be the best 

choice. 

Note 2.  If we consider the proposed Euclidean measure to 

calculate the distance between two INULVs, then (0.25, 

0.35, 0.4) and (0.232, 0.559, 0.209) would be the obtained 

weight vectors for Case 1 and Case 2 respectively. If we 

follow the same procedure as described above, the neutro-

sophic relative relational degree of each alternative from 

PIS for Case 1 and Case 2 are computed as follows:  

Case 1: 1 = 0.4213, 2 = 0.6174, 3 = 0.5508, 4 = 

0.496; 

Case 2: 1 = 0.4657, 2 = 0.599, 3 = 0.5556, 4 = 4686. 

Therefore, the ranking order of the alternatives for Case 1 

and Case 2 are shown as given below. 

Case 1: 2 > 3 > 4 > 1

Case 2: 2 > 3 > 4 > 1

So, the Arms Company G2 would be the best choice for in-

vestment purpose. 

6 Conclusion 

In the paper we have presented a solution method for 

MADM problems with interval neutrosophic uncertain lin-

guistic information through extended GRA method. Inter-

val neutrosophic uncertain linguistic variables are suitable 

for dealing with incomplete and inconsistent information 

which exist in real world problems. In this paper, we have 

proposed Euclidean distance between two INULVs. Also, 

we have addressed the incomplete or completely unknown 

weights of the attributes to the decision maker. 

Table 2. Comparison of the proposed method with other existing 

method 

____________________________________________________ 

Method              weight vector                 ranking results   best 

     option 

____________________________________________________ 

Proposed method  (0.272, 0.328, 0.4)     G2 > G3 > G4 > G1  G2 

(Case 1) 

(using Hamming distance) 

Proposed method (0.218, 0.557, 0.225)  G2 > G3 > G1 > G4  G2 

(Case 2) 

(using Hamming distance) 

Proposed method  (0.25, 0.35, 0.4)  G2 > G3 > G4 > G1  G2 

(Case 1) 

(using Euclidean distance) 

Proposed method (0.232, 0.559, 0.209)  G2 > G3 > G4 > G1  G2 
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(Case 2) 

(using Euclidean distance) 

Broumi et al. [36]   (0.35, 0.25, 0.4)       G2 > G4 > G3 > G1      G2  

____________________________________________________ 

We have developed two different optimization models to 

recognize the weights of the attributes in two different cas-

es. Then, extended GRA method has been developed to 

identify the ranking order of the alternatives. Finally, a 

numerical example has been solved to demonstrate the fea-

sibility and applicability of the proposed method and com-

pared with other existing methods in the literature. We 

hope that the proposed method can be helpful in the field 

of practical decision making problems such as school se-

lection, teacher selection, medical diagnosis, pattern 

recognition, supplier selection, etc. 
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