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Abstract We analyse the computational complexity of comparing informational
structures. Intuitively, we study the complexity of deciding queries such as the follow-
ing: Is Alice’s epistemic information strictly coarser than Bob’s? Do Alice and Bob
have the same knowledge about each other’s knowledge? Is it possible to manipulate
Alice in a way that she will have the same beliefs as Bob? The results show that these
problems lie on both sides of the border between tractability (P) and intractability
(NP-hard). In particular, we investigate the impact of assuming information structures
to be partition-based (rather than arbitrary relational structures) on the complexity of
various problems. We focus on the tractability of concrete epistemic tasks and not on
epistemic logics describing them.

Keywords Epistemic logic - Computational complexity - Epistemic reasoning -
Multi-agent systems

1 Introduction

Having a social life is engaging and complicated. Still some of its aspects seem harder
than others. For instance, telling the truth is much easier than lying. Deception demands
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the ability to simulate another’s reaction in order to determine if a lie will be believ-
able. It is even harder if the goal of the lie is to manipulate. To successfully inculcate
an idea in someone’s mind I need to predict the way she will revise her beliefs and
knowledge. How hard is it to be a skilful liar and what makes it hard for others to
manipulate our beliefs? We study the difficulty of these problems from a computer
science perspective by formalising various notions of information similarity along the
lines of epistemic logic.

Epistemic modal logics and their extensions are concerned with global and abstract
problems in reasoning about information. They are designed to model a wide range of
epistemic scenarios (cf. Fagin et al. 1995; Baltag and Moss 2004). As logics have to be
quite complex in order to be able to express various problems in epistemic reasoning,
it is not surprising that there are many intractability and even undecidability results
in the literature (see e.g., Halpern and Vardi 1989; Van Benthem and Pacuit 2006 for
a survey). Consequently, the issue of trade-off between expressivity and complexity
plays a central role in the field of epistemic modal logics.

The existing complexity results of modal logics provide an overview of the dif-
ficulty of epistemic reasoning in modal logic frameworks from the abstract global
perspective of the modeller. For instance, Baral and Zhang (2005) studies the compu-
tational complexity of model checking for knowledge update. The authors have proved
that in general the problem is E; -complete but there are subclasses of formulas for
which the complexity is polynomial and such that the complexity of model-checking is
NP-complete. Our paper in a sense follows this tradition but we focus on the semantic
notions of similarity between information states. Moreover, while Baral and Zhang
(2005) focuses entirely on single-agent S5 structures we investigate the impact of
assuming different properties of the accessibility relation on the complexity of vari-
ous problems, as well as situations involving more than one agent, with relations that
cannot be simulated in a single-agent S5 framework.

An analysis of these problems calls for other similarity concepts between epistemic
structures. Our main aim is also to initiate the study of the tractability of epistemic
tasks rather than epistemic logics. As a result, we can identify a theoretical thresh-
old in the difficulty of reasoning about information, similarly to how this has been
done in the context of reasoning with quantifiers (cf. Pratt-Hartmann and Moss 2009;
Szymanik 2010). In order to do this, we shift our perspective: instead of investi-
gating the complexity of a given logic that can be used to describe certain tasks in
epistemic reasoning, we study the complexity of the concrete tasks themselves, deter-
mining what computational resources are needed in order to perform the required
reasoning.

At this point, we would like to make clear that we do not propose a new formal
model for epistemic reasoning from an internal agent-oriented perspective. For two
approaches to modelling epistemic scenarios, such as the muddy children puzzle, in
a more concise way than standard epistemic logic models, we refer the reader to
Gierasimczuk and Szymanik (2011a,b) and Wang (2010). For a version of epistemic
logic in which the modeller is one of the agents, we refer to Aucher (2010). In this
paper, we work with models from epistemic modal logic and investigate the com-
plexity of various interesting specific problems that arise when reasoning about these
semantic structures.
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Focusing on specific problems, the complexity may be much lower since concrete
problems involved in the study of multi-agent interaction are rarely as general as e.g.,
satisfiability. In most cases, checking whether a given property is satisfied in a given
(minimal) epistemic scenario is sufficient. This may sound as if we study the model
checking complexity of different properties in epistemic logic. Indeed, some of the
simpler tasks and problems we consider boil down to data complexity of model check-
ing epistemic formulas, i.e., the computational complexity with respect to the size of
the model only, abstracting from the size of the formula. However, we want to point
out that we study the problems in purely semantic terms and our complexity results
are thus independent of how succinctly, if at all, the properties could be expressed
in an (extended) epistemic modal logic. The problems we consider in this work take
epistemic models and sometimes also additional parameters as input and ask whether
the models satisfy certain properties or whether the models are in a certain relation
(cf. Baral and Zhang 2005).

Many of the concrete problems we study turn out to be easily computable (in poly-
nomial time). We call such problems tractable. Still, we will see that even in this
perspective there are some intractable problems that demand exponential computa-
tions. We believe that the feasibility of epistemic tasks, and especially the divide
between tractable and intractable problems, is an interesting new topic for a formal
study. It can help in the empirical assessment of the cognitive plausibility of epi-
stemic logic frameworks. First of all, modal logic should not postulate intractable
models as a description of epistemic cognitive tasks that people can deal with in
everyday life without any problems (cf. Van Rooij 2008). Moreover, the complexity
results, that our study aims to identify, should correlate with the difficulties faced by
human agents solving such tasks (cf. Verbrugge 2009; Szymanik and Zajenkowski
2010).

Soin asense, we aim to initiate a search for an appropriate perspective and complex-
ity measures that describe in plausible ways the cognitive difficulties agents face while
interacting. Certain experimental results in the literature explore similar directions for
specific game settings (Feltovich 2000; Weber 2001; Meijering et al. 2012).

In this paper we investigate the computational complexity of various decision prob-
lems that are relevant for interactive reasoning in epistemic modal logic frameworks.
In particular, we explore the complexity of comparing and manipulating information
structures possessed by different agents.

With respect to the comparison of information structures we are interested in
whether agents have similar information (about each other) or whether one of them
has more information.

Information similarity and symmetry
e Is one agent’s information strictly coarser than another agent’s information?
e Do two agents have the same knowledge/belief about each other’s knowl-
edge/belief?

In a situation with diverse agents that have different information, the question arises

as to whether it is possible that some of the agents can be provided with information
so that afterward the agents have similar information.
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Information manipulation
e Given two agents, is it possible to give some information to one of them such
that as a result
— both agents have similar information structures? (cf. Van Ditmarsch and
French 2009)
— one of them has more refined information than the other?

Determining the complexity of the above questions will then help to analyse how
the complexity of various reasoning tasks is influenced by

e the choice of similarity notion taken for similarity of information structures,
e the choice of information structures,
e the number of agents involved.

The next section will introduce and motivate the concepts we will be using through-
out the paper. As mentioned previously all our results will be stated in purely semantic
terms. Nevertheless, most of the concepts are closely related to syntactic, modal logic,
approaches to knowledge in multi-agent systems. We will therefore introduce such
logics to illustrate the use of our semantic concepts and motivate them.

2 Preliminaries
2.1 Basic epistemic logic

We start by briefly giving some preliminaries of (epistemic) modal logic. We use rela-
tional structures from epistemic logic to model information (cf. Blackburn et al. 2001;
Fagin et al. 1995). Kripke models can compactly represent the information agents
have about the world and about the information possessed by the other agents. For
a more exhaustive conceptual introduction to epistemic logic the reader can consult
e.g., (Fagin et al. 1995, Chap. 2) (Table 1).

Definition 2.1 (Kripke Models) A Kripke model M based on a finite set of agents
N is of the form (W, (R;)ien, V), where W #£ (J is a set of possible worlds, for each
i € N, R; is a binary accessibility relation on W. A modal language with a set of
propositions PROP is interpreted over M by a valuation V : PROP — o (W).

Table 1 EL (also called S5y)

. PL F @ if ¢ is a substitution instance of a tautology of
axiom system

propositional logic

Fori e N,

Nec if ¢, then - K;¢

K F K (@ — W) — (Kip — K; )
T FKig— ¢

4 FKip — KiKjp

5 F—-Kijp > Ki—=K;p

MP if o - Y andt ¢, then -y
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Itis frequently assumed that information structures are partition-based (Aumann 1999;
Fagin et al. 1995; Osborne and Rubinstein 1994):

Definition 2.2 An epistemic model is a (multi-agent) Kripke model such that for all
i €N, R; is an equivalence relation. (We usually write ~; instead of R;).

To explicitly talk about knowledge one may use the language of basic epistemic logic.

Definition 2.3 (Syntax of Lg1) The syntax of epistemic language Lgy is recursively
defined as follows:

¢ = pl=plp Vv olKip

where p € PROP, i € N. We will write T for p vV —p and L for —=T. Other connectives
(A, =, <) are defined in the usual way.

Definition 2.4 (Semantics of Lg1) We interpret Lgy in the states of epistemic models
as follows:

M, wEp iff we V(p)

M, w = —p iff itis not the case that M, w = ¢
M,wEevy iff MwEgpor M, wEY

M, wE K;jp iff for all v such that w ~; v we have M, v = ¢

Given amodel M = (W, (R;)ien, V) and a formula ¢ € Lg we write ||(p||M =
{w EM WIM, w = ¢}. Whenever M is clear from context, we simply write ||¢|| for
el

There is a close relation between the assumptions that are made about models and
the validities of the epistemic language. In particular, it is well-known (for a formal
discussion of the concept of correspondence used below, see e.g., Blackburn et al.
2001) that

e T-axiom: K;p — p corresponds to reflexivity (veridicality: what is known is
true),

e 4-Axiom: K; p — K;K; p, corresponds to transitivity (positive introspection),

e 5-Axiom: —K;p — K;—K;p, corresponds to Euclideanity (negative introspec-
tion) (Table 2).

Theorem 2.5 (see e.g., Fagin et al. 1995) EL is strongly complete with respect to the
class of epistemic models.

Table 2 K axiom system PL F ¢ if ¢ is a substitution

instance of a tautology of propositional logic

Fori e N,
Nec if Fo,then - ;¢
K FOi (e — ¥) — Uip - Liy)

MP if-¢ — ¥ andF ¢, then - ¢

@ Springer



376 Synthese (2014) 191:371-408

Again, the reader can check Blackburn et al. (2001) for a formal definition of strong
completeness. On arbitrary Kripke models, the notation [J;¢ is preferred to K;, and
validities are axiomatised by K, which is defined in Table 2.

Theorem 2.6 (see e.g., Blackburn et al. 2001) K is strongly complete with respect to
the class of Kripke models.

As mentioned, in this work we will only work with the semantic structures of epi-
stemic modal logic and not with the logics themselves. We refer the reader interested
in epistemic modal logic to the literature (Van Ditmarsch et al. 2007; Van Benthem
2010, 2011).

Intuitively, with an epistemic interpretation, an accessibility relation R; in a Kripke
model encodes i’s uncertainty: if wR; v, then if the actual world was w then i would
consider it possible that the actual world is v.

Notation 2.7

e We write IC;[w] := {v € W|wR;v} to denote i’s knowledge set at w.

We refer to {/C;[w]|lw € W} as the information partition of i.

For epistemic models for one agent, we sometimes also write [w] to denote the
equivalence class of w under the relation ~, i.e., [w] = {w' € W | w ~ w'}.

For any non-empty group of agents G C N we write Rg = Ujeg Ri, R; for the
reflexive transitive closure of | J;.; R; and Rj;[w] := {v € W|wRjv}.

Importantly, if ||¢]] C Rz‘;[w] then for any n € w and sequence iy, ..., i,—1 With
range G, K;, ... K;,_,¢ holds at w. Since, the conjunction of all finite sequences is
not finitary, a common knowledge operator of the form Cg¢ with precisely the pre-
viously given semantics is considered. An immediate consequence of the definition,
is that a logic with common knowledge will lack compactness. It is however possible
to finitely axiomatise the logic, proving a weak completeness result. The reader can
consult (Fagin et al. 1995, Chap. 3) for a statement and proof of that result.

An important question is to what extent modal languages can distinguish between
different structures. Similarity concepts and conditions at which two structures look
alike for a given language are discussed in Section 2.3. These concepts will play an
important role throughout the paper. Before we turn to the issues, we first discuss
how simple concepts of updates are usually incorporated in the preceding epistemic
framework.

2.2 Epistemic update

Epistemic models are static—they represent the informational state of an agent in tem-
poral isolation. We will now make the setting more dynamic by assuming that agents
observe some incoming data and are allowed to revise their informational states. For a
richer development about modal logic for epistemic update and examples, the reader
can consult (Van Ditmarsch et al. 2007).

We start with a definition that formalises the notion of update with a formula ¢.
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Definition 2.8 The update of an epistemic model M = (W, (~;);en, V) with a
formula ¢, restricts M to those worlds that satisfy ¢, formally M|p = M’ =
(W', (~Dien, V'), where

(D) W={weW|Muwlk ek

(2) foreachi € N, ~} = ~;[W/;

BV =V|W.

Thisis a very restrictive type of update, intuitively corresponding to public announce-
ments. For more general types of epistemic updates, the reader can consult (Baltag
et al. 1998; Van Ditmarsch et al. 2007). Basic epistemic logic, as defined above, can
be extended to account for this type of update with a specific ‘action’ expression of
public announcement, written as !p.

Definition 2.9 (Syntax of Lpar) The syntax of epistemic language Lpay is defined as
follows:

¢ = ploele Vv olKp|[Alp
A:=lp

where p € PROP, i € N.

Definition 2.10 (Semantics of Lpay,) For the epistemic fragment Lgy, the interpreta-
tion is given in Definition 2.4. The remaining clause of Lpay is as follows.

M, w = [lly iff if M, w = ¢ then Mg, w = ¢

An axiomatisation of public announcement logic (PAL) of Lpa1. can be composed of
the previously given axioms of epistemic logic enriched with the following reduction
axioms:

1+[l¢
2+ [lg
3F[le
4+ [lg

p < (¢ — p), for p € PROP
-V < (¢ = —llply)

W vE) < (lely Vv [lplé)
Kiy < (¢ — Killely)

— e

Theorem 2.11 (Soundness of PAL, Plaza 1989; Gerbrandy 1999; Baltag and Moss
2004) PAL is sound with respect to the class of epistemic models.

The soundness of PAL guarantees that a complete compositional analysis can be
carried out into the epistemic language. Every formula of the public announcement
language is thus equivalent to a formula of the epistemic language, whose validities
are already decided by the axiom system EL.

Corollary 2.12 PAL is strongly complete with respect to the class of epistemic
models.

Obviously, the incoming information that triggers update need not be propositional,
not even purely linguistic. It can be any event that itself has an epistemic structure.
Public announcement can have the effect that some situations that were considered
possible before can be eliminated. This motivates why we would like to have a way to
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talk about parts of a model, e.g., only those states in which some proposition is true.
For this, we need the notion of a submodel.

Definition 2.13 (Submodel) We say that M’ = (W', (R;)}_y. V') is a submodel of
M = (W, (Ri)iex, V) iff W € W, Vi eN, R = R N (W x W), Vp € PROP,
Viip)=V(p)nWw.

Definition 2.14 (Generated submodel) We say that M" = (W', (R;);cy. V') is a
generated submodel of M = (W, (R;)jen, V) iff W C WandVi eN, R, = R; N
(W' x W'),Vp e ProOP, V'(p) =V(p) N W and if w € W' and wR;v then v € W’.
The submodel of M generated by X C W is the smallest generated submodel M’ of

M with X € Dom(M).
The notion of horizon generalises that of an information set:

Definition 2.15 (Horizon) The horizon of i at (M, w) (notation: (M, w)?) is the
submodel generated by /C;[w].

The domain of (M, w)’ thus contains all the states that can be reached from w by
first doing one step along the relation of agent i and then doing any number of steps
along the relations of any agents.

Fact 2.16 Inany Kripke structures, foralli, j € N, if ~; is reflexive, then (M, w)' C
(M, w)/.

Proof Assume that there is a path w ~; vo ~g, v1--- ~ kyv, with w, vo, ..., v, €
W and {j, ki, ...k}, then by reflexivity of ~;, there is also a path w ~; w ~; vp ~,
vy~ kpu, with w, v, ..., v, € Wand {j, ky, ...k}, O

Horizons of agents with reflexive indistinguishability relations are thus identical.

As mentioned, this paper will not use directly syntactic notions. In terms of intui-
tion, the important definition is that of knowledge K;: at w, agent i knows that ¢ iff it is
the case that ¢ is true in all states that i considers possible at w. In equivalent semantic
terms, we could substitute a finite collection of subsets of W (call them events) to
our propositional letters and their valuation, and declare that, at w, i knows that some
event E C W is the case iff /C;[w] C E. Similarly, that E is common knowledge in
a group G at w iff Rz‘;[w] C E. In the next section, we discuss closely how semantic
similarity concepts closely correspond to syntactic definability.

In the technical parts of this paper, we use complexity results from graph theory
(see e.g., Garey and Johnson 1990). Here, we use the connection between Kripke mod-
els and graphs: graphs are essentially Kripke models without valuations, i.e., frames
(Blackburn et al. 2001). For graphs, the notion of induced subgraph is just like that of
submodel (Definition 2.13) without the condition for the valuations. The notion of sub-
graph is weaker than that of an induced subgraph as it allows that R C R, N W' x W'.

2.3 Epistemic situations that look alike

In various parts of our investigation we will need a reasonable notion of two mod-
els, that is two epistemic situations, being similar. We make use of the notions of
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simulation, simulation equivalence and bisimulation. We motivate these notions in
terms of well-known preservation and invariance results. For a detailed introduction
to these concepts, the reader can consult (Blackburn et al. 2001, Chap. 2), in particular
Section 2.2 of that book.

Definition 2.17 (Simulation) We say that a pointed Kripke model (M, w), with M =
(W, (Ri)ien, V) and w € W, is simulated by another pointed Kripke model (M’, w’)
(denoted by (M, w) E (M, w')) with M’ = (W', (R))ien, V') and w’ € W' if the
following holds.

There exists a binary relation Z € W x W’ such that wZw’ and for any pair of
states (x, x') € W x W/, whenever x Zx’ then for all i € N:

(1) x, x’ verify the same proposition letters.
(2) if xR;z in M then there exists 7’ € W’ with x'R/z’ and zZz'.

We say that M = (W, (R;)ien, V) is simulated by M’ (W', (RDjien, V)
(denoted by M T M) if there are w € W and w’ € W’ such that (M, w) C
(M, w'). We say that a simulation Z C W x W’ is rotal if for every w € W, there is
some w’ € W’ such that wZw’, and for every w’ € W', there is some w € W such that
wZw'. If M is simulated by M’ by means of a total simulation, we say M C;prq1 M.
Moreover, we say that M = (W, (R;)ien. V) and M" = (W', (R));en, V') are sim-
ulation equivalent if M simulates M’ and M’ simulates M.

Theorem 2.18 (De Rijke 1993) A formula of epistemic logic is equivalent to a positive
existential formulas of epistemic logic iff its truth in pointed models is preserved under
simulations.

For details and a proof of this result, the reader should consult (Blackburn et al.
2001, Section 2.7).

Example 2.19 In order to get an intuitive idea of simulation, consider two pointed
Kripke models (M, w), (M’, w’) both with one agent (Bob), and the accessibility
relations representing the uncertainty of Bob. Then

M, w) E (M, w)

means that in (M, w) Bob has more refined knowledge than in (M’, w), i.e., in
(M’, w'") Bob has more uncertainty.

The following notion is stronger than simulation equivalence.

Definition 2.20 (Bisimulation) A local bisimulation between two pointed Kripke
models with set of agents N, (M, w) with M = (W, (R))ien, V) and (M’, w’)
with M" = (W', (R))ien, V') is a binary relation Z € W x W' such that wZw’
and also for any pair of worlds (x, x’) € W x W’ whenever xZx’ then for
alli e N:
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(1) x, x’ verify the same proposition letters.
(2) if xR;u in M then there exists u’ € W’ with x'R/u" and uZu'.
(3) if x’R/u’" in M’ then there exists u € W with x R;ju and uZu'.

We say that M = (W, (R))ien, V) and M’ = (W', (R);en, V') are bisimi-
lar (M <> M) if there are w € W and w’ € W’ such that (M, w)<(M’, w’).
A bisimulation Z € Dom (M) x Dom(M') is total if for every w € Dom (M), there
is some w’ € Dom(M'’) such that wZw’, and for every w’ € Dom(M’), there is
some w € Dom (M) such that wZw’. Then we write M<>,,, ., M’

Theorem 2.21 (Van Benthem 1983) A formula of first-order logic is equivalent to the
translation of a formula of epistemic logic iff it is invariant under bisimulations.

It follows, for example, that adding a disjoint part to a model is not affecting the
knowledge of the agents, even though it is impacting the information partition. Intu-
itively, these disjoint parts correspond to counterfactual knowledge: what an agent
would know in some situation that is not obtaining. It follows from Van Benthem’s
theorem that we need a stronger language than epistemic logic to describe such coun-
terfactual knowledge. For example we could strengthen our notion of bisimulation
by requiring it to be fotal. In syntactic terms, this corresponds to adding a universal
operator A with which we can describe counterfactual knowledge. Other concepts of
similarities have nice syntactic characterisations. In the other direction, certain simi-
larity concepts such as isomorphism are arguably too strong in syntactic terms. Still,
isomorphism can be thought as a maximal requirement: if two epistemic structures
are isomorphic, then they describe the same informational situation, no matter what
epistemic language we take as standard to describe that situation.

2.4 Tractability

Some problems, although computable, nevertheless require too much time or memory
to be feasibly solved by a realistic computational device. Computational complex-
ity theory investigates the resources (time, memory, etc.) required for the execution
of algorithms and the inherent difficulty of computational problems (Papadimitriou
1993). In particular, we want to identify efficiently solvable problems and draw a line
between tractability and intractability. In general, the most important distinction is that
between problems which can be computed in polynomial time with respect to their
size, and those which are believed to have only exponential time algorithmic solutions
(Edmonds 1965). This is exactly the tractability border we investigate in the paper.
The class of problems of the first type is called PTIME (P for short); one can demon-
strate that a problem belongs to this class if one can show that it can be computed by
a deterministic Turing machine in polynomial time with respect to the size (length) of
the input. Problems belonging to the second class are referred to as NP-hard. They are
at least as difficult as problems belonging to the NPTIME (NP) class; this is the class
of problems which can be computed by non-deterministic Turing machines in poly-
nomial time. NP-complete problems are NP-hard problems belonging to NPTIME,
hence they are intuitively the most difficult problems among the NPTIME problems.
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Let us start proper complexity considerations with the notation used for comparing
the growth rates of functions.

Definition 2.22 Let f, g : @ —> w be any functions. We say that f = O(g) if there
exists a constant ¢ > 0 such that f(n) < cg(n) for almost all (i.e., all but finitely
many) n.

Let f : w —> w be a natural number function. TIME( f) is the class of lan-
guages (problems) which can be recognised by a deterministic Turing machine in time
bounded by f with respect to the length of the input. In other words, L € TIME(f) if
there exists a deterministic Turing machine such that for every x € L, the computation
path of M on x is shorter than f(n), where n is the length of x. TIME(f) is called a
deterministic computational complexity class. A non-deterministic complexity class,
NTIME(f), is the class of languages L for which there exists a non-deterministic
Turing machine M such that for every x € L all branches in the computation tree of
M on x are bounded by f(n) and moreover M decides L. One way of thinking about a
non-deterministic Turing machine bounded by f is that it first guesses the right answer
and then deterministically checks if the guess is correct, in a time bounded by f.

SPACE(f) is the class of languages which can be recognised by a determinis-
tic machine using at most f(n) cells of the working-tape. NSPACE( f) is defined
analogously. Below we define some well-known complexity classes, i.e., the sets of
languages of related complexity. In other words, we can say that a complexity class is
the set of problems that can be solved by a Turing machine using O ( f (n)) of time or
space resource, where 7 is the size of the input.

Definition 2.23
e LOGSPACE = | J,, SPACE(k logn)
e PTIME = J,, TIME(n*)
e NP = J,, NTIME(r¥)
e PSPACE = | J,,, SPACE(n")

If L € NP, then we say that L is decidable (computable, solvable) in non-
deterministic polynomial time and likewise for other complexity classes.

PTIME < NP but the question whether PTIME (P for short) is strictly contained in
NPTIME (NP) is the famous Millennium Problem—one of the most fundamental prob-
lems in theoretical computer science and mathematics. Also: LOGSPACE C PTIME
and NP C PSPACE but it is not known whether the hierarchy is strict.

The intuition that some problems are more difficult than others is formalised in
complexity theory by the notion of a reduction. We will use polynomial time and
logarithmic space many-one (Karp 1972) reductions.

Definition 2.24 We say that a function f : A —> A is a polynomial time (loga-
rithmic space) computable function iff there exists a deterministic Turing machine
computing f(w) for every w € A in a polynomial time (logarithmic space).
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Definition 2.25 A problem L C T'* is polynomial time (logarithmic space) reducible
to a problem L' C T'* if there is a polynomial time (logarithmic space) computable
function f : T'* — T'* from strings to strings, such that

wel < f(w)el.

We will call such function f a polynomial time respectively (logarithmic space) reduc-
tionof Lto L.

Definition 2.26 A language L is complete for a complexity class C if L € C and every
language in C is reducible to L.

Intuitively, if L is complete for a complexity class C then it is among the hard-
est problems in this class. For example, PTIME-complete problems (under a weaker
notion of NC or log-space reductions) are the hardest problems among PTIME prob-
lems, and as a result are believed to be difficult to easily compute on parallel machines
and solved in limited space. The notable property of NP-complete problems is that,
even though any given solution for such problems can be quickly verified, there is
no efficient way to find the solution in the first place. Interestingly, there are known
problems that are neither NP-complete nor tractable, e.g., the graph isomorphism
problem asking to decide whether two given finite graphs are isomorphic (Garey and
Johnson 1990). To study further this interesting territory researchers defined a new
class of problems, GI, that contains problems polynomially reducible to the graph
isomorphism problem. If the graph isomorphism problem turns out computable in
PTIME, then GI would equal PTIME. If the graph isomorphism problem is proved to
be NP-complete then the polynomial hierarchy must collapse. There are many prob-
lems known to belong to GI and the class has recently found many applications in
complexity analysis (Kobler et al. 1993).

3 Complexity of comparing and manipulating information

In this section, we give the results we obtained when studying the complexity of dif-
ferent epistemic reasoning tasks in the semantic structures of modal logics. The tasks
we investigate deal with three different aspects.

Information similarity (Section 3.1).
Are the information structures of two agents similar?
Information symmetry (Section 3.2).
Do two agents have the same (similar) information about each other?
Information manipulation (Section 3.3).
Can we manipulate the information of one agent so that as a result she knows at
least as much as another agent?

3.1 Information similarity

The first natural question we would like to address is whether an agent in a given situ-
ation has similar information to the one possessed by some other agent (in a possibly
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different situation). One very strict way to understand such similarity is through the
use of isomorphism. As we wrote previously, we admit that from the epistemic logic
perspective the notion is arguably too strong but as we are mainly interested in a sys-
tematic semantic study of similarity notions we look at it for the sake of completeness
as a strongest notion of similarity.

For the general problem of checking whether two Kripke models are isomorphic, we
can give the following complexity bounds, in the sense that the problem is equivalent
to the graph isomorphism problem.

Problem 3.1 (Kripke model isomorphism)
Input Pointed Kripke models (M1, wy), (Maz, w»).

Question Are (M1, wi)and (M>, wy)isomorphic,i.e.,isitthe casethat (M, w) =
(Mz, w2)?

Fact 3.2 Kripke model isomorphism is GI-complete.

Proof Kripke model isomorphism is equivalent to the variation of graph isomor-
phism with labelled vertices, which is polynomially equivalent to graph isomorphism
(see e.g., Hoffmann 1982), and thus GI-complete. O

However, isomorphism is arguably a too restrictive notion of similarity. Bisimilarity
is a weaker concept of similarity. As we take a modal logic perspective in this work
and want to analyse the complexity of epistemic tasks on the semantic structures of
epistemic modal logic, bisimilarity is a very natural choice of similarity.

Here the question arises as to whether working with S5 models—a common assump-
tion in the epistemic logic and interactive epistemology literature—rather than arbi-
trary Kripke structures has an influence on the complexity of the task.

Problem 3.3 (Epistemic model bisimilarity)
Input Two pointed multi-agent epistemic S5 models (M, wy), (Maz, w).

Question Are the two models bisimilar, i.e., (M1, w;) < (M2, w;)?

To illustrate the difference between epistemic model bisimilarity and epistemic
model isomorphism, consider a situation in which Alice considers several worlds pos-
sible with the same valuation. Bisimilarity does not distinguish between situations in
which the number of those worlds differs, whereas isomorphism does.

Balcazar et al. (1992) have shown that deciding bisimilarity is P-complete for finite
labelled transition systems. As epistemic models are just a special kind of labelled
transition systems, we can use an algorithm that solves bisimilarity for labelled tran-
sition systems also for epistemic models. It follows that epistemic model bisimilarity
is also in P.

Fact 3.4 Multi-agent epistemic S5 model bisimilarity can be computed in polynomial
time with respect to the size of the input (|M ] + |[M3]).

Thus, multi-agent epistemic S5 model bisimilarity is in P. Now, of course the ques-
tion arises if it is also P-hard.

@ Springer



384 Synthese (2014) 191:371-408

Proposition 3.5 Multi-agent epistemic S5 model bisimilarity is P-complete.

Proof P membership is immediate from Fact 3.4. For P-hardness, we adapt the hard-
ness proof of Balcdzar et al. (1992). In the reduction from monotone alternating cir-
cuits, the labelled transition systems that are constructed are irreflexive. We transform
them into corresponding S5 models for two agents using the method used in Halpern
and Moses (1992) and replace every edge w — v by w ~; w’ ~2 v, keeping
the valuation of w and v the same as before and making the valuation of w’ the
same as that of w. Additionally, reflexive loops have to be added. Bisimilarity of two
finite irreflexive structures is invariant under this transformation. Moreover, note that
for the replacement of the edges, we only need constant memory space. P-hardness
follows. O

To summarise, while deciding Kripke model isomorphism lies on the tractability
border, deciding whether two Kripke models are bisimilar is among the hardest prob-
lems that are known to be in P. For S5 epistemic models with at least two agents, we
get the same results.

3.2 Information symmetry: knowing what others know

The preceding notions of similarity are very strong as they are about the similarity
of whole information structures. In the context of analysing epistemic interactions
between agents, weaker notions of similarity are of interest, as often already the sim-
ilarity of some relevant parts of information are sufficient for drawing some conclu-
sions. In general, the information that agents have about each other’s information state
plays a crucial role. We will now analyse the problem of deciding whether two agents’
views about the interactive epistemic structure, and in particular about the knowledge
of other agents, are equivalent. A first reading is simply to fix some fact E C W and
ask whether E is common knowledge in a group G. Clearly this problem is tractable.

Fact 3.6 Given apointed multi-agent epistemic model (M, w),some E C Dom (M)
and a subset of agents G C N, deciding whether E is common knowledge in the group
G at w can be done in polynomial time.

Proof To decide if E is common knowledge among the agents in G, we can use a
reachability algorithm to check if any of the states which are not in E (i.e., any state
in Dom(M) \ E) is reachable from w by a path along the relation U;cg ~ . If this
is the case, the answer is no, otherwise the answer is yes, as then ~, [w] C E. m]

If some fact is common knowledge between two agents, the information of the two
agents about this fact can be seen as symmetric, in the sense that both agents have the
same information about the fact and about the information they have about the fact.
More generally, instead of fixing some specific fact of interest, an interesting question
is whether an epistemic situation is symmetric with respect to two given agents, say
Ann and Bob. In other words, is the interactive informational structure from Ann’s
perspective similar to how it is from Bob’s perspective? We first introduce some nota-
tion that we will use for representing situations in which the information of two agents
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is exchanged, in the sense that each of the agents gets exactly the information that the
other one had before.

Definition 3.7 For a Kripke model M = (W, (R;)ien, V), with j, k € N, we write
M(j/k] to be the model (W, (R));exn, V) for R} = R; fori ¢ {j, k}, R;. = Ry and
R, =R;

k i+

That is, in M[j/k] agent j gets the accessibility relation of k in M and vice versa.

The intuition is that in many multi-agent scenarios it can be interesting to determine if
the situation is symmetric with respect to two given agents in the sense that those two
agents have similar information about facts, other agents and also about each other.
As a typical such situation consider a two-player card game. Here, it can be crucial for
the strategic abilities of the players whether they both know equally little about each
other’s cards and whether they know the same about each other’s information. From
a modelling perspective, determining if the information of two agents is interchange-
able can also be crucial if we want to find a succinct representation of the situation
(cf. Chap. 7 of Wang 2010), as in some situations only explicitly representing one of
the agents might be sufficient (cf. Gierasimczuk and Szymanik 2011a,b).

To formalise this property of information symmetry, we introduce the notion of
flipped bisimulation for a pair of agents. The main difference with respect to a stan-
dard bisimulation is that for each step along the accessibility relation for one agent in
one model, there has to be a corresponding step along the relation of the other agent
in the other model.

Definition 3.8 We say that two pointed multi-agent epistemic models (M, w) and
M, w) (with set of agents N) are flipped bisimilar for agents 7, j € N—in notation
M, w)< DM, wh—iff (M, w) & (M[i/j], w').

So, two models are flipped bisimilar for two agents if after swapping the accessi-
bility relations of the two agents in one of the models, the resulting model is bisimilar
to the other model.

To help to get an intuition of this notion, we list two facts about flipped bisimilarity
that follow directly from its definition.

Fact 3.9 For any pointed multi-agent Kripke models (M, w), (M’, w’) with set of
agents N and agents i, j € N the following hold.

o (M, w)= S M, w))iff (M, )M, w),
o M, wo M, w)iff (M, oM, w).

Moreover, in general we can have that (M, w);’é?j )(./\/l, w), i.e., the relation of
flipped bisimilarity is not reflexive, and thus not an equivalence relation.

Thus, flipped bisimilarity for the same agent is equivalent to regular bisimilarity.

While the relation of flipped bisimilarity for a pair of agents is not reflexive, flipped
bisimilarity is indeed symmetric with respect to the flipping of the agents.
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Note that in general (M[i/j])[j/k] and (M[j/k])[i/j] are not bisimilar, neither
are they in general flipped bisimilar for any pair of agents. It follows that we can have

M. )= M w)= P M ") (M w2V M wh) < (M w™)

while not having for any pair n,n’ € {i, j, k}, (M”, w”)ﬁ'}’”/(/\/l**, w**). Sim-
ilarly, it is not the case that for all models (M, w), (M, w), (M”, w’) with set
of agents N and agents i, j, k € N, if (M, w)ﬁ(f”)(/\/{/, w/)ﬁyk) (M”, w"), then

(M, w) ﬁ?’k) (M”, w'). This is because performing two consecutive swaps of agents
is in general not equivalent to performing one swap of agents.

In the context of epistemic multi-agent models, the following question arises: How
does flipped bisimilarity relate to knowledge of the individual agents and common
knowledge?

The following is immediate: if on a whole model it holds that everything that two
individual agents know is common knowledge among them, then every state is flipped
bisimilar (for these two agents) to itself. The intuition here is that if everything that
the two individuals know is commonly known among them, then the two agents have
exactly the same information and can thus be swapped.

Fact 3.10 If for a multi-agent S5 model M = (W, (~;)ien, V), it holds that N>{ki,j}
C~; N ~; forsome i, j € N, then forallw € W, (M, w)< (M, w).

Does the other direction hold? Locally, even on S5 models, flipped self-
bisimulation is much weaker than the property of individual knowledge being common
knowledge: flipped self-bisimulation does not even imply that (shared) knowledge of
facts is common knowledge:

Fact 3.11 There exists a multi-agent S5 model M = (W, (~;)jen, V), such that for
some i, j € N we have that for some w € W it holds that (M, w)g(f”)(/\/l, w),
and for some p € PROP we have that M, w = K;p and M, w = K p but p is not
common knowledge among i and j at w.

Proof Consider the model M = (W, (~;);exn, V), where

o W={w_, w_y, wy, wi, wy},

e N = {Ann, Bob},

e ~anp is the smallest equivalence relation on W containing {(—2, —1), (0, 1)},
and ~poyp, is the smallest equivalence relation on W containing {(—1, 0), (1, 2)},

e V(p) = {w_1, wo, wi}.

The following figure represents M. The dashed rectangles are the equivalence
classes for Ann and the dotted rectangles those of Bob.

It is easy to check that at state wo both Ann and Bob know that p: Kann[wo] =
{wo, w1} € V(p) and Kep[wp] = {w—1, wo} € V(p). But p is not common
knowledge between Ann and Bob at wg: we have that wg ~ann w1 ~Bob w2 and
wy & V(p). Now it remains to show that (M, wp) is Ann, Bob-flipped bisimilar to
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itself. We can define a flipped bisimulation as follows Z = {(w,, w_,)|w, € W},
ie., Z = {(w—2, w2), (w1, wy), (wo, wo), (wy, w_1), (w2, w_2)}. It is easy to
check that Z is indeed a flipped bisimulation for Ann and Bob.

But required globally of every state, we do have the following converse: If for two
agents we have flipped bisimilarity of every state to itself and the accessibility relations
of the agents are transitive, then every fact that is known by at least one of the agents
is immediately also common knowledge among the two agents.

Fact 3.12 For every Kripke model M = (W, (R;);en, V) with R; and R; being tran-
sitive for some i,j € N, it holds that for each w € W we have the following. Whenever
the submodel M’ of M generated by {w} is such that for every state w’ € Dom (M)
it holds that (M, w’ )<—>(” )(M’, w'), then for any p € PROP, if at w at least one of
the two agents i and j knows that p (i.e., V(p) € K [w] or V(p) C K;[w]), then p
is common knowledge among i and j at w.

Proof Assume that for some model M = (W, (R;);en, V) itholds that R; and R; are
transitive for some i,j € N. Now, assume that p is not common knowledge between i
and j at w. It follows that we have a finite i,j-path leading to a state where p is false.
Let wRf(DwiRf(2) ... Rf(n)w, with w, € V(p) and f(k) € {i, j} forallk <n
be a shortest such path. Then, by transitivity of R; and R; it has to be the case that
for all k with 1 < k < n, f(k) # f(k + 1). Without loss of generality assume that
the path is of the form wR; w1 R; ... R;wy; the other cases are completely analogous.
Now, as all the states in the path wR;wiR; ... Rjw, are in M, by assumption for
each wy in the path we have (M’, wk)ﬁgﬁj)(./\/l’, wy). Then, in particular (M’, w)
is flipped 7,j-bisimilar to itself. Then there has to be a path wR;wlR;w} ... Rjw}
with w,ll ¢ V(p). Then, we can continue this argument, as also (M, wll) has to be
flipped i, j-bisimilar to itself. Thus, there has to be some path w% R; w%R e R,zl w,%
Then, by transitivity of R;, wR; w%. Iterating this procedure, we will finally get that
there is an R path from w to a state where p is false. Using the transitivity of R, we
then conclude that M, w = K p.

It remains to show that at w agent i does not know that p either. By assumption,
wR;w; and thus (M’, w;) has to be flipped i,j-bisimilar to itself. Thus, there has
to be a path a wi R;w,Rjw} ... Rjw, with w, ¢ V(p) Then, by transitivity, it fol-
lows from wR; w; R; w’2 that wR; w’z. Iterating this procedure, we get a state which is
R;-accessible from w where p is false. Hence, we conclude that at w neither i nor j
knows that p. This concludes the proof. O

Let us recall the notion of an agent’s horizon (Definition 2.15). It is the submodel
generated by the information set of the agent: the horizon of i at (M, w) (notation:
(M, w)") is the submodel generated by the set £C;[w].
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We now analyse the complexity of deciding (flipped) bisimilarity of two agents’
horizons at the same point in a model. We distinguish between S5 models and the
class of all Kripke structures.

Proposition 3.13 For horizon bisimilarity of multi-agent Kripke models we have the
following complexity results

(1) For multi-agent S5 models (M, w) with set of agents N,
(a) deciding whether (M, w)! <(M, w)/ is trivial.
(b) deciding whether (M, w)iﬁ(fl/)(/\/l, w)/ is in P.

(2) For multi-agent Kripke models (M, w) with set of agents N,
(@) deciding whether (M, w)' <>(M, w)’ is P-complete.
(b) deciding whether (M, w)iﬁ(}ﬁj)(./\/l, w)’ is P-complete.

Proof 1(a) follows from the fact that if the agents’ accessibility relations are reflexive
then the horizons of the agents are the same.

This is the case because (M, w) is the submodel generated by K;[w], i.e., the
submodel generated by the set of states that i considers possible at w. If at w, i con-
siders w itself possible, the domain of this submodel will also contain the domain of
the submodel generated by /C;[w]. The argument for the other direction is analogous.

1(b) follows from the fact that deciding flipped bisimilarity of horizons in multi-
agent S5 is polynomially equivalent to deciding (flipped) bisimilarity of multi-agent
S5 models. Both decision problems of 2(a) and 2(b) are polynomially equivalent to
deciding bisimilarity of multi-agent Kripke models because in general the horizons of
two agents at a point in the model can be two completely disjoint submodels. O

Let us summarise the results we have on the complexity of deciding information
symmetry. Both deciding whether a fact is commonly known and deciding horizon
flipped bisimilarity in Kripke models are tractable, with the latter being among the
hardest problems known to be tractable. Flipped bisimilarity of horizons remains
P-hard even if we consider the horizons of two agents at the very same point in a
model. For partition-based models, however, deciding bisimilarity of the horizons of
two agents at the same point in a model is trivial, whereas for flipped bisimilarity, this
is harder, but still tractable (in P).

The tasks we considered so far dealt with the comparison of agents’ information
states in given situations. Here, we were concerned with static aspects of agents’ infor-
mation. However, in many interactive situations dynamic aspects play a central role, as
the information of agents can change while the agents interact. There are even interac-
tive processes where information change can be the aim of the interaction itself, e.g.,
interactive deliberation processes. In such contexts the question arises as to whether
it is possible to manipulate the information state of agents in a particular way.

3.3 Can we reshape an agent’s mind into some desired informational state?

The problem that we investigate in this section is to decide whether new informational
states (satisfying desired properties) can be achieved in certain ways. One immediate
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question is whether one can give some information to an agent (i.e., to restrict the
agent’s horizon) such that after the update the horizon is bisimilar to the horizon of
some other agent. Concretely, we would like to know if there is any type of information
that could reshape some agent’s information in order to fit some desired new informa-
tional state or at least be similar to it. More precisely, we will consider information
that restricts the horizon of an agent; we do not consider the process of changing an
agent’s information state by introducing more uncertainty. The processes we consider
are related to those modelled by PAL, as introduced in Section 2.2. Deciding whether
aformula [l¢]y € Lpar holds at a state in a model (i.e., model checking this formula)
involves first checking if ¢ holds at the state and then relativising the original model
to the set of states where ¢ holds and finally checking if i then holds at the current
state. In order to put the complexity results of this section into perspective, note that
for PAL it holds that given a pointed model and a formula, checking if the formula
holds in the model can be done in time polynomial in the length of the formula and the
size of the model (cf. Kooi and Van Benthem 2004 for polynomial model checking
results for PAL with relativised common knowledge).

The model checking problem of PAL is about deciding whether getting a particular
piece of information (i.e., the information that ¢ holds) has a certain effect (i.e., the
effect of i being the case). In this section, we will investigate a more general problem
which is about whether it is possible to restrict the model so that a certain effect is
achieved. To be more precise, we consider the task of checking whether there is a
submodel that has certain properties. This means that we determine if it is possible
to purposely refine a model in a certain way. This question is in line with problems
addressed by arbitrary PAL (APAL) and arbitrary event modal logic (Balbiani et al.
2008; Van Ditmarsch and French 2009). ' Looking at the complexity results for such
logics (see e.g., French and Van Ditmarsch 2008 for a proof of undecidability of SAT
of APAL and Agotnes et al. 2010 for PSPACE-completeness of the model-checking
problem for APAL), we can already see that reasoning about the existence of infor-
mation whose announcement has a certain effect seems to be hard. Our analysis will
show whether this is also the case for concrete tasks about deciding whether a given
model can be restricted so that it will have certain properties.

We start with the problem of checking whether there is a submodel of one model
that is bisimilar to another one. On graphs, this is related to the problem of deciding
if one graph contains a subgraph bisimilar to another graph. Note that in the problem
referred to in the literature as “subgraph bisimulation” (Dovier and Piazza 2003), the
subgraph can be any graph whose vertices are a subset of the vertices of the original
graph, and the edges can be any subset of the edges of the original graph restricted
to the subset of vertices. To be more specific, the problem investigated in Dovier and
Piazza (2003) is the following:

Given two graphs G| = (V1, E1) and G, = (Va, E»), is there a graph G, =
(Vy, E) with V; € V; and E), C Ej such that there is a total bisimulation
between G and G1?

1 Note that in the current work, we focus on the semantic structures only and do not require that the
submodel can be characterised by some formula in a certain epistemic modal language.
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Since we want to investigate the complexity of reasoning about epistemic interaction
using modal logic, we are interested in subgraphs that correspond to relativisation in
modal logic: induced subgraphs. This leads us to an investigation of induced subgraph
bisimulation.

Problem 3.14 (Induced subgraph bisimulation)

Input Two finite graphs G| = (V1, E1), G2 = (Va, Ez), k€ w.

Question Is there an induced subgraph of G, with > k vertices that is totally bisimilar
to Gy, i.e.,istherea V' C Vo with |V'| > kand (V', E2 N (V' x V))<=, ,,G1?

tota

Even though the above problem looks very similar to the original subgraph bisim-
ulation problem (whose NP-hardness is shown by reduction from Hamiltonian Path
Garey and Johnson 1990), NP-hardness does not follow immediately.? Nevertheless,
we show NP-hardness by reduction from independent set (Garey and Johnson 1990).

Proposition 3.15 Induced subgraph bisimulation is NP-complete.

Proof Showing that the problem is in NP is straightforward. Hardness is shown by
reduction from independent set. First of all, let [; = (V,k, Ej = ¥) with |V,k| =k
denote a graph with k vertices and no edges. Given the input of independent set, i.e.,
a graph G = (V, E) and some k € w we transform it into (I, G), k, as input for
induced subgraph bisimulation.

Now, we claim that G has an independent set of size at least k iff there is some
V' CVwith |V > kand (V', EN (V' x V)<, a1 lk-

From left to right, assume that there is some S € V with |S| = &, and for all
v €S, (vv') ¢ E. Now, any bijection between S and Vy, is a total bisimulation
between G’ = (S, EN (S x §)) and Ix, since EN (S x §) =@ and |S| = |V, |.

For the other direction, assume that there is some V' C V with |V’| = k such that
for G' = (V', E' = EN (V' x V')) we have that G'<,,,,; Ix. Thus, there is some
total bisimulation Z between G’ and I;. Now, we claim that V' is an independent
set of G of size k. Let vp’ € V’. Suppose that (vp') € E. Since G’ is an induced
subgraph, we also have that (v, v') € E’. Since Z is a total bisimulation, there is some
w € Iy with (v, w) € Z and some w’ with (w, w’) € Ej, and (v/, w’) € Z. But this
is a contradiction with E;, = . Thus, V’ is an independent set of size k of G. The
reduction can clearly be computed in polynomial time. This concludes the proof. O

Now, an analogous result for Kripke models follows. Here, the problem is to decide
whether it is possible to ‘gently’ restrict one model without letting its domain get
smaller than k so that afterward it is bisimilar to another model. With an episte-
mic/doxastic interpretation of the accessibility relation, the intuitive interpretation is
that we would like the new information to change the informational state of the agent
as little as possible.

Problem 3.16 (Submodel bisimulation for Kripke models)
Input Kripke models M, M> with set of agents N and some k € w.

2 For induced subgraph bisimulation, a reduction from Hamiltonian Path seems to be more difficult, as
does a direct reduction from the original subgraph bisimulation problem.
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Question Is there a submodel M/, of M, with |[Dom(M})| > k such that M and
M, are totally bisimilar i.e., M <, ,,,M5?

Corollary 3.17 Submodel bisimulation for Kripke models is NP-complete.

Proof Checking if a proposed model is indeed a submodel and has at least k states
can be done in polynomial time. As also bisimilarity can be checked in polynomial
time, membership of NP is immediate. NP-hardness follows from Proposition 3.15 as
the problem of deciding induced subgraph bisimilarity can be reduced to submodel
bisimilarity. O

We restrict ourselves to submodels and generated submodels as these are most nat-
ural for basic modal epistemic logics. For future work, it can also be interesting to
consider more general model restrictions.

Since we are interested in the complexity of reasoning about the interaction of epi-
stemic agents as it is modelled in (dynamic) epistemic logic, let us now see how the
complexity of induced subgraph bisimulation changes when we make the assumption
that models are partitional, i.e., that the relation is an equivalence relation, as it is
frequently assumed in the Al or interactive epistemology literature. We will see that
this assumption makes the problem significantly easier.

Proposition 3.18 Let G| = (Vy, Ey) and Gy = (Va, E»), be graphs with E| and
E; reflexive. Induced subgraph bisimulation for G| and G, is in TIME(n).

Proof In this proof, we will use the fact that G; = (V1, E1)<,,,,G2 = (V2, E2)
if and only if it is the case that V| = @ iff V, = . Let us prove this. From left to
right, assume that G| = (V1, E1)<,,,,,G2 = (V2, E»). Then since we have a total
bisimulation, it must be the case that either V| = Vo, =@ or V| # 0 #£ V.

For the other direction, assume that V|, = @ iff Vo, = @. Now, we show that in
this case, V| x V5 is a total bisimulation between G| and G,. If V| = V, = ), we
are done. So, consider the case where V| # @ # V,. Let (vy, vp) € V| x V3, and
assume that (vq, v/l) € E1 for some vg € Vj. Since E» is reflexive, we know that there
is some v, € V5 such that (v2, v}) € E». Of course (v, v5) € Vi x V,. The back
condition is analogous. Since Vi x V; is total, we thus have Gi<,,,,;G2. Hence,
Gi = (V1, E1)<4piaG2 = (Va, E») if and only if it is the case that V| = @ iff
Vo =40.

Therefore, for solving the induced subgraph bisimulation problem for input G and
G, with E1 and E; being reflexive and k € w, all we need to do is to go through the
input once and check whether V| = @ iff Vo, = {J, and whether |V>| > k. If the answer
to both is yes then we know that G1<,,,,,G> and since |V2| > k, we answer yes,
otherwise no. O

Assuming the edge relation in a graph to be reflexive makes induced subgraph
bisimulation a trivial problem because, unless its set of vertices is empty, every such
graph is bisimilar to the graph ({v}, {(v, v)}). Butfor Kripke models, even for S5 mod-
els, this is of course not the case, as the bisimulation takes into account the valuation.
Nevertheless, we will now show that also for single-agent S5 models, the problem of
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submodel bisimulation is significantly easier than in the case of arbitrary single-agent
Kripke models. To be more precise, we will distinguish between two problems:

The first problem is local single-agent S5 submodel bisimulation. Here, we take as
input two pointed S5 models. Then we ask whether there is a submodel of the second
model that is bisimilar to the first one. Thus, the question is whether it is possible to
restrict one of the models in such a way that there is a state in which the agent has
exactly the same information as in the situation modelled in the other model. Note
that in this problem we do not require the resulting model to be of a certain size.

Problem 3.19 (Local single-agent S5 submodel bisimulation)

Input A pointed S5 epistemic model (M7, w) with M| = (Wi, ~1, V1) and w €
W1, and an S5 epistemic model My = (W), ~2, V7).

Question Is there a submodel M), = (W}, ~}, V}) of M, such that (M, w)<
(M), w') for some w’ € Dom(M})?

We will show that this problem is tractable. First we introduce some notation.

Notation 3.20 Let M = (W, ~, V) be a single-agent epistemic model. For the val-
uation function V : PROP — W, we define V : W — 2P with w — {p €
PROP | w € V(p)}. Abusing notation, for X € W we sometimes write V(X) to denote

{\7(w) | w e X}. We let W/~ denote the set of all equivalence classes of W for the
relation ~.

Proposition 3.21 Local submodel bisimulation for single-agent pointed epistemic
models is in P.

Proof Given the input of the problem, i.e., a pointed epistemic model M, w with
M = (Wy, ~1, V1), and w € W; and an epistemic model M, = (W, ~2, V),
we run the following procedure.

(1) For all [wy] € Wy /~7 do the following:
(a) Initialise the set Z := (/.
(b) for all w’ € [w] do the following
(i) For all w) € [w;] check if it is the case that \71(w’) = \72(w’2). If this is
the case, set Z := Z U {(w’, w})}.
(i) if there is no such w), continue with 1 with the next element in W»/~2,
otherwise we return Z and we stop.
(2) In case we didn’t stop at 1(b)(ii), we can stop now, and return no.

This does not take more than | M| - | M| steps.

If the procedure has stopped at 2, there is no bisimulation with the required proper-
ties. To see this, note that if we stopped in 2, this means that there wasno [wz] € Wa /~2
such that for every state in [w] there is one in [wz] in which exactly the same prop-
ositional letters are true. Thus, since we were looking for a bisimulation that is also
defined for the state w, such a bisimulation cannot exist.

If the algorithm returned a relation Z, this is indeed a bisimulation between M
and the submodel M), of My where M), = (W;, ~,, V}), where

Wz’ = {wy € W|there is some w| € [w] such that (w;, wy) € Z}
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and ~ and V), are the usual restrictions of ~> and V to Wj. This follows from the
two facts: First, for all pairs in Z it holds that both states satisfy exactly the same
proposition letters. Second, since Z is total both on [w] and on W and all the states in
[w] are connected to each other by ~ and all states in Wé are connected to each other
by ~, both the forth and back conditions are satisfied. This concludes the proof. O

The second problem we consider is global S5 submodel bisimulation, where the
input are two models M and M> and we ask whether there exists a submodel of M»
such that it is totally bisimilar to M.

Problem 3.22 (Global single-agent S5 submodel bisimulation)
Input Two S35 epistemic models M| = (W, ~1, V1), My = (Wy, ~2, V>).
Question Is there a submodel M, = (W}, ~}, V) of M; such that M <>, ., M}5?

We can show that even though the above problem seems more complicated than
Decision Problem 3.19, it can still be solved in polynomial time. The proof uses the
fact that finding a maximum matching in a bipartite graph can be done in polynomial
time (see e.g., Papadimitriou and Steiglitz 1982).

Theorem 3.23 Global submodel bisimulation for single-agent epistemic models is
in P.
Before we give the proof, we do some pre-processing.

Definition 3.24 Given a single-agent epistemic model M = (W, ~, V), Mmin-cells
denotes a model obtained from M by the following procedure:

(1) Initialise X with X := W /~.
(2) Go through all the pairs in X x X.
(a) When you find ([w], [w']) with [w] # [w'] such that V([w]) = V([w']),
continue at 2 with X := X — [w'].
(b) Otherwise, stop and return the model M™"—<¢!ls .= (| J X, ~', VV'). By con-
struction | J X € W. Thus we can define ~" and V' as the respective restrictions
of ~and V to |J X, thatis ~'=~N(J X x J X) and V' = V| x.

Fact 3.25 With input M = (W, ~, V), the procedure in Definition 3.24 runs in time
polynomial in | M|.

Proof Follows from the fact that the cardinality of W/~ is bounded by |W|; we only
enter step 2 at most |W| times, and each time do at most |W |2 comparisons. O

Fact 3.26 The answer to total submodel bisimulation for single-agent epistemic mod-
els (Decision Problem 3.22) with input My = (W1, ~1, V1), Ma = (W2, ~2, V2)
is yes iff it is with input M ™"-<¢!ls — (W, ~1, V1), My = (Wa, ~2, V).

Proof From left to right, we just need to restrict the bisimulation to the states of
M mincells For the other direction, we start with the given bisimulation and then
extend it as follows. The states in a cell [w’] that was removed during the construction
of M ™Min-<€lls can be mapped to the ones of a cell [w] in M ™ "-¢/S with the same
valuation. O
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We can now prove Theorem 3.23.

Proof By Facts 3.25 and 3.26, transforming M into M ™"-¢ls can be done in poly-
nomial time. Thus, without loss of generality, we can assume that M is already of
the right shape; i.e., M| = M ™ n_cells Given the two models as input, we construct
a bipartite graph G = ((W1/~1, W»/~»2), E) where E is defined as follows.

([w1], [wa]) € E iff Vi(wi]) < Va([wal).

Claim 3.27 The following are equivalent.

(a) There is a submodel M, of My such that M <>, ,,,, M},
(b) G has a matching of size |Wy/~1].

Proof Assume that there is a submodel M) = (W;, ~,, V) of M, such that
M <—>mml./\/12 Let Z be such a total b1s1mu1at10n
Note that since we assumed that M| = M™"-<€lls the following holds:

(1) For all (fwi], [wa]) € Wi /~1 x W5/~ itis the case that whenever Z N ([w] x
[wa]) # @, thenforall [w|] € Wi/~ suchthat [w]] # [wi], ZN([w]]x[w2]) =
?.

Thus, the members of different equivalence classes in W/~ are mapped by Z to
into different equivalence classes of W /~».
Now, we construct £ C E as follows.

(lw1l, [w2]) € E iff (w1], [wa]) € E and ([wy] x [wa]) N Z # 0.

Then |E| > |W, /~1| because of the definitions £ and E and the fact that Z is a
bisimulation that is total on W,. Now, if |E| = |W; /~1| then we are done since by
definition of E for each [w1] € Wj/~ there is some [wz] € W/ ~7 such that
(fw1], [wz]) € E. Then it follows from 1, that E is indeed a matching.

If |E| > |[W1/~1] then we can transform E into a matching E’ of size [Wi/~1l:
For each [w] € Wy /~1, we pick one [wz] € W/~ such that ([w], [w2]) € E and
put it into E" (note that such a [w;] always exists because by definition of E, for each
[w1] € Wi/~ there is some [wa] € W>/~7 such that ([w1], [wz]) € E; moreover
because of 1 all the [wy] € W5/~ that we pick will be different). Then the resulting
E'CECEC (W1/~1 xW,/~3) is a matching of G of size |W;/~|. Thus, we
have shown that if there is a submodel M), of M3 such that M <, ,, M), then G
has a matching of size |Wj/~1].

For the other direction, assume that G has a matching E’ C E with
|E’| = |W1/~1|. Then, recalling the definition of E, it follows that for all [w] € Wy /~
there is some [w'] € W;/~; such that ([w], [w']) € E’ and thus \71([w]) -
Va([w').

Let us define the following submodel M), of My. M) = (W;, ~,, V), where

W, = {wz € Wa| there is a w € Wy with V; (w) = Va(wz) and ([w], [wa]) € E/}
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and ~/, and V), are the usual restrictions of ~; and V5 to W3.
Now, we define a relation Z C W; x Wz/, which we then show to be a total bisim-
ulation between M and M}:

(wy, wa) € Z iff V(wy) = Vs (wp) and ([w1], [wa]) € E'.

Next, let us show that Z is indeed a bisimulation.

Let (w1, wp) € Z. Then, by definition of Z, for every propositional letter p,
we have w; € Vi(p) iff wo € Vo(p). Next, we check the forth condition. Let
wy ~1 w) for some w] € Wj. Since (wi, wp) € Z, and thus ([w], [w2]) € E',
there is some w) € [w] such that \72(w’2) = \A/1(wi). Since [w]] = [w] and
[w)] = [wz], it follows that ([w)], [wj]) € E’. Then w} € W, and (w], wj) €
Z.

For the back condition, let wy ~» w), for some w) € Wj. Then by definition
of Wj, there is some w € Wj such that \71(w) = \A/z(wé) and ([w], [w]) € E'.
It follows that (w, w’z) € Z. Now, we show that w; ~1 w. As the following holds:
([w], [w5]) € E', [wa] = [w)], ([w], [w2]) € E” (because (wi, wp) € Z) and E’ is
a matching, it follows that [w] = [w]. Thus, w; ~1 w.

Hence, Z is a bisimulation. It remains to show that Z is indeed total.

Let w; € Wy. Since E’ is a matching of size |W; /~1], there is some [w;] € W/~
such that ([wi], [w2]) € E’. Thus, there is some w} € [w;] such that \71(w1) =
\72(w’2). Hence w) € W, and (w, w)) € Z. So Z is total on W.

Let w, € Wj. By definition of W}, there is some w € W; such that \71(w) =

\72(w2) and ([w], [wz]) € E’. Thus, by definition of Z, (w, wy) € Z. Therefore,
Z is indeed a total bisimulation between M and M. This concludes the proof of
Claim 3.27. O

Hence, given two models, we can transform the first one using the polynomial pro-
cedure of Definition 3.24 and then we construct the graph G, which can be done in
polynomial time as well. Finally, we use a polynomial algorithm to check if G has a
matching of size M,"™"-<¢!s If the answer is yes, we return yes, otherwise no. This
concludes the proof of Theorem 3.23. O

Now, the question arises whether the above results also hold for the multi-agent case.

Problem 3.28 (Global multi-agent S5 submodel bisimulation)

Input Two epistemic models M1 = (W1, (~1);en, V1), Ma=(Wa2, (~2))ien, V2),
for N being a finite set (of agents).

Question Is there a submodel M/, = (W}, (~2))ien, V53) of My such that M 1<, .,
M?

Open Problem 3.29 Is global multi-agent S5 submodel bisimulation NP-hard?

We expect the answer to this question to be positive, as for S5, there seems to be
a complexity jump between the single-agent case and the two-agent case: In case of
the satisfiability problem of the logic, the one-agent logic is NP-complete, whereas
as soon as we have at least two agents, we get PSPACE completeness. Similarly, in

@ Springer



396 Synthese (2014) 191:371-408

Section 3.1, we showed in Proposition 3.5 that also for bisimilarity, there seems to be
a complexity jump for S5 models when a second agent is added: the problem becomes
P-hard and thus as hard as the problem for arbitrary Kripke models.

The idea behind these results is that arbitrary accessibility relations can be simu-
lated by a concatenation of two equivalence relations. However, these techniques, as
they have been used, e.g., by Halpern and Moses (1992), and do not seem to work
for transforming models into S5-models for two agents such that the existence of sub-
models bisimilar to some model is preserved. The problem is caused by the fact that
the resulting model has to be reflexive, in which case several states could be collapsed
whereas they could not before the transformation. Thus, a coding of the existence of a
successor and the existence of reflexive loops in the original model would be required
to take care of this issue.’

Let us summarise our complexity results for problems related to deciding whether
it is possible to restrict an agent’s information structure so that after the restriction
he will have similar information as another agent in some other situation. We showed
that induced subgraph bisimulation is intractable (NP-complete). Using this, we could
show that the same holds for submodel bisimulation of arbitrary Kripke models.

For partition-based graphs (with the edge relations being equivalence relations)
however, we showed that the problem of induced subgraph bisimilarity is very easy:
it is solvable in linear time if we are looking for a subgraph of a certain size with a
total bisimulation. Deciding whether there is any subgraph with a total bisimulation
is trivial for partition-based graphs, as then all such non-empty graphs are bisimilar.
In fact, this already holds if the edge relation is reflexive.

Extending these results for S5 Kripke models, we could show that submodel
bisimulation for single-agent models is not as trivial as for graphs, but still in P. For
multi-agent S5 models, the problem remains open. We conjecture it to be polynomially
equivalent to the problem for Kripke models in general. The technical challenge in
showing this lies in the simulation of arbitrary accessibility relations by a combination
of different equivalence relations. The idea would again be to use a method similar to
that used, e.g., by Halpern and Moses (1992), and replace every edge by a composition
of two equivalence relations. This technique can however not be applied in its standard
way as some issues arise due to the fact that the resulting model has to be reflexive
while in the original arbitrary Kripke structure this does not need to be the case. This
means that the existence of reflexive loops in the original model would somehow have
to be coded using a propositional letter so as not to lose the information during the
transformation.

In dynamic systems with diverse agents, an interesting question is whether it is pos-
sible to give some information to one agent such that afterward she knows at least as
much as some other agent. This is captured by an asymmetric notion, that of simulation
(Definition 2.17). With this difference, the question can be raised of the effect on trac-
tability and intractability of requiring simulation versus requiring bisimulation. With
this motivation, we would like to explore the problem of induced subgraph simulation.

3 Note that the situation in Proposition 3.5 is different, as there we started with models that were irreflexive
and thus we did not need to take care of coding the information about loops and could apply the standard
technique.
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Problem 3.30 (Induced subgraph simulation)
Input Two finite graphs G| = (V1, E1), Go = (Va, E»), k€ w.

Question Is there an induced subgraph of G, with at least k vertices that is simulated
by G1, i.e., is there some V' C V, with |V'| > kand (V', E;N(V' x V")) Cpra1 G1?

Proposition 3.31 Induced subgraph simulation is NP-complete.

Proof Showing that the problem is in NP is straightforward. Hardness is shown by
reduction from independent set. First of all, let I = (V,k, E; = ) with |V1k| =k
denote a graph with k vertices and no edges. Given the input of independent set, i.e.,
a graph G = (V, E) and some k € w, we transform it into (Ix, G), k, as input for
induced subgraph simulation.

Now, we claim that G has an independent set of size at least k iff there is some
V' €V with |V/| > kand (V', EN (V' x V') Ciorar 1. From left to right, assume
that there is some § C V with |S| = k, and for all v, v' € §, (v, V') ¢ E. Now, any
bijection between § and V, is a total simulation (and in fact an isomorphism) between
G = (S, EN(S x S)) and I, since EN (S x §) =@ and |S| = |Vy,|.

For the other direction, assume that there is some V' C V with |V’| = k such that
for G' = (V/, E' = EN (V' x V")) we have that G’ C,,,4; I;. Thus, there is some
total simulation Z between G’ and I.. Now, we claim that V' is an independent set
of G of size k. Let v, v' € V'. Suppose that (v, v') € E. Since G’ is an induced
subgraph, we have that (v, v') € E’. Since Z is a total simulation, there is some
w € I with (v, w) € Z and some w’ with (w, w’) € E, and (v/, w’) € Z. But this
is a contradiction with E;, = #. Thus, V' is an independent set of size k of G. The
reduction can clearly be computed in polynomial time. This concludes the proof. 0O

In De Nardo et al. (2009), it has been shown that given two graphs it is also
NP-complete to decide if there is a subgraph (not necessarily an induced one) of
one such that it is simulation equivalent to the other graph. Here, we show that this
also holds if the subgraph is required to be an induced subgraph.

Problem 3.32 (Induced subgraph simulation equivalence)
Input Two finite graphs G| = (Vy, E1), G2 = (Va, Ez), k€ w.

Question Is there an induced subgraph of G, with at least k vertices that is similar to
G, i.e., is there some V' C V, with |V/| > kand (V/, E; N (V' x V")) Ciorar G1
and G1 Crorar (Vs E2 N (V' x V')?

Proposition 3.33 Induced subgraph simulation equivalence is NP-complete.

Proof For showing that the problem is in NP, note that we can use a simulation
equivalence algorithm as provided in Henzinger et al. (1995). Hardness can again be
shown by reduction from independent set. Given the input for independent set, i.e., a
graph G = (V, E) and some k € w, we transform it into two graphs [ = v, =
{vi, ..., w}, E;, =¥)and G, and we keep the k € w. This can be done in polynomial
time.

Now, we claim that G has an independent set of size k iff there is an induced
subgraph of G with k vertices that is similar to [;. From left to right, assume that
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G has such an independent set S with § € V, |S| = kand ENS x S = (. Then
(S, ¥) is isomorphic to I; since both have k vertices and no edges. Thus, they are also
simulation equivalent.

For the other direction, assume that there is an induced subgraph G’ = (V’, E’)
with V' C V,|V'| =kand E' = (V' x V)N E such that G’ is simulation equivalent
to Ir. Suppose that there are v, v’ € V' such that (v, v") € E. Since G’ is an induced
subgraph, it must be the case that (v, v") € E’, but since I simulates G’, this leads to
a contradiction since I does not have any edges. This concludes the proof. O

Along similar lines, we could consider further problems involving more interac-
tion between agents, and ask, e.g., by Halpern and Moses (1992), whether one model
represents the result of two agents sharing all their information.

As a corollary of the two previous propositions we get that for arbitrary Kripke
models both submodel simulation and submodel simulation equivalence are NP-hard.
An NP upper bound follows from the fact that given a relation between a model and a
submodel of some other model, it can be checked in polynomial time if this relation
is indeed a simulation.

Corollary 3.34 Deciding submodel simulation and submodel equivalence for Kripke
structures is NP-complete.

For single-agent S5, we can use the methods as used in the proof of Theorem 3.23
in order to obtain a polynomial procedure for the single-agent case.

Proposition 3.35 Deciding submodel simulation and submodel equivalence for
single-agent S5 models is in P.

Proof We use the procedure of the proof of Theorem 3.23. This also works for simu-
lation and simulation equivalence because of the totality constraint and the fact that as
we deal with S5 models, we only need to take care of the different valuations occurring
in the equivalence classes. O

Let us now summarise our complexity analysis of tasks that involve checking
whether in one situation an agent knows at least as much as another agent in a pos-
sibly different situation. We have shown that we can extend graph-theoretical com-
plexity results about subgraph simulation equivalence to the case where the subgraph
is required to be an induced subgraph. Via this technical result, we can then transfer
the complexity bounds also for the problem of submodel simulation (equivalence) of
Kripke models, which with an epistemic interpretation of the accessibility relation is
the following problem: decide whether it is possible to give information to one agent
so that as a result he knows as least as much as some other agent. In case of partition-
based models (S5), for a single agent this problem can be solved in polynomial time
analogously to how we have done it for submodel bisimulation. For the multi-agent
case, the problem remains open, however. As for submodel bisimulation of multi-agent
S5 model, the technical issue that would have to be solved for showing NP-hardness
is caused by the reflexivity of the underlying relations.
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4 Conclusions and further questions

We now summarise our main results, provide some conclusions and finish with some
further questions.

4.1 Summary

We have identified concrete epistemic tasks related to the comparison and manipula-
tion of information states of agents in possibly different situations. Interestingly, our
complexity analysis shows that such tasks and decision problems live on both sides of
the border between tractability and intractability. We now summarise our results for
the different kinds of tasks we investigated.

4.1.1 Information similarity

Our results for the complexity of deciding whether information structures are similar
can be found in Table 3.

If we take isomorphism as our similarity notion, then in general (without any partic-
ular assumptions on the Kripke structures representing agents’ information) it is open
whether checking if two information structures are similar is tractable. This follows
from the fact that checking if two Kripke models are isomorphic is as hard as the graph
isomorphism problem which is neither known to be in P nor known to be NP-hard.
Thus, we can say that given the current knowledge, for isomorphism, deciding if two
information structures are similar can be located on the border between tractability and
intractability. We did not investigate the isomorphism problem for S5 but conjecture
it to become as hard as Kripke model isomorphism (GI-complete) as soon as we have
at least two agents.

Taking bisimilarity as the similarity notion, deciding if two structures are similar is
among the hardest problems known to be tractable. If the models are based on parti-
tions (S5), the problem is very easy in the single-agent case but also becomes P-hard
in the multi-agent case.

4.1.2 Information symmetry
Table 4 summarises the results of our complexity analysis of tasks concerned with

deciding whether the information of agents is symmetric, where symmetry can be
understood in different ways.

Table 3 Complexity results for deciding information similarity

Problem Tractable? Comments
Kripke model isomorphism Unknown Gl-complete
Epistemic model bisimilarity Yes P-complete in the multi-agent case

@ Springer



400 Synthese (2014) 191:371-408

Table 4 Complexity results for deciding information symmetry

Problem Tractable? Comments

Common knowledge of a fact Yes Solvable using a reachability
algorithm

Horizon bisimilarity (Kripke models) Yes P-complete for arbitrary models,

even for horizons at the same point
in the model

Flipped horizon bisimilarity (Kripke models) Yes P-complete, even for horizons at the
same point in the model

Horizon bisimilarity (S5-models) Yes Trivial for horizons at the same point
in a model

Flipped horizon bisimilarity (S5-models) Yes Problem does not get easier for
horizons at the same point in a
model

We started our investigation of information symmetry with the symmetry of two
agents’ knowledge about a given fact being true. This kind of symmetry arises if the
fact is common knowledge among the two agents. Given an information structure,
deciding if this is the case can be done using a reachability algorithm that checks for
every state at which the fact is not true whether there is a path to it (via the union of
the two relations of the agents) from the current state. This is the case if and only if
the fact is not common knowledge between the two agents.

We then introduced the notion of (epistemic) horizon, which represents the submod-
el that is relevant for an agent at a given situation (i.e., at a given point in the model).
The horizon of an agent in a situation is the submodel that is generated by the set of
worlds the agent considers possible in that situation. When considering the epistemic
reasoning of agents, our notion of horizon plays a crucial role as an agent’s horizon
contains exactly the possible worlds that the agent might take into consideration during
his reasoning. We have shown that in general deciding if the horizons of two agents are
bisimilar is exactly as hard as deciding bisimilarity of Kripke models. Without assum-
ing reflexivity of the accessibility relation, deciding about the similarity of two agents’
horizons does not get easier in the special case in which we compare horizons at the
very same point in a model. As soon as the accessibility relations of the two agents
under consideration are reflexive, however, the problem becomes completely trivial
if we compare horizons at the same point in the model, as they are always identical.
Thus, if we take information structures to be arbitrary Kripke models, then in general
comparing horizons of agents in one given situation is as hard as comparing informa-
tion structures in general. For S5 models, however, the situation is slightly different as
horizon bisimilarity becomes trivial for horizons taken at the same point in a model.

For our investigation of information symmetry, we have introduced the notion of
flipped bisimilarity, which captures the similarity of two models after swapping the
information of two agents. For Kripke structures in general, the complexity of decid-
ing flipped bisimilarity is just as for bisimilarity. For the special case in which two
pointed structures are identical deciding bisimilarity is trivial but flipped bisimilarity
can be as hard as it is for arbitrary pointed Kripke structures.
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Our results for horizon comparison for arbitrary Kripke models show that both
flipped bisimilarity and regular bisimilarity are P-complete, even if we take the hori-
zon at the very same situation. Thus, comparing different agents’ perspectives on the
very same situation is as hard as comparing structures in general. Under the assump-
tion of partition-based information structures (S5) however, we observed a significant
difference between bisimilarity and flipped bisimilarity of horizons. While bisimilar-
ity of horizons of different agents becomes trivial if they are taken at the very same
situation (i.e., at the same point in the model), flipped bisimilarity stays as hard as it
is for multi-agent S5 models in general.

Let us briefly summarise the technical facts that explain our complexity results as
given in Table 4.

e Problems about information symmetry which can be solved by checking if cer-
tain states are reachable by (combinations of) agents’ accessibility relations are
relatively easy as they boil down to solving the reachability problem which is
NL-complete.

e Problems involving bisimilarity of arbitrary models are among the hardest trac-
table problems and thus believed to be slightly easier than problems involving
isomorphism of Kripke models as for isomorphism no polynomial algorithms are
known.

e In the single-agent case, assuming S5 relations makes bisimilarity easier because
checking for bisimilarity boils down to just comparing the propositional valuations
of information cells.

e While flipped bisimilarity does not seem to be more complex than regular bisimi-
larity, the fact that flipped bisimilarity is in general not reflexive has the effect of
making it harder than bisimilarity in the special case where we ask if a pointed
model is flipped bisimilar to itself.

4.1.3 Information manipulation

Apart from the rather static problems about the comparison of information structures,
we also investigated the complexity of tasks related to more dynamic aspects of infor-
mation. In many interactive processes, the information of agents changes through time
because agents can make observations or receive new information from other agents.
Then an interesting question that arises is whether given an information state of an
agent it is possible that through incoming information, the agent’s information struc-
ture can change such that in the end the agent has similar information to some other
agent.

Table 5 summarises the results of our complexity analysis of tasks concerned with
the manipulation of information structures.

To determine the complexity of deciding whether it is possible to restrict an infor-
mation structure in such a way such that it becomes similar to some other struc-
ture, we started by investigating the NP-complete graph-theoretical problem subgraph
bisimulation. The problem is to decide whether one of two given graphs has a subgraph
which is bisimilar to the other graph. We showed that it remains NP-complete if we
require the subgraph to be an induced subgraph. This technical result then allowed us
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Table 5 Complexity results for tasks about information manipulation

Problem Tractable? ~Comments

Kripke submodel bisimulation No NP-complete. Reduction from
independent set

Single agent S5 submodel bisimulation Yes Local version easier; in general an

algorithm for finding matchings in
bipartite graphs can be used

Multi-agent S5 submodel bisimulation Unknown  Conjectured to be NP-complete

Kripke submodel simulation (equivalence) No NP-complete. Reduction from
independent set

Single agent S5 submodel simulation (equivalence)  Yes Similar polynomial procedure as for
single-agent S5 submodel
bisimulation

Multi-agent S5 submodel simulation (equivalence)  Unknown  Same technical issues as for S5
submodel bisimulation

to show that for Kripke models, it is also NP-complete to decide if one given model
has a submodel which is bisimilar to another given model. We then showed that this
problem does indeed get easier if we have S5 structures with one agent only: we gave
a polynomial procedure that uses the fact that computing whether there is a matching
of a certain size in a bipartite graph can be done in polynomial time. This shows that
deciding if an agent’s information can be restricted in a certain way is easier under
the assumption of S5 information structures. It remains open to show whether the
problem also becomes intractable for S5 as soon as we have more than one agent. The
technical issue which needs to be resolved here is to determine whether an arbitrary
accessibility relation can be simulated by the composition of two equivalence relations
in such a way that the existence of a submodel bisimilar to some other model is pre-
served. While it is relatively straightforward to make sure that in the model that results
from the transformation the accessibility relations are symmetric and transitive, the
requirement of reflexivity seems to cause some problems.

Instead of asking whether it is possible to give some information to an agent such
that the resulting information structure is similar to some other structure, in many
situations it might be sufficient to know if it is possible to manipulate the information
of an agent such that he will know at least as much as some other agent. In more gen-
eral terms, this leads us to the task of deciding whether it is possible to restrict some
structure such that it becomes at least as refined as some other structure. Similar to
the case of submodel bisimulation, we started by investigating the problem of induced
subgraph simulation, which we showed to be NP-complete by reduction from inde-
pendent set. Using this, we could then show that submodel simulation is NP-complete
for Kripke models.

Under the assumption of S5 models, we can adapt the polynomial procedure that
we had for single-agent S5 local submodel bisimulation for solving the analogous
problem for simulation. This means that with S5 models, it is tractable to decide if
we can restrict an information structure for one agent such that it becomes at least as
refined as that of another agent in a given situation. We get an analogous result for
simulation equivalence, a weaker notion of similarity than bisimulation. Whether on
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S5 structures these problems become intractable as soon as we have models with at
least two agents is open, and depends on the same technical issues as this problem for
submodel bisimulation.

Let us briefly summarise the technical facts that explain our complexity results as
listed in Table 5.

e For single-agent S5 models, submodel bisimilarity and simulation equivalence
turned out to be solvable in polynomial time. Given a model A and a model B, we
consider the bipartite graph that consists of the equivalence classes of both models
and in which edges connect two information cells of each model if and only if
all the valuations occurring in the first information cell, also occur in the second.
We then used the fact that for single-agent S5 models, model A has a submodel
bisimilar to model B if and only if the previous bipartite graph has a matching of
size k, where k is the number of equivalence classes in model B.

e In general, submodel bisimilarity of Kripke models is NP-complete, as a graph
having an induced subgraph bisimilar to the graph of k isolated points is equivalent
to the graph having an independent set of size k.

o Whether submodel bisimilarity is NP-complete for S5 models with more than one
agent depends on how arbitrary Kripke structures can be simulated using the com-
bination of two equivalence classes in such a way that the existence of submodels
bisimilar to another model is preserved.

4.2 Conclusions

From the above results, we conclude the following for the three classes of tasks that
we have analysed.

Information similarity

e Ifinformation of agents is modelled by simple relational structures without any
particular assumptions, then deciding if the information of agents in two differ-
ent multi-agent situations is similar will in general be somewhere in between
tractable but hard and the border to intractability.

e Under the assumption of S5 properties of the information structures, the com-
plexity jump from easy to P-hard happens with the introduction of a second
agent.

Information symmetry

e All problems we encountered are tractable, but nevertheless we were able to
identify significant differences in their complexity.

— Comparing the perspectives of agents in the very same situation becomes
trivial as soon as we check for bisimilarity and the agents’ accessibility
relations are reflexive.

— For checking if the agents have similar information about each other (cap-
tured by flipped bisimilarity of horizons) however, neither the assumption
of reflexivity of the agents’ relations nor considering horizons at the very
same point in the model make the problem easier.

— Thus, deciding if agents have similar information about each other can in
certain cases be harder than deciding if agents have similar information.
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Information manipulation
e For the problems we identified for deciding whether an information structure
can be restricted in such a way that it will be in a certain relation to another
model, we get the same pattern of complexity results for simulation, simulation
equivalence and bisimulation.

— Deciding whether a model can be restricted such that it is in one of those
three relations to another model is tractable for single-agent S5 models
and intractable in general.

— Whether for S5 models the jump from being tractable to being intracta-
ble happens with the introduction of a second agent depends on whether
we can simulate arbitrary relations by a combination of two equivalence
relations while preserving the existence of submodels that are in a certain
relationship to another model.

Comparing the three classes of tasks (about information similarity, symmetry and
manipulation), information similarity is the easiest one in general if we stick to
bisimulation as our notion of similarity. For information symmetry, all the problems
we identified are tractable, with some special cases even being trivial, such as for
reflexive models similarity of horizons at the same situation. Deciding if two agents
have the same information about each other, however, does not become trivial unless
the two agents are equal. For deciding whether it is possible to manipulate agents’
information in a certain way, we considered problems of a wide variety of complex-
ities ranging from very easy to NP-complete. Deciding if it is possible to restrict an
information structure such that it becomes similar to or at least as refined as another is
easiest if we only have one agent and assume S5 models. For arbitrary Kripke struc-
tures the problem is NP-complete. For multi-agent S5 models we conjecture it to be
NP-complete as well. Locating the tractability border in epistemic tasks on modal logic
frameworks, we conclude that for the static tasks concerning similarity and symmetry,
most problems are tractable, whereas for the dynamic tasks involving the manipulation
of information intractable tasks arise when we have multiple agents. In general, for
S5 models, complexity jumps for various tasks seem to occur when a second agent is
introduced.

Let us now come back to our research question.

Research Question 4.1
e Which parameters can make interaction difficult?
e How does the complexity of an interactive situation change when more par-
ticipants enter the interaction or when we drop some simplifying assumptions
on the participants themselves?

In the context of concrete tasks in reasoning about epistemic agents, we can give the
following answers.

(1) The complexity of comparing the information of diverse agents crucially depends
on the notion of similarity used.

(2) Under standard assumptions about knowledge (veridicality and full introspec-
tion), intractable tasks can become very easy.
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(3) Moreover, under these assumptions, for various tasks a complexity jump occurs
with the introduction of a second agent.

(4) Without any assumptions on information structures reasoning about a single agent
seems to be already as hard as reasoning about multi-agent situations.

4.3 Further questions

Our work gives rise to some interesting questions for further investigation. Let us start
with some technical open problems.

4.3.1 Does submodel bisimulation for S5 become intractable with two agents?

It remains open to show whether the problem also becomes intractable for S5 as soon
as we have more than one agent. The technical issue which needs to be resolved here is
to determine whether an arbitrary accessibility relation can be simulated by the com-
position of two equivalence relations in such a way that the existence of a submodel
bisimilar to some other model is preserved.*

While it is relatively straightforward to make sure that in the model that results
from the transformation the accessibility relations are symmetric and transitive, the
requirement of reflexivity seems to cause some problems.

4.3.2 Does submodel simulation (equivalence) for S5 become intractable with two
agents?

Whether on S5 structures, the problems of submodel simulation and submodel sim-
ulation equivalence become intractable as soon as we have models with at least two
agents depends on the same technical issues as the problem for submodel bisimulation.

A more general problem that came up in our analysis is the following.

4.3.3 Is S5 models simulation (equivalence) at least as hard as bisimulation?

We did not investigate simulation and simulation equivalence of information struc-
tures. Here, an interesting general question arises as to whether also for epistemic
(S5) models it holds that in general simulation (equivalence) is at least as hard as
bisimulation as this holds for Kripke structures (Kucera and Mayr 2002).

4.3.4 Linking up to real epistemic reasoning

Besides the technical questions above, our results call for an empirical investigation of
the tasks we identified in order to clarify the correspondence between our results and
the cognitive difficulties involved in epistemic reasoning. For this, we note that the

4 We stress that here we are concerned with submodels, i.e., in general these are not generated submodels.
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formal concepts that we used in the decision problems (e.g., bisimilarity) were mostly
motivated by the fact that they come up naturally in the context of modal logics.

However, for being able to draw conclusions about the complexity that real agents
face in epistemic reasoning, it needs to be investigated which are cognitively adequate
notions of similarity. One possibility would be to work out the connection between
the similarity notions that we considered and those underlying analogical reasoning
in interactive situations (cf. Besold et al. 2011).

Summing up our investigation so far, we have moved from a high-level perspective
on the epistemic reasoning abilities of agents to an analysis of concrete tasks about
information structures which represent the uncertainties that individuals have about
the situation they are in. Since our work is originally motivated by the need of a formal
theory of real interaction, this leads to the ultimate question about applicability of our
analysis to real epistemic situations, and thus back to interaction in real life.
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