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1 Introduction

Epistemic modal logics and their extensions are concerned with global and abstract problems in reasoning

about information. One of the features of that approach is its struggle for flexibility: it aims at designing

logical systems that can model a large variety of epistemic scenarios [9, 4]. Hence, it is not surprising that

the trade-off between expressivity and complexity has been one of the central problems in the epistemic

logic literature. Logics need to be quite complex to account for a wide range of problems and it is not a

surprise that there are many intractability results in the literature (see e.g., [13] and [5] for a survey).

One of the aims of this paper is to initiate the mapping of the tractability border among the epistemic

tasks rather than epistemic logics. As a result, we can identify a theoretical threshold in the difficulty

of reasoning about information, as was already done in the context of reasoning with quantifiers (see

[19, 20]). In order to do this, we shift our perspective: Instead of investigating the complexity of a given

logic that may be used to describe a problem, we turn towards a complexity study of that concrete

problem itself, determining what computational resources are needed in order to perform the reasoning.

Focusing on specific problems, things may be much easier since concrete problems involved in the study

of multi-agent interaction are rarely as general as e.g. satisfiability. In most cases, checking whether a

given property is satisfied in a given (minimal) epistemic scenario is sufficient. Hence, many problems

turn out to be tractable. Still, we will see that even in this perspective there are some intractable

problems. This feasibility border in epistemic tasks seems to be an interesting new topic for a formal

study. Moreover, in principle the cognitive plausibility of the border could be empirically assessed by

checking whether it correlates with the difficulties faced by human subjects (cf. [23, 21]). So in a sense,

we aim to initiate a search for an appropriate perspective and complexity measures that describe in

plausible ways the cognitive difficulties agents face while interacting. Certain experimental results in the

economics literature [24, 10] explore similar directions. In general, the approach we have described in this

paper focuses exclusively on the abstract information structure leaving out any concept of preferences

and strategic reasoning.

In this paper we investigate the computational complexity of various decision problems that are

relevant for interactive reasoning in epistemic modal logic frameworks. In particular, we explore the

complexity of manipulating and comparing information structures possessed by different agents. For

instance, we are interested in how difficult it is to answer the following questions.
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• Is one agent’s information strictly less refined than another agents’ information?

• Do two agents have the same knowledge/belief about each other’s knowledge/belief?

• Given two agents, is it possible to give some information to one of them such that as a result

– both agents have similar information structures? (cf. [22].)

– one of them has more refined information than the other?

For determining the computational complexity of the different problems, we use complexity results

from graph theory (see e.g. [12]). Thus, we also clarify the computational impact of assuming S5 acces-

sibility relations in epistemic models, i.e., the impact of assuming partition-based information structures

on the complexity of various problems.

After giving the preliminaries in Section 2, we discuss four types of epistemic tasks and their com-

putational complexity: informational similarity (Section 3.1), informational symmetry (Section 3.2) and

two kinds of informational manipulation (Section 3.3 and 3.4). Omitted proofs can be found in the

appendix. Section 4 concludes.

2 Preliminaries

2.1 Modeling information

We use relational structures from epistemic logic for modeling information (cf. [6, 9]). Kripke models can

compactly represent the information agents have about the world and about the information possessed

by the other agents. In what follows, N = {1, . . . , n} is a fixed finite set of agents and prop is a countable

set of propositional variables.

Definition 2.1 (Kripke Models). A Kripke model M based on a set of agents N is of the form

(W, (Ri)i∈N , V ), where W 6= ∅, for each i ∈ N , Ri is a binary relation on W , and V : prop→ ℘(W ).

It is frequently assumed that information structures are partition-based [1, 9, 16]:

Definition 2.2 (Epistemic Models). An epistemic model is a Kripke model such that for all i ∈ N , Ri

is an equivalence relation. (We usually write ∼i instead of Ri).

We write |M| to refer to the size of the model M, and Dom(M) to refer to the domain of M. We

refer to a pair (M, w) with w ∈ Dom(M) as a pointed model. Intuitively Ri encodes i’s uncertainty: if

sRit, then if the actual world were s then i would consider it possible that the actual world is t. For any

non-empty set G ⊆ N , we write R∗G for the reflexive transitive closure of
⋃

i∈GRi.

2.2 Comparing models and reasoning about submodels

In what follows, we need a reasonable notion of two models being similar. In addition to the notion of

isomorphism, we make use of the notions of simulation, simulation equivalence and bisimulation.

Definition 2.3 (Simulation). We say that a pointed Kripke model (M, s), whereM = (W, (Ri)i∈N , V )

and s ∈W , is simulated by another pointed model (M′, s′) (which we denote by (M, s) v (M′, s′)) such

that M′ = (W ′, (R′i)i∈N , V
′) with s′ ∈ W ′ if there exists a binary relation Z ⊆ W ×W ′ such that sZs′

and for any two states x, x′ whenever xZx′ then for all i ∈ N :

1. x, x′ verify the same proposition letters.



2. if xRiz in M then there exists some z′ ∈W ′ with x′R′iz
′ and zZz′.

We say that M = (W, (Ri)i∈N , V ) is simulated by M′ = (W ′, (R′i)i∈N , V
′) (denoted by MvM′) if

there are s ∈ W and s′ ∈ W ′ such that (M, s) v (M′, s′). We say that a simulation Z ⊆ W ×W ′ is

total if for every s ∈W , there is some t ∈W ′ such that sZt, and for every t ∈W ′, there is some s ∈W
such that sZt. IfM is simulated byM′ by means of a total simulation, we sayMvtotalM′. Moreover,

we say thatM = (W, (Ri)i∈N , V ) andM′ = (W ′, (R′i)i∈N , V
′) are simulation equivalent ifM simulates

M′ and M′ simulates M. The following notion is stronger than simulation equivalence.

Definition 2.4 (Bisimulation). A local bisimulation between two pointed Kripke models with set of

agents N , (M, s) with M = (W, (Ri)i∈N , V ) and (M′, t) with M′ = (W ′, (R′i)i∈N , V
′) is a binary

relation Z ⊆W ×W ′ such that sZs′ and also for any worlds x, x′ whenever xZx′ then for all i ∈ N :

1. x, x′ verify the same proposition letters.

2. if xRiu in M then there exists u′ ∈W ′ with x′R′iu
′ and uZu′.

3. if x′R′iu
′ in M′ then there exists u ∈W with xRiu and uZu′.

We say that M = (W, (Ri)i∈N , V ) and M′ = (W ′, (R′i)i∈N , V
′) are bisimilar (M↔M′) if there are

s ∈ W and s′ ∈ W ′ such that (M, s)↔(M′, s′). A bisimulation Z ⊆ Dom(M) × Dom(M′) is total if

for every s ∈ Dom(M), there is some t ∈ Dom(M′) such that sZt, and for every t ∈ Dom(M′), there

is some s ∈ Dom(M) such that sZt. Then we write M↔totalM′.

To reason about informational structures that can be obtained by providing agents with new infor-

mation, we use the notions of submodel and generated submodel.

Definition 2.5 (Submodel). We say that M′ is a submodel of M iff W ′ ⊆ W , ∀i ∈ N, R′i =

Ri ∩ (W ′ ×W ′), ∀p ∈ prop, V ′(p) = V (p) ∩W ′.

The notion of induced subgraph is just like that of a submodel without the condition for the valuations.

The notion of subgraph is weaker than that of an induced subgraph as it allows that R′i ⊂ Ri∩W ′×W ′).

Definition 2.6 (Generated submodel). We say thatM′ = (W ′, (Ri)
′
i∈N , V

′) is a generated submodel of

M = (W, (Ri)i∈N , V ) iff W ′ ⊆W and ∀i ∈ N, R′i = Ri∩(W ′×W ′), ∀p ∈ prop, V ′(p) = V (p)∩W ′ and

if w ∈ W ′ and wRiv then v ∈ W ′. The submodel of M generated by X ⊆ W is the smallest generated

submodel M′ of M with X ⊆ Dom(M′).

We write Ki[w] := {v ∈W | wRiv} to denote i’s information set at w and R∗G[w] := {v ∈W | wR∗Gv}.
This notion is generalized by the concept of horizon:

Definition 2.7 (Horizon). The horizon of i at (M, w) (notation: (M, w)i) is the submodel generated

by Ki[w].

This paper will not use syntactic notions. In terms of intuition, the important definition is that of

knowledge Ki: agent i knows φ at w if φ is true in all states that i considers possible at w. In equivalent

semantic terms: i knows E if E ⊆ Ki[w]. E is common knowledge in a group G at w iff E ⊆ R∗G[w].

2.3 Tractability

Some problems, although computable, nevertheless require too much time or memory to be feasibly

solved by a realistic computational device. Computational complexity theory investigates the resources

(time, memory, etc.) required for the execution of algorithms and the inherent difficulty of computational



problems [17]. In particular, we want to identify efficiently solvable problems and draw a line between

tractability and intractability. In general, the most important distinction is that between problems which

can be computed in polynomial time with respect to their size, and those which are believed to have

only exponential time algorithmic solutions. The class of problems of the first type is called PTIME

(P for short); one can demonstrate that a problem belongs to this class if one can show that it can be

computed by a deterministic Turing machine in polynomial time. Problems belonging to the second

class are referred to as NP-hard. They are at least as difficult as problems belonging to the NPTIME

(NP) class; this is the class of problems which can be computed by nondeterministic Turing machines in

polynomial time. NP-complete problems are NP-hard problems belonging to NPTIME, hence they are

intuitively the most difficult problems among the NPTIME problems.

3 Complexity of comparing and manipulating information

3.1 Information similarity

The first natural question we would like to address is whether an agent in a given situation has similar

information to the one possessed by some other agent (in a possibly different situation). One very strict

way to understand such similarity is through the use of isomorphism.

For the general problem of checking whether two Kripke models are isomorphic, we can give tight

complexity bounds, as this problem is polynomially equivalent to graph isomorphism. The graph iso-

morphism problem is neither known to be NP-complete nor to be tractable and the set of problems with

a polynomial-time reduction to the graph isomorphism problem is called GI.

Decision Problem 3.1 (Kripke model isomorphism).

Input: Pointed Kripke models (M1, w1), (M2, w2).

Question: Are (M1, w1) and (M2, w2) isomorphic, i.e. is it the case that (M1, w1) ∼= (M2, w2)?

Fact 3.2. Kripke model isomorphism is GI-complete.

However, isomorphism is arguably a too restrictive notion of similarity. Bisimilarity is a weaker but

still a very natural concept of similarity for relational structures. Here the question arises as to whether

working with S5 models – a common assumption in the epistemic logic and interactive epistemology

literature – rather than arbitrary Kripke structures has an influence on the complexity of the task.

Decision Problem 3.3 (Epistemic model bisimilarity).

Input: Two pointed multi-agent epistemic S5 models (M1, w1), (M2, w2).

Question: Are the two models bisimilar, i.e. (M1, w1)↔(M2, w2)?

In [3], it has been shown that deciding bisimilarity is P-complete for finite labelled transition systems.

It follows that epistemic models bisimilarity is also in P.

Fact 3.4. Multi-agent epistemic S5 model bisimulation can be done in polynomial time with respect to

the size of the input (|M1|+ |M2|).

Thus, multi-agent epistemic S5 model bisimilarity is in P. Now, of course the question arises if it is

also P-hard.1

Open problem Is multi-agent epistemic model (S5) bisimulation P-hard?

1We conjecture that we can show P hardness using methods of simulating an arbitrary relation R by a combination of

two equivalence relations ∼1 and ∼2 as follows: we replace each wRv by w ∼1 z ∼2 v, for a new state z.



Without any assumptions on the accessibility relations for the agents, we immediately get P-

completeness for multi-agent Kripke models as the problem is equivalent to bisimilarity for finite labelled

transition systems.

The picture. Deciding whether two models are bisimilar is tractable for S5 epistemic models, and

in case of the arbitrary Kripke structures it is among the hardest tractable problems. Kripke model

isomorphism lives on the tractability border. It is open whether isomorphism for (partition-based)

epistemic models is tractable and whether epistemic S5 model bisimilarity is P-complete, which we

indeed conjecture to be the case.

3.2 Informational symmetry: knowing what others know

The preceding notions of similarity are very strong. In the context of analyzing epistemic interactions

between agents, weaker notions of similarity are of interest. In general, the information that agents

have about each other’s information state plays a crucial role. We will now analyze the problem of

deciding whether two agents’ views about the interactive epistemic structure, and in particular about

the knowledge of other agents, are equivalent. A first reading is simply to fix some fact E ⊆W and ask

whether E is common knowledge in a group G. Clearly this problem is tractable.

Fact 3.5. Given a pointed model (M, w), some E ⊆ Dom(M) and G ⊆ N , deciding whether E is

common knowledge in the group G at w can be done in polynomial time.

Proof. From reachability for R∗G.

However, instead of fixing some specific fact of interest, the question might be whether a situation

is symmetric with respect to two given agents, say Alice and Bob. In other words, is the interactive

informational structure from Alice’s perspective similar to how it is from Bob’s perspective?

Definition 3.6. We write M[i/j] to be the model obtained by switching labels between i and j.

Definition 3.7. We say that two pointed multi-agent epistemic models (M, s) and (M′, s′) (with set

of agents N) are flipped bisimiliar for agents i, j ∈ N , (M, s)↔f
(i,j)(M′, s′), iff (M, s)↔(M′[i/j], s′).

A natural question is the relation of flipped bisimulation to the fact that all knowledge of both agents

is common knowledge. The following is immediate:

Observation 3.8. If inM, ∼∗{1,2}⊆∼j for j ∈ {1, 2}, then for all w ∈ Dom(M), (M, w)↔f
(1,2)(M, w).

Is other direction true? Locally, even on S5 models, flipped self-bisimulation is a much weaker

requirement: it does not even imply that (shared) knowledge of facts is common knowledge:

Fact 3.9. There exists a pointed S5 epistemic model which is a, b-flipped bisimilar to itself, where the

two agents know that p (with p ∈ prop), and p is not common knowledge between a and b.

But required globally of every state, we do have the following converse:

Fact 3.10. LetM be a transitive model with w ∈ Dom(M). Whenever the submodelM′ ofM generated

by {w} is such that every state is 0, 1-flipped bisimilar to itself, then for any p ∈ prop, if j knows p at

w (i.e., V (p) ⊆ Kj [w]) for some j ∈ {0, 1} then p is common knowledge between 0 and 1 at w.

Let us recall the notion of horizon (see Definition 2.7). It is the submodel generated by the information

set of the agent: the horizon of i at (M,w) (notation: (M,w)i) is the submodel generated by Ki[w].



Decision Problem 3.11 (Flipped multi-agent epistemic model horizon bisimilarity).

Input: Two pointed multi-agent epistemic models (M, w), (M′, w′), two agents i, j.

Question: Are the horizons of agents i and j in (M, w) and (M′, w′) respectively flipped bisimilar for

i, j, namely is it the case that: (M, w)i↔(M′, w′)j [i/j]?

Fact 3.12. Flipped multi-agent epistemic S5 model horizon bisimilarity is in P. Given a multi-agent

epistemic model (M, w), it is trivial to decide if for two agents i, j it holds that (M, w)i↔(M, w)j [i/j].

Proof. We can use a polynomial algorithm for Kripke model bisimilarity. Horizons of two agents at the

same point in a model are always equal in S5 because of reflexivity of the accessibility relations.

Fact 3.13. Without any assumptions on the accessibility relations, the computational complexity of

multi-agent Kripke model flipped horizon bisimilarity is P-complete.

Proof. Follows from [3] and the fact that in general the horizons of two agents can be disjoint.

The picture. Deciding horizon flipped bisimilarity in Kripke models is among the hardest tractable

problems. It is trivial for partition-based models. Deciding whether a fact is commonly known is

tractable.

3.3 Can we reshape an agent’s mind into some desired informational state?

So far, we have been comparing agents’ informational states within models. The next interesting problem

is to decide whether new informational states (satisfying desired properties) can be achieved in certain

ways. One immediate question is whether one can give some information to an agent (i.e. to restrict her

horizon) such that after the update her horizon is bisimilar to the horizon of some other agent. Concretely,

we would like to know if there is any type of information that could reshape some agent’s information to

fit some desired new informational state or at least be similar to it. We will thus investigate the task of

checking whether there is a submodel that has certain properties. This means that we determine if it is

possible to purposely refine a model in a certain way. This question is in line with problems addressed

by arbitrary public announcement logic and arbitrary event modal logic [2, 11, 22].2

We start with the problem of checking whether there is a submodel of one model that is bisimilar to

another one. On graphs, this is related to the problem of deciding if one contains a subgraph bisimilar

to another. Note that in the problem referred to in the literature as “subgraph bisimulation” [8], the

subgraph can be any graph whose vertices are a subset of the vertices of the original graph, and the

edges can be any subset of the edges of the original graph restricted to the subset of vertices. To be

more specific, the problem investigated in [8] is the following:

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), is there a graph G′2 = (V ′2 , E
′
2) with

V ′2 ⊆ V2 and E′2 ⊆ E2 such that there is a total bisimulation between G′2 and G1?

Since we want to investigate the complexity of reasoning about epistemic interaction using modal logic,

we are interested in subgraphs that correspond to relativization in modal logic: induced subgraphs. This

leads us to an investigation of induced subgraph bisimulation.

Decision Problem 3.14 (Induced subgraph bisimulation).

Input: Two finite graphs G1 = (V1, E1), G2 = (V2, E2), k ∈ N.

Question: Is there an induced subgraph of G2 with at least k vertices that is bisimilar to G1, i.e. is

there some V ′ ⊆ V2 with |V ′| ≥ k and (V ′, E2 ∩ (V ′ × V ′))↔totalG1?

2Note that in the current work, we focus on the semantic structures only and do not require that the submodel can be

characterized by some formula in a certain epistemic modal language.



Even though the above problem looks very similar to the original subgraph bisimulation problem

(NP-hardness of which is shown by reduction from Hamiltonian Path), NP-hardness does not follow

immediately.3 Nevertheless, we can show NP-hardness by reduction from Independent Set.

Proposition 3.15. Induced subgraph bisimulation is NP-complete.

Now, an analogous result for Kripke models follows. The intuitive interpretation here (with an

epistemic/doxastic interpretation of the accessibility relation) is whether it is possible to ‘gently’ restrict

one model without letting its domain get smaller than k such that afterwards it is bisimilar to another

model. The intuition is that we would like the new information to change as minimally as possible the

informational state of the target agent.

Decision Problem 3.16 (Submodel bisimulation for Kripke models).

Input: Kripke models M1, M2 with set of agents N , k ∈ N.

Question: Is there a submodel M′2 of M2 with |Dom(M′2)| ≥ k such that M1 and M′2 are totally

bisimilar i.e. M1↔totalM′2?

Corollary 3.17. Submodel bisimulation for Kripke models is NP-complete.

As we are interested in the complexity of reasoning about the interaction of epistemic agents as

it is modeled in (dynamic) epistemic logic, let us now see how the complexity of induced subgraph

bisimulation changes when we make the assumption that models are partitional, i.e. that the relation is

an equivalence relation, as it is frequently assumed in the AI or interactive epistemology literature. We

will see that this assumption makes the problem significantly easier.

Proposition 3.18. If for graphs G1 = (V1, E1) and G2 = (V2, E2), E1 and E2 are reflexive, transitive

and symmetric, then induced subgraph bisimulation for G1 and G2 can be solved in linear time.

Assuming the edge relation in a graph to be an equivalence makes induced subgraph bisimulation a

trivial problem because, unless its set of vertices is empty, every such graph is bisimilar to the graph

({v}, {(v, v)}). But for S5 models this is of course not the case, as the bisimulation takes into account the

valuation. Nevertheless, we will now show that also for single agent S5 models, the problem of submodel

bisimulation is significantly easier than in the case of arbitrary single agent Kripke models. To be more

precise, we will distinguish between two problems:

The first problem is local single agent S5 submodel bisimulation. Here we take as input two pointed

S5 models. Then we ask whether there is a submodel of the second model that is bisimilar to the first

one. Thus, the question is whether it is possible to restrict one of the models in such a way that there

is a state in which the agent has exactly the same information as in the situation modeled in the other

model.

Decision Problem 3.19 (Local S5 submodel bisimulation for single agent epistemic models).

Input: A pointed S5 epistemic model (M1, w) withM1 = (W1,∼1, V1) and w ∈W1, and an S5 epistemic

model M2 = (W2,∼2, V2).

Question: Is there a submodel M′2 = (W ′2,∼′2, V ′2) of M2 such that (M1, w)↔(M′2, w′) for some

w′ ∈ Dom(M′2)?

Proposition 3.20. Local submodel bisimulation for single agent pointed epistemic models is in P.

The second problem we consider is global S5 submodel bisimulation, where the input are two models

M1 and M2 and we ask whether there exists a submodel of M2 such that it is totally bisimilar to M1.

3For Induced Subgraph Bisimulation, a reduction from Hamiltonian Path seems to be more difficult, as does a direct

reduction from the original subgraph bisimulation problem.



Decision Problem 3.21 (Total S5 submodel bisimulation for single agent epistemic models).

Input: Two S5 epistemic models M1 = (W1,∼1, V1),M2 = (W2,∼2, V2).

Question: Is there a submodel M′2 = (W ′2,∼′2, V ′2 , ) of M2 such that M1↔totalM′2?

We can show that even though the above problem seems more complicated than local submodel

bisimulation, it can still be solved in polynomial time. The proof uses the fact that finding a maximum

matching in a bipartite graph can be done in polynomial time (see e.g. [18]).

Theorem 3.22. Total submodel bisimulation for single agent epistemic models is in P.

Now, the question arises whether the above results also hold for the multi-agent case.

Decision Problem 3.23 (Global submodel bisimulation for multi-agent pointed epistemic models).

Input: Two epistemic models M1 = (W1, (∼1i)i∈N , V1),M2 = (W2, (∼2i)i∈N , V2), for N being a finite

set (of agents), and k ∈ N.

Question: Is there a submodel M′2 = (W ′2, (∼2
′
i)i∈N , V

′
2) of M2 such that M1↔totalM′2?

We conjecture that using similar ideas to those outlined in footnote 1 to show that the above problem

is NP-complete for models with at least two agents.

The picture. Induced subgraph bisimulation is intractable (NP-complete) and so is submodel bisim-

ulation for arbitrary Kripke models. For S5 models, induced subgraph bisimulation is tractable, and so

are local submodel bisimulation and total submodel bisimulation in the single agent case. We think that

NP-completeness can be shown for the case of at least two agents.

3.4 Simulation vs Bisimulation

In dynamic systems with diverse agents, an interesting question is whether it is possible to give some

information to one agent such that afterwards she knows at least as much as some other agent. This is

captured by an asymmetric notion, that of simulation. With this difference, the question can be raised

of the effect on tractability and intractability of requiring simulation versus requiring bisimulation. With

this motivation, we would like to explore the problem of induced subgraph simulation.

Decision Problem 3.24 (Induced subgraph simulation).

Input: Two finite graphs G1 = (V1, E1), G2 = (V2, E2), k ∈ N.

Question: Is there an induced subgraph of G2 with at least k vertices that is simulated by G1, i.e., is

there some V ′ ⊆ V2 with |V ′| ≥ k and (V ′, E2 ∩ (V ′ × V ′)) vtotal G1?

Proposition 3.25. Induced subgraph simulation is NP-complete.

In [7], it has been shown that given two graphs it is also NP-complete to decide if there is a subgraph

(not necessarily an induced one) of one such that it is simulation equivalent to the other graph. Here,

we show that this also holds if the subgraph is required to be an induced subgraph.

Decision Problem 3.26 (Induced subgraph simulation equivalence).

Input: Two finite graphs G1 = (V1, E1), G2 = (V2, E2), k ∈ N.

Question: Is there an induced subgraph of G2 with at least k vertices that is similar to G1, i.e. is there

some V ′ ⊆ V2 with |V ′| ≥ k and (V ′, E2 ∩ (V ′ × V ′)) vtotal G1 and G1 vtotal (V ′, E2 ∩ (V ′ × V ′))?

Proposition 3.27. Induced subgraph simulation equivalence is NP-complete.



As a corollary of the two previous propositions, we get that for arbitrary Kripke models both submodel

simulation and submodel equivalence are NP-complete. We conjecture that for single agent S5, we can

use similar methods as used in the proof of Theorem 3.22. Let us conclude with an interesting open

question, as to whether the results from [15] also hold for epistemic models.

Open problem Is deciding simulation (equivalence) of epistemic models at least as hard as deciding

bisimilarity?

The picture. Induced subgraph simulation and equivalence are both intractable (NP-complete). The

same holds for Kripke model simulation (equivalence). It remains to be investigated for epistemic models.

4 Conclusions and Further Work

In this work, we have identified concrete epistemic tasks related to the comparison and manipulation

of informational states of agents in possibly different situations. Interestingly, our complexity analysis

shows that the preceding problems live on both sides of the border between tractability and intractability:

Problem Tractable? Comments

Kripke model isomorphism unknown in GI

Epistemic model bisimilarity Yes Conjecture: P-hard for ≥ 2 agents

Flipped horizon bisimilarity Yes P-complete for arbitrary models

Kripke submodel bisimulation No NP-complete for arbitrary models;

in linear time for S5

Local S5 submodel bisimulation Single agent: Yes unknown

Total S5 submodel bisimulation Single agent: Yes Conjecture: NP-complete for ≥ 2 agents

Kripke submod. simulation (equiv.) No Conjecture: in P for single agent S5

Table 1: Summary of the results and open questions.

As such, this work is a first step towards mapping out the complexity of concrete epistemic problems

based on epistemic modeling. It would be interesting to systematize this approach to a larger class of

problems. Further work to complete the picture includes the open problems that we mentioned in our

analysis in Section 3. Solving them would clarify the border between tractability and intractability in

the domain of epistemic reasoning tasks. This would then also shed some light on the more general

question as to what is the impact of the assumption of S5 on the complexity of certain problems from

graph theory. It would moreover clarify whether for some epistemic tasks, moving from single agent to

multi-agent scenarios has the consequence of crossing the border between tractability and intractability.

How would we like to interpret our results? One conclusion, we can draw from our case study

is that assuming partition-based information structures simplifies epistemic tasks of comparing and

manipulating informational structures. In particular, we saw that comparing agents’s informational

structures via bisimulation is tractable in the multi-agent case, meaning that it should be relatively easy

to say whether Alice’s information is strictly less refined than Bob’s. Furthermore, deciding whether two

agents have symmetric knowledge about each other’s knowledge should be also in principle easy (PTIME

for S5 models and P-complete for arbitrary models). Finally, we proved that things are getting harder if

one wants to know wether a certain manipulation of agents’ knowledge is possible. Deciding whether the

information structure of Alice is more refined than that of Bob is in general intractable, independently

of choosing bisimilarity or isomorphism as our notion of similarity. However, the problem becomes easy

if one assumes that agents’s knowledge can be modeled by equivalence relations. On the other hand,



substituting bisimulation by simulation gives rise to an interesting open problem whether computing

simulation equivalence of epistemic models is a at least as hard as deciding their bisimilarity.
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A Proofs of selected theorems

Fact: 3.9 There exists a pointed S5 epistemic model which is a, b-flipped bisimilar to itself, where the

two agents knows that p (with p ∈ prop), and p is not common knowledge between a and b.

Proof. Consider the model M = 〈W,∼a,∼b, V 〉 with W = {−2,−1, 0, 1, 2}, ∼a is the smallest equiva-

lence relation on W containing {(−2,−1), (0, 1)}, ∼b is the smallest equivalence relation on W contain-

ing {(−1, 0), (1, 2)}, and V (p) = {−1, 0, 1}. It is easy to check that both Alice and Bob knows p at 0:

Ka[0] = {0, 1} ⊆ V (p) and Kb[0] = {−1, 0} ⊆ V (p). Also p is not common knowledge between Alice and

Bob at 0, indeed 0 ∼a 1 ∼b 2 and 2 6∈ V (p). Now it remains to show thatM, 0 is a, b-flipped bisimilar to

itself. The flipped bisimulation is defined as Z = {(n, 0−n) | n ∈W}. It is easily checked by inspection

that Z is indeed a a, b-flipped bisimulation.

Fact 3.10: Let M be a transitive model with w ∈ Dom(M). If the submodel M′ of M generated

by {w} is such that every state is 0, 1-flipped bisimilar to itself. Then for any p ∈ prop, if j knows p at

w, i.e., (V (p) ⊆ Kj [w], for some j ∈ {0, 1}, then p is common knowledge between 0 and 1) at w.

Proof. We prove the contrapositive. Assume that p is not common knowledge between 0 and 1 at w. It

follows that we have a 0, 1-path of length n with n ∈ ω of the form wRf (1)w1Rf(2) . . . Rf(n − 1)wn−1

with wn−1 6∈ V (p) and f(k) ∈ {0, 1} for all k ∈ n. Clearly, all the states in the preceding sequence

are in M′ so they must be 0, 1-flipped bisimilar to themselves and, in particular, to w. Hence, by

definition of a flipped bisimulation we have a sequence of the form wR1
f (1)w1

1Rf
1(2) . . . Rf1(n−1)w1

n−1.

Especially, w1
n−1 6∈ V (p) and f1(k) = |1 − f(k)|. Iterating the process we can obtain a sequence of the

form wRn−1
f (1)wn−1

1 Rfn−1(2) . . . Rfn−1(n− 1)wn−1
n−1 with wn−1

n−1 6∈ V (p) and with fn−1 being one of the

constant functions of the co-domain {0, 1}. By transitivity it follows that wn−1
n−1 ∈ K0[w]∩K1[w]∩V (p),

contradicting the assumption that at least of the agents knew p at w.

Proposition 3.15: Induced subgraph bisimulation is NP-complete.

Proof. Showing that the problem is in NP is straightforward. Hardness is shown by reduction from

Independent Set. First of all, let Ik = (V
Ik
, EIk = ∅) with |V

Ik
| = k denote a graph with k vertices and

no edges. Given the input of Independent Set, i.e. a graph G = (V,E) and some k ∈ N we transform it

into (Ik, G), k, as input for Induced Subgraph Bisimulation.

Now, we claim that G has an independent set of size at least k iff there is some V ′ ⊆ V with |V ′| ≥ k
and (V ′, E ∩ (V ′ × V ′))↔totalIk.



From left to right, assume that there is some S ⊆ V with |S| = k, and for all v, v′ ∈ S, (v, v′) /∈ E.

Now, any bijection between S and VIk is a total bisimulation between G′ = (S,E∩ (S×S)) and Ik, since

E ∩ (S × S) = ∅ and |S| = |VIk |.
For the other direction, assume that there is some V ′ ⊆ V with |V ′| = k such that for G′ = (V ′, E′ =

E ∩ (V ′ × V ′)) we have that G′↔totalIk. Thus, there is some total bisimulation Z between G′ and Ik.

Now, we claim that V ′ is an independent set of G of size k. Let v, v′ ∈ V ′. Suppose that (v, v′) ∈ E.
Then since G′ is an induced subgraph, we also have that (v, v′) ∈ E′. Since Z is a total bisimulation,

there has to be some w ∈ Ik with (v, w) ∈ Z and some w′ with (w,w′) ∈ EIk and (v′, w′) ∈ Z. But this

is a contradiction with EIk = ∅. Thus, V ′ is an independent set of size k of G. The reduction can clearly

be computed in polynomial time. This concludes the proof.

Proposition 3.18: If for graphs G1 = (V1, E1) and G2 = (V2, E2) it holds that E1 and E2 are

reflexive, transitive and symmetric, then the problem of induced subgraph bisimulation for G1 and G2

can be solved in linear time.

Proof. In this proof, we will use the fact that G1 = (V1, E1)↔totalG2 = (V2, E2) if and only if it is the

case that V1 = ∅ iff V2 = ∅. Let us prove this. From left to right, assume that G1 = (V1, E1)↔totalG2 =

(V2, E2). Then since we have a total bisimulation, it must be the case that either V1 = V2 = ∅ or

V1 6= ∅ 6= V2.

For the other direction, assume that V1 = ∅ iff V2 = ∅. Now, we show that in this case, V1×V2 is a total

bisimulation between G1 and G2. If V1 = V2 = ∅, we are done. So, consider the case where V1 6= ∅ 6= V2.

Let (v1, v2) ∈ V1 × V2, and assume that (v1, v
′
1) ∈ E1 for some v′1 ∈ V1. Since E2 is reflexive, we know

that there is some v′2 ∈ V2 such that (v2, v
′
2) ∈ E2. Of course (v′1, v

′
2) ∈ V1 × V2. The back condition is

analogous. Since V1 × V2 is total, we thus have G1↔totalG2. Hence, G1 = (V1, E1)↔totalG2 = (V2, E2)

if and only if it is the case that V1 = ∅ iff V2 = ∅.
Therefore, for solving the induced subgraph bisimulation problem for input G1 and G2 with E1 and

E2 being reflexive, transitive and symmetric and k ∈ N, all we need to do is to go through the input

once and check whether V1 = ∅ iff V2 = ∅, and whether |V2| ≥ k. If the answer to both is yes then we

know that G1↔totalG2 and since |V2| ≥ k, we answer yes, otherwise no.

Proposition 3.20: Local submodel bisimulation for single agent pointed epistemic models is in P.

Proof. Given the input of the problem, i.e. a pointed epistemic model M1, w with M1 = (W1,∼1, V1),

and w ∈W1 and an epistemic model M2 = (W2,∼2, V2), we run the following procedure.

1. For all [w2] ∈W2/ ∼2 do the following:

(a) Initialize the set Z := ∅.

(b) for all w′ ∈ [w] do the following

i. For all w′2 ∈ [w2] check if for all p ∈ Prop it holds that w′ ∈ V1(p) iff w′2 ∈ V2(p). If this

is the case, set Z := Z ∪ (w′, w′2).

ii. if there is no such w′2, continue with 1, otherwise we return Z and we stop.

2. In case we didn’t stop at 1(b)ii, we can stop now, and return no.

In the worst case, this takes |M1| · |M2| steps.

If the procedure has stopped at 2, there is no bisimulation with the required properties. To see this,

note that if we stopped in 2, this means that there was no [w2] ∈W2/ ∼2 such that for every state in [w]

there is one in [w2] in which exactly the same propositional letters are true. Thus, since we were looking

for a bisimulation that is also defined for the state w, such a bisimulation cannot exist.



If the algorithm returned a relation Z, this is indeed a bisimulation between M1 and the submodel

M′2 of M2 where M′2 = (W ′2,∼′2, V ′2), where

W ′2 = {w2 ∈W2 | there is some w1 ∈ [w] such that (w1, w2) ∈ Z}

and ∼′2 and V ′2 are the usual restrictions of ∼2 and V2 to W2. This follows from the following two

facts: First, for all pairs in Z it holds that both states satisfy exactly the same proposition letters.

Second, since Z is total both on [w] and on W ′2 and all the states in [w] are connected to each other

by ∼1 and all states in W ′2 are connected to each other by ∼′2, both the forth and back conditions are

satisfied. This concludes the proof.

Theorem 3.22: Total submodel bisimulation for single agent epistemic models is in P.

First we introduce some notation used in the proof.

Notation A.1. Let M = (W,∼, V ) be a single agent epistemic model. For the valuation function

V : Prop → W , we define V̂ : W → 2Prop, with w 7→ {p ∈ Prop | w ∈ V (p)}. Abusing notation, for

X ⊆ W we sometimes write V̂ (X) to denote {V̂ (w) | w ∈ X}. For w ∈ W , [w] = {w′ ∈ W | w ∼ w′}
denotes the equivalence class of w under ∼. W/ ∼ denotes the set of all equivalence classes of W for the

relation ∼.

Definition A.2. Given a single agent epistemic model M = (W,∼, V ), Mmin cells denote a model

obtained from M by the following procedure:

1. Initialize X with X := W/ ∼.

2. Go through all the pairs in X ×X.

(a) When you find ([w], [w′]) with [w] 6= [w′] such that V̂ ([w]) = V̂ ([w′]), continue at 2 with

X := X − [w′].

(b) Otherwise, stop and return the model Mmin cells := (
⋃
X,∼′, V ′), where ∼′ and V ′ are the

usual restrictions of ∼ and V to
⋃
X.

Fact A.3. With input M = (W,∼, V ), the procedure in Definition A.2 runs in time polynomial in

|M = (W,∼, V )|.

Proof. Follows from the fact that the cardinality of W/ ∼ is bounded by |W |; we only enter step 2 at

most |W | times, and each time do at most |W |2 comparisons.

Fact A.4. The answer to total submodel bisimulation for single agent epistemic models (Decision Prob-

lem 3.21) with input M1 = (W1,∼1, V1),M2 = (W2,∼2, V2) is yes iff it is with input M1
min cells =

(W1,∼1, V1),M2 = (W2,∼2, V2).

Proof. From left to right, we just need to restrict the bisimulation to the states of M1
min cells. For the

other direction, we start with the given bisimulation and then extend it as follows. For the states in a

cell [w′] which was removed during the construction of M1
min cells, can be mapped to the ones of a cell

[w] in M1
min cells with the same valuation.

Proof. By Fact A.3 and Fact A.4, transforming M1 into M1
min cells can be done in polynomial time.

Thus, w.l.o.g. we can assume that M1 is already of the right shape; i.e. M1 =M1
min cells. Given the

two models as input, we construct a bipartite graph G = ((W1/ ∼1,W2/ ∼2), E) where E is defined as

follows.

([w1], [w2]) ∈ E iff V̂1([w1]) ⊆ V̂2([w2]).



Claim A.5. There is a submodel M′2 of M2 such that M1↔totalM′2 iff G has a matching of size

|W1/ ∼1 |.

Proof. From left to right, assume that there is a submodel M′2 = (W ′2,∼′2, V ′2) of M2 such that

M1↔totalM′2. Let Z be such a total bisimulation.

Note that since we assumed that M1 =Mmin cells the following holds:

1. For all ([w1], [w2]) ∈W1/ ∼1 ×W2/ ∼2 it is the case that whenever Z ∩ ([w1]× [w2]) 6= ∅, then for

all [w′1] ∈W1/ ∼1 such that [w′1] 6= [w1], Z ∩ ([w′1]× [w2]) = ∅.

Thus, the members of different equivalence classes in W1/ ∼1 are mapped by Z to into different equiva-

lence classes of W2/ ∼2.

Now, we construct Ė ⊆ E as follows.

([w1], [w2]) ∈ Ė iff ([w1], [w2]) ∈ E and ([w1]× [w2]) ∩ Z 6= ∅.

Then |Ė| ≥ |W1/ ∼1 | because of the definitions E and Ė and the fact that Z is a bisimulation that is

total on W1. Now, if |Ė| = |W1/ ∼1 | then we are done since by definition of Ė, for each [w1] ∈W1/ ∼1

there is some [w2] ∈ W2/ ∼2 such that ([w1], [w2]) ∈ Ė. Then it follows from 1, that Ė is indeed a

matching.

If |Ė > |W1/ ∼1 | then we can transform Ė into a matching E′ of size W1/ ∼1 |: For each [w1] ∈
W1/ ∼1, we pick one [w2] ∈W2/ ∼2 such that ([w1], [w2]) ∈ Ė and put it into E′ (note that such a [w2]

always exists because by definition of Ė, for each [w1] ∈W1/ ∼1 there is some [w2] ∈W2/ ∼2 such that

([w1], [w2]) ∈ Ė; moreover because of 1 all the [w2] ∈ W2/ ∼2 that we pick will be different). Then the

resulting E′ ⊆ Ė ⊆ E ⊆ (W1/ ∼1 ×W2/ ∼2) is a matching of G of size |W1/ ∼1 |. Thus, we have shown

that if there is a submodelM′2 ofM2 such thatM1↔totalM′2 then G has a matching of size |W1/ ∼1 |.
For the other direction, assume that G has a matching E′ ⊆ E with |E′| = |W1/ ∼1 |. Then,

recalling the definition of E, it follows that for all [w] ∈ W1/ ∼ there is some [w′] ∈ W2/ ∼2 such that

([w], [w′]) ∈ E′ and thus V̂1([w]) ⊆ V̂2([w′]).

Let us define the following submodel M′2 of M2. M′2 = (W ′2,∼′2, V ′2), where

W ′2 = {w2 ∈W2 | there is some w ∈W1 such that V̂1(w) = V̂2(w2) and ([w], [w2]) ∈ E′}

and ∼′2 and V ′2 are the usual restrictions of ∼2 and V2 to W ′2.

Now, we define a relation Z ⊆W1×W ′2, which we then show to be a total bisimulation betweenM1

and M′2

(w1, w2) ∈ Z iff V̂ (w1) = V̂2(w2) and ([w1], [w2]) ∈ E′.

Next, let us show that Z is indeed a bisimulation.

Let (w1, w2) ∈ Z. Then, by definition of Z, for every propositional letter p, w1 ∈ V1(p) iff w2 ∈ V2(p).

Next, we check the forth condition. Let w1 ∼1 w
′
1 for some w′1 ∈W1. Then since (w1, w2) ∈ Z, and thus

([w1], [w2]) ∈ E′, there has to be some w′2 ∈ [w2] such that V̂2(w′2) = V̂1(w′1). Then since [w′1] = [w1] and

[w′2] = [w2], ([w′1], [w′2]) ∈ E′. Then w′2 ∈W ′2, and (w′1, w
′
2) ∈ Z.

For the back condition, let w2 ∼2 w
′
2, for some w′2 ∈ W ′2. Then by definition of W ′2, there is some

w ∈ W1 such that V̂1(w) = V̂2(w′2) and ([w], [w′2]) ∈ E′. Thus, it follows that (w,w′2) ∈ Z. Now, we still

have to show that w1 ∼1 w. As the following hold: ([w], [w′2]) ∈ E′,[w2] = [w′2], ([w], [w2]) ∈ E′ (because

(w1, w2) ∈ Z) and E′ is a matching, it follows that [w] = [w1]. Thus, w1 ∼1 w.

Hence, we conclude that Z is a bisimulation. It remains to show that Z is indeed total.



Let w1 ∈ W1. Since E′ is a matching of size W1/ ∼1, there is some [w2] ∈ W2/ ∼2 such that

([w1], [w2]) ∈ E′. Thus, there is some w′2 ∈ [w2] such that V̂1(w1) = V̂2(w′2). This means that w′2 ∈ W ′2
and (w1, w

′
2) ∈ Z. So Z is total on W1.

Let w2 ∈W ′2. By definition of W ′2, there is some w ∈W1 such that V̂1(w) = V̂2(w2) and ([w], [w2]) ∈
E′. Thus, by definition of Z, (w,w2) ∈ Z. Therefore, Z is indeed a total bisimulation between M1 and

M′2. This concludes the proof of Claim A.5.

Hence, given two models, we can transform the first one using the polynomial procedure of Definition

A.2 and then we construct the graph G, which can be done in polynomial time as well. Finally, we use

a polynomial algorithm to check if G has a matching of size M1
min cells. If the answer is yes, we return

yes, otherwise no. This concludes the proof of Theorem 3.22.

Proposition 3.25: Induced subgraph simulation is NP-complete.

Proof. Showing that the problem is in NP is straightforward. Hardness is shown by reduction from

Independent Set. First of all, let Ik = (V
Ik
, EIk = ∅) with |V

Ik
| = k denote a graph with k vertices and

no edges. Given the input of Independent Set, i.e. a graph G = (V,E) and some k ∈ N we transform it

into (Ik, G), k, as input for Induced Subgraph Simulation.

Now, we claim that G has an independent set of size at least k iff there is some V ′ ⊆ V with |V ′| ≥ k
and (V ′, E ∩ (V ′ × V ′)) vtotal Ik.

From left to right, assume that there is some S ⊆ V with |S| = k, and for all v, v′ ∈ S, (v, v′) /∈ E.

Now, any bijection between S and VIk is a total simulation (and in fact an isomorphism) between

G′ = (S,E ∩ (S × S)) and Ik, since E ∩ (S × S) = ∅ and |S| = |VIk |.
For the other direction, assume that there is some V ′ ⊆ V with |V ′| = k such that for G′ = (V ′, E′ =

E ∩ (V ′ × V ′)) we have that G′ vtotal Ik. Thus, there is some total simulation Z between G′ and Ik.

Now, we claim that V ′ is an independent set of G of size k. Let v, v′ ∈ V ′. Suppose that (v, v′) ∈ E.
Then since G′ is an induced subgraph, we also have that (v, v′) ∈ E′. Since Z is a total simulation, there

has to be some w ∈ Ik with (v, w) ∈ Z and some w′ with (w,w′) ∈ EIk and (v′, w′) ∈ Z. But this is a

contradiction with EIk = ∅. Thus, V ′ is an independent set of size k of G. The reduction can clearly be

computed in polynomial time. This concludes the proof.

Proposition 3.27: Induced subgraph simulation equivalence is NP-complete.

Proof. For showing that the problem is in NP, note that we can use a simulation equivalence algorithm

as provided in [14]. Hardness can again be shown by reduction from Independent Set. Given the

input for Independent Set, i.e. a graph G = (V,E) and some k ∈ N, we transform it into two graphs

Ik = (V
Ik

= {v1, . . . vk}, EIk = ∅) and G, and we keep the k ∈ N. This can be done in polynomial time.

Now, we claim that G has an independent set of size k iff there is an induced subgraph of G with

k vertices that is similar to Ik. From left to right assume that G has such an independent set S with

S ⊆ V , |S| = k and E ∩ S × S = ∅. Then (S, ∅) is isomorphic to Ik since both have k vertices and no

edges. Thus, they are also simulation equivalent.

For the other direction, assume that there is an induced subgraph G′ = (V ′, E′) with V ′ ⊆ V , |V ′| = k

and E′ = (V ′ × V ′) ∩ E such that G′ is simulation equivalent to Ik. Suppose that there are v, v′ ∈ V ′

such that (v, v′) ∈ E. Since G′ is an induced subgraph, it must be the case that (v, v′) ∈ E′, but since

Ik simulates G′, this leads to a contradiction since Ik does not have any edges.

This concludes the proof.
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