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1 Introduction and Notation

1.1 An overview of this paper

The topics we cover—Π0
1 classes, computable domination, degrees of models

of arithmetic, and randomness—largely grew up over the last fifty years.
Lately, they have received considerable attention, as have the many links
between them and other topics. We present a different point of view of
these timely areas.

The study of Π0
1 classes (effectively closed classes in Cantor space or

Baire space) emerged in the early 1970’s with work by Jockusch and Soare,
although Kreisel and Shoenfield had obtained some previous results on de-
grees of models. The use of Π0

1 classes rapidly spread to many other areas,
including model theory, computable combinatorics and Ramsey’s theorem,
complexity theory and randomness, and models of Peano arithmetic. In Sec-
tion 3, we consider two of the original theorems in this study (the Low Basis
Theorem and the Computably Dominated Basis Theorem), each showing
that a nonempty Π0

1 class has a member of a certain type. The subsequent
popularity of this area has lead to many related results. In Section 3, we
take a look at some of these, including an antibasis theorem, a proper lown

basis theorem, as well as cone avoidance constructions.
A prominent method of constructing members of Π0

1 classes is known
as forcing with Π0

1 classes. The name comes from the fact that in such
constructions we begin with a certain tree and pass to a smaller subtree in
order to force a given requirement. This technique is very flexible and can
be used to obtain a number of finer results about the members of nonempty
Π0

1 classes, including ones which avoid cones or form minimal pairs with
given noncomputable sets. In Section 4, we discuss this notion of forcing in
a general setting, defining the appropriate notions of condition, extension,
density, and genericity. We also discuss individual forcing modules, and how
they can be combined to achieve desired conclusions.

A function f is computably dominated (hyperimmune-free) if every func-
tion g ≡T f (not only f itself) is bounded by a computable function. The
Computably Dominated Basis Theorem in Section 3 connects Π0

1 classes
to computable domination because it shows that every nonempty Π0

1 class
contains a computably dominated (c.d.) member. In Section 5 we explore
other properties of computably dominated functions and the degrees they
can inhabit. In particular, we look at the following questions: Can degrees
comparable with ∅′ be c.d.? Can a Σ0

2 set be c.d.? Although sparsely dis-
tributed and difficult to construct, the c.d. functions have two surprising
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downward closure properties. The c.d. functions also play an important role
in algorithmic randomness and complexity, and are treated in recent books
in these areas by Nies [1999] and Downey and Hirschfeldt [ta]. Cooper [2004]
also covers computable domination and hyperimmune degrees.

One of the original motivations for looking at Π0
1 classes was the study

of degrees of complete extensions of Peano Arithmetic (PA), or equivalently,
degrees of models of PA (PA degrees). Indeed, the complete extensions of
PA form a Π0

1 class, and if f is any complete extension of PA and C is any
nonempty Π0

1 class, then f can compute a member g ∈ C. In Section 6, we
consider a number of alternative ways of defining the PA degrees, including
as those degrees which contain a {0, 1}-valued diagonally noncomputable
(d.n.c.) function.

Over the last decade a rapidly growing area has been Kolmogorov com-
plexity and algorithmic randomness. There has been a close connection
between Π0

1 classes and 1-random (Martin-Löf random) reals. For example,
there is a nonempty Π0

1 class all of whose elements are 1-random, as we
shall see in Corollary 7.3. In Section 7, we relate randomness to the com-
putably dominated degrees that we study in Section 5, and we examine the
relationship between the measure of a Π0

1 class and the 1-random reals it
contains.

1.2 Notation

Using ordinal notation, identify the ordinal 2 with the set of smaller ordinals
{0, 1}. We let 2<ω denote the the set of all finite sequences of 0’s and 1’s.
Identify a set A ⊆ ω with its characteristic function f : ω 7→ {0, 1} and
represent the class of these functions as 2ω. Let ωω denote the set of all
functions f from ω to ω. We use these definitions and operations on strings.

σ, τ, ρ strings ∈ 2<ω

λ empty string
σ̂τ or στ concatenation of σ followed by τ

σ̂a or σa concatenation of σ followed by a

σ ≺ τ, σ ≺ A σ is an initial segment of τ, A

σ | τ σ, τ incomparable, ¬[σ � τ ] & ¬[τ � σ]
|σ| or lh(σ) length of σ, also |σ| = (µx)[σ(x)↑ ]
A�z, σ �x restriction of A(x) or σ(x) to those x < z

A�� z, σ �� x restriction of A(x), or σ(x), to those x ≤ z

4



We state most definitions for 2ω but with obvious changes they extend
to ωω. We now deal with classes C ⊆ 2ω, i.e., second order objects, rather
than just sets A ⊆ ω or functions f ∈ ωω which are first order objects. It is
customary to call a set A ⊆ ω or function f ∈ ωω a real.

2 Open and Closed Classes in Cantor Space

2.1 Open Classes

Definition 2.1. (i) Cantor space is 2ω with the following topology. For
every σ ∈ 2<ω define the basic open class

Jσ K = { f : f ∈ 2ω & σ ≺ f }.

The open classes of Cantor space are unions of basic open classes. A set
A ⊆ 2<ω is an open representation of the open class

JA K =
⋃
σ∈A

Jσ K.

(We may assume A is closed upwards, i.e., σ ∈ A and σ ≺ τ implies τ ∈ A.)

(ii) A class A ⊆ 2ω is effectively open (computably open) if A = JA K for
a computable set A ⊆ ω.1

(iii) A class A ⊆ 2ω is (lightface) Σ0
1 if there is a computable R such

that

(1) A = { f : (∃x)R( f �x ) }

(iv) A class A is (boldface) Σ0
1 if (1) holds with R replaced by RX for

RX computable in some set X ⊆ ω, in which case we also say A is Σ0,X
1 .

Theorem 2.2 (Effectively Open Classes). Fix a class A ⊆ 2ω.

(i) A is effectively open iff A is (lightface) Σ0
1.

(ii) A is open iff A is (boldface) Σ0
1.

Proof. (i) Let A be effectively open. Then A = JB K for some B com-
putable. Define R(σ) iff σ ∈ B. Now f ∈ A iff (∃x)R(f � x). Hence, A is
Σ0

1. Conversely, assume A is Σ0
1 via a computable R satisfying (1). Define

A = {σ : R(σ)}. Then A = JA K.

(ii) Relativize the proof of (1) to a set X ⊆ ω.
1It is easy to show that if A = JA K with A c.e. , then A = JB K for some computable

set B ⊆ ω. The notation Jσ K for a basic open set is now becoming standard and has also
been adopted in the book by Downey and Hirschfeldt [ta].
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2.2 Closed Classes

Definition 2.3. (i) A tree T ⊆ 2<ω is a set closed under initial segments,
i.e., σ ∈ T and τ ≺ σ imply τ ∈ T . The set of infinite paths through T is

(2) [T ] = { f : (∀n) [ f �n ∈ T ] }.

(ii) A class C ⊆ 2ω is (lightface) Π0
1 if there is a computable relation

R(x) such that

(3) C = { f : (∀x)R(f �x) }.

A class C ⊆ 2ω is boldface Π0
1 if (3) holds for RX computable in some X ⊆ ω.

The latter is also written as C is Π0,X
1 .

(iii) A class C ⊆ 2ω is effectively closed (computably closed) if its com-
plement is effectively open. A class C ⊆ 2ω is closed if its complement is
open.

Theorem 2.4 (Effectively Closed Classes). For any class C ⊆ 2ω, the
following are equivalent:

(i) C = [T ] for some computable tree T .

(ii) C is effectively closed.

(iii) C is a (lightface) Π0
1 class.

Proof. This follows from Definition 2.3 and Theorem 2.2.

Corollary 2.5 (Closed Classes and Trees). For any class C ⊆ 2ω, the
following are equivalent:

(i) C = [T ] for some tree T .

(ii) C is closed.

(iii) C is a (boldface) Π0
1 class.

Proof. Relativize the proof of Theorem 2.4 to X ⊆ ω.
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Remark 2.6 (Representing Closed Classes). The most convenient way of
representing open and closed classes is with trees. If C is closed we choose a
tree T such that C = [T ]. Define A = ω − T . Then T is downward closed,
A is upward closed, and A defines the open set JA K = 2ω − [T ] = C. Note
that the representations A and T are conveniently complementary in ω and
the open class JA K and closed class [T ] are also complementary in 2ω. The
only difference between the effective case and general case is whether the
tree T is computable or only computable in some set X ⊆ ω.

We may imagine a path f ∈ 2ω trying to climb the tree T without passing
though a node σ ∈ A. If f succeeds, then f ∈ C = [T ]. However, if f � σ
for even one node σ ∈ A, then f falls off the tree forever and f 6∈ C.

2.3 The Compactness Theorem

One particularly useful feature of Cantor space is the well-known Com-
pactness Theorem (whose proof we omit), and the Effective Compactness
Theorem 2.9, both of which lead into the study of our main topic, Π0

1 classes.

Theorem 2.7 (Compactness Theorem). The following easy and well-known
properties hold for Cantor Space 2ω. The term “compactness” refers to any
of them, but particularly to (iv).

(i) (Weak König’s Lemma). If T ⊆ 2<ω is an infinite tree, then [T ] 6= ∅.

(ii) If T0 ⊇ T1 . . . is a decreasing sequence of trees with [Tn ] 6= ∅ for
every n, and intersection Tω = ∩n∈ω Tn, then [Tω ] 6= ∅.

(iii) If {Ci}i∈ω is a countable family of closed sets such that ∩i∈F Ci 6= ∅
for every finite set F ⊆ ω, then ∩i∈ω Ci 6= ∅ also.

(iv) (Finite Subcover Property). Any open cover JA K = 2ω has a finite
open subcover F ⊆ A such that JF K = 2ω.

Proof. See Soare [CTA] Chapter 3.

2.4 Notation For Trees

Since our principal tool with be trees we introduce some notation.

Definition 2.8. Fix a tree [T ] ⊆ 2<ω.
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(i) For σ ∈ T define the subtree Tσ of nodes comparable with σ,

(4) Tσ = { τ ∈ T : σ � τ or τ ≺ σ }.

(ii) Define the subtree of extendible nodes σ ∈ T .

(5) T ext = { σ ∈ T : (∃f � σ)[ f ∈ [T ] ] }

(iii) A point (path) f ∈ [T ] is isolated if

(6) (∃σ)[ [Tσ ] = { f } ].

We say that σ isolates f because Jσ K ∩ [T ] = { f } and we call σ an
atom because it cannot be extended to two incomparable nodes ρ and
τ on T . If f is isolated we say it has Cantor-Bendixson rank 0. If f is
not isolated, then f is a limit point. Note that

(7) T ext = {σ ∈ T : ( ∀n ≥ |σ| ) (∃τ � σ ) [ |τ | = n & τ ∈ T ].

2.5 Effective Compactness Theorem

For a computable tree T ⊆ 2<ω we can establish the following effective
analogues of the Compactness Theorem 2.7.

Theorem 2.9 (Effective Compactness Theorem). Let T ⊆ 2<ω be a com-
putable tree.

(i) T ext is a Π0
1 set. Hence, T ext is Σ0

1, T ext ≤m ∅′, and T ext ≤T ∅′.

(ii) (Kreisel Basis Theorem) If [T ] 6= ∅, then (∃f ≤T ∅′) [ f ∈ [T ] ].
This part (ii) will be generalized in the Low Basis Theorem 3.8.

(iii) If [T ] 6= ∅, and f is the lexicographically least member, then f has
c.e. degree.

(iv) If f ∈ [T ] is isolated, then f is computable.

(v) Given an open cover JA K = 2ω with A c.e. there is finite subset
F ⊆ A such that JF K = 2ω and a canonical index for F can be found
uniformly in a c.e. index for A.
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Proof. (i) The formal definition of T ext in (5) has one function quantifier
and is in Σ1

1 form. Indeed, this the best we can do for Baire space ωω.
However, for Cantor space 2ω we can use the Compactness Theorem 2.7 (i)
to reduce T ext to the Π0

1 form of (7). Note that the quantifier τ is bounded
by n and therefore only the (∀n) quantifier counts in the prefix calculation.2

(ii) Now use a ∅′ oracle to choose f ∈ [T ] such that f = ∪nσn defined
as follows. Given σn ∈ T ext let σn+1 = σn̂0 if σn̂0 ∈ T ext and σn̂1
otherwise.

(iii) (This gives a stronger conclusion than (ii).) Let f be the the lexico-
graphically least member of [T ], i.e., in the dictionary ordering <L on the
alphabet { 0,1 }. Define the following c.e. set of nodes M ⊆ T ext such that
M ≡T f .

M = { σ : (∀τ) |τ |= |σ| [ [ τ ∈ T & τ ≤L σ ] =⇒ τ ∈ T ext ] }

(Wait until σ and all its predecessors of length |σ| have appeared nonex-
tendible. Then put σ into M . In this way we enumerate all nodes τ <L f .)

(iv) Choose σ ∈ T with [Tσ ] = { f }. To compute f assume we have
computed τ = f �n. Exactly one of τ̂0 and τ̂1 is extendible. Enumerate
T ext until one of these nodes appears and take the other one.

(v) Assume JA K = 2ω with A c.e. Enumerate A until a finite set F ⊆ A
is found with JF K = 2ω by the Compactness Theorem (iv). We can search
until we find it.

Remark 2.10. Note that the conclusions in the Effective Compactness
Theorem 2.9 have various levels of effectiveness even though the hypotheses
are all effective. In (v) if JA K covers 2ω then the passage from A to F is
computable because we simply enumerate A until F appears (as for any Σ1

process). However, if JA K fails to cover 2ω then the complementary closed
class [T ] = 2ω − JA K is nonempty. Then (ii) gives a path f ∈ [T ] with
f ≤T ∅′ and (iii) even produces a path of c.e. degree, but neither produces a
computable path f because given an extendible string σ the process for the
proof of König’s Lemma in Theorem 2.7 (i) does not computably determine
whether to extend to σ̂0 or σ̂1. In Theorem 3.4 we shall construct a
computable tree with paths but no computable paths.

2See Soare [CTA] Theorem 4.1.3 (vi) on quantifier manipulation.
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3 Basis and Nonbasis Theorems for Π0
1 Classes

The motivating question of this section is the following: given a nonempty
Π0

1 class C, what can we say about the Turing degrees of C? To address this
question, we need to fix some terminology.

Definition 3.1. A Π0
1 class C is special if it contains no computable member.

It follows that if T ⊆ 2<ω is a computable tree such that [T ] is special
then T ext must be a perfect tree, meaning that every σ ∈ T ext admits incom-
patible extensions in T ext because any isolated path would be computable.
Therefore, every special Π0

1 class has 2ℵ0 members.

Definition 3.2. Let D be a class of Turing degrees.

(i) We call D a basis for Π0
1 classes if every nonempty Π0

1 class has a
member f with deg(f) ≤ d for some d ∈ D. Otherwise, we call D a
nonbasis.

(ii) We call D an antibasis3 for Π0
1 classes if whenever a Π0

1 class contains
a member of every degree in d ∈ D, it contains a member of every
degree d ≥ 0.

We extend the above definitions from classes of degrees to classes S of subsets
of ω, by calling S a basis, nonbasis, or antibasis if {deg(S) : S ∈ S} is,
respectively, a basis, nonbasis, or antibasis.

An alternative definition of bases is the following. First, for a Π0
1 class

C, define its degree spectrum as S(C) = {deg(f) : f ∈ C}. Then a class of
degrees D is a basis for Π0

1 classes if D ∩ S(C) 6= ∅ for all Π0
1 classes C 6= ∅.

(We will not refer to degree spectra in the sequel; see Kent and Lewis [2009]
for a thorough investigation of their algebraic properties.)

3.1 Nonbasis Theorems For Π0
1

Next in Theorem 3.4 we show that we cannot always find f computable.
Therefore, the class of computable sets is a nonbasis for Π0

1.

Definition 3.3. If A and B are disjoint sets, then S is a separating set if
A ⊆ S and B ∩ S = ∅. This class is written S(A,B).

Theorem 3.4.
3Some authors (e.g., Cenzer [1999]) use the term antibasis as a synonym for nonbasis.

Our use here follows that of Kent and Lewis [2009].
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(i) If We and Wi are disjoint c.e. sets, then the class of separating sets
S(We,Wi) is a nonempty Π0

1 class.

(ii) There is a nonempty Π0
1 class with no computable members.

Proof. (i) Define a Π0
1 class C by putting f in C if:

(∀x)(∀s)[ [ x ∈We =⇒ f(x) = 1 ] & [ x ∈Wi =⇒ f(x) = 0 ] ].

(ii) Let We and Wi be disjoint, computably inseparable c.e. sets.

Corollary 3.5. The class of computable sets is not a basis for Π0
1 classes

(i.e., {0} is a nonbasis).

We can generalize the preceding corollary as follows.

Theorem 3.6 (Jockusch and Soare, (1972a), Theorem 4). The class of
incomplete c.e. sets is not a basis for Π0

1 classes (i.e., the class of c.e. degrees
d < 0′ is a nonbasis).

Proof. Let A be the standard effectively immune set of Post. Recall that
this set is constructed by enumerating into A at stage s ≥ 0, for each e < s,
the least x > 2e such that x ∈We,s ⊆ As. Then A is co-c.e. and it is easy to
see that for every e ∈ ω, |A �2e| ≤ e, meaning A ∩ [2e+1 − 2, 2e+2 − 3] 6= ∅.
Thus, if we define

C = {f ∈ 2ω : f ⊆ A & (∀e)[f ∩ [2e+1 − 2, 2e+2 − 3] 6= ∅]},

then C is a Π0
1 class consisting entirely of infinite subsets of A. In particular,

since A is effectively immune and so is every infinite subset of an effectively
immune set, every member of A is effectively immune. It is a well-known re-
sult of Martin that no incomplete c.e. set can compute an effectively immune
set, so no incomplete c.e. set can compute any element of C.

3.2 The Kreisel-Shoenfield Basis Theorem

By the Kreisel Basis Theorem 2.9 (ii) we can always find f ≤T ∅′ and by (iii)
even f of c.e. degree, although by Theorem 3.6 not necessarily incomplete
c.e. degree. Can we do better?

Theorem 3.7 (Kreisel-Shoenfield Basis Theorem). Every nonempty Π0
1

class C has a member f <T ∅′.
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Shoenfield [1960] improved the Kreisel Basis Theorem to f strictly below
∅′, namely f <T ∅′, by considering, for a given Π0

1 class C, the Π0
1 class D of

all 〈f, g〉 such that f ∈ C and

(∀e)[ Φf
e (e)↓ =⇒ Φf

e (e) 6= g(e) ].

He then applied Kreisel’s result to D. The following Low Basis Theorem
substantially generalizes these results by Kreisel and Shoenfield.

3.3 The Low Basis Theorem

The previous two subsections prove that given a Π0
1 class C we cannot always

find a computable member f ∈ C but we can find a member f <T ∅′. The
next theorem says we can do much better and always produce f which is low
i.e., f ′ ≡T ∅′ and therefore close to ∅ in information content and structure.
Downey and Hirschfeldt’s new book [ta, p. 73] states, “The following is the
most famous and widely applicable basis theorem.”

Theorem 3.8 (Low Basis Theorem (LBT), Jockusch and Soare, 1972b). If
C ⊆ 2ω is a nonempty Π0

1 class, then it contains a low member f .

Proof. Let T be a computable tree such that [T ] = C. Use ∅′ to define a
sequence of infinite computable trees T = T0 ⊇ T1 ⊇ . . . as follows. Define

(8) Ue = { σ : Φσ
e, |σ| (e)↑ }

which is also a computable tree. Given Te: (1) define Te+1 = Te ∩ Ue if
Te ∩ Ue is infinite; and (2) define Te+1 = Te otherwise. If (1) then Φg

e(e)↑
for all g ∈ [Te+1], and if (2) then Φg

e(e)↓ for all g ∈ [Te+1]. Note that ∅′ can
decide whether a computable tree is finite by (7).

We say that Te+1 forces the jump as described in Section 4 because no
matter which clause holds in the definition of Te+1 we know that either,

(9) (∀ g ∈ [Te+1 ] ) [ Φg
e(e)↓ ] or

(10) (∀ g ∈ [Te+1 ] ) [ Φg
e(e)↑ ]

Choose f ∈
⋂
e∈ω [Te ]. This is an intersection of a descending sequence

of nonempty closed sets and hence nonempty, by the Compactness Theorem
2.7 (ii). Now ∅′ can decide using (7) which of (9) or (10) holds at stage e+1
in the definition of Te+1.
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Therefore, we have ∅′-computably determined at stage e + 1 the con-
vergence or divergence of Φf

e (e) even though very little of f has yet been
defined by stage e + 1. This is the nature of forcing, to decide Φf

e (e) even
though f is yet undetermined.

In Section 5.3 we use this method to prove a similar basis theorem that
any nonempty Π0

1 class contains a member f such that every g ≤T f is
dominated by a computable function.

We shall see in Section 6, Theorem 6.4, that there exists a nonempty Π0
1

class P such that for every other nonempty Π0
1 class C and every f ∈ P,

f computes a member of C (i.e., for every f ∈ P, the singleton {f} is a
basis for Π0

1 classes). Applying the Low Basis Theorem to P then yields the
following:

Theorem 3.9 (Second Low Basis Theorem, Jockusch and Soare (1972b)).
There is a low set A such that every nonempty Π0

1 class C ⊆ 2ω has a member
f ≤T A.

3.4 Superlow Basis Theorem

The proof of the Low Basis Theorem 3.8 gives even more information about
the jump f ′ than was explicitly claimed but explaining it requires some
definitions.

3.4.1 Defining Superlow

Definition 3.10. Assume we are given a set A ≤T ∅′.

(i) The set A is ω-c.e. if there is a computable sequence {As}s∈ω with
A0 = ∅ and As(x) ∈ {0, 1}, and a computable function g(x) such that

(11) A = limsAs & | { s : As(x) 6= As+1(x) } | ≤ g(x).

(ii) If (11) holds for g(x) then A is g(x)-c.e. If g(x) = n then A is n-c.e.

(iii) A is truth-table reducible to B, written A ≤tt B, if there is a total
Turing reduction Φe with A = ΦB

e .

(iv) A set A is superlow if A′ ≤tt ∅′ or equivalently if A′ is ω-c.e.

Theorem 3.11 (Superlow Basis Theorem (SLBT)). Every nonempty Π0
1

class C ⊆ 2ω has a member A which is superlow and indeed A′ is 2e+1-c.e.
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3.4.2 The First Proof of the Superlow Basis Theorem

Proof. (The first proof (c. 1969) by making A′ ω-c.e.) The first proof4

(unpublished) of the Low Basis Theorem 3.8 (LBT) was not the ∅′ oracle
proof above but a limit computable proof that A′ is 2e+1-c.e. We construct a
computable a sequence of strings {σs}s∈ω such that A := lims σs is superlow.
Fix a computable tree T with [T ] = C. Define the computable tree,

(12) Ue,s = { σ : Φσ
e, s (e)↑ }

Let T0, s = T for all s. For every s given Te,s: (1) define Te+1, s = Te, s ∩Ue,s
if the latter contains a string σ of length s and (2) define Te+1, s = Te, s
otherwise. Let σs be the lexicographically least string of length s in Ts, s.
Choose a stage s after which the trees Ti,s have stopped changing from (1)
to (2) for all i < e. After s the tree Te,t changes from (1) to (2) at most
once at some t > s when Φσ

e,t(e) ↑ and Φσ
e,t(e) ↓ . For stages v > t the

tree Te,v never changes away from (2) and Φσ
e,v(e) remains defined forever.

Therefore, Φσ
e,s(e) changes between defined and undefined at most 2e+1 times

and converges to A′(e).

3.4.3 A Second Proof of the Superlow Basis

Proof. (Second proof using a total reduction.)
Let I = {i ∈ ω : i is an index for a finite Π0

1 class}. Then I is definable by
a Σ0

1 formula, meaning, since ∅′ is Σ0
1-complete, that there is a computable

function h such that for all i, i ∈ I if and only if h(i) ∈ ∅′. Fix a nonempty
Π0

1 class C and a computable tree T0 ⊆ 2<ω with C = [T0 ]. We define a
total reduction Ψ as follows. Fix X and e ∈ ω, and assume inductively
that for all x < e, ΨX(x) has been defined, along with (indices for) trees
T0 ⊇ · · · ⊇ Te. From an index for Te we can effectively find an index i for the
tree Ue = {σ ∈ Te : Φσ

e (e) ↑}, and we define ΦX(e) to be 0 or 1 depending as
h(i) is or is not in X. We then let Te+1 be either Te or Ue, respectively. By
comparison with the proof of the Low Basis Theorem, we see that Ψ∅

′
= f ′

for some f ∈ C.
4Jockusch and Soare never stated the Superlow Basis Theorem because the notion of

superlow did not exist in 1972. Several people later noticed that the original proof of the
Low Basis Theorem can easily be converted to a proof of the Superlow Basis Theorem.
The limit computable proof presented here does more since it gives the conclusion at once.
The two proofs of the LBT and SLBT illustrate the tradeoff between the two approaches
to proofs concerning Π0

1 classes, an oracle proof, versus a computable approximation.
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3.5 The Computably Dominated Basis Theorem

Jockusch and Soare showed that a variation on the proof of the Low Basis
Theorem 3.8 yielded a member f ∈ C such that every g ≤T f is bounded
by a computable function. Such functions are called computably dominated
and play an important role.

Definition 3.12.

(i) A function h bounds (majorizes) a function g, written g < h, if
(∀x)[ g(x) < h(x) ].

(ii) Function h dominates g, written g <∗ h, if (∀∞x)[ g(x) < h(x) ].
where (∀∞x) denotes “for almost all x,” i.e., for all but finitely many x.

(iii) If A = {a0 < a1 < . . .} is an infinite set, the principal function of A is
pA where pA(n) = an. Extend the definitions of bounds and dominates
to an infinite set A by using the principal function pA.

(iv) A function g (or set A) is computably bounded if it is bounded by some
computable function h.

(v) A (Turing) degree d is computably dominated (c.d.) if f is computably
bounded for every f ∈ d.

(vi) A function f or set A is computably dominated (c.d.) if the degree of
f (respectively A) is a computably dominated degree.

The key point is that for a function f or set A to be computably bounded
simply requires a single bounding function, while being computably domi-
nated imposes computable bounding on every function g in the same degree,
a very strong condition. For example we shall prove in Theorem 5.8 that if
f is computably dominated then g is computably bounded for all g ≤T f
not only g ≡T f . In Section 5.3 we shall see that a computably dominated
set is also hyperimmune-free although we and Nies use the term computably
dominated.5

The key idea in the next theorem is to use a ∅′′ oracle to build a member
f of a given Π0

1 class with the property that we can decide whether Φf
e is

5After the term “hyperimmune-free” degree was introduced by Miller and Martin [1968]
it was often used in the literature, even though it conveys little intuition about the mean-
ing. Recently, Soare introduced the term “computably dominated” which better suggests
the meaning, and used it in his new book Soare [CTA]. He suggested this to Nies who
adoped it in his book, Computability and Randomness [2009]. We use this term here.
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total or not at a definite stage of the construction. This differs from the proof
of the Low Basis Theorem, where we needed only a ∅′ oracle to similarly
decide whether Φf

e (e) converges or not. In both cases, however, we use the
same technique (known as forcing with Π0

1 classes) of continually pruning
an infinite computable tree while preserving certain desired properties. We
shall give a more systematic treatment of this technique in Section 4 below.

Theorem 3.13 (Computably Dominated Basis Theorem, Jockusch and
Soare, 1972b). If C ⊆ 2ω is a nonempty Π0

1 class, then it contains a low 2

member such that

(13) (∀g ≤T f) [ g is computably bounded ].

Proof. For any computable tree T and any e, x ∈ ω, we can ∅′-uniformly
effectively decide whether the following set is infinite:

(14) Ue,x = { σ ∈ 2<ω : σ ∈ T & Φσ
e, |σ| (x)↑ }.

Choose a computable tree T0 such that C = [T0 ], and assume by induction
that Te is defined for some e ≥ 0. Use a ∅′′ oracle to determine whether
there is an x such that Ue,x is infinite.

Case 1. If so, then choose the least such x, and define Te+1 = Ue,x.

Case 2. If not, then define Te+1 = Te.

Note that in either case, Te+1 ⊆ Te. As before, the intersection
⋂
e Te is

nonempty by the Compactness Theorem 2.7 (ii), so we can choose some f
in it.

Lemma 3.14. If g = Φf
e is total then g is computably bounded.

Proof. Assume g = Φf
e is total. Then Te+1 must have been defined by Case 2

since otherwise Φf
e could not be total. Then for every x, we can effectively

find a level n such that Φσ
e (x) ↓ for all σ ∈ Te+1 of length n. Then the

function h(x) = max{ Φσ
e (x) : σ ∈ Te+1 & |σ| = n } bounds g.

Lemma 3.15. f is low 2.

Proof. Fix e. If Case 1 holds for Te+1 then Φf
e is not total. If Case 2 holds

for Te+1 then Φf
e is total. In either case, we are forcing at the finite stage

e+1 to decide whether or not e ∈ Totf = { i : Φf
i total }. The construction

is ∅′′-computable. Hence, Totf ≤T ∅′′ so f ′′ ≤T ∅′′.
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Note we cannot always produce a low1 f in the previous theorem. We
shall show in Theorem 5.13. that no noncomputable f with the computable
bounding property (13) can be computable in ∅′.

Theorem 3.16. Every nonempty special Π0
1 class has a perfect subclass of

computably dominated members.

Proof. Let C be a nonempty special Π0
1 class, and let T ⊆ 2<ω be an infinite

tree with C = [T ]. We define an infinite subtree S of T such that every
σ ∈ S is extendible and has a pair of incomparable extensions in S, and
such that every f ∈ [S] is computably dominated. We obtain S as

⋃
e Se

where S0 ⊂ S1 ⊂ · · · are finite subtrees of T constructed inductively as
follows. Let S0 = {λ}, and suppose Se has been defined for some e ≥ 0 and
that the leaves of Se all have the same length and are extendible. Fix a leaf
σ of Se, and define

Uσ,e,x = { τ ∈ T : τ � σ ∨ τ � σ & Φτ
e, |τ |(x)↑ }.

Note that this is a computable subtree of T , and hence, if it is infinite, it
cannot have any infinite computable path. We define extensions σ0, σ1 of σ
as follows.

Case 1. If Uσ,e,x is infinite for some x, fix the least such x, and let σ0 and
σ1 be the first incompatible, extendible extensions of σ in Uσ,e,x.

Case 2. If not, let σ0 and σ1 be the first incompatible, extendible extensions
of σ in T .

Note that in either case σ0 and σ1 must exist, since every extendible node
in a computable tree with no infinite computable path must have two in-
compatible extendible extensions in that tree. We let Se+1 be the set of all
τ ∈ T such that either τ � σ0 or τ � σ1 for some leaf σ of Se.

It is readily seen that S is a perfect subtree of T . Suppose g = Φf
e for

some f ∈ [S]. Let σ be the leaf of De that is an initial segment of f . Then σ0

and σ1 must have been found according to Case 2 in the definition of De+1,
meaning Uσ,e,x is finite. Thus, given x, find n such that Φτ

e(x)↓ for all τ � σ
in T of length n. Let h(x) = max{ Φτ

e(x) : τ ∈ T & τ � σ & |τ | = n }.
Then h is computable function bounding f . We conclude that [S ] is a
perfect subclass of C all members of which are computably dominated.

Theorem 3.17 (Kučera and Nies). Let P be a nonempty Π0
1 class and

B >T ∅′ a Σ0
2 set. Then there is a computably dominated f ∈ P with

f ′ ≤T B.
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For a sketch of the proof see [Nies, 1995, p. 61]. The idea is to fix a
c.e. enumeration {Bs}s∈ω of B relative to ∅′, to build a ∆0,B

2 enumeration
{fs}s∈ω, and to allow fs(x) 6= fs+1(x) only if Bs �x 6= Bs+1 �x.

Theorem 3.18. The class of sets A which are computably dominated is Π0
4.

Proof. The following predicate with free set variable A holds iff A is c.d.

(∀e)[ ΦA
e total =⇒ (∃i)[ ϕi total & (∀x)[ ΦA(x) < ϕi(x) ] ].

Note that “ϕi total” is Π0
2 and the entire predicate is Π0

4.

3.6 Low Antibasis Theorem.

For the purposes of the following theorem, we will say that a set S ⊆ 2<ω

is isomorphic to 2<ω provided there is a bijection g : 2<ω → S such that
for all σ, τ ∈ 2<ω, σ � τ if and only if g(σ) � g(τ). Notice that if a
tree T has a subset isomorphic to 2<ω via a computable such bijection,
then [T ] has a member of every degree. Indeed, for every real X, we have
Y =

⋃
x g(X �n) ∈ [T ]. Clearly, Y ≤T X, while to compute X(n) from Y

for a given n we search for a σ ∈ 2<ω until we find one of length greater
than n with g(σ) ⊂ Y , and then σ(n) = X(n).

Theorem 3.19 (Kent and Lewis [11]). Every Π0
1 class that has a member

of every nonzero low degree has one of every degree.

Proof. Fix a nonempty Π0
1 class C not containing a member of every degree

and let T ⊆ 2<ω be a computable tree such that C = [T ]. We define a
noncomputable low set A such that for all e ∈ ω,

(15) ΦA
e = g ∈ 2ω =⇒ [ g ≤T ∅ ∨ g 6∈ [T ] ].

In particular, g 6∈ [T ].
We obtain A as

⋃
s σs where σ0 � σ1 � · · · are constructed as follows.

Let σ0 = ∅ and suppose that for some s ≥ 0, σs is given. If s = 3e for some
e, ask whether ϕe(|σs|) converges, and define σs+1 to be σs(1−ϕe(|σs|)) if it
does and σŝ0 otherwise. If s = 3e+ 1 for some e, ask whether there exists
any σ � σs with Φσ

e (e)↓ and define σs+1 to be the least such σ if there does
and σs otherwise. In this way, we ensure that A is noncomputable and low.

Finally, suppose s = 3e + 2 for some e. Search for a σ � σs such that
one of the following cases occurs:

Case 1. For all τ � σ, Φτ
e(x) diverges or is not {0, 1}-valued for some x < |τ |.
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Case 2. Φσ
e (x)↓ for all x < |σ| and string Φσ

e (0)Φσ
e (1) · · ·Φσ

e (|σ| − 1) is not
in T .

Case 3. σ has no extensions which e-split.

We claim the search must succeed. If not, we can define computable
functions f : 2<ω → {ρ ∈ 2<ω : ρ � τ} and g : 2<ω → T as follows. By the
failure of Case 1, there exists σ � σs with Φσ

e (x) ↓∈ {0, 1} for all x < |σ|,
and we let f(∅) = σ for the least such σ. By the failure of Case 2, we know
that the string Φσ

e (0)Φσ
e (1) · · ·Φσ

e (|σ| − 1) belongs to T , and we let g(∅) be
this string. We can thus assume by induction that f(σ) has been defined
for some σ, and that

g(σ) = Φf(σ)
e (0)Φf(σ)

e (1) · · ·Φf(σ)
e (|f(σ)| − 1)

belongs to T . By the failure of Case 3, there exist proper extensions τ0 and τ1
of f(σ) such that Φτ0

e (x)↓ 6= Φτ1
e (x) for some x < min{|τ0|, |τ1|}, and using

the failure of Case 1 we can assume that Φτi
e (x)↓ for all x < |τi| and all i < 2.

For i < 2, we let f(σ̂i) = τi and g(σ̂i) = Φτi
e (0)Φτi

e (1) · · ·Φτi
e (|τi| − 1).

Then g is a computable bijection from 2<ω to a subset of T isomorphic to
2<ω. Therefore, [T ] has a member of every degree by our opening remarks.
This proves our claim.

Now take the least σ satisfying one of Cases 1–3 above and let σs+1 = σ.
Under Case 1, this ensures that ΦA

e is not total or {0, 1}-valued, under
Case 2 that ΦA

e is not a member of [T ], and under Case 3 that ΦA
e , if total,

is computable. This completes the proof.

3.7 Proper Lown Basis Theorem

The following generalization of the Low Basis Theorem says that, up to de-
gree, the restriction of the jump operator to any special Π0

1 class is surjective.
The trick used for pushing the jump of the member up to the desired set is
not unlike that used in the standard proof of the Friedberg Completeness
Criterion.

Theorem 3.20 (Cenzer [1]). For every set A ≥T ∅′, every special Π0
1 class

has a member f satisfying f ⊕ ∅′ ≡T f ′ ≡T A.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such that

C = [T ]. We build a sequence of infinite computable trees T = T0 ⊇ T1 ⊇ · · ·
as follows. Let Te be given. If e is even, define Te+1 from Te as in the proof
of the Low Basis Theorem. If e is odd, say e = 2i+ 1, note that T ext

e must
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be perfect since C is special, so ∅′ can find the smallest extendible nodes
σ, τ ∈ Te such that σ(x) = 0 and τ(x) = 1 for some x. Let Te+1 consist
of all the nodes in Te comparable with σ or τ , depending as A(i) = 0 or
A(i) = 1, respectively.

Take f ∈
⋂
e∈ω [Te ]. If e is even, Te+1 can be obtained from Te

∅′-effectively, and hence both f ⊕ ∅′-effectively and A-effectively because
A ≥T ∅′. If e is odd, say e = 2i+ 1, then to obtain Te+1 from Te we need an
oracle for ∅′ to find the extendible nodes σ and τ and the position x on which
they disagree, and then an oracle for A since we need to know A(i). But in
this case, i ∈ A iff f(x) = 1, so an oracle for f suffices to determine whether
to let Te+1 consist of the nodes comparable with σ or the nodes comparable
with τ . Since f ′ is decided during the construction, we consequently have
that f ⊕ ∅′ ≤T f ′ ≤T A ≤T f ⊕ ∅′, as desired.

The above theorem fails to fully generalize the Friedberg Completeness
Criterion because the latter actually produces, for every A ≥T ∅′, a 1-generic
set G with G⊕∅′ ≡T G′ ≡T A (i.e., a set G such that for every Σ0

1 subset of
2<ω, either some initial segment of G lies in the set, or no extension of some
initial segment of G does). We cannot reproduce this extra property in the
preceding theorem because there exist special Π0

1 classes with no members of
1-generic degree (e.g., the Π0

1 class all of whose members have degree � 0,
since, by a result of Kučera [13] and others, no such degree can bound a
1-generic one).

Theorem 3.21. For every n ≥ 0, every special Π0
1 class has a member that

is lown+1 but not lown.

Proof. We proceed by induction. If n = 0, the result follows simply by
the Low Basis Theorem and the fact that we are dealing with special Π0

1

classes. Since the Low Basis Theorem easily relativizes, we thus assume
that the desired result holds, along with all of its relativizations, for some
n ≥ 0. Fix an arbitrary set A and a nonempty Π0,A

1 class C. Let D be
a nonempty Π0,A′

1 class all of whose members have degree strictly above
deg(A)′. By the inductive hypothesis relative to A′, D has an element
B such that B(n) �T (A′)(n) = A(n+1) but B(n+1) ≤T (A′)(n+1) = A(n+2).
Since B >T A′, it follows by Theorem 3.20, relativized to A, that C has
an element f satisfying f ′ ≡T B. Then f (n+1) ≡T B(n) �T A(n+1) but
f (n+2) ≡T B(n+1) ≤T A(n+2), so f is lown+2 relative to A and not lown+1

relative to A, as desired. This completes the induction and the proof.

Of course the condition “special” in the preceding two theorems is un-
avoidable since there exist nonempty Π0

1 classes all of whose members are
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computable.
One interesting topic we do not have time to cover here is the relation

between the Cantor-Bendixson rank of a point f in a Π0
1 class and its Tur-

ing degree. For example, any rank 0 (isolated) point must be computable.
Cenzer, Clote, Smith, Soare, and Wainer extend this to finite and even
computable ordinals. Other results on rank are discussed in Cenzer [1999].

4 Forcing with Π0
1 classes

The method of constructing the path in the proof of the Low Basis Theorem
is known as forcing with Π0

1 classes, or sometimes also as Jockusch-Soare
forcing. It is highly modular and can be used to obtain a wide array of
results, and we will encounter it repeatedly in subsequent results about Π0

1

classes. The purpose of this section is to outline this method, and to give
several examples of how it is used.

4.1 Conditions, dense sets, and generics

Forcing in mathematical logic is a technique which traces its roots back to
Paul Cohen’s celebrated proof of the independence of the Continuum Hy-
pothesis from Zermelo-Fraenkel Set Theory, and, in slightly different form,
even further back to the proof by Kleene and Post of the existence of in-
comparable degrees below 0′. The basic idea is to decide, or “force”, certain
properties or requirements of an object we are building at a definite stage of
our building it. Intuitively, we build the object using approximations called
conditions, which we extend one by one in such a way as to preserve any
information we have already decided or committed to. In the case of forcing
with Π0

1 classes, this takes the following form. It should be familiar to the
reader who has seen forcing in other contexts.

Definition 4.1.

(i) A condition is an infinite computable subtree of 2<ω. A condition T̃
extends a condition T if T̃ ⊆ T .

(ii) A collection D of conditions is dense if every infinite computable tree
T has an extension T̃ ∈ D.

(iii) For a degree d, a collection D of conditions is d-effectively dense if
every infinite computable tree T has an extension T̃ ∈ D, and if an
index for T̃ can be found d-effectively from an index for T .
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(iv) Given a family of dense sets D = {De : e ∈ ω}, we call a real f ∈ 2ω

D-generic if for all e, f ∈ [T ] for some T ∈ De.

The usefulness of forcing comes from the following theorem which says that
generics always exist. In practice, this means we can obtain a generic pos-
sessing some property or properties simply by adjusting the family D we are
working with.

Theorem 4.2 (Existence of generics for forcing with Π0
1 classes).

(i) For any family D = {De : e ∈ ω} of dense sets, there exists a D-generic
real f .

(ii) If the De are d-effectively dense for some d, then there is a function p
with deg(p) ≤ d such that for each e, p(e) is an index for some T ∈ De

with f ∈ [T ].

Proof. To prove (i), let T0 = 2<ω. By density of the De, we can obtain a
chain

T0 ⊇ T1 ⊇ · · ·

of infinite computable trees such that Te+1 ∈ De for all e. Since Cantor
space is compact and [T0 ], [T1 ], . . . is a nested sequence of nonempty closed
sets,

⋂
e∈ω[Te ] must be nonempty. Clearly, any member of this intersection

is D-generic. To prove (ii), note that if the De is d-effectively dense than an
index for each Te can be found d-effectively.

Let us translate the proof of the Low Basis Theorem into the language
of families of dense sets and generic reals. Let {Tt0 , Tt1 , . . .} be an effective
enumeration of all computable trees (finite and infinite) and such that ti is
an index for Tti for all i. For all e, i ∈ ω let Ue,ti = {σ ∈ Tti : Φσ

e (e) ↑}.
Then, for each e define

De = { Ue,ti : i ∈ ω & |Ue,ti | =∞ } ∪ { Tti : i ∈ ω & |Ue,ti | <∞ }

and let D = {De : e ∈ ω}. It is not difficult to see that each De is 0′-
effectively dense (notice that we can find an index for Ue,ti computably from
an index for Tti). The Low Basis Theorem is obtained by taking a D-generic
f and a function p ≤T ∅′ according to Theorem 4.2(ii), and pointing out
that e ∈ f ′ if and only if |Ue,p(e)| =∞ (which ∅′ can decide).
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4.2 Forcing Modules

In the literature, authors customarily refer to dense sets only implicitly, pre-
ferring instead, as we did in our original proof of the Low Basis Theorem, to
describe the strategy for obtaining Te+1 from Te in the proof of Theorem 4.2
directly. We follow this convention below, but of course we could always
translate any argument employing forcing with Π0

1 classes into the (more
formal) language of the previous subsection.

We can obtain a wide array of basis results by modifying the strategy
for obtaining Te+1 from Te in Theorem 4.2, or, in more complicated con-
structions, by varying it depending on e. We think of each such strategy as
a module for forcing with Π0

1 classes. As we will see, these modules can then
be variously combined to produce different basis results. So as to have as
much flexibility as possible in doing this, we describe each of these modules
separately. We keep track of the effectiveness in each module, i.e., of how
much oracle strength was needed in its proof, so as to gauge how effective
any basis result employing this module will be.

Let us illustrate the module concept by looking at a module we have
already seen implemented, namely that used in the proof of the Low Basis
Theorem. A quick examination of that proof reveals that it consists just of
iterations of this module for all e ∈ ω.

Lemma 4.3 (Lowness Module). Let T be an infinite computable tree and
let e ∈ ω. There exists an infinite computable subtree T̃ ⊆ T such that either
Φf
e (e) ↓ for all f ∈ [ T̃ ], and hence e ∈ f ′; or else Φf

e (e) ↑ for all f ∈ [ T̃ ],
and hence e /∈ f ′. Moreover, an index for T̃ can be obtained ∅′-uniformly
from e and an index for T .

The utility of having the lowness module by itself is that we can inter-
sperse it with others, and obtain paths that, in addition to satisfying other
properties, are low. However, we must be careful that those other mod-
ules are also uniform in ∅′: mixing the lowness module together with, for
example, one requiring a ∅′′ oracle will produce a path f satisfying only
f ′ ≤T ∅′′.

4.3 Examples of Modules

What follows are several examples of forcing modules, and details about how
they can be combined to generate ever more sophisticated basis theorems
for Π0

1 classes.
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4.3.1 Cone Avoidance Modules

Cone avoidance and Turing incomparability, like lowness, are measures of the
complexity of a set. The modules we present next, and the basis theorems
they yield, show that no nonempty Π0

1 class exists whose every member must
compute or be computable from a given noncomputable set. We begin with
the following module for obtaining upper cone avoidance. The subsequent
theorem is obtained by a straightforward iteration.

Lemma 4.4. Let C be a noncomputable set, T an infinite computable tree,
and i ∈ ω. There exists an infinite computable subtree T̃ ⊆ T such that
C 6= Φf

i for any f ∈ [ T̃ ]. An index for T̃ can be found (∅′ ⊕ C)-effectively
from i and an index for T .

Proof. For each n ∈ ω, define

Un = {σ ∈ T : Φσ
i (n) ↑ ∨Φσ

i (n)↓ 6= C(n)},

noting that each of these is a computable tree whose index as such can be
found C-effectively from i and an index for T . We claim that some Un must
be infinite. If not, then for each n we could find a level m and value k such
that Φσ

i (n) ↓= k for all σ of length m, whence it would have to be that
C(n) = k, so C would be computable. We ∅′-computably search for the
least n such that Un is infinite, and let T̃ = Un. Clearly, Φf

i C for all f ∈ T̃ ,
as desired.

Theorem 4.5 (Upper Cone Avoidance Basis Theorem). Let C be a noncom-
putable set. Every nonempty Π0

1 class has a member that does not compute
C.

Since every set computes every computable set, to get an analogous
result for lower cone avoidance we must obviously insist that the Π0

1 classes
we deal with be special. The next module and subsequent theorem show
that this is the only restriction needed.

Lemma 4.6. Let C be any set, T an infinite computable tree with no com-
putable paths, and i ∈ ω. There exists an infinite computable subtree T̃ ⊆ T
such that f 6= ΦC

i for any f ∈ [T̃ ]. Moreover, an index for T̃ can be found
C ′-effectively from i and an index for T .

Proof. Since T has no computable paths, it must contain at least two in-
compatible extendible nodes. Call the least such nodes σ and τ , and say
n < min{|σ|, |τ} is least such that σ(n) 6= τ(n). Ask C ′ whether ΦC

i (n)
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converges. If so, then one of the two strings, say σ, must disagree with ΦC
i

on n, and we let T̃ consist of all nodes in T compatible with σ. In this case,
f(n) = σ(n) for all f ∈ [T̃ ], so clearly ΦC

i 6= f for all such f . Otherwise, we
let T̃ = T , and in this case the result follows trivially.

Theorem 4.7 (Lower Cone Avoidance Basis Theorem). Let C be any set.
Every special Π0

1 class has a member that is not computable by C.

We now combine both the preceding modules, as well as the lowness
module, into a single basis theorem. This is a standard “weaving argument”,
where we alternate (in this case, three) strategies depending on e (in this
case, depending as e is congruent to 0, 1, or 2 modulo 3) . For completeness,
we include the details.

Theorem 4.8 (Incomparability Basis Theorem). Let C0, C1, . . . be a se-
quence of noncomputable sets, and let D = ⊕j∈ωC ′j. Every special Π0

1 class
has a member f which is Turing incomparable with C and satisfies f ′ ≤T D.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such that

C = [T ]. We build a sequence of infinite computable trees T = T0 ⊇ T1 ⊇ · · ·
as follows. Let Te be given. If e ≡ 0 (mod 3), apply the lowness module,
Lemma 4.3, with Te in place of T , and let Te+1 be the tree T̃ obtained
there. If e = 3〈i, j〉 + 1 for some i, j, apply Lemma 4.4 with Te in place of
T and Cj in place of C, and let Te+1 be the tree T̃ obtained there. And if
e = 3〈i, j〉 + 2, apply Lemma 4.6 in a similar fashion. Since ∅′ ≤T D and
C ′j ≤T D for all j, in either case, D suffices to find an index for Te+1 from an
index for Te. The proof is concluded by taking f ∈

⋂
e∈ω [Te ]. The stages

congruent to 0 modulo 3 ensure that f ′ ≤T D, the stages congruent to 1
modulo 3 that C �T f , and those congruent to 2 modulo 3 that f �T C.

The following now easily follow.

Corollary 4.9. Let L0, L1, . . . be noncomputable low sets such that a lowness
index for Li can be found ∅′-effectively from i. Every special Π0

1 class has a
member that is low and Turing incomparable with each Li.

Corollary 4.10 (Jockusch and Soare, 1972b). Every special Π0
1 class has

countably many low members that are mutually incomparable.

4.3.2 Minimal Pair Module

Recall that a pair of degrees a and b is said to form a minimal pair if
a ∩ b = 0. (We do not, as some authors do, insist that a and b must also
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be nonzero.) The following module prepares for proving the Minimal Pair
Basis Theorem.

Lemma 4.11. Let C be any set, T an infinite computable tree, and i, j ∈ ω.
There exists an infinite computable subtree T̃ ⊆ T such that if Φf

i = ΦC
j = A

for some f ∈ [T̃ ] and some set A, then A is computable. Moreover, an index
for T̃ can be found (∅′′ ⊕ C ′)-effectively from i, j, and an index for T .

Proof. We begin by asking whether there exist extendible nodes σ, τ ∈ T
and an x ∈ ω such that Φσ

i (x) ↓6= Φτ
i (x) ↓ . This can be done using a ∅′′

oracle, since the question of whether a given node of a computable tree is
extendible is Π0

1. If not, then whenever Φf
i is total for some f ∈ [T ] it must

be computable, since to figure out the value of Φf
i (x) we have only to find

some σ ∈ T , such as a sufficiently long initial segment of f , with Φσ
i (x) ↓. In

this case, then, we can let T̃ = T . So suppose some such σ and τ exist, and
fix the least such. Next, use C ′ to determine whether ΦC

j (x) converges and
is {0, 1}-valued. If not, then the conclusion of the lemma holds trivially, and
so we can again just let T̃ = T . Otherwise, one of the two computations,
say Φσ

i (x), must differ from ΦC
j (x), and we let T̃ consist of all nodes of T

compatible with σ. In this case, Φf
i 6= ΦC

j for any f ∈ [T̃ ].

Iterating in the standard way yields the following:

Theorem 4.12 (Minimal Pair Basis Theorem). Let C be any set. Every
Π0

1 class has a member f such that deg(f) and deg(C) form a minimal pair.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such that

C = [T ]. We build a sequence of infinite computable trees T = T0 ⊇ T1 ⊇ · · ·
as follows. Let Te be given, and suppose e = 〈i, j〉 for some i, j ∈ ω. Apply
the preceding Lemma to the tree Te, and let Te+1 be the tree T̃ obtained
there. Then take f ∈

⋂
e∈ω [Te ]. The definition of Te+1 from Te ensures

that Φf
i and ΦC

j are only the characteristic function of a set if that set is
computable. Hence, deg(f) and deg(C) form a minimal pair, as desired.

By interspersing an additional module into the preceding construction,
namely the low2ness module used to control the double jump of f in the proof
of the Computably Bounded Basis Theorem 3.13, we obtain the following
stronger theorem. Note that that module can be carried out using a ∅′′
oracle.

Theorem 4.13. Let C be any set. Every Π0
1 class has a member f such

that f ′′ ≤T ∅′′ ⊕ C ′ and deg(f) and deg(C) form a minimal pair.
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The following corollaries are then immediate. The first of these was used
by Dzhafarov and Jockusch [6, Theorem 6.2] to show that every computable
coloring of pairs has a pair of infinite homogeneous sets whose degrees form
a minimal pair.

Corollary 4.14. Let C be any set with C ′ ≤T ∅′′. Every Π0
1 class has a

low2 member f such that deg(f) and deg(C) form a minimal pair.

Corollary 4.15. Every Π0
1 class has a pair of low2 members whose degrees

form a minimal pair.

Of course, we cannot expect the Minimal Pair Basis Theorem to hold
in general with a low f , or even a lown f for any n, since we could always
choose the noncomputable set C to be ∅n and thereby get f ≤T C. But
more is true: we cannot get a low f even when C is itself low. In Section YY,
we will see the existence of a Π0

1 class all of whose members have diagonally
noncomputable (DNC) degree. If we let C be any low member of this Π0

1

class, then by Kučera’s theorem (cf. [?], Theorem 2), no ∆0
2 (let alone low)

member of this class can have degree forming a minimal pair with deg(C).
(Note that this also shows that Corollary 4.15 cannot be improved from a
minimal pair of low2 members to a minimal pair of low ones.)

We should point out another well-known connection between minimal
pairs and Π0

1 classes. This is not a basis theorem, and is not proved by the
methods discussed in this section, but it provides an interesting connection
to Corollary 4.15.

Theorem 4.16 (Jockusch and Soare, 1971). There exist nonempty special
Π0

1 classes C0 and C1 such that for all f ∈ [ C0 ] and g ∈ [ C1 ], deg(f) and
deg(g) form a minimal pair.

The proof, which we omit, is based on that of the classical result, due in-
dependently to Lachlan and Yates, that there exists a minimal pair of c.e.
degrees.

5 Computably Dominated Sets and Degrees

5.1 Computably Bounded Functions and Trees

We can extend the notions of Π0
1 class and tree by replacing Cantor space

2ω by Baire space ωω and the tree 2<ω by ω<ω. Theorem 2.4 on effectively
closed classes (Π0

1 classes) still holds but the effective compactness Theo-
rem 2.9 fails. However, we can still obtain the former results if we restrict
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to functions and Π0
1 classes which are computably bounded. (The definition

of a function g(x) being computably bounded was given in Definition 3.12
above.)

Definition 5.1.

(i) A tree T ⊆ ω<ω is computably bounded (c.b.) if there is a computable
function h such that (∀g ∈ [T ]) (∀x) [ g(x) ≤ h(x) ].

(ii) A Π0
1 class C is computably bounded (c.b.) if there is a computably

bounded computable tree T ⊆ ω<ω such that C = [T ].

Obviously, all Π0
1 subclasses of 2ω are computably bounded, their mem-

bers being bounded by the constant function h(x) = 1. But in fact, these
h(x) = 1 bounded classes suffice for the purposes of studying the com-
putable content of members of computably bounded Π0

1 classes in general,
as the following proposition shows. The next propositions are easy exercises.

Proposition 5.2. If T ⊆ ω<ω is a computably bounded, computable tree
then there is a computable tree S ⊆ 2<ω and a computable map h : T → S
such that h induces a homeomorphism ĥ : [T ]→ [S ] which preserves Turing
degree.

Proposition 5.3. If T ⊆ ω<ω is computable and finite branching (but not
necessarily computably bounded) then it is bounded by a function h ≤T 0′.

Therefore, all results about c.b. computable trees hold for finite branch-
ing computable trees if the assertions are relativized to 0′.

5.2 Post’s Hyperimmune Sets

Post’s Problem [1944] was the famous problem of finding an incomplete but
noncomputable c.e. set W . To accomplish this he defined various notions
of thinness on the complement W . These are described in detail in Soare
[CTA] and [1987]. We now describe them only very briefly.

Post called an infinite set A hyperimmune (h-immune) if there is no
strong array {Df(x) }x∈ω of disjoint finite sets presented by a computable
function f and such that the index x effectively specifies the members of
finite set Dx. This definition in terms of strong arrays was then related to
computably bounding properties.

Theorem 5.4 (Kuznecov, Medvedev, Uspenskii). An infinite set A is hy-
perimmune iff its principal function pA (of Definition 3.12) is not bounded
by any computable function.
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Proof. See Soare [1987, Theorem V.2.3].

Many authors and we also in the paper will take Theorem 5.4 as a defi-
nition of hyperimmune (h-immune). A coinfinite c.e. set W is hypersimple
(h-simple) if W is h-immune.

Corollary 5.5. A coinfinite c.e. set B is h-simple iff B is not bounded by
any computable function.

Dekker [1954] connected bounding functions to the computation time
of c.e. sets. He proved that for every noncomputable c.e. set B there is
a hypersimple set A such that A ≤tt B ≤T A. Let f be any one-one
computable function with range B. Dekker defined the deficiency set to be

(16) A = { s : (∃t > s) [ f(t) < f(s) ] }.

The rest of the proof is given in Soare [1987, Theorem V.2.5]. The key point
is that if a computable function h bounds A then A is computable.

Corollary 5.6. For every noncomputable c.e. set B there is an h-simple set
A ≡T B. Hence, every nonzero c.e. degree contains an h-simple set.

5.3 Hyperimmune Degrees

The previous work by Post, Dekker, and Martin and Miller [1968] extended
these definitions from a single set to an entire degree by defining a degree
to be hyperimmune if it contains a hyperimmune set.

Definition 5.7 (Miller and Martin, 1968).

(i) A degree d is hyperimmune (h-immune) if it contains a hyperimmune
set.

(ii) If degree d contains no hyperimmune set it is called hyperimmune-
free (hi-free) (since it is free of hyperimmune sets). It is also called
computably dominated according to Definition 3.12 because by Theo-
rem 5.4 every set B ∈ d is dominated by a computable function. The
second term conveys more intuition about the meaning.

Corollary 5.6 shows that every nonzero c.e. degree is h-immune. The
next few results will demonstrate that every nonzero degree comparable
with 0′ is h-immune, showing that the computably dominated degrees are
scarce. However, by Theorem 3.13 at least one nonzero computably domi-
nated degree exists.
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5.4 Two Downward Closure Properties of Domination

Recall Definition 3.12 (vi) on computably dominated functions and sets.
The key point is that for a function f or set A to be computably bounded
simply requires a single bounding function, while being computably domi-
nated imposes computable bounding on every function g in the same degree,
a very strong condition. Remarkably, it turns out not to matter whether we
insist on having this condition for all g ≤T f or merely for all g ≡T f .

Theorem 5.8 (Miller and Martin, 1968). Suppose A is computably domi-
nated.

(i) If B ≤T A, then B is computably dominated.

(ii) If g ≤T A, then g is computably dominated.

Proof. (i) Let B = ΦA
e . Define g(x) as follows. Let g(0) = 0. For every x ∈ ω

define g(2x+ 1) = g(2x) + pB(x) + 1 and g(2x+ 2) = g(2x+ 1) + pA(x) + 1.
Now g is strictly increasing and therefore is the principal function of some
set C ≡T A. Therefore, some computable function h dominates g = pC .
But then h(2x+ 1) dominates pB(x).

(ii) Let f = ΦA
e . Define g(0) = 0. For every x ∈ ω define g(x+ 1) = g(x) +

f(x) + 1. Now g is strictly increasing and therefore is the principal function
of some set C ≡T f . Therefore, some computable function h dominates
g = pC . But then h(x+ 1) dominates f(x).

Corollary 5.9. The hyperimmune degrees are closed upwards and the com-
putably dominated degrees are closed downwards.

Proof. By Theorem 5.8.

Theorem 5.10. A set A is computably dominated iff for every f ,

(17) f ≤T A =⇒ f ≤tt A.

Proof. (=⇒). Suppose that A is computably dominated and f = ΦA
e .

Define g(x) = (µs)ΦA
e,s(x) converges and g(x) = 0 if ΦA

e,s(x) diverges. Now
g ≤T A. Therefore, by Theorem 5.8 there exists some computable function
h which bounds g. Define a Turing functional ΨX(x) which, on any input x
and oracle X, runs ΦX on input x for h(x) many steps, and outputs ΦX

e (x)
if the latter converges and 0 otherwise. Then ΨX is total for every X and
ΨA = ΦA

e .
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(⇐=). Assume (17). Let f ≤T A. Then f ≤tt A. It suffices to prove that
f is computably dominated. Fix a total reduction Φe such that f = ΦA

e .
Define a computable function h as follows. Given x, we search for a level
n such that Φσ

e (x) ↓ for all σ of length n. Such a level must necessarily
exist, as otherwise {σ : Φσ

e (x)↑ } would be an infinite tree, and Φg
e(x) would

not converge for any path g through it. Let h(x) = max{Φσ
e (x) : |σ| = n}.

Clearly, h dominates f .

5.5 ∆0
2 Degrees are Hyperimmune

Every nonzero c.e. degree is hyperimmune because it contains a hypersimple
set. We now prove that nonzero degrees d < 0′ are also hyperimmune. We
also explore the Σ0

2 and other degrees with respect to computable domina-
tion.

Definition 5.11. Let A be a ∆0
2 set and let {As}s∈ω be a computable

sequence such that A = limsAs. The computation function is

(18) cA(x) = (µs > x) [ As �� x = A�� x ],

where A�� x denotes the restriction of A to elements y ≤ x.

Theorem 5.12. Let A be ∆0
2 and {As}s∈ω a ∆0

2 approximation to A with
computation function cA(x).

(i) cA ≡T A.

(ii) If g(x) dominates cA(x) then A ≤T g. Therefore, A is computable iff
a computable function g dominates cA(x).

Proof. (i) A ≤T cA because A(x) = As(x) for s = cA(x). Also cA(x) ≤T A
because we generate As(x) until the first s with A�� x = As �� x.

(ii) If A is computable then cA is computable by (i). Conversely, assume
cA(x) < g(x) for all x. Define

(19) y = (µz > x) (∀t)z≤t≤g(z) [ At �� x = Az �� x ].

By the definition of cA(x) and the fact that cA(x) < g(x) we know that for
all z ≥ x the interval [ z, g(z) ] (called a frame) must contain at least one
stage t which is z-true in the sense that At �� z = A �� z. But A = limsAs
implies that As �� x = A�� x for almost all s. Therefore, almost all z-frames
must contain only stages t which are x-true. This proves that A(x) = Ay(x)
because all values for x in the y-frame agree by (19) and one must agree
with A(x) because y > x and cA(y) ≥ cA(x).
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Corollary 5.13 (Miller and Martin, 1968). If ∅ <T A ≤T ∅′ then deg(A) is
hyperimmune.

Proof. Let ∅ <T A ≤T ∅′. Hence, A ∈ ∆0
2. By Theorem 5.12 no computable

function can dominate cA ≡T A. Therefore, by Theorem 5.8 A cannot have
computably dominated degree.

Corollary 5.14. If a degree d is comparable with 0′ then d is hyperimmune
(not computably dominated).

Proof. By Corollary 5.13 all degrees d ≤ 0′ are hyperimmune. By the
upward closure of hyperimmune degrees in Theorem 5.8 all degrees d > 0′

are also hyperimmune.

The next result generalizes Corollary 5.13 and show that most degrees
obtained by iterating the jump are hyperimmune.

Corollary 5.15 (Miller and Martin, 1968). If B <T A ≤T B′ then deg(A)
is hyperimmune.

Proof. The set A is ∆0,B
2 and there is a B-computable sequence {As}s∈ω such

that A = limsAs by Definition 5.11 relativized to B. Define the computation
function cA as there. If any computable (or even B-computable) function h
dominates cA then A ≤T B, contrary to hypothesis.

Theorem 5.16. If A is computably dominated, then A′′ ≤T A′ ⊕ ∅′′. (In
particular, since A′ ⊕ ∅′′ ≤T (A⊕ ∅′)′, A is GL2.)

Note that it is easy to prove the weaker fact that A is GL2. Indeed,
by Martin’s High Domination Theorem, there exists f ≤T ∅′ which domi-
nates every computable function. Since A is computably dominated, every
A-computable function is dominated by a computable function, and hence
by f . Thus, by Martin’s High Domination Theorem relative to A, A⊕ ∅′ is
high relative to A, meaning A′′ ≤T (A⊕ ∅′)′.

Proof. We prove that TotA ≤T A′ ⊕ ∅′′. Given e ∈ ω, we can computably
find an index e0 of the partial A-computable function

g(x) = (µs)[ ΦA
e,s(x) ↓ ],

noting that this function has the same domain as ΦA
e and so, in particular,

is total if and only if ΦA
e is. We then search for the least 〈i, n〉 such that

i ∈ Tot and either

(20) (∃x < n)(∀s)[ ΦA
e0(x) ↑ ]
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or

(21) (∀x ≥ n)(∀s)[ ΦA
e0,s(x) ↑ & ΦA

e0(x) ≤ ϕi(x) ],

which we can do using an oracle for A′⊕∅′′. Furthermore, the search neces-
sarily terminates. Indeed, if ΦA

e0 is not total, then (20) holds for any n such
that ΦA

e0(x) ↑ for some x < n. And if ΦA
e0 is total then it is dominated by

some computable function ϕi by virtue of A being computably dominated,
and so (21) holds for all sufficiently large n. By choice of e0 and 〈i, n〉, we
have that ΦA

e is total if and only if

(∀x < n)[ ΦA
e (x) ↓ ] & (∀x ≥ n)(∃s ≤ ϕi(x))[ ΦA

e,s(x) ↓ ],

which can be determined using A′. This completes the proof.

5.6 Degrees of Σ0
2 Sets

There are other classes of sets below 0′′ such as the Σ0
2 sets. We now show

that these include additional sets of hyperimmune degree.

Definition 5.17.

(i) A computable sequence {As}s∈ω is a Σ0
2 approximation to a Σ0

2 set
A if

(22) x ∈ A ⇐⇒ (∀∞s)[ x ∈ As ].

(ii) For such a Σ0
2 sequence define the Σ0

2 estimation function

(23) EA(x) = (µs ≥ x)(∀z ≤ x)[ z ∈ A =⇒ (∃t)x≤t≤s[z 6∈ At ]].

(This estimation function plays the same role as the computation func-
tion played for ∆0

2 sets.)

Theorem 5.18. Let A be a Σ0
2 set and let {As}s∈ω be a Σ0

2 approxima-
tion to A with EA(x) the Σ0

2 estimation function. If a computable function
dominates EA(x) then A is computably enumerable.

Proof. Let A be Σ0
2. Now assume that (∀x)[g(x) ≥ EA(x)]. From (22) and

(23) we know,

(24) (∀x) [ x ∈ A =⇒ (∀y > x)(∃t)y≤t≤g(y) [ x 6∈ At ] ],

(25) (∀x) [ x ∈ A ⇐⇒ (∃y > x)(∀t)y≤t≤g(y) [ x ∈ At ] ].

Therefore, A is Σ0
1 in g. If g is computable, then A is Σ0

1 and hence c.e.

33



Corollary 5.19. If A is Σ0
2 and noncomputable then deg(A) is hyperim-

mune.

The results here that various degrees cannot be computably dominated
are based on the fact that in the ∆0

2 and Σ0
2 cases, we have an approximation

to A and the fact that a computable function dominating the computation
function shows that A is computable or c.e. In contrast, the Computably
Bounded Basis Theorem 3.13 produces a computably bounded set A ≤T ∅′′
(in fact, uncountably many). Hence, A is ∆0

3 but it cannot be Σ0
2 or com-

parable with ∅′. Therefore, we can find computably dominated degrees but
they are not abundant. Cooper [2004, p. 271] considers a slightly different
computation function for a Σ0

2 approximating sequence but his computation
function for a ∆0

2 approximating sequence is the same as here and in other
papers.

6 Peano Arithmetic and Π0
1 Classes

6.1 Logical Background

One of the earliest purposes of computability theory was the study of log-
ical systems and theories. We consider theories in a computable language:
one which is countable, and the function, relation, and constant symbols
and their arities are effectively given. We also assume that languages come
equipped with an effective coding for formulas and sentences in the lan-
guage, i.e. a Gödel numbering, and identify sets of formulas with the cor-
responding set of Gödel numbers. We can then speak of the Turing degree
of a theory in a computable language. Here we will examine the language
L = {+, ·, <, 0, 1} of arithmetic, and theories extending PA, the theory of
Peano arithmetic.

Definition 6.1. Let DPA be the set of (Turing) degrees of complete consis-
tent extensions of Peano arithmetic; such a degree is called a PA degree.

The following is surely the best known theorem in mathematical logic:

Theorem 6.2 (Gödel, 1931; Rosser 1936).

(i) The theory of Peano arithmetic is incomplete.

(ii) Furthermore, any consistent computably axiomatizable extension of PA
is also incomplete.6

6There are weaker hypotheses which suffice for the incompleteness theorem, but this
version of the theorem is all that is needed here.
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Corollary 6.3. 0 /∈ DPA.

Thus, there is no complete consistent extension of PA which is com-
putable. However, there are many ways to extend PA to a complete theory,
and there is a very nice way of describing them. We identify a completion
of Peano Arithmetic with the set of Gödel numbers of its sentences.

6.2 Π0
1 classes and completions of theories

Theorem 6.4. There exists a Π0
1 class whose members are precisely the

completions of Peano Arithmetic. Thus DPA is the degree spectrum of a Π0
1

class.

Proof. (Sketch). Fix a bijective Gödel numbering G : ω → SentL for
sentences of arithmetic. Given σ ∈ 2<ω, we identify σ with the sentence

θ(σ) =
∧

σ(i)=1

G(i) &
∧

σ(j)=0

¬G(j).

We say that a sentence θ “appears to be consistent at stage t” if there is no
derivation of ¬θ from the first t axioms of PA in fewer than t lines. Since
there are finitely many such derivations, the relation R(σ, t) = “θ(σ) appears
to be consistent at stage t” is computable. Thus the class

C = { f ∈ 2ω : (∀n)(∀t < n)R(f � t, n) }

is a Π0
1 class. Some f is an element of this class if and only if the correspond-

ing set of sentences G({n : f(n) = 1}) is a complete consistent extension of
PA.

Remark 6.5. This theorem follows from an analysis of Lindenbaum’s lemma.
Note that no special properties of PA were used, beyond the fact that it is a
computably axiomatizable theory in a computable language. Thus the same
theorem applies to all such theories.

We defined a PA degree as a degree of a completion of Peano Arith-
metic. From this definition, it may be surprising that the class of degrees is
closed upwards. This is true, however, and to demonstrate it we will need
an important fact arising from Gödel’s incompleteness theorem: the proof
actually constructs a “Gödel sentence” which is independent of the axioms.

Theorem 6.6 (Gödel’s incompleteness theorem, effective version).

From a description of a consistent, computably axiomatizable theory T ex-
tending PA, we can effectively find a sentence, called the Gödel sentence of
T , which is independent from T .
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6.3 Equivalent properties of PA degrees

The PA degrees arise naturally in a variety of contexts, especially those
relating to trees and weak König’s lemma. This is because the PA degrees
are exactly those degrees which can carry out weak König’s lemma by finding
paths through trees. For this reason, there are several equivalent properties
which all serve to define the PA degrees; we will highlight a few of these
properties.

Definition 6.7. A function f : ω → ω is diagonally noncomputable (d.n.c.)
if, for all e, if ϕe(e)↓ , then f(e) 6= ϕe(e).

Definition 6.8. A function is n-valued if f(e) < n for each e ∈ ω.

The name “diagonally noncomputable” derives from the particular way
that d.n.c. functions are noncomputable. We see that if f is d.n.c., f cannot
be computable, because then f would be ϕe for some e, but f and ϕe differ
on argument e; thus d.n.c. functions diagonalize against all the list of all
(partial) computable functions. We will be primarily interested in 2-valued
d.n.c. functions.

Theorem 6.9 (Scott, 1962; Jockusch and Soare, 1972b; Solovay, unpub-
lished7). For a Turing degree d, the following are equivalent:

(i) d is the degree of a complete consistent extension of Peano arithmetic.

(ii) d computes a complete consistent extension of Peano arithmetic.

(iii) d computes a 2-valued d.n.c. function.

(iv) Every partial computable 2-valued function has a total d-computable
extension.

(v) Every nonempty Π0
1 class has a member of degree at most d.

(vi) Every computably inseparable pair has a separating set of degree at
most d.

7Scott [1962] proved the equivalence of conditions (i) and (v). Jockusch and Soare
[1972b] proved the equivalence of conditions (ii) and (vi); the equivalence with (iii) and
(iv) is also implicit in their work. Jockusch and Soare left the equivalence of (i) and (ii)
as an open question, which was answered by Solovay (unpublished).
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Proof. (i) =⇒ (ii). This implication is trivial.

(ii) =⇒ (iii). Let d compute a complete consistent extension T of PA, and
let f be the (partial computable) diagonal function f(e) = ϕe(e). By results
of Gödel and Kleene, there is a formula ψ representing f , in the sense that

f(x)↓= y ⇐⇒ PA ` ψ(x, y), and

f(x)↓ 6= y ⇐⇒ PA ` ¬ψ(x, y).

Since PA ` ψ(x, y) implies that ψ(x, y) ∈ T , and T is complete and
d-computable, the function

f̂(e) =

{
1 ψ(e, 0) ∈ T
0 ¬ψ(e, 0) ∈ T

is a d-computable 2-valued d.n.c. function.

(iii) =⇒ (iv). Suppose g is a 2-valued d.n.c. function, and let f be a partial
computable 2-valued function. There is a computable function f̂ such that
f(x) = ϕ bf(x)

(f̂(x)) for all x. Then 1−(g◦f̂) is a total d-computable 2-valued
function extending f .

(iv) =⇒ (v). Let P be a nonempty Π0
1 class, and T a computable tree with

P = [T ]. Fix a computable bijection h : ω → 2<ω. Let f be the function

f(e) =


0

h(e) ∈ T and there is a level l such that h(e)̂0
has a descendent at level l in T , but h(e)̂1 does not

1
h(e) ∈ T and there is a level l such that h(e)̂1
has a descendent at level l in T , but h(e)̂0 does not.

This function f is partial computable, since to compute f(e) one simply
searches for a level l such that one case or the other holds. If h(e) ∈ T
is extendible, then either both h(e)̂0 and h(e)̂1 are extendible, in which
case f(e) ↑ , or only one is, so f(e) ↓ , and h(e)̂f(e) is extendible. Let f̂
be a 2-valued d-computable extension of f . Then using f̂ , we can find an
element of [T ] as follows: starting with any string σ ∈ T ext, apply f̂ ◦ h−1

to get either 0 or 1, which we can append to σ to get a longer string still in
T ext. Starting with the empty string, we can iterate this process to get an
infinite d-computable path through [T ], i.e. an element of P.

(v) =⇒ (vi). If A,B is a computably inseparable pair, the class of
separating sets is a Π0

1 class by Theorem 3.4. If property 4 holds, this has a
d-computable member.
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(vi) =⇒ (i). Fix some order of L-sentences, and some order for generating
proofs. Let A be the set of pairs (F,ψ), where F is a finite set of L-sentences
and ψ is an L-sentence, such that a proof of a contradiction is found from
PA ∪ F ∪ {ψ} before (if ever) finding a proof of a contradiction from PA ∪
F ∪ {¬ψ}. Similarly, let B be the set of pairs (F,ψ), such that a proof of
contradiction is found from PA∪F ∪{¬ψ} before (if ever) finding one from
PA ∪ F ∪ {ψ}. Clearly A and B are disjoint c.e. sets. Suppose the pair
A,B has a d-computable separating set C. Let D ∈ d. We will construct a
completion T of PA, of degree d, in stages, along with a bijective function
g : ω → SentL, also defined in stages. At stage n we will determine g(n),
and decide whether g(n) ∈ T . Define the set of sentences,

Fn = (T ∩ g[0 . . . n− 1]) ∪ {¬ψ : ψ ∈ g[0 . . . n− 1] \ T}.

In other words, Fn keeps track of every sentence we decided by the beginning
of stage n. It contains those sentences we have declared to be in T , together
with the negations of those sentences we have declared not to be in T . At
stage n, do the following:

1. If n is even, let g(n) be the Gödel sentence of PA ∪ Fn. If n is odd, let
g(n) be the first L-sentence not yet in the range of g.

2. If n = 2s is even, consider whether s is an element of D. If s ∈ D, then
g(n) ∈ T ; otherwise, g(n) /∈ T .

3. If n is odd, consider the pair (Fn, g(n)). If this pair is in C, then
g(n) /∈ T ; otherwise, g(n) ∈ T .

We will show that T is a complete consistent extension of PA, of degree
d. Assume (for the sake of induction) that Fn is consistent with PA. (Since
F0 = ∅, it is consistent with PA.) Note that Fn+1 is either Fn∪{g(n)} or else
Fn∪{¬g(n)}. Since Fn is consistent with PA, at least one of Fn∪{g(n)} and
Fn∪{¬g(n)} must be consistent with PA. Furthermore, if n is even, both are
consistent since g(n) is the Gödel sentence for PA∪Fn. If both are consistent
with PA, then clearly Fn+1 is as well. Suppose instead only one of the two is
consistent (so we know n is odd). If only Fn ∪{g(n)} is consistent with PA,
then a proof of contradiction will be found from PA ∪ Fn ∪ {¬g(n)} before
finding one from PA∪Fn ∪{g(n)}, so (Fn, g(n)) ∈ B. Thus (Fn, g(n)) /∈ C;
by the construction, g(n) ∈ T , and Fn+1 is consistent with PA. Similarly,
if only Fn ∧ ¬g(n) is consistent with PA, then the construction goes the
opposite way and again Fn+1 is consistent with PA. By induction, Fn is
consistent with PA for all n, so T =

⋃
n Fn is consistent with PA. Since Fn

decides g(0) . . . g(n−1), T is complete. Therefore, T is a complete consistent
extension of PA.
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In order to show that T has degree d, we first show that g ≤T T . To
see this, note that g(n) is either the first L-sentence which is not one of
g(0) . . . g(n − 1), if n is odd, or else g(n) is the Gödel sentence of PA ∪ Fn,
where Fn is determined entirely by T and the values g(0) . . . g(n− 1). Thus
g(n) can be computed from n, g(0) . . . g(n − 1), and T , so g ≤T T . From
the construction, we see that s ∈ D if and only if g(2s) ∈ T , so we have
D ≤T g ⊕ T ≤T T . However, the entire construction was d-computable, so
T ∈ d.

7 Applications to randomness

In this section, we explore some of the interactions between, on the one hand,
Π0

1 classes and computably dominated degrees, and, on the other hand, the
study of algorithmic randomness and complexity

7.1 Martin-Löf Randomness

Let µ be Lebesgue measure on Cantor space, which we assume the reader to
be familiar with. For completeness, we define the measure of an open class
U ⊆ 2ω. Let V ⊂ 2<ω be any set with U = [[V ]] which is prefix-free (i.e., if
σ ∈ V and τ ≺ σ then τ /∈ V ). Such a V can be seen to exist for example
as follows. Since U is open, its complement is a Π0

1 class and hence is equal
to [T ] for some (not necessarily computable) tree T ⊆ 2<ω. Then V can
be taken to consist of all elements of T whose predecessors all belong to T .
Now the measure of U is defined as

µ(U) =
∑
σ∈V

2−|σ|.

Lebesgue measure on Cantor space has all the same properties we are famil-
iar with from Lebesgue measure on the real line. In fact, another definition
of Lebesgue measure on Cantor space is that the measure of a class U ⊆ 2ω

is the same as that of the subset {r(f) : f ∈ U} of the closed unit interval
[0, 1], where r(f) for f ∈ 2ω is the the real number with binary expansion
0.f(0)f(1)f(2) · · · . Recall that a sequence of c.e. sets V0, V1, . . . is uniformly
c.e. (abbreviated u.c.e.) if there exists a computable function f such that
Vn = Wf(n) for all n.

Definition 7.1.

(i) A sequence S0, S1, . . . of subclasses of 2ω is uniformly Σ0
1 if there exists

a u.c.e. sequence V0, V1, . . . of subsets of 2<ω such that Sn = JVn K for
all n.

39



(ii) A Martin-Löf test is a uniformly Σ0
1 sequence S0, S1, . . . of subclasses

of 2ω such that µ(Sn) ≤ 2−n for all n.

(iii) A set X ∈ 2ω passes a Martin-Löf test S0, S1, . . . if X /∈
⋂
n∈ω Sn.

(iv) A set X ∈ 2ω is Martin-Löf random or 1-random if it passes every
Martin-Löf test.

7.2 A Π0
1 Class of 1-Randoms

A Martin-Löf test U0, U1, . . . is called universal if
⋂
n∈ω Un ⊇

⋂
n∈ω Sn for

every other Martin-Löf test S0, S1, . . .. Thus, if X passes a universal test, it
must pass every test, and hence⋂

n∈ω
Un = { X ∈ 2ω : X is not 1-random }.

The following proposition, whose proof we omit, is thus useful when trying
to show that a given set is not 1-random.

Proposition 7.2. There exists a universal Martin-Löf test.

Notice that this implies that the class of 1-randoms has measure 1. In-
deed, each member of a universal Martin-Löf test U0, U1, . . . is an open set
covering {X ∈ 2ω : X is not 1-random}, implying that

µ({X ∈ 2ω : X is not 1-random}) ≤ µ(Un) ≤ 2−n

for all n. Essentially the same argument, in reverse, yields the following:

Corollary 7.3. There is a nonempty Π0
1 class all of whose elements are

1-random.

Proof. Let U0, U1, . . . be a universal Martin-Löf test. For every n > 0, Un
is a proper Σ0

1 subclass of 2ω, implying that Un is a nonempty Π0
1 class. By

definition of a universal Martin-Löf test,

Un ⊆
⋃
n∈ω

Un =
⋂
n∈ω

Un = {X ∈ 2ω : X is 1-random},

as desired.
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Thus we can easily obtain the existence of low 1-random sets, of hyperimmune-
free 1-random sets, etc.

We mention briefly that Corollary 7.3 does not hold if 1-randomness is
replaced by n-randomness for n > 1 (a set being n-random if it is 1-random
relative to ∅(n−1)). That is, for n > 1, there is no nonempty Π0

1 class all of
whose members are n-random.8 One (easy to see) reason for this is that no
n-random set for n > 1 can be ∆0

2, or even contain an infinite ∆0
2 subset.

7.3 Π0
1 Classes and Measure

Given the measure-theoretic definition of 1-randomness, it is natural to ask
about the measure of Π0

1 classes containing 1-randoms. The following theo-
rem gives a full answer to this question.

Theorem 7.4. Let C be a Π0
1 class.

(i) If µ(C) = 0, then C contains no 1-random sets.

(ii) If µ(C) > 0, then every 1-random set computes a member of C.

Proof. (i). Suppose C has measure 0. Let T ⊆ 2<ω be a tree such that
C = [T ], and for each n ∈ ω, let Sn = [[{σ ∈ T : |σ| = n}]]. Then S0, S1, . . .
is a nested sequence of open classes whose intersection is the measure 0 class
C, so it must be that µ(Sn)→ 0. As the sequence (Sn) is given by a strong
array of finite sets of strings, the map n 7→ µ(Sn) ∈ Q is computable, so we
can find a computable function p such that µ(Sp(n)) ≤ 2−n for all n. Now
since S0, S1, . . . is uniformly Σ0

1, Sp(0), Sp(1), . . . is a Martin-Löf test. But for
all f ∈ C, f ∈

⋂
n∈ω Sp(n), so f is not 1-random.

(ii). Suppose C has positive measure and let X be a 1-random set. Let V0

be a prefix-free c.e. subset of 2<ω such that C = [[V0]]. For each n ∈ ω, let
Vn+1 = [[{στ : σ ∈ Vn & τ ∈ V0}, and let Sn = [[Vn]]. Notice that for all n,
Vn is prefix-free since V0 is, so we have

µ(Sn+1) =
∑

σ∈Vn+1

2−|σ| =
∑
σ∈Vn

∑
τ∈V0

2−|στ | =
∑
σ∈Vn

2−|σ|
∑
τ∈V0

2−|τ | = µ(Sn)µ(S0).

It follows that µ(Sn) = µ(S0)n+1 = µ(C)n+1, and hence that µ(Sn)→ 0 since
µ(C) = 1 − µ(C) < 1. Since S0, S1, . . . is uniformly Σ0

1, and the measures
µ(Sn) converge to zero faster than the (computable) function p(n) = qn,

8This should not be confused with saying that Corollary 7.3 does not relativize, which

it does: for each n > 1, there is a Π0,0n−1

1 class all of whose members are n-random.
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where q > µ(S0) is rational, there is some subsequence of the sequence
(Sn) which is a Martin-Löf test. Since X is 1-random, it is not in the
intersection of this test, so X /∈ Sn for some least n. If n = 0, then X /∈ C
and hence X ∈ C. If n > 0, since X ∈ Sn−1, we can choose σ ∈ Vn−1

such that σ ≺ X. Since no τ ∈ V0 can satisfy στ ≺ X, it follows that
Y = {x − |σ| : x ∈ X & x ≥ |σ|} /∈ S0 as X = σY . Thus, Y ∈ C, which,
since Y ≡T X, completes the proof.

We saw in Section 6 that the PA degrees are precisely those which, for
every nonempty Π0

1 class, bound the degree of a member of that class. Part
(ii) of the preceding theorem can be seen as saying that the degrees of 1-
random sets are precisely the analogs of PA degrees with respect to Π0

1 classes
of positive measure. This is a surprising fact because, in most other settings,
the PA degrees and degrees of 1-random sets behave very differently. The
following result, whose proof is not difficult but would nonetheless take us
too far astray, is an example of this phenomenon.

Theorem 7.5. If a set X is both 1-random and of PA degree, then X ≥T ∅′.

7.4 Randomness and Computable Domination

We conclude by looking at applications of some of the ideas from Section
5 to two other notions studied in the area of algorithmic randomness. We
begin with the following.

Definition 7.6. A set X is c.e. traceable if there is a computable function p
such that, for each f ≤T X, there is a computable function h with |Wh(n)| ≤
p(n) and f(n) ∈ Wh(n) for all n. If this holds with Dh(n) in place of Wh(n),
then X is called computably traceable.

Clearly, every computably traceable set is c.e. traceable, and it can be
shown, though we do not do so here, that this implication is strict (see
Downey and Hirschfeldt [ta]). On the other hand, the following theorem
shows that the implication reverse if we restrict to sets of computably dom-
inated degree.

Theorem 7.7 (Kjos-Hanssen, Nies, and Stephan, 2005). If X is a set of
computably dominated degree, then X is c.e. traceable if and only if it is
computably traceable.

Proof. Let X be a c.e. traceable set of computably dominated degree, and
let p be as in Definition 7.8 (ii). Given f ≤T X, let h0 be a computable
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function with |Wh0(n)| ≤ p(n) and f(n) ∈Wh0(n) for all n. Define a function
g by

g(n) = (µs)[ f(n) ∈Wh0(n),s ],

so that g is total and X-computable. By Theorem 5.8 (ii), there exists a
computable function h1 with h1(n) ≥ g(n) for all n. Then if we define h by
letting h(n) be the canonical index of the finite set Wh0(n),h1(n), we have

|Dh(n)| = |Wh0(n),h1(n)| ≤ |Wh0(n)| ≤ p(n)

and f(n) ∈Wh0(n),h1(n) = Dh(n). Hence, X is computably traceable.

We obtain a similar result by looking at the following notion of random-
ness due to Kurtz. In view of Theorem 7.4 (i), it is implied by 1-randomness,
and, as above, it can be shown that this implication is strict.

Definition 7.8. A set X is Kurtz random or weakly 1-random if it is con-
tained in every Σ0

1 class of measure 1.

Theorem 7.9 (Nies, Stephan, and Terwijn, 2005). If X is a set of com-
putably dominated degree, then X is 1-random if and only if it is weakly
1-random.

Proof. Let X be a set of computably dominated degree which is not 1-
random. Let S0, S1, . . . be a Martin-Löf test which X does not pass, and
let f be a computable function such that Sn = [[Wf (n)]] for all n. Define a
function g by

g(n) = (µs)(∃σ ≺ X)[ σ ∈Wf(e),s ],

noting that since X ∈ [[Wf(n)]] for all n, g is total and X-computable. By
Theorem 5.8 (ii), there exists a computable function h with h(n) ≥ g(n) for
all n. Then if we let

C =
⋂
n∈ω

Wf(n),h(n),

we have that C is a Π0
1 class with X ∈ C and

µ(C) ≤ µ([[Wf(n),h(n)]]) ≤ µ(Sn) = 2−n

for all n. Hence, C is a Σ0
1 class of measure 1 not containing X, so X is not

weakly 1-random.

In fact, it follows by a result of Kurtz (unpublished; see Downey and
Hirschfeldt [ta]) that every hyperimmune degree contains a set which is
weakly 1-random but not 1-random (or even Schnorr random, which is a
much weaker notion of randomness). Thus, the degrees separating these
randomness notions are precisely the hyperimmune degrees.
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