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Abstract. We introduce a natural strengthening of prompt simplicity which we call strong prompt-
ness, and study its relationship with existing lowness classes. This notion provides a ≤wtt version
of superlow cuppability. We show that every strongly prompt c.e. set is superlow cuppable. Un-
fortunately, strong promptness is not a Turing degree notion, and so cannot characterize the sets
which are superlow cuppable. However, it is a wtt-degree notion, and we show that it characterizes
the degrees which satisfy a wtt-degree notion very close to the definition of superlow cuppability.

Further, we study the strongly prompt c.e. sets in the context of other notions related prompt-
ness, superlowness, and cupping. In particular, we show that every benign cost function has a
strongly prompt set which obeys it, providing an analogue to the known result that every cost func-
tion with the limit condition has a prompt set which obeys it. We also study the effect that lowness
properties have on the behaviour of a set under the join operator. In particular we construct an
array noncomputable c.e. set whose join with every low c.e. set is low.

1. Introduction

Two of the most influential concepts in the study of computably enumerable sets are those of
lowness and prompt simplicity. Lowness is concerned with the intrinsic information content of a
set (or rather the lack thereof). The most well-studied notion of lowness is that of lowness for
the Turing jump: A set A is low if A′ ≡T ∅′. There have been many results highlighting the fact
that low c.e. sets resemble computable sets. A well-known variation on lowness is superlowness
introduced by Bickford and Mills [2]: A c.e. set A is superlow if A′ ≡wtt ∅′. Here A ≤wtt B means
that A is Turing reducible to B with a computable bound on the use. Recent developments in the
theory of algorithmic randomness have shown that the lowness notions in randomness are related
to lowness notions for the Turing jump.

Prompt simplicity was introduced by Maass [11] in connection with the automorphisms of the
lattice of c.e. sets. This is a dynamic property which describes the speed which elements are
enumerated into the set. A promptly simple set A resembles ∅′ in its dynamic properties. Ambos-
Spies, Jockusch, Shore and Soare [1] proved the beautiful result which linked the dynamic property
of a set with a degree theoretic property: A is promptly simple iff A is low cuppable. Here we say
that A is C cuppable if there is a c.e. set B ∈ C such that A⊕B ≡T ∅′. They also proved that this
class is exactly the class of c.e. sets which are not half of a minimal pair.

The result of Ambos-Spies, Jockusch, Shore and Soare demonstrated a certain robustness in the
class of low cuppable sets. The subclass of the superlow cuppable sets was also studied. Nies asked
if these two classes were equal, and Diamondstone [5] answered this by constructing a promptly
simple set which is not superlow cuppable. The result of Diamondstone suggests a natural question:
Is there a strengthening of prompt simplicity that characterizes superlow cuppability?

The primary aim of this paper is to introduce a natural strengthening of prompt simplicity in
order to understand the question above. We will examine classical theorems demonstrating the
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interplay between prompt simplicity and lowness, and see to what extent the analogy carries over
to the strengthened versions. Our choice is motivated by the following three considerations:

(1) To understand the dynamic properties of the superlow cuppable sets.
(2) To further examine the relationship between lowness and promptness.
(3) To investigate how best to strengthen prompt simplicity.

We will discuss each of these in turn.
Our first motivation is to understand the intricate relationship between the dynamic properties of

a c.e. set and its computational characteristics from the point of view of cupping. In particular we
want to find an analogue of the theorem of Ambos-Spies, Jockusch, Shore and Soare. We introduce
a dynamic notion which implies being of promptly simple degree which we call strongly prompt. We
are able to show that this implies being superlow cuppable, and that in fact some suitable variation
of superlow cuppability characterizes strong promptness. This demonstrates another relationship
between the dynamic and computational properties of a set.

The second motivation was inspired by recent developments in the theory of algorithmic ran-
domness, particularly in the study of different lowness notions. Our aim is to show that if a set
was sufficiently feeble in terms of its computational aspects, then its dynamic properties would also
be affected. Heuristically a notion of lowness is a property indicating feebleness in the operations
concerned. For instance a set A is low for random if every Martin-Löf real is Martin-Löf relative
to A. This property asserts that A is useless in derandomizing other reals. Another fundamental
lowness class is the K-trivial reals. A is said to be K-trivial if for all n, K(A � n) ≤ K(0n) +O(1).
Here K(σ) denotes the prefix-free Kolmogorov complexity of the finite string σ. That is, K-trivial
reals have minimal initial segment complexity which indicates that A contains little algorithmically
useful information. The c.e. K-trivial sets form a n atural Σ0

3-ideal in the c.e. degrees. Despite
the fact that the notion of K-triviality has been around for many years, it was only recently
that K-triviality became well-understood. Several difficult techniques were invented by Downey,
Hirschfeldt, Nies and Stephan [7] to handle this class. Adapting these techniques, Nies [14] showed
that K-triviality was equivalent to low for randomness. He also showed that every K-trivial set was
superlow, demonstrating a pleasing connection between classical lowness and Kolmogorov lowness.

Another central lowness subclass is the class of strongly jump traceable sets, introduced by
Figueira, Nies and Stephan [9]. A is strongly jump traceable if for every computable non-decreasing
and unbounded function h (also called an order), there is a computable function g such that for
every x, the value of the partial A-computable function ΦA

x (x) ∈ Wg(x) and |Wg(x)| < h(x). This

property says that the value of ΦA
x (x) can be effectively traced with arbitrarily slow growing bounds

(on the size of the trace). Cholak, Downey and Greenberg [3] showed that every c.e. strongly jump
traceable set is K-trivial, and the former class forms a Π0

4-ideal in the c.e. degrees. A recent result
of Greenberg and Nies [10] revealed an unexpected connection between traceability and a notion
from classical computability. Cholak, Groszek and Slaman [?] introduced the class of almost deep
degrees, where they called a c.e. degree a almost deep if for every low c.e. degree b, a ∪ b is low.
They showed that this is a non-trivial ideal in the c.e. degrees. Another non-trivial ideal was studied
by Ng [13]: a c.e. degree a is almost superdeep if for every superlow c.e. degree b, a∪b is superlow.
Each almost (super)deep degree is a fortiori (super)low. Greenberg and Nies showed that every
strongly jump traceable c.e. set is almost superdeep. Since there is a promptly simple strongly
jump traceable c.e. set, this result of Greenberg and Nies gives another proof of Diamondstone’s
result that prompt simplicity is different from superlow cuppability.
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The abovementioned are examples of a large collection of results in the literature demonstrating
that the strongly jump traceable c.e. sets greatly resemble the computable sets. We might expect
that at this level of computational lowness, the strongly jump traceable sets would also resemble
the computable sets in their dynamic properties. However Figueira, Nies and Stephan [9] showed
that there is a promptly simple c.e. set which is strongly jump traceable. By partially relativizing
strong jump traceability, Ng [12] studied a further subclass of the strongly jump traceable c.e. sets,
called the hyper jump traceable sets. He showed that no hyper jump traceable c.e. set is promptly
simple. Hence the hyper jump traceable c.e. sets are computationally so weak that they cannot
have a prompt enumeration. We prove in Section 3 that no strongly jump traceable c.e. set can be
strongly prompt.

Our third motivation for introducing strong promptness comes from a desire to understand what
it means to “have an effective bound on prompt simplicity”. Specifically, a set will be strongly
prompt if there is a suitably effective bound g(e) on the size of We which guarantees a prompt
permission. If this bound were computable, we would have the notion of effective simplicity, and
such sets are known to be complete. In fact, we show that allowing g to be n-c.e. forces completeness.
We instead require that g be ω-c.e. Recall that a function (or a set) being ω-c.e. is equivalent to
it being wtt-computable from ∅′. We imagine that we have a size bound ĝ(e, s) that we think
guarantees a prompt permission. Then, a prompt permission is denied for We if it exceeds the size
bound ĝ(e, s) at stage s, but A has not changed below x by stage p(s). The fact that g is ω-c.e.
ensures that we have a computable bound on the number of times this can occur. This definition of
strong promptness is arguably the most natural way to strengthen the notion of prompt simplicity,
and captures a large number of prompt constructions. To wit, many constructions of promptly
simple c.e. sets already give (or can be modified to give) a strongly prompt c.e. set. For instance
the standard construction of a promptly simple superlow c.e. set A also makes A strongly prompt,
since the eth prompt requirement may only be denied from acting at most 2e times. Other notable
examples from algorithmic randomness include the following results:

• The cost function construction of a promptly simple K-trivial set.
• There is a promptly simple set A such that every Martin-Löf random Z which is ω-c.e.

computes A.

In contrast, no single strongly prompt set can be computed from every ω-c.e. Martin-Löf random.
This is because Greenberg and Nies [10] showed that any set computable from every ω-c.e. Martin-
Löf random is strongly jump traceable, while it is an easy exercise to show that no strongly prompt
set can be strongly jump traceable.

The paper is organized as follows. In Section 2 we lay down the basic definitions and notations.
We then prove a few fundamental properties about the strongly prompt sets. We also consider
the structure of the Turing and the wtt-degrees containing a strongly prompt set. In Section 3 we
consider the interactions between strong promptness and superlow cuppability. In Theorem 3.1 we
prove that every strongly prompt c.e. set is superlow cuppable. One is motivated to ask whether
these two properties are equivalent. Unfortunately, as we will see, strong promptness is not even a
Turing degree notion, but instead applies naturally to weak truth-table degrees. However, it may
still be the case that being superlow cuppable is equivalent to having the same Turing degree as a
strongly prompt set. We leave this as a question. In Theorem 3.3 we provide a characterization
of strong promptness in terms of a cupping property: A c.e. set A is strongly prompt iff there is a
superlow c.e. set B such that ∅′ ≤T A⊕B with an ω-c.e. bound on the use.
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In Section 4 we show that with the possible exception of the containment of (3) in (1), no one
of the following three ideals in the c.e. degrees are included in any of the others: (1) K-trivial
degrees, (2) Almost deep degrees and (3) Almost superdeep degrees. We do not yet know if (3)
is contained in (1), or if every almost superdeep degree is strongly jump traceable. In Theorem
4.2 we show that for any benign cost function c, there is a strongly prompt set A satisfying c (the
terminologies will be explained in Section 4). As a corollary we derive that K-trivial sets can be
superlow cuppable. This also gives an alternative proof of Greenberg and Nies’ result [10] that
no single cost function serves to define the strongly jump traceable c.e. sets. In Theorem 4.5, we
construct an almost deep c.e. degree which is not totally ω-c.e. Downey, Greenberg and Weber
[?] introduced the totally ω-c.e. degrees to capture the multiple permitting required in certain
constructions in classical degree theory. Here a c.e. degree a is totally ω-c.e. if every f ≤T a is
ω-c.e. From Downey, Jockusch and Stob [8], we recall that a degree a is called array computable if
there is a function f ≤wtt 0′ which dominates all a-computable functions. Array non-computability
has been shown to be related to multiple permitting constructions, and is known to code a certain
computational power. For example, by Downey, Jockusch and Stob [8], we know that every array
non-computable degree bounds a 1-generic degree. It is easy to see that every superlow c.e. set is
array computable, and every array computable c.e. set is totally ω-c.e. As a corollary to Theorem
4.5, we obtain an almost deep degree which is array noncomputable, and therefore not superlow.

2. The degrees of strongly prompt sets

Henceforth, every set mentioned is c.e. unless otherwise stated. Throughout the paper, Φe will
denote the eth Turing functional in some computable enumeration, and ϕe its use. An expression
depending on one or more c.e. sets, computable functions, and/or computable sequences may have
[s] appended to denote that every stage-dependent object is taken at stage s. When we say x
enters We, at s, we refer to the standard (or any fixed) enumeration of the c.e. sets. We assume that
We,e = ∅. Recall that a c.e. set A is of promptly simple degree if and only if there is an enumeration
{As}s∈ω of A and an increasing computable function p : ω → ω such that for every e for which We

is infinite, there is some x and s such that x ∈We, at s ∧As � x 6= Ap(s) � x.

Definition 2.1. A set B is strongly prompt if there is an enumeration {Bs}s∈ω of B, an increasing
computable function p : ω → ω, called the “promptness function”, and an ω-c.e. function g : ω → ω,
such that the following holds:

(1) |We| ≥ g(e)→ (∃x∃s)[x ∈We, at s ∧Bs � x 6= Bp(s) � x].

That is, a strongly prompt set has a c.e. enumeration where there is a computable bound on the
number of times a request for a prompt change can be denied. We illustrate this with examples.
Imagine we want to build a strongly prompt set A satisfying certain negative requirements (such
as lowness). Each time a promptness requirement demands that we change A (because |We,s| has
grown beyond g(e, s)), then we have to either change A promptly at s, or deny the prompt change
by increasing g(e, s+ 1) > maxWe,s. Since g must be ω-c.e., the number of times we can deny each
prompt requirement (due to other negative constraints) must be computably bounded.

Suppose on the other hand, we were given a strongly prompt set A with enumeration {As}s∈ω,
bound g and promptness function p. To test for prompt changes we enumerate an auxiliary c.e. set
Wi. Whenever we want to force an A-change below g(i, s) we enumerate {0, . . . , g(i, s)} into Wi.
The result is either a prompt A-change below g(i, s), or a refusal in the form of an increase in g(i, s).
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The difference here between a prompt set and one which is strongly prompt is that with a prompt
set we do not know ahead of time how many times Wi may be refused a change. However with the
strongly prompt set A, we know this can only happen at most k times (where k is the bound on
the number of mind changes in g(i)). This fact is exploitable and enables us to prove Theorem 3.1.
For another application, we invite the reader to work out a direct proof of the following fact: If a
set A is strongly prompt, then A is not strongly jump traceable.

Classically the notions of prompt simplicity and prompt permitting are slightly different (though
they are the same up to Turing degree). Since the latter is more useful, we have defined strong
promptness as an analogue of “prompt permitting”. One can also consider the analogue of a
promptly simple set: A set B is strongly promptly simple if it satisfies Equation (2), immediately
below, for some enumeration {Bs}s∈ω of B, a computable p and some g ≤wtt ∅′. In Proposition 2.4
we show that every strongly prompt set is wtt-equivalent to a strongly promptly simple set.

(2) |We| ≥ g(e)→ (∃x∃s)[x ∈We, at s ∩Bp(s)].

We show that ω-c.e is the first place in the Ershov difference hierarchy where such a restriction on
g makes sense. It is not hard to verify that if we replace the condition that “g is ω-c.e.” in Definition
2.1 by “g is ∆0

2”, then the resulting notion coincides with being of promptly simple degree. If, on
the other hand, we required g to be computable, we would have “effective promptness” (by analogy
with effective simplicity), and such sets are complete, just as effectively simple sets are known to
be complete. In fact, the same would be true if we only required g to be n-c.e.

Theorem 2.2. For any n ∈ ω, if you replace ω-c.e. by n-c.e. in Definition 2.1, then any set
satisfying the resulting definition is Turing complete.

Proof. Suppose {Bs}s∈ω, p and g are as in Definition 2.1, but g is n-c.e. for some fixed n (instead
of ω-c.e.). We prove the case n = 1, and note that the proof generalizes easily to any fixed n > 1
with a higher level of nonuniformity involved.

The basic idea is as follows. We make two separate attempts at computing ∅′ from B. The
intuition is that B can only deny our request for a prompt change at most once. To request a
prompt change we build the auxiliary c.e. sets U0, U1, · · · . Whenever k enters ∅′ we use Uk to
request B to change promptly (by enumerating a number of elements into Uk). B has to either
change promptly, or it has to deny us this change (this will be reflected by an increase in g). If
B changes promptly at almost every k, then we can easily define a reduction ∅′ ≤T B using the
promptness function p for B. If there are infinitely many k for which the prompt permission is
denied by B, then for this infinite c.e. set of k’s, a second round of requests for a prompt change
cannot be denied. In the construction below these numbers are called “good”.

By the recursion theorem and the usual slowdown lemma we may assume that Ux = Wr(x) for
some computable r, and that if z is enumerated into Ux at stage s of the construction then z is
enumerated into Wr(x) under the standard enumeration at some t > s. In fact we can require that
t > p(s′) for the least stage s′ such that every number enumerated into Ux before stage s of the
construction has already showed up in Wr(x),s′ . When we say we enumerate a number z into Ux
at s, we mean that we enumerate every number not larger than z (which has not already been
enumerated) into Ux at s. Fix a 1-1 computable enumeration {ks} of ∅′ where at every stage s,
exactly one element ks is enumerated into ∅′. We say that a number n is good at s if n has not yet
been permitted (this will be defined during the construction), and g(r(n), s) 6= g(r(n), t) for some
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t < s; i.e. g(r(n)) has already changed once. Informally we say that n is good if we had already
put numbers into Un, and a prompt change in B was denied.

Construction: Let c(i) denote the ith good number (larger than c(i − 1)) to be found in the
construction. At stage 0, declare every number as “not permitted”. At stage s > 0 if c(ks) ↓, we
enumerate g(r(c(ks)), s) into Uc(ks). Additionally if ks is not good at s we enumerate g(r(ks), s)
into Uks . Run the given enumeration of B and check if B changes below g(r(ks), s) between s and
p(s′), where s′ > s is such that Wr(ks),s′ ⊇ {0, · · · g(r(c(ks)), s)}. That is, Wr(ks) has caught up
with Uks . If B has changed then we declare that ks has been permitted. Go to stage s + 1 of the
construction.

We now explain briefly what the construction does. We have two separate attempts at computing
∅′ from B. The primary attempt tries to code ∅′ � z into B � g(r(z)), provided z is larger than the
biggest good number found. Since a good number c(i) denotes a denial of prompt permission, this
means that if only finitely many good numbers are found during the construction, then our primary
reduction successfully reduces B to ∅′ (at almost every input). On the other hand if infinitely many
good numbers are found, then our backup strategy will try and decide if z ∈ ∅′ via B � g(r(c(z))).
The first action in the construction enumerates g(r(c(ks)), s) into Uc(ks) for the sake of the backup
strategy. The second action in the construction enumerates g(r(ks), s) into Uks for the sake of the
primary strategy.

Verification: Assume that c is not total, i.e. let i0 be the largest such that c(i0) ↓. Then for
any z > c(i0) it is easy to see that z ∈ ∅′ iff z ∈ ∅′s where s is a stage large enough so that
B � 1 + g(r(z), 0) is stable (on the given enumeration). To see this assume that z = kt for some
t > s. At stage t of the construction we would have enumerated g(r(z), t) into Uz. It is clear that
Uz had been empty up till stage t, and so z must be permitted at t. Otherwise z is never permitted
at all in the construction and we must have g(r(z), t) < lim g(r(z),−). Hence at some later stage
in the construction we will discover that z is good, a contradiction. Hence z has to be permitted
at stage t of the construction, which contradicts that B � 1 + g(r(z), 0) is stable at s < t. Hence
∅′ ≤T B.

Now assume that c is total (and clearly computable). Fix z and let t be the least stage in
the construction where c(z) ↓. Let s be the least stage > t where B � 1 + g(r(c(z)), t) is stable
with respect to the given enumeration. Now we claim that z ∈ ∅′ iff z ∈ ∅′s. Suppose for a
contradiction that z = ku for some u > s > t. At stage u of the construction we would enumerate
lim g(r(c(z)),−) = g(r(c(z)), u) into Uc(z). It is easy to verify that c(z) is good at every stage
≥ t. The only other batch of numbers which could be in Uc(z) at stage u, can only have been
enumerated at some stage u′ < t. However if this is the case then these numbers must have been
enumerated earlier at u′ for the sake of the primary strategy, and we would already have obtained
a prompt B-denial, which means that g(r(c(z)), u) is larger than these numbers. By the fact
that |Uc(z)| > lim g(r(c(z)),−), some number enumerated into Uc(z) must have caused a B-change.
Since c(z) cannot be permitted at u′, this number cannot be in the first batch. Hence a number
enumerated in the second batch at stage u had caused a B-change, which contradicts the stability
of B � 1 + g(r(c(z)), t) at s. Hence we have ∅′ ≤T B. �

We show that strong promptness is not a Turing degree notion. That is, strong promptness is
not closed under Turing equivalence. In fact, the following theorem shows that there is a Turing
complete c.e. set which is not strongly prompt.

Theorem 2.3. There is a c.e. set A ≡T ∅′ which is not strongly prompt.
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Proof. We construct a c.e. set A by specifying an enumeration {As}s∈ω. Let As = {as0 < as1 < · · · }.
We ensure that ∅′ ≤T A by enumerating ase into As+1 whenever e enters ∅′ at s. Since each (possible)
computable approximation for A is of the form {Dh(n)}n∈ω for a computable h, we will denote the

eth possible approximation by {V e
n }e∈ω (corresponding to the eth partial computable function). We

say that V e
x converges, if ϕe(r) ↓ for all r ≤ x. We adopt the convention that if V e

x converges at
stage s of the construction, then e, x < s.

We let pe be the eth partial computable function which is increasing, and ge be the eth pair
(ge(x, s), be(x)) where ge is total computable, and be is partial computable. Every ω-c.e. function
is approximated by one of these pairs (with be bounding the number of mind changes in ge). Note
that we do not require that {ge} lists all total computable functions of two variables, which is
impossible. Rather we only require that {ge} is large enough to simulate every ω-c.e. function in
the limit. To kill off all possible witnesses to the strong promptness of A, we ensure that

Re : If {V e
s }s∈ω and pe are total, and ge is ω-c.e. via be, and ∪sV e

s = A,

then for some k, |Wk| > ge(k) and ∀x∀s(x ∈Wk, at s → V e
s � x = V e

pe(s)
� x).

By the recursion theorem and the slowdown lemma, we again assume that we are building Wk for
k in an infinite computable set of indices, and that any number z we enumerate into Wk at stage
s of the construction appears strictly later in the standard enumeration of Wk. Each Re has a
parameter ke, whose value may change during the construction, and is picked to be one of these
indices k for which we build Wk. At stage s of the construction we say that V e

t agrees with A if
V e
t � ase = As � ase. At stage s of the construction, when we say that we lift ase to a fresh value, we

mean that we pick a fresh number z and enumerate ase, · · · , asz into A (so that now ae > z).
The action of each Re is finitary, and moves the marker ase finitely often. Re is initialized each

time asi is moved for i < e. This means that theRe-state is reset back to 0 and ke is made undefined.
The Re-state can be 0, 1 or 2 corresponding to the following steps in the basic strategy:

(0) Unstarted phase: Pick a fresh value for ke and wait for be(ke) ↓.
(1) Preparation phase: Enumerate ase into A, and lift it to a fresh value (in particular, above

ge(ke, s)). Wait for t such that V e
t converge and agree with A.

(2) Diagonalization phase: Enumerate every number less than ase into Wke . Assume this is
stage s of the construction. Hence there is some larger t > s where this change is reflected
in Wke,t. Wait for pe(t) and V e

pe(t)
to converge and the latter to agree with A. Wait for

ge(ke) > ae. Go back to state (1).

Construction: At s = 0 initialize every Re. Re is said to be inactive at s, if there is some k < s
such that be,s(k) ↓ and the number of mind changes in ge(k,−) up till s is larger than be,s(k).
Otherwise we say Re is active. At stage s > 0, we search for the least e < s where Re is active
and requires attention, defined as follows: If Re is in state 0 then either ke ↑ or be(ke) ↓. If Re is
in state 1, then either ase ≤ ge(ke, s), or V e

t converges and agrees with A for some t > ase. If Re is
in state 2, then both conditions below hold:

(C1) pe(t) ↓ and V e
pe(t)

converges and agrees with A, where t is the least number such that Wke,t

is currently correct, and
(C2) ge(ke, s) ≥ ase.



8 DAVID DIAMONDSTONE, KENG MENG NG

Here we say that Wke,t is currently correct if it agrees (at s) with the enumeration we are building
for it. If no e < s requires attention, do nothing and go directly to the coding step. Otherwise pick
the least e, and attend to Re by the following.

Suppose Re is in state 0. If ke ↑, pick a fresh value for it. Otherwise set the Re-state to 1 and go
to the coding step. If Re is in state 1 and ase ≤ ge(ke, s), we lift ase to a fresh number, and initialize
every Rj for j > e. Otherwise we enumerate every number < ase into Wke , and declare that Re is
in state 2. Go to the coding step. If Re is in state 2 then both the conditions above hold and we
declare that Re is back in state 1. Go to the coding step.

Coding step: Let k ∈ ∅′at s (we fix a 1-1 enumeration of the Halting problem). Lift ask to a fresh
number, and initialize Rj for every j ≥ k.

Verification: It is straightforward to verify that each Re is initialized finitely often, and is
attended to finitely often. Hence lims a

s
e < ∞ for each e, and so ∅′ ≤T A. Note that there is no

computable bound on the number of times each ae is lifted. Indeed this is necessary by Theorem
3.3. Now we show each Re is met. Suppose that {V e

s }s∈ω, pe and be are total, ge is ω-c.e. via be
and ∪sV e

s = A. Let k be the final value of ke. Since k was picked fresh, the only numbers that
are in Wk are those enumerated for the sake of Re. The final Re-state clearly cannot be 0 or 1.
Hence the final Re state is 2, and once Re enters its final state 2, say at stage s′, it will never
enumerate anything new into Wk. We claim that condition (C1) above will eventually be met: At
s′ we have A � ae = As′ � ae = V e

t � ae for some t < s′. This means that V e
t′ � ae = V e

t � ae for every
t′ > t, from which the claim immediately follows. Hence ge(k) = limu ge(k, u) < limu a

u
e = |Wk|. It

remains to verify that there is no x, s such that x ∈Wk, at s and V e
s � x 6= V e

pe(s)
� x.

Suppose for a contradiction that x and s witness the above. x has to be enumerated into Wk

during the construction, say at s0. Note that s0 is no earlier than the first state 1 stage since the
last initialization. Let t be the least such that Wk,t is correct at s0. Then t ≥ s > s0, and let u
be a stage in the construction where pe(t) ↓ and V e

pe(t)
converges and agrees with A. This number

u exists because: (i) If Re is ever attended to after s0, then u is the first such stage. (ii) If Re is
never attended to after s0 then we can choose u large enough so that (C1) holds, similar to the
argument in the preceding paragraph.

By convention u > pe(t) and furthermore we did not attend to Re between s0 and u. Since
x < as0e it follows that As0 � x = Au � x. At u we had V e

pe(t)
� x = Au � x and at stage s0 by the

construction, we had V e
t′ � x = As0 � x for some t′ < s0 < t. This contradicts the assumption that

x and s are a counterexample to the failure of Re. �

Even though strong promptness is not a Turing degree notion, the next proposition shows that
strong promptness is closed under wtt-reducibility. We next consider the appropriate analogue of a
promptly simple set: Recall that a set B is strongly promptly simple if it satisfies Equation (2) for
some enumeration {Bs}s∈ω of B, a computable p and some g ≤wtt ∅′. We show that every strongly
prompt set is wtt-equivalent to a strongly promptly simple set.

Proposition 2.4. Let A and B be c.e. sets.

(i) If A ≤wtt B and A is strongly prompt, then B is also strongly prompt.
(ii) If A is strongly prompt then A ≡wtt B where B is strongly promptly simple.

Proof. (i) follows directly from the characterization of strong promptness in Theorem 3.3 in terms of
a cupping notion (see Corollary 3.4). For completeness, we give a very brief sketch of a direct proof:
Suppose A = ΓB where γ is computable, and A is strongly prompt via p and g. We will enumerate
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auxiliary c.e. sets {Wr(x)}, and show that B is strongly prompt via some g̃(x) > γ(g(r(x))). To
meet a single instance (for some e) of Equation (1) we need to do the following. Each time we need
to change B below g̃(e, s) > γ(g(r(e)))[s], we increase the cardinality of Wr(e) beyond g(r(e), s).
Since A is strongly prompt, this means that either g(r(e), s) 6= g(r(e), t) for some t > s, or else
A has to change below maxWr(e) (which means B has to change below g̃(e, s), since γ does not
depend on s). If the latter holds, then we consider B to have permitted promptly, otherwise we
increase g̃(e) > max{g(r(e), t),maxWe,s}.

(ii) Suppose A is strongly prompt via {As}s∈ω, p and g. Let the computable function r be such
that Wr(e) = We ∩ {x : x > 3e}. We assume as before that if x ∈ We, at s then x 6∈ Wr(e),s. We
build a computable enumeration {Es}s∈ω for E ≡wtt A satisfying for each e,

Re : |We| ≥ g(r(e)) + 3e→ (∃x∃s)[x ∈We, at s ∩ Es].
At stage s of the construction, check if the following holds for each e < s:

(i) The conclusion in Re fails, and
(ii) There is some x > 3e where x ∈ We, at s, and At � x 6= Ap(t) � x where t > s is the stage

where x ∈Wr(e), at t.

If (i) and (ii) holds for e, we enumerate x into Es. Also if y ∈ A at s, we enumerate es3y into Es,

where Es = {es0 < es1 < · · · }.
Clearly E ≤wtt A via the identity use. At most n elements less than 3n enter E, due to R-

requirements, and another n due to the coding of A. Hence |E ∩ {x : x < 3n}| ≤ 2n for every n,
hence esn ≤ 3n for every s, n. Hence A ≤wtt E, with use bounded by 9n. Re is satisfied for each e,
because if |We| ≥ g(r(e)) + 3e then |Wr(e)| ≥ g(r(e)). �

3. The analogues of promptness and cupping

In this section we investigate the analogue of the following result of Ambos-Spies, Jockusch,
Shore and Soare [1]: A set is low cuppable iff it is of promptly simple degree. In particular we
will investigate the interaction between strong promptness and superlow cuppability. We begin by
showing that every strongly prompt set is superlow cuppable.

Theorem 3.1. If B is strongly prompt, then B is superlow cuppable.

Proof. Given a strongly prompt set B, we will construct a superlow set A which cups with B.
During the construction, we will also (uniformly) define an array of c.e. sets Ue,c. By the recursion
theorem and the slowdown lemma, there is a computable function q such that for all e, c, we have
Wq(e,c) = Ue,c, and every element enumerated into Ue,c appears strictly later in Wq(e,c). The idea is

that Ue,c works on requirement e—guessing whether ΦA
e (e) converges—under the assumption that

this requirement will be injured exactly c times. In order to make A ⊕ B complete, we will keep
track of a list of “coding markers” Γn, and let Γsn denote the position of the coding marker at the
end of stage s. When Γe > 2ϕAe (e)[s], we say requirement e has “free clear status” at stage s. When
a requirement has free clear status, it is possible to change A to code numbers n ≥ e entering 0′

without disturbing the computation ΦA
e (e). So the eth requirement will attempt to gain free clear

status, in order to minimize the number of changes in an approximation of whether e ∈ A′. When
requirement e loses free clear status, we say that it has been injured. We will show during the
verification that requirement e will be injured a computably bounded number of times. Let ce(s)
denote the number of times that requirement e has been injured by the end of stage s.
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Let p and g be as in equation 1 (the definition of strong promptness), and let g be ω-c.e. via the
approximation {gs}s∈ω. Moreover, let h be a computable bound on the number of mind changes
made by the approximation {gs}s∈ω. Let ∅′s be an enumeration of ∅′. During the construction, we
will ensure the following:

(1) If n ∈ ∅′s+1 \ ∅′s, then As ⊕Bs � Γsn + 1 6= A⊕B � Γsn + 1

(2) For all n, s, we have Γsn ≤ Γs+1
n and Γsn < Γsn+1

(3) For all e, s, we have Γsn ≥ 2gs(q(n, cn(s))).
(4) If Γsn < Γs+1

n , then As ⊕Bs � Γsn + 1 6= A⊕B � Γsn + 1
(5) For all n, the sequence (Γsn)s is bounded.

These conditions suffice to guarantee that ∅′ ≤T A ⊕ B, which will be demonstrated in the verifi-
cation. For convenience, we will additionally ensure that Γsn is even, so that As ⊕Bs � Γsn depends
on the same number of places of A and B, which is 1

2Γsn.
In order to ensure A′ is ω-c.e., we will make use of the fact that B is strongly prompt to

occasionally clear the use of computations ΦA
e (e) of all markers Γsn for n ≥ e, granting requirement

e free clear status. We do this by attempting to use the promptness of B to force B � 1
2Γsn to change,

so that we can move the markers (and still follow the fourth requirement above). To show that
A′ is ω-c.e., we will exhibit a computable approximation lims fs = A′, with computably bounded
mind-changes.

Construction of A.

Stage s = 0: Set A0 = ∅. For all n ∈ ω, set

(3) Γ0
n = 2n+ 2 sup

i≤n
g0(q(i, 0)).

Stage s+ 1:

• Step 1. Find the least e (not marked unavailable) such that ΦA
e (e)[s] converges, and

(4)
1

2
Γse ≤ ϕAe (e)[s]

(if no such e exists, skip to step 2). We say that requirement e acts at stage s + 1. Let
c = ce(s). Enumerate 0, 1, 2, ..., gs(q(e, c)) into Ue,c. Let t be the least stage such that
0, 1, 2, ..., gs(q(e, c)) ∈ Wq(e,c),t. Note that since q was obtained from the slowdown lemma,
t > s. During the verification, it will be shown that either

(5) Bs�
1

2
Γse 6= Bp(t)�

1

2
Γse

or there is a least t′ > s such that gt′(q(e, c)) > gs(q(e, c)).
– Case 1: free clear. If Bs � 1

2Γse 6= Bp(t) �
1
2Γse, move all markers Γm,m ≥ e to new

even positions which are not the double of a number in A and greater than their old
positions, 2ϕAe (e)[s], and 2gs+1(q(m, c(m, s))), preserving their order. Note that e now
has free clear status.

– Case 2: capricious destruction. If case 1 fails to hold, let t′ > s be minimal such that
gt′(q(e, c)) > gs(q(e, c)). Enumerate 1

2Γse into A. Move all markers Γm,m ≥ e to new
even positions which are not the double of a number in A and greater than both their
old positions and 2gs+1(q(m, c(m, s))), preserving their order. Mark e as unavailable
until stage t′.
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• Step 2. For each n ∈ ∅′s+1 \ ∅′s, enumerate 1
2 the current position of Γn into A, and move all

markers Γm, m ≥ n, to new even positions which are not the double of a number in A, and
which are greater than both their old positions and 2gs+1(q(m, c(m, s))), preserving their
order.
• Step 3. For each n ≤ s with gs+1(q(n, c(n, s))) > gs(q(n, c(n, s))), enumerate 1

2 the current
position of Γn into A, and move all markers Γm, m ≥ n, to new even positions which are
not the double of an element of A, and which are greater than both their old positions and
2gs+1(q(m, c(m, s))), preserving their order.
• Step 4. For each e which had free clear status at the end of stage s, if A�ϕAe (e)[s + 1] 6=
A�ϕAe (e)[s], since e had a free clear at the end of stage s, we have 2ϕAe (e) < Γe[s], which
means A changed below Γse. Thus we may move all markers Γm, for m ≥ e. Move all such
markers Γm, m ≥ e, to new even positions which are not the double of a number in A,
and which are greater than both their old positions and 2gs+1(q(m, c(m, s+1))), preserving
their order. Notice that requirement e has lost its free clear status, so has been injured one
additional time, and we have c(e, s+ 1) = c(e, s) + 1.

Verification. We need to prove:
I) The construction is well defined; in particular, we must show that in step 1, if case 1 fails to

hold, then there is some t′ > s such that gt′(q(e)) > gs(q(e)).
II) During the construction, the positions of the markers Γn satisfy properties (1)–(4) above.
III) The number of times requirement e is injured is bounded by a computable function.
IV) For all n, the sequence (Γsn)s is bounded (property (5) above).
V) The join A⊕B is complete.
VI) The set A is superlow, i.e. A′ is ω-c.e.

We will start by proving that I) and II) hold by simultaneous induction on the stage number
s; first we prove that the construction has well-defined behavior at stage s + 1 provided that II)
holds through stage s, and then we prove that II) holds through stage s+ 1 if the construction has
well-defined behavior at that stage.
Proof of I). Suppose that in step 1, case 1 fails to hold, and furthermore, for all t′ > s, we have
gt′(q(e, c)) ≤ gs(q(e, c)). Then the limit g(q(e, c)) = limt′ gt′(q(e, c)) ≤ gs(q(e, c)). Furthermore, we
know that this stage of the construction is never completed, since in step 1, case 2, the construction
searches for a t′ that does not exist, which means that Ue,c is exactly that portion of Ue,c which
was constructed up through stage s+ 1, step 1, i.e. {0, 1, 2, ..., gs(q(e, c))}. Since

(6) |Wq(e,c)| = |Ue,c| = gs(q(e, c)) + 1 > gs(q(e, c)) ≥ g(q(e, c)),

by the definition of strongly prompt (cf. equation 1), there must be some x, s′ with

(7) x ∈Wq(e,c), at s′ ∧Bs′�x 6= Bp(s′)�x.

By the slowdown lemma, the elements ofWq(e,c) are all enumerated inWq(e,c) after being enumerated
in Ue,c; that is, after stage s+ 1. Moreover, by choice of t, they have all been enumerated by stage
t, so s < s′ ≤ t. Furthermore, the x in question is an element of Ue, so is at most gs(q(e, c)). By
induction, we may assume that property (3) holds at stage s; that is, we have Γse ≥ 2gs(q(e, c)), so
x ≤ 1

2Γse. Therefore, Bs′�
1
2Γse 6= Bp(s′)�

1
2Γse, and since s < s′ < p(s′) ≤ p(t), we must have

(8) Bs�
1

2
Γse 6= Bp(t)�

1

2
Γse,
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which contradicts the fact that case 1 failed to hold. Hence the construction is well-defined in step
1.

Proof of II). We want to demonstrate that properties (1)–(4) hold. Property (1) was ensured in
step 2 of the construction. Property (2) holds at stage 0, and in every step where the markers Γn
are moved, we ensure that (2) continues to hold. Property (3) holds at stage 0, and can only cease
holding in one of two ways: if gs+1(q(n, cn(s)) > gs(q(n, cn(s))), or if cn(s+ 1) > cn(s). When the
former occurs, we ensure that property (3) continues to hold in step 3; when the latter occurs, we
ensure that property (3) continues to hold in step 4. For (4), note that while the markers may be
moved in any of step 1 case 2, step 2, or step 3, we always enumerate some element into A which
ensures that (4) continues to hold in any of those cases. The only times we move some marker(s)
without enumerating an element into A in order to permit the move are in step 4, in which case we
have already observed that an A change has permitted the move, and in step 1 case 1: free clear.
In case of a free clear, we have

(9) Bs�
1

2
Γse 6= Bp(t)�

1

2
Γse,

so that a B change permits the move.

Proof of III). We want to show that requirement e is injured at most a computably bounded number
of times, by induction on e. For i < e, let inj(i) be the bound on the number of times requirement
i can be injured. Observe that requirement e is injured in case it had free clear status at the end of
stage s of the construction, and A changes below ϕAe (e)[s] during stage s+1. This can happen in step
1 case 2, step 2, or step 3, when we enumerate 1

2Γi into A, for some i with 1
2Γi ≤ ϕAe (e). Note that

since requirement e can only be injured when it has free clear status, we have ϕAe (e) < 1
2Γe ≤ 1

2Γi
for every i ≥ e, so we only have to worry about injuries from some Γi, with i < e. In step 1 case 2,
A can change below ϕAe (e)[s] just in case some requirement i performs a capricious destruction. In
step 3 similarly, A can ch ange below ϕAe (e)[s] just if we have gs+1(q(i, ci(s))) > gs(q(i, ci(s))) for
some i with Γi < 2ϕAe . When this occurs, we must have gt′(q(i, ci(s))) > gs(q(i, ci(s))). Since the
number of times g can change is bounded by h, the number of times this can happen is at most∑

i<e

∑
c≤inj(i)

h(q(i, c)).

Finally, in step 2, A changes at 1
2Γn for some n < e only when n is enumerated into ∅′, which can

happen at most e times. Thus we get a recursively defined bound of

inj(e) = e+ 2
∑
i<e

∑
c≤inj(i)

h(q(i, c))

on the number of times requirement e may be injured. Since h and q are computable, so is inj.

Proof of IV). We want to show that the sequence of locations of the nth movable marker Γn
is bounded. By examining the construction, we see that Γn is moved only during steps 1, 2,
and 3. The marker Γn is moved during step 1 at a stage when the active requirement e is at
most n; during step 2 when an element at most n is enumerated into ∅′; during step 3 when the
approximation gs+1(q(m, c(m, s))) has just made a change, for some m ≤ n; and during step 4
when some requirement e < n is injured. The step 2 change can clearly occur at most n+ 1 times.
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The step 3 change can occur at most

n∑
m=0

inj(m)∑
c=0

h(q(m, c))

times, since h(q(m, c)) bounds the number of mind-changes of the approximation (gs) on argument
(q(m, c)). The step 4 change can occur at most

∑
e<n inj(e) times, by III). Finally, the step 1

change occurs when a requirement e ≤ n acts, so it suffices to show each requireme nt acts at most
finitely often.

Requirement e only acts when 1
2Γe ≤ ϕAe (e), which means it does not have free clear status.

Every time requirement e acts, the result is either a free clear or capricious destruction. So every
time requirement e acts, except possibly the last time, results in either capricious destruction (i.e.
a change to the approximation gs(q(e, ce(s))) between stage s and some later stage), or else a
free clear status which is later revoked (i.e. an injury to requirement e). We established in III)
that requirement e can be injured at most inj(e) times. Similarly, each capricious destruction for
requirement e corresponds to a change of gs(q(e, c)) for some c ≤ inj(e), so the number of capricious
destructions is bounded by

∑
c≤inj(e) h(q(e, c)). Thus requirement e acts at most finitely often.

Proof of V). We want to show that ∅′ ≤T A ⊕ B. Let γ be defined by γ(n) = lims Γsn, which we
know must exist from IV). We must have γ ≤T A ⊕ B, since (by properties (4) and (5)) every
change to Γsn is permitted by a change in A⊕B. For each n, to compute whether n ∈ ∅′, we need
only search for an s such that

(10) A⊕B�γ(n) + 1 = As ⊕Bs�γ(n) + 1.

Then, by (1), n ∈ ∅′ if and only if n ∈ ∅′s.

Proof of VI). We want to show that A′ is ω-c.e. We define the following approximation:

(11) fs(x) =

{
1 if ΦAs

e,s(e)↓ and requirement e has free clear status

0 otherwise

First, we observe that since the approximation only changes from a 1 to a 0 when a requirement
loses free clear status, the number of changes is bounded by the computable function 2inj + 1.

It remains to show only that lims fs = A′. Suppose for some minimal e, we have lims fs(e) = 0,
but ΦAs

e,s(e)↓ infinitely often. Then there is some stage S so that ∅′S�e = ∅′�e, and every requirement

i < e has finished acting by stage S. Infinitely often, ΦAs
e,s(e)↓ and ϕAsi,s (i) ≥ 1

2Γse, so infinitely often e
wants to act. Since the least n which wants to act at stage s always acts, e must act infinitely often.
But we proved in IV) that each requirement acts only finitely often, so we have a contradiction.

Thus if lims fs(e) = 0, then ΦAs
e,s(e)↓ finitely often, and A′(e) = 0 = lims fs(e). If lims fs(e) = 1,

then infinitely often ΦAs
e,s(e) ↓ and ϕAse,s(e) ≤ 1

2Γse. Since it remains so unless requirement e is
injured, which can happen at most finitely often, it must be the case that A′(e) = 1 as well. Thus
lims fs = A′, and A is superlow. �

Remark 3.2. This construction guarantees that every strongly prompt set is superlow cuppable,
but in fact it guarantees something slightly stronger: that the use of the reduction ∅′ ≤T A ⊕ B is
an ω-c.e. function, because the use of the computation of ∅′(n) is γ(n) = lims Γsn, and we showed
in the proof of IV) that this is ω-c.e.
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The lack of closure of strong promptness under Turing reducibility is somewhat unfortunate,
since it immediately forbids this notion from characterizing the sets which are superlow cuppable.
However we are still able to characterize the strongly prompt sets in terms of a cupping notion:
They are the c.e. sets which are superlow cuppable with ω-c.e. use. Note that the latter cupping
property is wtt-degree invariant.

Theorem 3.3. A c.e. set A is strongly prompt iff there is a superlow c.e. set B which cups with
A to ∅′ via an ω-c.e. bound on the use. That is, there is a reduction ∅′ ≤T A⊕B where the use is
bounded by an ω-c.e. function.

Proof. By Remark 3.2 we only need to prove the “if” direction. Suppose A and B are c.e. sets with
enumerations {As} and {Bs}, such that F = ΓA⊕B and γ(e) ≤ lims u(e, s) with fewer than hu(e)
many mind changes. Here F is a c.e. set we build during the construction. We note that since
the c.e. sets are uniformly reducible to ∅′, the recursion theorem will give us Γ, u and hu. We may
assume (by speeding up the relevant approximations) that Ft(f) = ΓA⊕B(f)[t] holds for every f, t,
and that γt(f) < u(f, t). If we enumerate f into F at t, so that ΓA⊕B(f)[t] = 0 is now incorrect, we
assume that recovery occurs at t+ 1.

We also use the recursion theorem to obtain a computable sequence of indices v for which we
control JB(v) := ΦB

v (v). To elaborate, we build a sequence of Turing functionals Φv1 ,Φv2 , · · · and
by the recursion theorem the function i 7→ vi is computable. Into each of these functionals we will
enumerate computations with certain use (in the construction the use will be current initial segments
of Bs). This allows us to control, say JB(v)[s], where we will make JB(v)[s] ↓ by enumerating an
axiom of the form Bs � u for some u. We think of JB(v) as convergent as long as B does not change
below u. If Bt � u 6= Bs � u at some future stage t > s, then JB(v)[t] ↑ and (since B is c.e.) stays
divergent until we choose to enumerate a new computation for it.

Since B is superlow, the eventual convergence or divergence of JB(v) is approximated by b(v, s)
with fewer than hb(v) many mind changes (b(v, s) = 0 means it is guessing divergence). To simplify
notation we drop v and assume that we control JB(0), JB(1), JB(2), · · · . This is permitted since
vi is computable and everything mentioned in the construction gets transformed in a computable
way. We partition ω into infinitely many intervals, where In has length hb(n). To show that A is
strongly prompt, we construct another approximation {Us}s∈ω for A, and show that A is strongly
prompt via {Us}s∈ω and the identity function as the prompt function. That is, we will ensure
that {Us}s∈ω is a strong array such that ∪sUs = A, and also build an ω-c.e. function g(e) with
mind-change bound given by hg(e) = hb(e) +

∑
{hu(f) : f ∈ Ie}. We also ensure that

Re : Either maxWe ≤ g(e), or ∃x∃s(x ∈We,ats ∧ Us � x 6= Us+1 � x).

We now describe the actions of Re. The actions of different Re do not interfere directly with one
another. Each Re uses JB(e) to challenge the lowness of B, and will only enumerate numbers into
F from the partition Ie. Re has a parameter fe, which is a number picked from the interval Ie and
targeted for F . At each stage s of the construction we look at numbers x and e where x > g(e, s)
has entered We at s, and we want to respond by enumerating some number z < x into Us+1. Of
course to ensure that ∪sUs = A, we can only do this if we know z ∈ At for some t > s. To force
this to happen, we run a procedure called an Re-challenge. This procedure begins by enumerating
a jump computation with B-use γ(fe) to make JB(e) ↓. Assume that g(e) is currently larger than
u(fe). One of the following three things has to happen at some t > s:

(i) A � γ(fe) changes,



STRENGTHENING PROMPT SIMPLICITY 15

(ii) B � γ(fe) changes, or
(iii) b(e, t) = 1.

Let t be the first stage found where one of (i)-(iii) holds. If (i) applies then we can safely enumerate
some z < γ(fe) into Us+1, since we know that z ∈ A. In this case Re is satisfied (and remains
satisfied forever). If (ii) holds then we check if u(fe, t) has increased beyond g(e, s). If it has, then
u(fe) has used up one more mind change. In this case we increase g(e, s+ 1) to a fresh value well
beyond u(fe, t), and end the challenge (note that in this case JB(e)[t] ↑). On the other hand if
u(fe, t) has not increased, then we define JB(e)[t] ↓ with the new B � γ(fe)-configuration and wait
for a further t′ > t where (i), (ii) or (iii) happens. Finally if (iii) holds then we enumerate the
agitator fe into F and wait for a further t′ > t such that either (i) or (ii) holds at t′. Again if (i)
holds then Re is satisfied forever. Otherwise if (ii) holds then we end the challenge with JB(e)[t′] ↑.
We will also have made progress since b(e) has used up one more change.

It is clear that once the Re-challenge is started, there are only one of three outcomes. The first
outcome is that A changes at some t > s allowing us to satisfy Re forever. The second is that the
challenge is ended with u(fe) having used up one more mind change. The last possibility is that
the challenge is ended with b(e) having used up one more mind change. In the latter two cases
when the challenge is ended we have JB(e)[t] ↑ - this is necessary to run the next Re-challenge at
some later stage of the construction. Also note that if (ii) holds with no movement of u(fe), then
we will keep repeating the challenge until either (i) or (iii) happens, or u(fe) moves. Since we only
move g(e) when we find (iii) holds or u(fe) moves, it is easy to see that the number of g(e,−) mind
changes will be bounded by hg(e). To help organize the construction, we keep a global parameter
called M . The intention is for Ms to record during stag e s of the construction how far ahead we
have looked. In the above example M will be increased to the largest number (t or t′) searched
during the Re-challenge. Any other Rj-challenge begun later will limit the scope of their search
to numbers larger than M . This helps to prevent double accounting of mind changes. During the
formal construction, several challenges may be run (sequentially) in a single stage. Each challenge
may increase M , so a challenge started later will use the updated value for M .

Formal construction. At stage 0 we set M = 0 and U1 = ∅. We set fe = min Ie and g(e, 0) =
u(fe, 0)+1 for every e. At stage s > 0, we say that Re is satisfied at s if ∃x∃t < s(x ∈We, at t ∧ Ut �
x 6= Ut+1 � x). For each e < s such that Re is not yet satisfied, and there is some x > g(e, s) and
x ∈We, at s, we run the Re-challenge by the following.
Re-challenge: Find t0 > M such that b(e, t0) = 0. If u(fe, t0) ≥ g(e, s) then we set g(e, s + 1)

to a fresh value and end the challenge. Otherwise run the following cycle with n, starting with
n = 0: Enumerate JB(e)[tn] ↓ with use γ(fe)[tn]. Search for the first tn+1 > tn where (i), (ii) or
(iii) above holds. If (i) happens then some z enters A � γ(fe) at tn+1. Enumerate z into Us+1, and
end the Re-challenge. If (ii) holds then we check if u(fe, tn+1) ≥ g(e, s). If so we set g(e, s+ 1) to a
fresh value and end the challenge. If not then restart the cycle again with n+ 1. If (iii) holds then
b(e, tn+1) = 1 and we enumerate fe into F . At tn+1 + 1 either A � γtn(fe) or B � γtn(fe) will be
different. In the former case we enumerate z into Us+1 where z enters A � γ(fe) at tn+1 + 1, and
end the challenge. In the latter case we let fe be the next unused number in Ie, move g(e, s+ 1) to
a fresh value and end the challenge. Finally, regardless of how the Re-challenge was ended, we set
M = 1 + tn+1 where n was the last cycle run.
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At a single stage several challenges may be run (for different R). Before concluding the stage
we need to ensure that Us+1 is up to date: For every z ∈ AM we enumerate z into Us+1. This
concludes the description of the construction.

Verification: It is clear that ∪sUs = A. Fix e, and we prove by induction the following claim:
For an Re-challenge run at stage s,

(i) It will eventually be completed.
(ii) Suppose that at least one cycle is run, and k is the final cycle run. If the outcome of cycle

k is an A-change, then Re is satisfied and will remain satisfied forever.
(iii) If the outcome of cycle k is not an A-change (or if no cycle was run), then when the

challenge is ended JB(e)[tk+1 + 1] ↑ and g(e, s + 1) is picked fresh. In this case either
u(fe, tk+1 + 1) 6= u(fe,m

′), or b(e, tk+1 + 1) 6= b(e,m′), where m′ is the value of M when
the previous Re-challenge was concluded.

Suppose an Re-challenge is started at stage s. Then the outcome of the previous challenge is
not an A-change, and JB(e)[M ] ↑. Hence t0 > M will be found. It is clear that we will never get
stuck forever in an n-cycle (searching for tn+1 > tn). Hence the only way for the challenge not to
be completed, is to run infinitely many cycles. Hence every n-cycle must finish with a B-change
and u(fe, tn+1) < g(e, s). Since γ(fe) < g(e, s) this means that once B � g(e, s) is stable we get a
contradiction. This shows (i).

Now suppose that at least one cycle was run in the challenge. Let k be the final cycle run.
Hence γtk(fe) < u(fe, tk) < g(e, s). Suppose the final cycle k finished with an A-change. Then
some z < γtk(fe) < x with z ∈ Atn+1+1 − Atn+1−1 is found (where x is the element which entered
We, at s). Hence z ∈ Us+1−Us since M < tn+1−1. Then Re is satisfied at every stage larger than s,
showing (ii). If no cycle was run in the challenge then clearly JB(e)[t0+1] ↑ and g(e, s+1) was given
a fresh value when the challenge was ended. In this case we clearly have u(fe, t0 + 1) > u(fe,m

′).
Suppose at least one cycle was run, and the outcome of cycle k was not an A-change. At cycle k we
can only have either a B � γtk(fe) change at tk+1, or b(e, tk+1) = 1 followed by a B � γtk(fe) change
at tk+1 + 1. In the former case we have u(fe, tk+1) ≥ g(e, s) > u(fe, t0) and i n the latter case we
have b(e, tk+1) = 1 6= b(e, t0). In either case we have JB(e)[tk+1 + 1] ↑ and g(e, s+ 1) chosen fresh.
This proves (iii).

It is easy to check (using (iii) of the claim) that fe can always be picked from Ie. It also follows
easily from the claim that the number of mind changes we make to g(e,−) is bounded by hg(e). It
remains to verify that Re is satisfied. Suppose for a contradiction that there is some x ∈ We, at s

and x > lim g(e,−), and that Re is never satisfied. By convention s > e so we will run the Re-
challenge at s. By the claim above this challenge will end with either the satisfaction of Re, or
with g(e, s+ 1) picked fresh (hence will be larger than x). This gives our desired contradiction. �

Corollary 3.4. The strongly prompt c.e. sets are closed upwards under wtt-reducibility.

We say that a Turing degree (or a wtt-degree) a is strongly prompt if it contains a strongly
prompt c.e. set. It is worth pointing out the following facts about the strongly prompt wtt-degrees:

Proposition 3.5. The strongly prompt wtt-degrees form a strong filter in the c.e. wtt-degrees.
However their complement does not form an ideal in the c.e. wtt-degrees.

Proof (Sketch). To prove the first statement, suppose we are given c.e. sets A,B which are strongly
prompt via {As}s∈ω, p, g and {Bs}s∈ω, q, h respectively. We want to build a strongly prompt c.e.
set C ≤wtt A,B via identity use. We need to satisfy requirements of the form |W | ≥ r →
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(∃x∃s)[x ∈ Wat s ∧ Cs � x 6= Cs+1 � x]. To meet this requirement we enumerate auxiliary c.e.
sets W`0 ,W`1 , · · · ,W`m where m = bound on the mind changes of h(`0). We begin by testing A
with W`1 and B with W`0 . Every time |W | ≥ rs, we try to force A � rs to change by dumping
{0, · · · , rs} into W`1 . If the A-change was denied promptly, then we increase r to match g(`1). If
A changes promptly, we proceed to request a prompt B-change by dumping {0, · · · , rs} into W`0 .
If the B-change was denied promptly we increase r to match h(`0) and g(`2), and from now on use
W`2 to test A. The number of times this can happen before A and B are simultaneously permitted
is at most m+

∑
i≤m # mind changes in g(`i), which is computable.

To prove the second statement in the proposition, it suffices to construct c.e. sets A and B
such that A t B = ∅′ (that is, A ∪ B = ∅′ and A ∩ B = ∅), and ensure that A and B are not
strongly prompt. The strategy to make A and B not strongly prompt was described in Theorem
2.3. The basic strategy for a requirement RA (and similarly for RB) will seek to diagonalize a
possible enumeration {Vs}e∈ω of A, a (partial) computable function p, and an ω-c.e. function g.
To do this we must ensure that for some k, |Wk| > g(k) and everytime we dump elements into
Wk,s we must also ensure that A (and hence V ) does not change before p(s) converges. This basic
strategy sets up a restraint on A everytime it dumps new elements into Wk, and this restraint
may be increased finitely many times whenever g(k) increases. On the other hand every time this
restraint is breached by an A-change (due to higher priority action), it will restart with a new
k. This can easily be arranged as a finite injury construction. To ensure A t B = ∅′ we proceed
as in Sacks’ Splitting Theorem. We remark that the main difference between the R-requirements
in this construction and the lowness requirements in the Sacks’ Splitting Theorem, is that each
R-requirement may increase its restraint (finitely often) even if R is not injured. �

It is natural to ask if the analogue of the statement “A is cappable ⇔ A is not of promptly
simple degree” holds. Non-prompt simplicity can be expressed as sharing no nontrivial common
information with some noncomputable c.e. set. Is there some weaker condition that can be used
to characterize strong promptness which talks about the ability of a set A to share nontrivial
information with other sets? A reasonable definition has so far been elusive.

Since strong promptness does not characterize the sets which are superlow cuppable, one is
motivated to ask if there is still an equivalence up to Turing degrees:

Question 3.6. Are the strongly prompt Turing degrees the same as the superlow cuppable degrees?

4. Relationship with other classes

In this section we investigate the connections between strong promptness and different classes
exhibiting computational weakness. An important notion here is cost functions, introduced by
Nies. The reader should also refer to Nies [15], and Greenberg and Nies [10]. The standard cost
function cK is given by

(12) cK(x, s) =
∑

x<w≤s
2−Ks(w).

We say that a computable approximation {As}s∈ω obeys a cost function c if the sum

(13) S =
∑

(x,s)∈D

c(x, s)
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is finite, where D = {(x, s) : x < s and x is least such that As−1(x) 6= As(x)}. If A has an
approximation which obeys c, we write A |= c. It is easy to see that the standard cost function cK
satisfies the limit condition

(14) lim
x

sup
s>x

cK(x, s) = 0.

The amount c(x, s) is thought of as the cost of enumerating x into A (or changing the approxi-
mation to x ∈ A) at stage s. The idea is that if a set A has an enumeration/approximation which
obeys the cost function c, then A is computationally weak, because changes to A are restricted by
the cost function. For instance, if A has an approximation which obeys the standard cost function
cK , then A must be K-trivial ([15], theorem 5.3.10).

Generally, the more often the cost c(x, s) becomes large, the more restrictions the cost function
will place on A. Conversely, if there is some restriction on how often c(x, s) can become large, the
cost function is in some sense easier to deal with, and it may be possible to perform more difficult
constructions while obeying c. One such restriction is called benign-ness. We prove that for any
benign cost function c, one can always construct a strongly prompt set obeying c. This gives an
analogue of the standard result that any cost function with the limit condition has a prompt set
obeying it ([15], theorem 5.3.5).

Definition 4.1. We say a computable cost-function c is benign if c is monotonic (that is, c(x+1, s) ≤
c(x, s) ≤ c(x, s+1) for each x < s), and there is a computable function h such that for any sequence
x0 < x1 < · · · < xk with c(xi, xi+1) ≥ 2−n for each i < k, then we must have k ≤ h(n).

One can check that the standard cost function cK is benign, since if cK(x, s) ≥ 2−n, there is a
prefix-free set of strings D with weight at least 2−n consisting of short descriptions for numbers in
the interval (x, s]. As the weight of the domain of the universal prefix-free machine is at most 1,
this can happen for at most 2n disjoint intervals. Thus cK is benign via the function h(n) = 2n.

Theorem 4.2. If c is a benign cost function, then there is a strongly prompt set B such that B |= c.

Proof. Let c be a cost function, which is benign via some function h. We enumerate a promptly
simple set

Bs = Bs−1 ∪ {x : ∃e

We,s ∩Bs−1 = ∅ We have not met the e-th simplicity requirement.
x ∈We,s We can meet it with x.
x ≥ 2e We make B co-infinite.
c(x, s) ≤ 2−e}. We ensure that B obeys c.

Since benign cost functions necessarily obey the limit condition in (14), c(x, s) will eventually be
small for large enough x, so if We is infinite, eventually some x in We will meet the four conditions
and be enumerated into B. Moreover, it will be enumerated in Bs at the same stage s it appears
in We, so B is prompt via the identity.

We now ask how large the set We must be in order for some x ∈ We to be enumerated into B
to meet the simplicity requirement. We initially guess that |We| > 2e is sufficient, since that will
ensure some element of We will meet the first three requirements. Any time some x meets the first
three requirements but not the fourth, and is bigger than our current guess for the minimum size
of We, we revise our guess upwards to the stage at which this occurs. Let s1 be our first guess,
s2 our second, and so on. The nth time we revise our guess upwards, there is some x > sn such
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that c(x, sn+1) > 2−e, so (by monotonicity) the sequence of guesses satisfies c(si, si+1) > 2−e for
1 ≤ i < k, where k is the total number of guesses. Thus (because c is benign via h), the total
number of times we change our guess is bounded by h, and so B is strongly prompt. �

As a corollary, we also see that K-triviality is compatible with strong promptness.

Corollary 4.3. There is a K-trivial c.e. set which is strongly prompt. Hence K-trivial sets can be
superlow cuppable.

We have an alternative proof of Greenberg and Nies’ [10] result that no single benign cost
function serves to characterize the strongly jump traceable sets: Here we see that for any benign
cost function, there is a c.e. set which obeys that cost function and is strongly prompt (hence
superlow cuppable and not strongly jump traceable).

The following theorem gives another example of a set which is promptly simple and not superlow
cuppable. Currently the only known sets in this class are the promptly simple strongly jump
traceable sets. One can also find such examples outside of the class of superlow sets. We note that
degree theoretically there is no difference between promptness and prompt simplicity.

Theorem 4.4. There is a promptly simple c.e. set B which is not superlow cuppable, and moreover
is not superlow.

Proof (Sketch). We modify the original construction of a set B which is prompt and non-superlow-
cuppable, from [5]. In order to make B non-superlow, we construct a computable functional Ψ,
giving us (via the recursion theorem) a computable function f such that JB(f(i)) = ΨB(i). Thus
by changing the use of ΨB(i)[s] over the course of the construction, we can diagonalize against all
ω-c.e. approximations which might give B′. To defeat a single ω-c.e. approximation, we first choose
a follower i, and wait for the computable bound on the number of mind changes to converge. (Until
it converges, the supposed “ω-c.e. approximation” does not appear to be one, so waiting forever
on a single requirement constitutes a win.) Once it does, we look at the approximation, and every
time it appears to give the right answer on i, we change B � ψ(i)[s] (where ψ is the use of Ψ)
if it previously converged, or create a new co mputation with large use if it previously diverged.
This constitutes an additional finite (bounded by the maximum number of mind changes of the
approximation) injury, which does not interfere with the original construction. �

We now consider the ideals of the almost deep and the almost superdeep degrees. Recall that a
c.e. degree a is almost (super)deep if a ∪ b is (super)low for every (super)low c.e. degree b. Each
promptly simple strongly jump traceable set is almost superdeep but certainly not almost deep.
We show that not every almost deep degree is almost superdeep. In fact we are able to construct
an almost deep degree which is not totally ω-c.e.

Theorem 4.5. There is an almost deep c.e. degree which is not totally ω-c.e.

Proof. We build A satisfying the almost deep requirements:

Ne : If We is low via ge, then make We ⊕A low.

Here ge is the eth function from a list of total computable functions, with the property that for any
low c.e. set W , there is some e such that W = We and for every x, lims→∞ ge(x, s) exists and equal
W ′(x). To test for the lowness of We we enumerate Turing functionals and assume by the recursion
theorem we know these indices, given to us by a computable function. To simplify notation we
assume we control JX(0), JX(1), · · · instead.
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To make A not totally ω-c.e. we need to build a total ΦA which is not ω-c.e. We do not build
Φ directly in the construction. Rather we define Φ implicitly using the c.e. approximation As to
A given by the construction. Let As = {as0 < as1 < · · · } be the elements of As listed in increasing
order. During a single stage of the construction we will have several numbers entering As. As is
customary when we refer to as0 < as1 < · · · (or any other parameter) we mean the respective values
within a stage s where the parameter is mentioned. We say that ae is moved at stage s if ase is
enumerated at (some substage of) stage s. We always assume that when this happens, ase+1, · · · , ask
are also enumerated into A for some fresh number k. We have to ensure that each ae is moved
finitely often, and that we satisfy the requirements

Pe : If fe is ω-c.e. via he, then for some x > e, ax is moved at some stage t

after which there are no more mind changes in fe(x,−).

As usual {fe} and {he} are effective lists of partial computable functions, and fe is ω-c.e. via he
if for every x, there are only he(x) many mind changes in fe(x,−). Any ω-c.e. function is the limit
of fe for some e where fe is ω-c.e. via he. Since we only care about lims fe(x, s), we can assume
that each fe is total by speeding up convergence. To define ΦA(x) we A-compute the least stage
s after which a0, · · · , ax are never moved. Output 1 + max{f0(x, s), · · · , fx(x, s)}. If every P is
satisfied then ΦA cannot be ω-c.e.

4.1. Construction tree. The construction takes place on the following tree. Nodes of even length
2e are assigned the requirement Pe. Nodes of length 2〈e, 0〉 + 1 are assigned the requirement Ne,
while nodes of length 2〈e, k+ 1〉+ 1 are assigned the subrequirement Ne,k of Ne, which are devoted

to preserving the computation JWe⊕A(k). A node is said to be a Pe,Ne or Ne,k-node if they are
assigned the corresponding requirement. If τ ⊂ α where τ is an Ne-node and α is a Ne,k-node,
then we also say that τ is the top node of α, which we denote as τ = τ(α). α is called a k-subnode
of τ . The subrequirements and the subnodes of a top node τ are used to split a potentially infinite
restraint function into infinitely many finite restraints (of differing priority). The P-nodes have
only a single outcome, denoted a s 0, while the top and subnodes have two outcomes: ∞ to the left
of f . For a top node, outcome ∞ means that the testing of jump computations JWe⊕A(−) has not
yet returned successfully, while outcome f means that testing has been successful. For a subnode,
outcome∞ means A-restraint is dropped, and outcome f means positive A-restraint is held by the
subnode. It will become clear to the reader what we mean by this when we introduce the strategies
in the next section.

The actions of the subnodes are coordinated by the top node, with the help of tokens. Each
subnode α has a token (which we call an α-token), which is a marker indicating the state of the
substrategy α. Each token can either be marked (indicating that α wants to hold restraint on A),
or unmarked (indicating that α wants to drop all A-restraint for the sake of lower priority nodes).
An α-token can be moved between the top node τ = τ(α) and α. If the α-token is currently held
by τ , then the next time τ sees JWτ⊕A(k) ↓, τ will test the lowness of W using the index iα. Upon
a successful test, τ will mark the tokens it has used to test and return the tokens to the subnodes.
These tokens serve the same purpose as the “connections” in Cholak, Groszek and Slaman [4].
These connections between the top and subnodes do not cause the construction to skip over any
intermediate nodes. To make We ⊕ A low each top node τ defines a computable function tτ (x, s)
which is intended to predict the value of (We ⊕ A)′(x). The only parameter associated with a
Pe-node α is xα denoting its follower.
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4.2. Strategy for making A almost deep. The construction of an almost deep c.e. set A first
appeared in Cholak, Groszek and Slaman [4]. Since it is not well-known, we will describe it here.
Suppose we only wanted to make A non-computable. Hence each P-node enumerates at most once.
Suppose τ is an Ne-node. The basic strategy for ensuring tτ (k,−) predicts (We ⊕ A)′ correctly
is straightforward. Each time we see JWe⊕A(k)[s0] ↓ (with use u[s0]) we test for the correctness
of We by enumerating JWe(i) ↓ with the same use u[s0]. We freeze A until either We changes, or
ge(i) = 1. If neither happens then we get a global win for τ , so the A-restraint imposed during this
testing phase will have priority τ . It is important that we allow no A-change below u[s0] during
the testing phase, otherwise the index i has to be abandoned, and hence all previous pr ogress on
gs(i) is undone.

If We changes then we drop the restraint on A and wait for the next time JWe⊕A(k) ↓. We can
test JWe(i) again using the same index i. On the other hand if ge(i) flips to 1, then we also set
tτ (k) = 1, and continue to restrain A. This means that if later JWe⊕A(k) ↑, then this has to be due
to a We � u[s0]-change, which means that JWe(i) ↑. We then wait for ge(i) = 0 before repeating.
In this simple case, if We is low via ge, then we will only flip tτ (k) finitely many times.

It is clear that the simple strategy above will not work, because τ may implement an increasing
amount of A-restraint, since there are infinitely many different k which want to restrain A. The
obvious thing to do is to let τ hold the A-restraint only at testing phases (since if this A-restraint is
never dropped then τ gets a global win). When each k-module gets successfully tested, we transfer
the A-restraint down to the level of the k-subnodes. This ensures that each positive node extending
τ only has to obey a finite amount of restraint. This means that during the second phase of the
basic k-strategy, we might have an A-change resulting in tτ (k) to be incorrect, and for the index
i to be abandoned. For each level k this happens only finitely many times, so this does not cause
additional problems.

The unpleasant situation is that there might be infinitely many stages where JWe⊕A(k) is suc-
cessfully tested on JWe(i), and the restraint is transferred to level k. Although this means that
We is not low via ge, we must still allow for the positive nodes below level k to act. To arrange
for this we let each k-subnode have two outcomes. The intention is that every time we visit a
k-subnode β at some stage where the A-restraint was recently increased, we will drop restraint on
β by letting β_∞ be accessible. Suppose we only had a single testing index i for the entire level
k (in the discussion so far, i only needed to be reset finitely often due to positive action between
τ and the k-subnodes of τ). The problem with allowing k-subnodes to drop restraint (infinitely
often) is the following: Consider a k-subnode β0 on the true path; it could be the case that restraint
is transferred to level k from τ infinitely often, but β0 is only visited at those stages where JWe(i)
has been tested successfully and restraint is currently held by level k. This means that β0 has to
drop restraint at infinitely many of these stages, which would cause i to be reset infinitely often,
and hence causing Ne not to be met.

It is clear now what we need to do. We need to allow different k-subnodes β to have different
testing indices iβ. If β0 <L β1, β0 is visited and it feels the need to drop A-restraint, it will reset
iβ1 (and cause tτ (k) to be wrong). To meet Ne we need to restrict the number of mind changes
to tτ (k). In the above example when β0 was visited, we allowed for tτ (k) to be injured without
accounting for it against any ge(iβ). This is fine as long as we test iβ0 before next believing that

JWe⊕A(k) ↓ and consequently flipping tτ (k) = 1. If β0 is the leftmost k-subnode visited infinitely
often, then iβ0 is reset finitely often, and we cannot have infinitely many mind changes in tτ (k)
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(unless ge(iβ0) has infinitely many). In the formal construction this is coordinated via tokens - the
tokens will tell τ which of its k-sub nodes are ready to be tested again.

Implementing a finite amount of positive injury : In the discussion above we only considered
positive requirements making A non-computable. Consequently each tτ (k) can only be injured by
a positive requirement finitely often. In this construction, if a P-node η is not on the true path
then η may change A infinitely often (since limxη =∞). This may now cause tτ (k) to be injured
infinitely often. To get around this, whenever τ successfully tests JWe(iβ0), · · · , JWe(iβm), and
transfers restraint to level k, we will also initialize every positive node η which lies to the right of
some βi, i ≤ m. Hence any restraint held by level k which has been successfully tested on JWe(iβ)
for β on true path, can only be later taken down by some positive node η ⊂ β. This is good since
xη (for these η) will be eventually stable. We mention a final point: ev en though a positive node
η may be initialized (at some stage s1) even when we do not visit left of η, the only time this can
happen to η again is if we really do visit left of η after s1.

4.3. Construction. At stage s = 0, initialize every node and do nothing. To initialize a P-node
α means that we set xα ↑. To initialize a subnode α means we unmark the α-token, and if iα ↓ we
reset it to a fresh value. To initialize a top node τ means that for every subnode α of τ we initialize
α and return to α its token. At s > 0 we define the stage s approximation to the true path, δs
of length s by induction on u < s: Assume that α = δs � u has been defined. We say α has been
visited at s; in this case we let s− be the previous stage where α was visited. There are three cases:

(1) α is a Pe-node: If xα ↑, we set it to be a fresh number. Otherwise if hα(xα) ↓ and
fα(xα, s) 6= fα(xα, s

∗) (with at most hα(xα) mind changes), we move axα , and initialize
every node extending α and to the right of α. Here s∗ = s− if hα(xα)[s−] ↓, and s∗ = 0
otherwise. Let δs(u) = 0.

(2) α is an Ne-node: Let t < s be the previous α_∞-stage (t = 0 if this does not exist). For
every k < t such that α is holding a k-token (i.e. a β-token for some k-subnode β), we set
tα(k, s) = 0. Also for every k < t such that for some k-subnode β, the β-token is marked
and JWe(iβ) ↑, we unmark the β-token.

Next check if for every k < t and every k-subnode β for which iβ ↓, we have ge(iβ, s)

predicting JWe(iβ) correctly. If not define δs(u) = f , initialize every node to the right of α
and go to the next substage. Otherwise if every k-subnode for k < t is predicted correctly,
we find the least k < t such that the k-module (of α) requires attention: that is, α is holding
at least one k-token, JWe⊕A(k)[t] ↓ and this computation currently applies. For the least
k < t found there are two possibilities:
(i) There is a k-subnode β where α is holding a β-token, and JWe(iβ) ↑. For each such

k-subnode β we enumerate JWe(iβ) ↓ with the same We-use in JWe⊕A(k)[t].
(ii) Not (i). Let B = {β | β is a k-subnode and α is holding a β-token}. Then for every

β ∈ B, JWe(iβ) ↓ and ge(iβ, s) = 1. Let β0 = the leftmost node in B. Mark the
β0-token and for every β ∈ B return β its token. Set tα(k, s) = 1. Initialize every node
to the right of β0

_∞.
In all the cases above we define δs(u) = f and initialize every node to the right of α, and

go to the next substage. Finally if no such k < t is found we define δs(u) = ∞, initialize
every node to the right of α, and go to the next substage.
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(3) α is an Ne,k-node: If α ⊃ τ(α)_f , do nothing and let δs(u) = f . Otherwise if this is the
first visit to α, set iα ↓ to a fresh value, and let δs(u) = f . Otherwise check if there is some
k-subnode α0 of τ(α), such that α0 has a marked token. There are two possibilities.

(i) α0 exists, and α0 ≤L α. By the construction α0 is unique and must be currently
holding its token. Do nothing, and let δs(u) = f .

(ii) Not (i). Pass the α-token to τ(α) and let δs(u) =∞.
Initialize every node to the right of α and go to the next substage.

4.4. Verification. : Define the true path TP to be the left most path visited infinitely often. Each
ax is clearly moved finitely often.

Lemma 4.6. Every node on TP is initialized finitely often.

Proof. Suppose inductively that every β ⊂ α ⊂ TP is initialized finitely often, and suppose for
a contradiction, that α is initialized infinitely often. Since every P-node extended by α is going
to settle on a final follower x, it cannot initialize α infinitely often. The only nontrivial case to
consider is the action of some top node τ under step 2(ii) of the construction. If α ⊇ τ_f , then
τ can only initialize α finitely often: Suppose t is the final τ_∞-stage. Then after stage t, τ can
only initialize α under step 2(ii) due to a k module for some k < t. Each of these k-module will
never require attention again once it has been attended to under step 2(ii) (since all the k-tokens
are returned and never transferred back to τ). Hence we may assume that α ⊇ τ_∞. At each
of these stages, there is a corresponding τ -subnode β0 (whose token gets marked and returned).
Eventually, no node to the left of α can be visited, so it follows that there is a single β0 such that
α ⊇ β_0 f for which τ initializes α infinitely often and marks β0. This means that there are infinitely
many stages where β0 sends its token back to τ - each of these must be a β0

_∞-stage which is a
contradiction. �

The argument above also shows that every node to the left of TP is initialized finitely often.
By Lemma 4.6, every Pe is satisfied. Fix an Ne such that We is low via ge, and let τ be the
version of Ne along the TP . We first claim that there are infinitely many τ_∞-stages. Suppose
not - then there is a final τ_∞-stage t > 0 (note that there is at least one τ_∞-stage). Since
each subnode extending τ_∞ is initialized finitely often, let t′ > t be a stage after which τ and
all of its k-subnodes extending τ_∞ for k < t are never initialized. It follows that after stage
t′, each k-module for k < t is attended to under 2(i) and 2(ii) finitely many times. Fix β which
is a k-subnode (k < t) and iβ[t′] ↓. Then it is easy to check that only finitely many axioms are

enumerated for JWe(iβ). It follows that every k-subnode for k < t is predicted correctly at almost
every visit to τ . This gives a contradiction.

Now we show that for each k, lim tτ (k,−) exists. Suppose not, then there are infinitely many
stages for which the k-module is attended to under 2(ii). Let β0 be the leftmost k-subnode marked
infinitely often. It is easy to see that β0 ⊂ TP . Hence iβ0 eventually settles. Let s1 < s2 be two
τ -stages where the k-module is attended to under 2(ii), and β0 is marked. We have ge(iβ0 , s1) =
ge(iβ0 , s2) = 1. Between s1 and s2, the mark on the β0-token must be removed, and this can only be

due to the action of τ during a τ -visit at some s3 between s1 and s2, in which we found JWe(iβ0) ↑.
After s3, τ will do nothing until it finds ge(iβ0) = 0. Hence between s1 and s2, ge(iβ0) will have a
mind-change. This contradiction shows that lim tτ (k,−) exists.
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Lemma 4.7. Let β be a k-subnode of τ , where at stage s we enumerate JWτ (iβ) ↓. Then

JWτ⊕A(k)[s] ↓ with the same Wτ -use, and the latter computation persists until either β is ini-
tialized, or Wτ changes below the common use.

Proof. Suppose that α is a P-node which changed A below the A-use of JWτ⊕A(k)[s], say at stage
s1 > s. Also assume that Wτ did not change below the use between s and s1, and β was not
initialized. The nontrivial case to consider is when α ⊃ τ . If α ⊇ τ_f then α was initialized at
the previous τ_∞ stage t < s, and JWτ⊕A(k)[s] has persisted since t. Hence xα > t > A-use.
Suppose α ⊇ τ_∞. α can only be visited at the next τ_∞-stage. Before the next τ_∞-stage,
some the k-module must be attended to under step 2(ii) resulting in some node β0 ≤L β being
marked. Furthermore at this point we must have JWe(iβ0) ↓ and by assuming that s is minimal,

we have the use on JWe(iβ0) is the same as the use on JWe(iβ)[s].
If α is to the right of β_∞, then α is initialized when β0 is marked between s and s1. If α <L β

then β will be initialized when α is visited. Finally suppose α ⊇ β_∞. Hence the mark on β0 ≤L β
has to be removed before s1. Since β is not initialized before s1, this means that the mark on β has
to be removed at some s2, s < s2 < s1 when τ is visited and found JWτ (iβ0)[s2] ↑. Since β and hence
β0 is not initialized, this means that Wτ has changed below the common use, a contradiction. �

Finally we verify that lim tτ (k,−) predicts JWe⊕A(k) correctly. Suppose that lim tτ (k,−) = 1,
and at some stage s0 we set tτ (k, s0) = 1 for the last time. Let β0 be the subnode at s0 whose token
is marked. This mark cannot be removed, because otherwise (by the fact that there are infinitely
many τ_∞-stages), tτ (k) will be flipped to 0 at some later stage. Since this mark is never removed,
it follows by Lemma 4.7 that JWe⊕A(k)[s0] applies forever. Suppose now that JWe⊕A(k) ↓. Hence
at almost every τ_∞-stage, τ is holding no k-token (otherwise the k-module will be attended to).
This means that there must be a marked k-subnode β1 whose mark is never removed. In fact,
β1 ≤L TP � |β1|. Correspondingly there is some stage s1 where tτ (k, s1) is set to 1. Since the mark
on β1 is never removed after s1, it follow s that τ will never get to hold any k-token after s1, which
means that lim tτ (k,−) = 1. �

Corollary 4.8. Not every almost deep degree is array computable. Hence neither the almost deep
degrees nor the almost superdeep degrees are contained in the other.
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