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Abstract

I propose a revision of Cantor’s account of set size that under-
stands comparisons of set size fundamentally in terms of surjections
rather than injections. This revised account is equivalent to Cantor’s
account if the Axiom of Choice is true, but its consequences differ
from those of Cantor’s if the Axiom of Choice is false. I argue that
the revised account is an intuitive generalization of Cantor’s account,
blocks paradoxes—most notably, that a set can be partitioned into
a set that is bigger than it—that can arise from Cantor’s account if
the Axiom of Choice is false, illuminates the debate over whether the
Axiom of Choice is true, is a mathematically fruitful alternative to
Cantor’s account, and sheds philosophical light on one of the oldest
unsolved problems in set theory.

1 Introduction

Given sets A and B, one or both of which may be infinite, there are three
questions we may ask concerning their comparative size:
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1. Is A at least as big as B?

2. Is A the same size as B?

3. Is A strictly bigger than B?

As Pruss (2020) notes, these questions may be interpreted in two main ways,
depending on how we understand the notion of set size. If we understand
the notion in the “count” sense, then these questions broadly concern how
many members A has as compared to B. If we understand the notion in the
“measure” sense, then these questions broadly concern how much of A there
is as compared to B. I will be concerned with set size in the former sense.
In particular, I will interpret the above questions as follows:

1. Does A have at least as many members as B?

2. Does A have exactly as many members as B?

3. Does A have strictly more members than B?

These questions are widely thought to have been settled by Cantor in the
late 1800s.1 I will propose an alternative answer to them in this paper.

To spell out Cantor’s account of set size, a few preliminary notions are
needed. First, say that a function from B to A is an injection just in case it
maps any two distinct members of B to distinct members of A. Second, say
that a function from B to A is a surjection just in case every member of A
gets mapped from some member of B. Finally, say that function from B to
A is a bijection just in case it is both injective and surjective.

Cantor’s account of set size says the following:

(1) A is at least as big as set B if and only if there is an injection from B
into A.

(2) A is the same size as B if and only if there is a bijection from B to A.

(3) A is strictly bigger than B if and only if there is an injection, but no
bijection, from B to A.

1See Cantor 1883/1996. I will formulate Cantor’s ideas in modern set-theoretic terms
in what follows.
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While Cantor’s account is widely accepted—indeed, it is the basis of the stan-
dard definition of “cardinality” found in all modern set theory textbooks—
it is not universally accepted. Perhaps the most prominent objection to
Cantor’s account is that it conflicts with the intuitive idea—known as the
Part-Whole Principle—that every set is strictly bigger than any of its proper
subsets.2 This conflict between Cantor’s account and the Part-Whole Prin-
ciple has led to the development of alternative accounts of set size—most
notably, numerosity theory—that satisfy the Part-Whole Principle but vio-
late Cantor’s definitions.3

In this paper, I will propose a revision to Cantor’s account that is closer
in spirit to Cantor’s account than to numerosity theory. Indeed, I will mo-
tivate this revised account via considerations that are unconnected to the
Part-Whole Principle. The key difference between Cantor’s account and the
revised account lies in how they understand the at least as big as relation.
According to Cantor’s account, A is at least as big as B just in case there
is an injection from B into A. According to the revised account, A is at
least as big as B just in case there is a surjection from A onto B (or B is
empty). In what follows, I will refer to these accounts as the injective and
surjective accounts, respectively. As I will explain later, we can understand
the intuitive difference between these accounts as follows:

• Injective account: A is at least as big as B if and only if any two distinct
members of B can be paired with distinct members of A.

• Surjective account: A is at least as big as B if and only if any two
distinct members of B can be paired with disjoint parts of A.

Here the “parts” of a set are to be understood as nonempty subsets of that
set. So, the members of a set—or, if we prefer, the set’s singleton subsets—
can be viewed as the smallest parts of that set. In this respect, the surjective

2For example, there is a bijection from the set of even numbers to the set of integers,
even though the former is a proper subset of the latter. According to the right-to-left
direction of (3), the latter set is not strictly bigger than the former. However, by the
Part-Whole Principle, the latter set is strictly bigger than the former.

3See Mancosu 2009 and Parker 2009 for further discussion of this conflict. Also, strictly
speaking, several versions of numerosity theory have been developed since Benci and Di
Nasso (2003) first introduced the theory (in English); these versions are largely unified
by Benci and Baglini (2022). However, I will speak of “numerosity theory” as a single
entity for simplicity in what follows since the points I will make apply to all versions of
the theory.
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account is a formal generalization of the injective account. I will argue that
it is also an intuitive generalization of the injective account. Moreover, I will
show that the two accounts are equivalent if the Axiom of Choice is true, but
their consequences differ if the Axiom of Choice is false.

The Axiom of Choice is the following claim: for any set of sets that are
nonempty and mutually disjoint, there exists a set that contains exactly one
member from each of these sets (and nothing else).4 Intuitively, the Axiom
of Choice says that it is always possible to arbitrarily choose exactly one
member from each of these sets—even if there are no distinguishing features
among the members of any such set—and thereby create a new set that
contains all and only these chosen members. The Axiom of Choice is the
most controversial axiom among the standard axioms of set theory, largely
because both it and its negation have been thought to lead to paradoxical
consequences.

One prominent allegedly paradoxical consequence of the negation of the
Axiom of Choice is the possibility known as the Division Paradox : a set
can be partitioned into a set that is bigger than it. The possibility of the
Division Paradox is mathematically unassailable if we assume the injective
account of set size. However, I will show that the surjective account entails
that any set is at least as big as any partition of it—and is never smaller
than it—regardless of whether the Axiom of Choice is true.5 Moreover, since
the possibility of the Division Paradox has sometimes been mounted as an
argument for the Axiom of Choice, I will argue that the surjective account
illuminates the debate over whether the Axiom of Choice is true—namely,
by revealing that one prominent argument for the Axiom of Choice can be
blocked simply by adopting an intuitively compelling alternative account of
set size.

I will also argue that the surjective account of set size is a mathematically
fruitful alternative to the injective account. While the two accounts are
equivalent if the Axiom of Choice is true, they lead to their own distinctive
theories of set size in the absence of the Axiom of Choice: the injective
account leads to a theory of “injective” set size; the surjective account leads

4See Rubin and Rubin 1985 for many equivalent formulations of the axiom.
5So, the surjective account entails that, if the Axiom of Choice is false, A can be at least

as big B even if there is no injection from B into A—i.e., the left-to-right direction of (1)
can fail if the Axiom of Choice is false. Thus, like Whittle (2018) and Pruss (2020), I will
raise a problem for the left-to-right directions of Cantor’s definitions. However, neither
author appeals to considerations that distinctively involve the Axiom of Choice.
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to a theory of “surjective” set size. As we will see, these two theories have
some notable features in common yet differ in interesting ways.

Additionally, I will argue for virtues of a class-theoretic generalization of
the surjective account. This generalization compares sizes not only among
sets but also among proper classes—that is, collections that fail to form sets.
In particular, I will explain that this generalization ensures that a version
of the Division Paradox cannot arise for proper classes, while the analogous
class-theoretic generalization of the injective account only ensures this if the
class-theoretic generalization of the Axiom of Choice known as Global Choice
is assumed. Global Choice is the following claim: for any collection (set or
proper class) of sets that are nonempty and mutually disjoint, there exists
a collection that contains exactly one member from each of these sets (and
nothing else). I will also show that the class-theoretic generalization of the
surjective account leads to a mathematically fruitful line of inquiry regarding
various other class-theoretic analogues of the Axiom of Choice.

Finally, I will argue that the surjective account sheds philosophical light
on one of the oldest unsolved problems in set theory. This is the question of
whether the claim that every set is at least as big as any partition of it entails
the Axiom of Choice, where “at least as big as” is understood in the manner
of the injective account. As I will explain, this question is straightforwardly
answered in the negative when “at least as big as” is understood in the
manner of the surjective account.

All of that said, I will not argue that the injective account is “wrong”
in some objective sense of the term, as I will neither assume nor deny that
there is a uniquely correct conception of “set size.” Indeed, the present paper
may happily be read in the spirit of Parker (2019)’s “pragmatic pluralism,”
according to which different conceptions of “set size” are suitable for dif-
ferent purposes. Nonetheless, I will argue that the surjective account is an
intuitively compelling, mathematically rich, and philosophically illuminating
alternative account of set size—and of class size more generally.

While some of this paper is quite technical, I have structured it so that the
main thread of philosophical discussion will be accessible to readers who have
minimal set theory background. I have placed the more technical aspects of
discussion in various footnotes and specific subsections that I will signpost.
These parts can be skipped or skimmed without loss of continuity.
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2 The Surjective Account of Set Size

Before I spell out the surjective account in full, it will be useful to consider a
somewhat simpler, but equivalent, formulation of Cantor’s injective account.

First, define the following relations for arbitrary sets A and B:

• B � A if and only if there is an injection from B into A.

• A ≈ B if and only if B � A and A � B.

• B ≺ A if and only if B � A and A 6� B.

Then, the injective account is equivalent to the following collection of claims:

(1′) A is at least as big as B if and only if B � A

(2′) A is the same size as B if and only if A ≈ B.

(3′) A is strictly bigger than B if and only if B ≺ A.

This equivalence is a straightforward consequence of the Schröder-Bernstein
theorem—i.e., if A � B and B � A, then there is a bijection from A to
B. This theorem holds in all models of Zermelo-Fraenkel set theory (ZF),
even if the Axiom of Choice is false.6 While the more familiar formulation
of Cantor’s account in section 1 appeals to the notions of an injection and a
bijection, the above formulation only appeals to that of an injection.

Additionally, ≈ is defined as the “symmetric” part of � and ≺ is de-
fined as the “anti-symmetric” part of � (to use the standard order-theoretic
terminology). As such, the above formulation readily allows us to view the in-
jective account as formally analogous to other relational structures that have
traditionally figured in measurement theory. For example, in the traditional
measurement theory of probability, one begins with the qualitative relation
at least as probable as and defines equiprobable to as its symmetric part and
strictly more probable than as its anti-symmetric part.7 In this manner, the
above formulation of the injective account also illustrates the importance of

6I will assume ZF throughout the paper.
7Indeed, the parallels between measuring set size and measuring probability run further:

just as it is customary to define “cardinalities” by appealing to equivalence classes of the
same size as relation (more on this in section 3.4.2), so one traditional approach to defining
numerical probabilities is to appeal to equivalence classes of equiprobable to. See Krantz
et al. 1971, chap. 5.
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considering all three comparative size relations. If we only focus on the same
size as relation—more widely discussed in the philosophical literature than
the other two comparative size relations—then we lose sight of the bigger
measurement-theoretic picture.

Now define the following analogous relations:

• B �∗ A if and only if there is a surjection from A onto B (or B = ∅).8

• A ≈∗ B if and only if B �∗ A and A �∗ B.

• B ≺∗ A if and only if B �∗ A and A 6�∗ B.

Then, the surjective account is the following collection of claims:

(1∗) A is at least as big as B if and only if B �∗ A

(2∗) A is the same size as B if and only if A ≈∗ B.

(3∗) A is strictly bigger than B if and only if B ≺∗ A.9

In section 1, I claimed that the surjective account possessed several virtues;
I will argue for these in the next section. However, for now, I will note some
points of comparison with the injective account.

First, both accounts satisfy the following claims:

(2both) A is the same size as B if and only if A is at least as big as B and B
is at least as big as A.

(3both) A is strictly bigger than B if and only if A is at least as big as B and
B is not at least as big as A.

8The disjunct that B is empty is necessary to ensure that ∅ �∗ A for any nonempty A.
Strictly speaking, there is no function—and, thus, no surjection—from any nonempty set
to the empty set.

9While the above notation for the surjection-based relations is standard in the liter-
ature, I am not aware of any previous defense of the claim that the surjective account
constitutes an interesting alternative account of set size. For example, Lindenbaum and
Tarski (1926/1986, 175)—who introduced the notation for the surjection-based relations—
merely say that these relations are “analogues” to the injection-based relations. Similarly,
Banaschewski and Moore (1990, 375) simply call �∗ a “dual relation” to �.
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That is, both accounts take the same size as relation to be the symmetric part
of at least as big as, and both accounts take the strictly bigger than relation
to be the anti-symmetric part of at least as big as. Indeed, the injective and
surjective accounts are straightforwardly equivalent to the conjunction of the
above two claims with (1) and (1∗), respectively. Thus, at an intuitive level,
the only substantive difference between the two accounts lies in how they
understand at least as big as. While the injective account understands this
relation in terms of injections, the surjective account understands it in terms
of surjections.

Second, the two accounts are equivalent in ZFC—i.e., ZF with the Axiom
of Choice. I prove this fact in the Appendix. However, we will see that the
two accounts can come apart—indeed, in a striking way—if the Axiom of
Choice is false. In particular, while the existence of an injection from B into
A is necessary and sufficient for A to be at least as big as B on the injective
account, the existence of such an injection is merely a sufficient condition
for A to be at least as big as B on the surjective account. This is because
B � A entails B �∗ A, but (as we will see) the converse is not the case if
the Axiom of Choice is false.10 Similarly, the existence of a bijection from B
to A is merely a sufficient condition for A to be the same size as B on the
surjective account. Thus, regardless of whether the Axiom of Choice is true,
B � A entails B �∗ A and B ≈ A entails B ≈∗ A. However, if the Axiom
of Choice is false, then B �∗ A does not entail B � A and B ≈∗ A does not
entail B ≈ A. Moreover, we will see that neither B ≺ A nor B ≺∗ A entail
each other if the Axiom of Choice is false.

Finally, while the Axiom of Choice entails the equivalence of the two
accounts, we will see that the question of whether the equivalence of the
two accounts entails the Axiom of Choice is itself equivalent to an old open
question in set theory—namely, whether the statement (A �∗ B implies
A � B) entails the Axiom of Choice.

A terminological point of caution is worth making before proceeding.
Two sets are traditionally called equinumerous just in case there is a bijec-

10To see that B � A entails B �∗ A, suppose A and B are nonempty. (If B is empty,
then we trivially have that B �∗ A. If A is empty and B is nonempty, then it is not
possible that B � A.) Let f : B → A be injective, and let a be an arbitrary member of
A. If a = f(b) for some b ∈ B, then f−1(a) is unique since f is injective. So, there is a
function g : A → B such that, for some c ∈ B, g(x) = b if x = f(b) for some b ∈ B and
g(x) = c otherwise. Now let b be an arbitrary member of B. Then, f(b) = a for some
unique a ∈ A. So, g(a) = b. Thus, g is surjective.
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tion between them. This terminology suggests that two sets have the same
number of members—i.e., have exactly as many members as each other—just
in case there is a bijection between them. However, we must be careful not
to prejudice ourselves against the surjective account solely on the basis of
this standard terminology. Here is an example of how such prejudice might
mistakenly arise.

The Schröder-Bernstein theorem is often given the following intuitive
gloss: if A is at least as big as B and B is at least as big as A, then A
and B are equinumerous. If we understand “equinumerous” in terms of bi-
jections, then we might hope that the surjective account entails the following
principle: if A �∗ B and B �∗ A, then A ≈ B. This principle is known as
the Dual Schröder-Bernstein theorem.11 As we will see later, however, the
surjective account does not entail this principle in the absence of the Axiom
of Choice. While this fact might tempt us to infer that the surjective account
is intuitively deficient, such an inference would beg the question against the
surjective account. After all, the surjective account provides its own under-
standing of what makes two sets the same size and, hence, “equinumerous.”
Moreover, recall that both accounts satisfy (2both): A is the same size as B
if and only if A is at least as big as B and B is at least as big as A. The
right-to-left direction of this claim is simply a pre-theoretic version of the
Schröder-Bernstein theorem. Indeed, it is plausibly an intuitive desideratum
that our account of set size entails this claim—not that it entails the Dual
Schröder-Bernstein theorem, which mixes notions of set size from two sep-
arate accounts. Thus, to avoid misinterpretation, I will abstain from using
the term “equinumerous” in what follows.

3 Virtues of the Surjective Account

Earlier I claimed that the surjective account possessed several virtues:

(1) It is an intuitive generalization of the injective account.

(2) It blocks the Division Paradox.

(3) It illuminates the debate over whether the Axiom of Choice is true.

(4) It is a mathematically fruitful alternative to the injective account.

11See Banaschewski and Moore 1990.
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(5) It sheds philosophical light on one of the oldest unsolved problems in
set theory.

I will now argue for each of these.

3.1 Virtue 1: The Surjective Account Is an Intuitive
Generalization of the Injective Account

Let A and B be sets. According to the injective account, A is at least as big
as B just in case there is an injection from B into A. Figure 1 depicts an
example of such an injection. Intuitively, we can view the members of A and
B—or, if we prefer, the singleton subsets of A and B—as being the smallest
parts of these sets. So, we can view the injective account as saying that A is
at least as big as B just in case there is a way of pairing distinct members
of B with distinct smallest parts of A.12

Figure 1: An injection from B into A. This pairs any two distinct members
of B with distinct members of A.

More generally, we can view the parts of a set S as being the nonempty
subsets of S, and we can view a division of S into parts as being a partition of

12Note that if there is an injection f from B into A, then there is an injection g from B
into the set of singleton subsets of A: for any x ∈ B, simply let g(x) = {f(x)}.
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S—that is, a collection of mutually disjoint and jointly exhaustive nonempty
subsets of S. So, let us now suppose that there is an injection from B into
some partition of A—intuitively, a way of pairing any two distinct members
of B with disjoint parts of A. Figure 2 depicts an example of such a mapping.

Note that, in Figure 1, each member of B is only associated with an
individual member of A. In contrast, in Figure 2, some members of B are
associated with multiple members of A. This is because some members of
B are associated with non-singleton subsets of A. For example, in Figure 2,
a is associated with 4 members of A, b is associated with 3 members of A,
and d is associated with 2 members of A. (However, as in Figure 1, c is only
associated with 1 member of A.) Thus, some members of B are associated
with more members of A in Figure 2 than they are in Figure 1. Intuitively,
this seems to suggest that we have at least as much reason to regard A as
being at least as big as B in the scenario depicted in Figure 2 as in the
scenario depicted in Figure 1.

Figure 2: An injection from B into some partition (“division”) of A. This
pairs any two distinct members of B with mutually disjoint nonempty subsets
(“disjoint parts”) of A.

Indeed, while Figure 1 depicts an injection from B into A, Figure 2 depicts
a kind of generalized injection from B into A. In particular, an ordinary
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injection from B into A can be viewed as the special case of an injection
from B into A’s partition of singletons. So, the intuition that A is at least as
big as B by virtue of there existing an injection from B into some partition
of A seems to generalize the traditional Cantorian intuition that A is at least
as big as B by virtue of there existing an injection from B into A.

More formally, the following seems to be an intuitive generalization of
Cantor’s (1):

(1∗∗) A is at least as big as B if and only if there is an injection from B into
some partition of A.

As I show in the Appendix, (1∗∗) is equivalent to the surjective account’s
simpler claim (1∗)—i.e., A is at least as big as B just in case there is a
surjection from A onto B (or B is empty). Moreover, since the injective and
surjective accounts satisfy (2both) and (3both), both accounts appear to satisfy
the same intuitions about the same size as and strictly bigger than relations.
So, we can succinctly state the key intuitive difference between the accounts
as follows:

• Injective account: A is at least as big as B if and only if any two distinct
members of B can be paired with distinct members of A.

• Surjective account: A is at least as big as B if and only if any two
distinct members of B can be paired with disjoint parts of A.

Thus, the surjective account appears to be an intuitive generalization of the
injective account.

Earlier I said that the surjective and injective accounts are equivalent
if the Axiom of Choice is true but that their consequences can differ if the
Axiom of Choice is false. We can now intuitively see why the latter is the
case—and, moreover, why the intuitive considerations that motivate the sur-
jective account go beyond those that motivate the injective account if the
Axiom of Choice is false.

Consider the function depicted in Figure 2 again; call this function f .
Recall that f is an injection from B into some partition of A. Using f , we
might think that we can construct an injection g from B into A simply as
follows: let g(a) be an arbitrary member of the set f(a), let g(b) be an arbi-
trary member of the set f(b), and so on. If a function g could be constructed
in this way, then it would clearly be injective, and the two accounts would
agree that A is at least as big as B. However, in order to construct the
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function g, we need to assume that we can arbitrarily choose exactly one
member of f(a) to designate as g(a), that we can arbitrarily choose exactly
one member of f(b) to designate as g(b), and so on. But this is precisely
to assume the Axiom of Choice. If the Axiom of Choice is false, then we
might not be able to make all of these choices. Moreover, if we cannot make
all of these choices, then there will not be an injection from B into A, and
the injective account will not deem A at least as big as B. In contrast, the
surjective account ensures that A at least as big as B, regardless of whether
the Axiom of Choice is true, as there is (by assumption) an injection from B
into some partition of A. In the next section, I will discuss models of ZF in
which the Axiom of Choice fails such that the two accounts indeed differ.

Here is a simple example to illustrate the point. Suppose there are in-
finitely many farmers, every farmer has at least one dog, and every dog is
owned by exactly one farmer. Then, it seems intuitively “obvious” that there
are at least as many dogs as farmers. While the surjective account vindicates
this intuitive claim, we cannot prove it on the injective account unless we
assume the Axiom of Choice. For let B be the set of farmers and A be the
set of dogs in Figure 2. Then, there is clearly an injection from B into some
partition of A—simply pair each farmer with the set of dogs they own. So,
the surjective account entails that A is at least as big as B. In contrast, as we
just saw, we need the Axiom of Choice to establish that there is an injection
from B into A. So, we cannot prove that there are at least as many dogs
as farmers on the injective account unless we assume the Axiom of Choice.
Moreover, even if we do accept the Axiom of Choice, the proof of this claim
is not immediate on the injective account: we need to employ the Axiom
of Choice. In contrast, this claim does immediately follow on the surjective
account; no appeal to the axiom is needed. The immediacy of this inference
suggests that the surjective account is not merely an intuitive generalization
of the injective account; it also seems to track our intuitive reasoning about
set size more closely than the injective account.13

3.2 Virtue 2: The Surjective Account Blocks the Di-
vision Paradox

Suppose P is a partition of some set A. Note that there is a surjection from
A onto P—simply pair each member x of A with the member of P of which

13Thanks to Alex Pruss for this point and the example.
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x is a member. Moreover, such a surjection exists regardless of whether the
Axiom of Choice is true. So, the surjective account ensures that A is at least
as big as P in all models of ZF. That is, the surjective account entails the
following principle:

• Partition Principle (PP). Every set is at least as big as any partition
of it.

This principle is plausibly one of the various pre-theoretic intuitions we have
about “set size”—alongside the transitivity of at least as big as, the Part-
Whole Principle, among others. Intuitively, PP simply says that A can only
be divided into as many parts as it has smallest parts. From a pre-theoretic
standpoint, this claim seems hard to deny. Other things being equal, then,
it seems intuitively desirable to have an account of set size that entails PP.

If we assume the injective account, then PP is equivalent to the following
principle:

• Partition Principleinjective (PPinjective). For every set A and parti-
tion P of A, there is an injection from P into A.14

This technical articulation of PP has been held in high esteem by a num-
ber of notable thinkers. For example, Bernstein (1904, 558) says, “I regard
[PPinjective] as one of the most important in set theory, and I see no objec-
tion to using it.” Similarly, Moore (1982, 10) says that PPinjective “appears
all but self-evident.” Russell (1906/2014) also appears to have accepted the
principle.15

Nonetheless, it turns out that PPinjective can fail if the Axiom of Choice
is false. More precisely, there are models of ZF in which the Axiom of Choice
is false (ZF¬C) such that PPinjective fails.16 So, if the Axiom of Choice is
false, then the injective account allows for the counterintuitive possibility
that PP can fail. In contrast, this possibility is blocked by the surjective
account in all models of ZF. So, the surjective account allows us to uphold
the intuition that PP is necessarily true. Indeed, this fact seems to suggest
that, if any principle in the vicinity should be held in high esteem, it is not
PPinjective but rather the pre-theoretic PP.

14This principle is traditionally called the Partition Principle in the literature, but it is
useful to distinguish it from the pre-theoretic PP.

15I discuss the case of Russell in more detail in section 3.5.
16See Taylor and Wagon 2019 for a self-contained discussion of how such models arise

from the work of Mycielski and Sierpiński.



Cantor, Choice, and Paradox 15

As a side note, it is well known that the Axiom of Choice entails PPinjective,
though whether PPinjective entails the Axiom of Choice is one of the oldest
unsolved problems in set theory.17 Also, note that PPinjective is equivalent
to the claim that A �∗ B entails A � B.18 Since A � B entails A �∗ B
(cf. section 2), PPinjective is equivalent to the statement that the injective
and surjective accounts are equivalent to each other. Thus, it is also an open
question whether the Axiom of Choice is equivalent to the equivalence of the
injective and surjective accounts.

It is easy to see that the surjective account also entails the following
principle:

• Weak Partition Principle (WPP). For every set A and partition
P of A, P is not strictly bigger than A.19

If we assume the injective account, then this principle is equivalent to the
following:

• Weak Partition Principleinjective (WPPinjective). For every set A
and partition P of A, it is not the case that there is an injection, but
no bijection, from A to P . Equivalently, if A �∗ B, then B 6≺ A.20

As before, the Axiom of Choice entails WPPinjective, but it is not known
whether WPPinjective entails the Axiom of Choice.21 Nonetheless, it is
known that there are models of ZF¬C in which WPPinjective fails. For ex-
ample, there are models of ZF¬C in which the set R of real numbers can be
partitioned into some set P that is bigger than R according to the injective
account.22 This sort of possibility seems even more counterintuitive than a

17Karagila (2013) argues that it is one of the two oldest unsolved problems in set theory
(apart from the Continuum Hypothesis, whose status as “unsolved” is controversial). See
Moore 1982 and Banaschewski and Moore 1990 for further discussion of the problem.

18Proof. First, suppose PPinjective, so that P � A for any partition P of A. Now
suppose B �∗ A and let f : A → B be surjective. Let B be nonempty. (If B is empty,
it trivially follows that B � A.) For every b ∈ B, let Ab = {x ∈ A|f(x) = b}. Note that
P = {Ab|b ∈ B} is a partition of A. Moreover, clearly B � P . Thus, since � is transitive,
B � A. Now suppose that, if B �∗ A, then B � A. Let P be a partition of A. Define
f : A→ P so that f(x) = y just in case x ∈ y. Clearly, f is surjective, so P � A. Hence,
PPinjective.

19The surjective account entails WPP since PP and (3both) jointly entail WPP.
20As before, this principle is traditionally called the Weak Partition Principle, but it is

useful to distinguish it from the pre-theoretic WPP.
21Again, see Moore 1982 and Banaschewski and Moore 1990 for discussion.
22See Taylor and Wagon 2019 for discussion of how such models arise.
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failure of PP. After all, a failure of PP is compatible with R and P merely
being incomparable in size—that is, with R not being at least as big as P
and P not being at least as big as R. However, to say that WPP fails here
means that there is an injection from R into P but no bijection from R to
P . So, a failure of WPP means that the sizes of R and P can be compared,
but P is bigger than R—that is, R can be divided up into more parts than
members. As Taylor and Wagon (2019, 307, 310) note, this possibility is as
counterintuitive as “a country that has more populated provinces than it has
people” or “a sports league having more teams than players”—to wit, very
counterintuitive.

Thus, if the Axiom of Choice is false, the injective account can lead to
the Division Paradox : it is possible for a set to be partitioned (“divided”)
into a set that is bigger than it.23 That is, the injective account allows for
models of ZF¬C in which WPP fails. Indeed, WPPinjective (and PPinjective)
fail in all known models of ZF¬C. In contrast, the surjective account satisfies
WPP (and PP) in all models of ZF. So, the surjective account necessarily
blocks the Division Paradox.24

Note that, in the above example, P �∗ R and R ≺ P , where P is the
aforementioned partition of R. Additionally, R ≺ P entails R �∗ P . It
follows that B ≺ A does not entail B ≺∗ A if the Axiom of Choice is false.
Moreover, since P 6≈ R, it also follows that the Dual Schröder-Bernstein
theorem (cf. section 2) can fail if the Axiom of Choice is false. That said,
it is an open question whether the Dual Schröder-Bernstein theorem entails
the Axiom of Choice.25

Of course, if we should be certain that the Axiom of Choice is true,
then we needn’t worry about the Division Paradox. Moreover, although the
axiom had a controversial early history, it is now widely (but not universally)

23The name of this paradox was coined by Taylor and Wagon (2019), though they note
that the paradox was known long before then.

24Additionally, as Taylor and Wagon (2019, 311) explain, the injective account (which
they implicitly assume) can lead to a Double Division Paradox if the Axiom of Choice is
false: a set A can be partitioned into a bigger set B, which in turn can be partitioned into
a bigger set C. Still more strikingly, the injective account can lead to an Infinite Division
Paradox if the Axiom of Choice is false—e.g., the possibility of “more teams than players,
more conferences than teams, more leagues than conferences, more sports than leagues,
and so on.” (Taylor and Wagon attribute the latter paradox to Asaf Karagila.) Since the
surjective account entails WPP, it blocks the Double and Infinite Division Paradoxes as
well.

25See Banaschewski and Moore 1990 for discussion.
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accepted by mathematicians and philosophers.26 However, even among those
who accept the axiom, very few are completely certain of its truth. So, even
the vast majority of those who accept the Axiom of Choice can still consider
the epistemic possibility that it is false and ask what might happen if we
assume it is false. In particular, we can ask if it is epistemically possible for
the Division Paradox to arise if the Axiom of Choice is false. If we accept
the injective account, then the answer to this question appears to be “yes.”
This appears to be an intuitive cost of the injective account.

For my part, the mere epistemic possibility of something as counterin-
tuitive as the Division Paradox seems reason enough to pursue an indepen-
dently motivated means of blocking it without assuming the Axiom of Choice.
However, some who accept the Axiom of Choice may be unperturbed by this
possibility and thus unmotivated to pursue an alternative account of set size.
After all, we might think that the Axiom of Choice seems pretty obviously
true, so it is not terribly bad if our account of set size needs to rely on it to
get the intuitively correct results.27

Nonetheless, while the Axiom of Choice is widely accepted, there is sub-
stantially less agreement about its class-theoretic analogues (e.g., Global
Choice).28 So, those who accept the Axiom of Choice and are unperturbed
by the epistemic possibility of the Division Paradox may worry yet about
a version of the paradox arising for proper classes—that is, collections that
fail to form sets and (unlike sets) cannot be members of other collections.
As I will explain, if we accept the natural class-theoretic generalization of
the injective account, then a class-theoretic version of the Division Paradox
necessarily arises if the Axiom of Choice holds yet any of its class-theoretic
analogues fails. However, if we accept the natural class-theoretic generaliza-
tion of the surjective account, then the class-theoretic Division Paradox is
necessarily blocked—regardless of the truth of any class-theoretic analogue
of the Axiom of Choice.

26See Moore 1982 for discussion of the early controversies. As McCarty et al. (2023)
note, those working in intuitionistic or constructive mathematics usually (but not univer-
sally) reject the Axiom of Choice. Its truth has also been doubted by other contemporary
mathematicians and philosophers who (to my knowledge) are neither self-avowed intu-
itionists nor constructivists, including Potter (2004, sect. 14), Penrose (2005, 14–15, 366),
and Herrlich (2006, 7).

27Thanks to an anonymous referee for raising this thought.
28Thanks to a separate anonymous referee for raising this point.
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3.2.1 The Surjective Account Blocks the Class-Theoretic Division
Paradox

Note. This is a more technical subsection and can be skipped or skimmed
without loss of continuity.

Strictly speaking, the injective and surjective accounts are accounts of
set size. As such, neither account permits us to compare the sizes of proper
classes. Nonetheless, it is straightforward to generalize these accounts to
be of class size by understanding functions in a class-theoretic way. The
key idea is simply to treat functions as classes of ordered pairs—hereafter,
binary relational classes—rather than (as is standard in set theory) sets of
ordered pairs.29 We can then formulate class-theoretic generalizations of the
injective and surjective accounts by understanding injections and surjections
class-theoretically.30 We can also retain the notation ‘A � B’, ‘A �∗ B’, etc.,
to indicate the existence of the relevant functions between classes. Moreover,
as in the set-theoretic case, it straightforwardly follows that A � B implies
A �∗ B and that A ≈ B implies A ≈∗ B.

Axiomatic theories that involve both sets and classes have been developed
by various authors, the two most prominent theories being Gödel-Bernays
set theory (GB) and Morse-Kelley set theory (MK). Each of these theories
is an extension of ZF, and each is often (though not always) formulated in a
way that includes its own class-theoretic analogue of the Axiom of Choice.
Because GB is the weaker theory, I will work in this theory in this section.
Also, I will not assume that GB includes either the set-theoretic Axiom of
Choice—hereafter, AC—or any class-theoretic analogue thereof.

Let us now consider how we might formulate class-theoretic versions of
PP and WPP. At first blush, we might think there are no class-theoretic
analogues of these principles since they appeal to the notion of a “partition”—
a particular kind of set of sets—yet it is not sensible to speak a class of

29Following Uzquiano (2015), call a binary relational class R a class of ordered pairs.
The domain of R, Dom(R), is the class {x : ∃y(〈x, y〉 ∈ R)}. The range of R, Rng(R), is
the class {y : ∃x(〈x, y〉 ∈ R)}. A binary relational class F is a functional class—for short,
a function—just in case, for all x, y, z, if 〈x, y〉 ∈ F and 〈x, z〉 ∈ F , then y = z. In such a
case, let F (x) denote the unique y such that 〈x, y〉 ∈ F .

30Let F be a functional class. Say that F is an injection from A into B just in case
Dom(F ) = A, Rng(F ) ⊆ B, and for all x, y ∈ Dom(F ), F (x) = F (y) implies x =
y. Additionally, say that F is a surjection from A onto B just in case Dom(F ) = A,
Rng(F ) = B, and for every y ∈ B, there is some x ∈ A such that F (x) = y. Finally, say
that F is a bijection just in case it is both injective and surjective.
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proper classes. However, it turns out that we can encode class-theoretic gen-
eralizations of these principles. We can do this by drawing on the connection
between surjections and partitions as well as an old trick due to Bernays
(1942) that enables us to simulate “class-valued” functions.

First, let f be a surjection from a (possibly proper) class A onto another
class B. This surjection will associate distinct members of B with nonempty,
mutually disjoint subclasses of A, and the union of all such subclasses will
simply be A. So, there is a sense in which f simulates a “partition” of A
into those subclasses.

Second, we can use Bernays (1942)’ trick to simulate a function—specifically,
a bijection—from B to these subclasses of A. Here is Uzquiano (2015, 9)’s
description of Bernays’ trick (which I have slightly generalized):

Bernays simulates a “class-valued function” from B to subclasses
of A by means of a binary relational class R: in particular, we
take R to map a member b of B to the class of members of A
to which b is related, i.e., {x ∈ A : 〈b, x〉 ∈ R}, which is itself
a subclass of A. We may even write R(b) = S to abbreviate:
∀x(〈b, x〉 ∈ R↔ x ∈ S).

More specifically, say that R simulates an injection from B into subclasses of
A just in case: R(x) = R(y) only if x = y. Additionally, say that R simulates
a surjection from B onto subclasses of A just in case: for every subclass S
of A, there is some b ∈ B such that R(b) = S. Finally, say that R simulates
a bijection from B to subclasses of A just in case R simulates a function
that is both injective and surjective. Now consider the surjection f from A
onto B again. Clearly, f induces a binary relational class R that simulates
a bijection from B to nonempty, mutually disjoint and jointly exhaustive
subclasses of A: for any b ∈ B, simply let R(b) = {x ∈ A : f(x) = b}. R
then encodes a bijection from B to a “partition” of A.

Next, note that on the class-theoretic versions of both the injective and
surjective accounts, the existence of a bijection from one class to another is
sufficient for each to be at least as big as the other. Let us analogously as-
sume that the existence of the aforementioned simulated bijection is sufficient
for there to be at least as many members of B as there are aforementioned
subclasses of A and vice versa.31 Let us also assume that the at least as many

31Uzquiano (2015, 9) makes a similar assumption about simulated “class-valued”
functions—namely, that a necessary condition for a class S to have more subclasses than
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as relation is transitive, where this relation compares how many members or
subclasses a given class has to how many members or subclasses another class
has. Then, there are at least as many members of A as there are the afore-
mentioned nonempty, mutually disjoint, and jointly exhaustive subclasses of
A just in case there are at least as many members of A as there are B. Thus,
the following principle encodes the claim that any class A—whether it is a
set or proper class—is at least as big as any “partition” of A:

• Class-theoretic Partition Principle (CPP). For any classes A and
B, if there is a surjection from A onto B, then A is at least as big as
B.

If we additionally assume that strictly bigger than is the antisymmetric part
of at least as big as—as is also the case on the class-theoretic versions of both
the injective and surjective accounts—then the following principle encodes
the claim that no class can be “partitioned” into a bigger class:

• Class-theoretic Weak Partition Principle (CWPP). For any classes
A and B, if there is a surjection from A onto B, then B is not strictly
bigger than A.

Note that, if we assume the class-theoretic version of the injective account,
then CPP and CWPP are equivalent to the following:

• CPPinjective. For any classes A and B, if B �∗ A, then B � A.

• CWPPinjective. For any classes A and B, if B �∗ A, then B 6≺ A.

Let us now turn to class-theoretic analogues of AC. Uzquiano (2015) dis-
cusses five such principles:

• Global Choice (GC). For any class of sets that are nonempty and
mutually disjoint, there exists a class that contains exactly one member
from each of these sets (and nothing else).32

members is that it is impossible to simulate a surjective class-valued function from S onto
the subclasses of S.

32This is a different, but equivalent, formulation of GC to that stated by Uzquiano. I
have stated Rubin and Rubin (1985, 191)’s “CAC 2” formulation of GC, whereas Uzquiano
states their “E” formulation.
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• Global Well-Ordering (GWO). There is a well-ordering of V , where
V is the class of all sets.33

• Maximality (Max). A is a proper class only if A ≈ V .

• Cardinal Comparability (CC). Given two classes A and B, A � B
or B � A.

• Projection (Proj ). A is a proper class only if Ord � A, where Ord
is the class of all ordinals.

The first four principles, as well as the conjunction of Proj and AC, are
equivalent to each other in GB.34 Moreover, each of the first four principles
is strictly stronger than AC—that is, all models of GB that satisfy the first
four principles also satisfy AC but not all models of GB that satisfy AC also
satisfy the first four principles35—and indeed distinctive concerns have been
raised for them that do not apply to AC.36 Thus, there is considerably less
agreement about the truth of these class-theoretic principles than there is
about the truth of AC.

It is straightforward to show that, if GC is true, then CPPinjective—
and, thus, CWPPinjective—holds in GB.37 So, if GC holds and we adopt

33That is, there is a binary relational class, with domain and range V , that is a linear
order—i.e., is reflexive, transitive, antisymmetric, and total—for which every nonempty
subclass of V has a smallest member by the lights of this order.

34See Hamkins 2014 and the appendices of Linnebo 2010 and Uzquiano 2015.
35See Felgner 1976, sect. 3.
36One general concern stems from the traditional view—as, e.g., articulated by Maddy

(1983)—that sets instantiate the combinatorial notion of a collection, while classes instan-
tiate the logical notion of a collection. In particular, Schindler (2019, 408) writes:

As [Bernays (1983)] remarks, the axiom of choice “is an immediate appli-
cation of the combinatorial concepts in question.” On the logical notion of
[collection], on the other hand, it is doubtful whether a class satisfying the
requirements set out in the axiom of choice can always be found.

Other concerns about these class-theoretic principles are more technical. For example,
Max is an essential premise of an argument Uzquiano (2015) presents for a “recombina-
tion” paradox. Additionally, Barton and Williams (2023) argue that GC raises problems
for an independently-motivated view they call “class-theoretic potentialism.”

37Proof. Given classes A and B, let f be a surjection from A onto B. Since GC and
GWO are equivalent, there is a well-ordering of V . For any b ∈ B, let g(b) be the smallest
member a of A, relative to this well-ordering, for which f(a) = b. Clearly, g is an injection
from B into A.
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the class-theoretic version of the injective account, then CPP and CWPP
hold. Additionally, as I show in the Appendix, the class-theoretic versions of
the injective and surjective accounts are equivalent if GC holds. However,
as I will now explain, if GC fails, then the class-theoretic versions of these
accounts are not equivalent.

In particular, Hamkins (2023) shows that CWPPinjective fails in all mod-
els of GB in which AC is true yet GC fails. So, CWPPinjective fails in all
models of GB in which AC is true yet any of its above class-theoretic ana-
logues fails. In other words, if we accept the class-theoretic version of the
injective account, then a class-theoretic Division Paradox necessarily arises
if AC is true yet any of its class-theoretic analogues fails.38

Now let us turn to the class-theoretic version of the surjective account. It
is obvious that this account entails both CPP and CWPP and thus neces-
sarily blocks the class-theoretic Division Paradox. Since there is substantially
less agreement about the truth of AC’s class-theoretic analogues than about
the truth of AC, it seems we now have an even stronger intuitive point in
favor of the surjective account—at least, for proper classes.

While it is possible to adopt the surjective account for proper classes but
the injective account for sets, it seems more intuitively natural to adopt a
unified account of size for all classes. It would seem quite odd, for example,
if whether one class had more members than another depended partly on
whether these classes were sets or proper classes. Intuitively, one would have
thought that such a comparison depended only on what the members of the
two classes were. Thus, the foregoing class-theoretic considerations seem to
constitute a strong intuitive point in favor of the surjective account for classes
generally—sets and proper classes alike.

3.3 Virtue 3: The Surjective Account Illuminates the
Debate over the Axiom of Choice

The Axiom of Choice is the most controversial axiom of ZFC, largely be-
cause both it and its negation have been thought to lead to paradoxical
consequences. Perhaps the most famous allegedly paradoxical consequence

38Note that this situation is somewhat different from the set-theoretic situation. All
that is known about the latter is: if we accept the set-theoretic version of the injective
account, then the set-theoretic Division Paradox can arise if AC fails—that is, there are
some models of ZF¬C such that WPPinjective fails. However, WPPinjective does fail in
all known models of ZF¬C.
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of assuming the Axiom of Choice is the Banach-Tarski Paradox. This is
Banach and Tarski (1924)’s theorem that any solid sphere can be decom-
posed into a finite number of parts and then—paradoxically—reassembled to
form two solid spheres that have the same volume as the original. Since the
Banach-Tarski Paradox can be shown to arise only if the Axiom of Choice is
true, it is sometimes mounted as an argument against the Axiom of Choice.39

However, it has also been thought that the negation of the Axiom of Choice
leads to paradoxical consequences—perhaps most prominently, the possibil-
ity of the Division Paradox.40 The possibility of the Division Paradox is thus
sometimes mounted as an argument for the Axiom of Choice.41

We can now see that the possibility of the Division Paradox should not
be regarded as an argument for the Axiom of Choice—at least, not a direct
argument for it. This is because the possibility of the paradox is not a conse-
quence of the negation of the Axiom of Choice but rather of the conjunction
of the negation of the Axiom of Choice and the injective account. However,
as we have seen, if we assume the surjective account, then the negation of the
Axiom of Choice can never lead to the Division Paradox. Thus, contrary to
what is sometimes claimed—at least, in the set-theoretic folklore—the nega-
tion of the Axiom of Choice does not, by itself, lead to the possibility of the
Division Paradox. Indeed, the Division Paradox can be blocked simply by
adopting an intuitively compelling alternative account of set size—namely,
the surjective account.

3.4 Virtue 4: The Surjective Account Is a Mathemati-
cally Fruitful Alternative to the Injective Account

Note. This is a more technical subsection and can be skipped or skimmed
without loss of continuity.

The injective account of set size has been enormously mathematically

39See Tomkowicz and Wagon 2017 for discussion.
40I say the possibility of the Division Paradox because, assuming the injective account,

the Division Paradox can arise if the Axiom of Choice is false—i.e., WPPinjective fails
in some models of ZF¬C. Again, it is not known if WPPinjective fails in all models of
ZF¬C, though it does fail in all known models of ZF¬C.

41See Taylor and Wagon 2019. Curiously, the Division Paradox is much less discussed
than the Banach-Tarski Paradox among philosophers. Nonetheless, the paradox is well
known among set theorists. For example, Halbeisen and Shelah (2001) discuss it at the
beginning of their paper in connection with the vexed status of the Axiom of Choice.
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fruitful. Since the injective and surjective accounts are equivalent if the
Axiom of Choice is true, they are equally mathematically fruitful if we assume
the axiom. While the consequences of the surjective account in the absence
of the Axiom of Choice have not been explored in as much depth as those of
the injective account in the absence of the Axiom of Choice, in this section I
will argue that the surjective account is nonetheless a mathematically fruitful
alternative in this context.

Note that the injective and surjective accounts are, strictly speaking, only
accounts of comparative set size. To turn the injective account into a fully
fledged theory of set size, it is customary to define a monadic notion of set
size—namely, “cardinality”—that is fundamentally based on injections (or,
what amounts to the same thing, bijections). When ZF is supplemented with
the injective account, what emerges is a rich theory of set size—even in the
absence of the Axiom of Choice. I will now explain how a similarly rich
theory of surjective set size plausibly emerges from the surjective account in
the absence of the Axiom of Choice.

I will begin by noting some interesting facts about the relations of com-
parative set size that figure in the surjective account—that is, the relations
�∗, ≈∗, and ≺∗. I will refer to these as the “surjective” relations and the
comparative set size relations associated with the injective account—that is,
�, ≈, and ≺—as the “injective” relations. Then, I will turn to nontriv-
ial questions raised by the surjective analogue of “cardinality” to which the
surjective relations lead.

3.4.1 The Surjective Comparative Set Size Relations

We have already seen two distinctive features of the surjective relations: they
satisfy PP and WPP in all models of ZF, whereas there are models of ZF¬C
in which the injective relations violate these principles. I will now note some
nontrivial features that the surjective relations have in common with the
injective relations in the absence of the Axiom of Choice. Then, I will note
some distinctive consequences regarding the size of the continuum to which
they can lead if the Axiom of Choice is false.

First, the surjective relations share several prominent order-theoretic prop-
erties with the injective relations. In particular, �∗ and ≈∗ are clearly
reflexive—as � and ≈ are—and ≺∗ is clearly irreflexive—as ≺ is. Also,
each of the surjective relations is transitive, just as each of the injective re-
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lations is.42 Additionally, ≈∗ is clearly symmetric, as ≈ is. Thus, ≈ and
≈∗ are both equivalence relations on the class of all sets. Moreover, on both
accounts, Trichotomy—i.e., A is strictly bigger than B, B is strictly bigger
than A, or A is the same size as B—is equivalent to the Axiom of Choice.43

Finally, we saw earlier that both accounts entail a pre-theoretic version of
the Schröder-Bernstein theorem.

The surjective relations also lead to analogues of Cantor’s most prominent
results concerning comparative sizes of infinite sets. In particular, since the
injective account entails that the set of natural numbers is the same size as
the set of rational numbers, so does the surjective account. The surjective
account also satisfies the property that any set, including any infinite set, has
strictly more subsets than members. On the injective account, this is simply
the fact that, for any set A, A ≺ P(A), where P(A) is the set of A’s subsets.
On the surjective account, this is the claim that, for any set A, A ≺∗ P(A).
The latter claim holds since (if A is nonempty) there is a surjection from
P(A) onto A—simply map every singleton {x} to x and every other subset
of A to an arbitrary member of A—yet Cantor’s theorem ensures that there
is no surjection from A onto P(A). Thus, both the injective and surjective
relations lead to a never-ending hierarchy of infinite set sizes: the set N of
natural numbers is smaller than P(N), which is smaller than P(P(N)), and
so on.

That said, the surjective relations can lead to distinctive consequences
regarding the size of the continuum—that is, the size of R—if the Axiom of
Choice is false. One way for this to happen is if the Axiom of Determinacy—
which is inconsistent with the Axiom of Choice—is true.44 If the Axiom
of Determinacy is true, then there are striking differences between how the

42It is obvious that �∗ and ≈∗ are transitive. To see that ≺∗ is transitive, suppose that
A ≺∗ B and B ≺∗ C. Clearly, A �∗ C. To show that C 6�∗ A, suppose for reductio
that C �∗ A, i.e., that there is a surjection f from A onto C. Since B �∗ C, there is
a surjection g from C onto B. Then, the function g ◦ f is a surjection from A onto B,
contradicting the assumption that A ≺∗ B.

43It is well known that Trichotomy on the injective account is equivalent to the Axiom
of Choice. On the surjective account, Trichotomy amounts to the claim that A ≺∗ B,
B ≺∗ A, or A ≈∗ B. To see that the latter is also equivalent to the Axiom of Choice, first
note that the Axiom of Choice is equivalent to the claim that, for any A and B, A �∗ B
or B �∗ A. (See Rubin and Rubin 1985, sect. 3.) Simple logic shows that the latter is
equivalent to the claim that, for any A and B, (B �∗ A and A 6�∗ B) or (A �∗ B and
B 6�∗ A) or (B �∗ A and A �∗ B)—i.e., A ≺∗ B, B ≺∗ A, or A ≈∗ B.

44The Axiom of Determinacy was introduced by Mycielski and Steinhaus (1962).
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“injective” size of R and the “surjective” size of R compare to the aleph
numbers. First, the injective size of R is incomparable to ℵ1—that is, R 6� ℵ1

and ℵ1 6� R.45 However, the surjective size of R is comparable to ℵ1, as
ℵ1 ≺∗ R. In fact, R is surjectively much bigger than ℵ1. In particular, for
any natural number m, ℵm ≺∗ R. Moreover, let Θ be the least ordinal α
for which α 6�∗ R. Then, for every ordinal α such that ℵα ≺∗ ℵΘ, ℵα �∗ R.
So, the surjective relations lead to a distinctive line of inquiry regarding
how the size of the continuum compares to the aleph numbers if the Axiom
of Determinacy is true. Indeed, this line of inquiry is considerably richer
than that to which the injective relations lead, which all but stops at the
incomparability between R and ℵ1.46

Class-theoretic analogues of the surjective relations also lead to a dis-
tinctive line of inquiry involving class-theoretic analogues of the Axiom of
Choice. The following are surjective analogues of three such principles:

• Maximality∗ (Max∗). A is a proper class only if A ≈∗ V , where V
is the class of all sets.

• Projection∗ (Proj∗). A is a proper class only if Ord �∗ A, where
Ord is the class of all ordinals.

• Cardinal Comparability∗ (CC∗). Given two classes A and B, A �∗
B or B �∗ A.

As in the injective case, GC is equivalent to Max∗ in GB.47 However, un-
like its injective counterpart, Proj∗ holds in all models of GB, regardless of
whether AC or GC is true.48 Thus, on the surjective account, there is neces-
sarily a smallest proper class—namely, Ord—but whether all proper classes
are the same size depends on whether GC is true. Further, GC trivially
entails the conjunction of Proj∗ and AC. Also, unlike the injective case, the

45The results I describe in this paragraph are discussed, or are straightforward conse-
quences of the results discussed, by Kanamori (2003, chap. 6).

46Note that the above example also shows that B ≺∗ A does not entail B ≺ A if the
Axiom of Choice is false, as ℵ1 ≺∗ R yet ℵ1 6≺ R if the Axiom of Determinacy is true.

47Uzquiano (2015, Appendix) shows that GC is equivalent to Max . Since A ≈ V
entails A ≈∗ V , GC entails Max∗. Now suppose GC fails. Hamkins (2014) shows that
GC is equivalent to the claim that, for any class A, A �∗ Ord. Since GC fails, there is
some class A such that A 6�∗ Ord. Moreover, since A is a subclass of V , V 6�∗ Ord. Thus,
Ord 6≈∗ V . So, Max∗ fails for the proper class Ord. Hence, Max∗ entails GC.

48See Hamkins 2014.
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conjunction of Proj∗ and AC does not entail GC. This is simply because
there are models of GB in which AC holds but GC fails. Moreover, GC
entails CC∗,49 but it is an interesting and (to my knowledge) open question
whether CC∗ entails GC.

3.4.2 Surjective Cardinalities

Let us now turn to the question of how we may develop a surjective ana-
logue of “cardinality” in the absence of the Axiom of Choice. The stan-
dard way to define cardinality in the absence of the Axiom of Choice is
to apply “Scott’s trick” to equivalence classes of ≈.50 For example, Jech
(1973, chap. 11) defines the cardinality |A| of a set A as |A| = {B : B ≈
A and B is of least rank}.51 Let us call this the injective cardinality of a
set, and let us call any set that is such a cardinality an injective cardi-
nal. By analogy, we may define the surjective cardinality |A|∗ of a set A
as |A|∗ = {B : B ≈∗ A and B is of least rank}, and we may understand
surjective cardinals similarly.52 We may also define arithmetical operations
on surjective cardinals by analogy with the standard approach for injective
cardinals: |A|∗+ |B|∗ = |A∪B|∗ for disjoint A and B,53 |A|∗ · |B|∗ = |A×B|∗,
|A|∗|B|∗ = |BA|∗, and 2|A|

∗
= |P(A)|∗.54 The mathematically interesting ques-

tion regarding surjective cardinals, then, is what properties they necessarily
satisfy—or can fail to satisfy—in the absence of the Axiom of Choice.

It is well known that many properties of arithmetic that hold for infinite

49Recall that A � B implies A �∗ B and B � A implies B �∗ A. Since GC entails
CC, it readily follows that GC entails CC∗.

50See Scott 1955.
51Let Vα =

⋃
β<α P(Vβ) for each ordinal α. The rank of a set A is the smallest ordinal

α such that A ⊆ Vα.
52This terminology is due to Truss (1984).
53If A and B are not disjoint, then we may take |A|∗ + |B|∗ = |(A×{0})∪ (B ×{1})|∗.
54Note that these arithmetical operations satisfy many of the same basic properties

as their injective counterparts. For example, like injective cardinal addition, surjective
cardinal addition is commutative and associative. Surjective cardinal multiplication is also
commutative, associative, and distributive over surjective cardinal addition. Additionally,
|A|∗|B|∗+|C|∗ = |A|∗|B|∗ · |A|∗|C|∗ and (|A|∗|B|∗)|C|

∗
= |A|∗|B|∗·|C|∗ . The proof of each

of these facts can be constructed simply considering its injective counterpart and then
employing the fact that A ≈ B implies A ≈∗ B. For example, since (A × B) ≈ (B × A),
we also have that (A×B) ≈∗ (B×A) and thus that |A|∗ · |B|∗ = |B|∗ · |A|∗. Additionally,
suppose (A∩C) = ∅, (B∩D) = ∅, |A|∗ ≤ |B|∗, and |C|∗ ≤ |D|∗. (The latter two conditions
mean that A �∗ B and C �∗ D.) Then, it is straightforward that |A|∗+|C|∗ ≤ |B|∗+|D|∗.
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injective cardinals in the presence of the Axiom of Choice can fail in its
absence. For example, it is a theorem of ZFC that the sum and product of two
infinite injective cardinals—or, equivalently in ZFC, two infinite surjective
cardinals—is simply their maximum. However, this statement is not provable
in ZF alone. Moreover, the question of what arithmetical properties of infinite
injective cardinals do hold in all models in ZF and what properties only
hold in some models has led to a nontrivial and fruitful area of research.55

The analogous question has also been explored to some extent for infinite
surjective cardinals. For example, Truss (1984) shows, along with other
“cancellation” laws, that k ·m∗ ≈∗ k · n∗ implies m∗ ≈∗ n∗ in ZF for arbitrary
positive integer k and surjective cardinals m∗, n∗. Also, it is known that
2m � m2 implies m ≤ 4 if m is an injective cardinal. However, as Halbeisen
(2017, 133) notes, it remains an open question whether 2m �∗ m2 implies
m ≤ 4. This is a question about how the surjective sizes of two injective
cardinals—namely, 2m and m2—compare. It also appears to be an open
question whether 2m∗ �∗ m∗2 implies m∗ ≤ 4 if m∗ is a surjective cardinal.
This is a question about how the surjective sizes of two surjective cardinals—
namely, 2m∗

and m∗2—compare. So, the study of cardinal arithmetic for
infinite surjective cardinals in the absence of the Axiom of Choice appears to
be an area of comparable richness to that involving infinite injective cardinals.

It is worth noting that Truss (1984) also shows that the strong cancel-
lation law that k · m∗ �∗ k · n∗ implies m∗ �∗ n∗ is unprovable in ZF. In
contrast, the analogous strong cancellation law involving injective cardinals
is provable in ZF. In this respect, surjective cardinal arithmetic is somewhat
awkward compared to injective cardinal arithmetic. Nonetheless, as Truss’
work shows, to see how this awkwardness arises is nontrivial and mathemati-
cally interesting. Compare: it is an awkward but mathematically interesting
theorem of ZFC that 2 ·m = m if m is an infinite injective cardinal.

Finally, let us turn to large cardinal axioms. These are axioms that state
the existence of infinite cardinals (“large cardinals”) with certain properties
whose existence cannot be proven in ZFC.56 Such axioms are standardly
understood in terms of the injective conception of cardinals. However, once
we understand cardinals surjectively, we can consider surjective versions of
large cardinal axioms in the absence of the Axiom of Choice. For example,
an injective cardinal κ is standardly taken to be strongly inaccessible just

55See Jech 1973, chap. 11 for notable results in this area.
56See Kanamori 2003 for a survey of large cardinal axioms.
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in case (i) κ is uncountable, (ii) κ is not a sum of fewer than κ-many injec-
tive cardinals smaller than κ (where “smaller” and “fewer” are understood
injectively), and (iii) α ≺ κ implies 2α ≺ κ. By analogy, we may take a
surjective cardinal κ∗ to be surjectively strongly inaccessible just in case (i*)
κ∗ is uncountable, (ii*) κ∗ is not a sum of fewer than κ∗-many surjective
cardinals smaller than κ∗ (where “smaller” and “fewer” are now understood
surjectively), and (iii*) α∗ ≺∗ κ∗ implies 2α

∗ ≺∗ κ∗. So, it would appear in-
teresting to ask of these large surjective cardinal axioms questions analogous
to those that are standardly asked of the usual large cardinal axioms in the
context of ZFC. For example, how do their consistency strengths compare to
one another in ZF alone?57 And how do large surjective cardinal axioms bear
on the Continuum Hypothesis?58 We may also ask: how do the consistency
strengths of the large surjective cardinal axioms compare to those of their
injective counterparts? To my knowledge, these questions are unexplored.

3.4.3 Summary

The above is just a sampling of the rich line of mathematical inquiry that
is opened by the surjective account. However, the fact that all of the above
issues can be investigated seems to show that the surjective account is indeed
a mathematically fruitful alternative to the injective account.

3.5 Virtue 5: The Surjective Account Sheds Philo-
sophical Light on One of the Oldest Unsolved Prob-
lems in Set Theory

In section 3.2, I noted that whether PPinjective entails the Axiom of Choice—
and, thus, whether PPinjective is equivalent to the Axiom of Choice—is one
of the oldest unsolved problems in set theory. This fact alone seems to show
that the question a mathematically interesting one. If we accept the injective
account—for which PPinjective is the technical articulation of PP—then this
is plausibly a philosophically interesting question as well. In an unpublished
manuscript, Russell (1906/2014, 301–2) suggests that PPinjective might be

57As Koellner (2010, footnote 10) notes, it is also an open question how the consistency
strengths of large injective cardinal axioms compare to one another in ZF.

58As Karagila (2017) notes, in the absence of the Axiom of Choice, there are a number
of inequivalent versions of the Continuum Hypothesis—for example, the claim that N ≺
A � R implies A ≈ R, the claim that ℵ1 ≈ R, and the claim that ℵ2 6�∗ R.
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“worthy to be an axiom” and asserts—without proof—that it is indeed equiv-
alent to the Axiom of Choice.59 Moreover, he uses this alleged equivalence
to elucidate the philosophical content of the Axiom of Choice and thereby
motivate the foundational significance of the axiom to set theory.

Nonetheless, if we accept the surjective account, then the broader question
of whether PP entails the Axiom of Choice loses much of its philosophical
significance since it is straightforwardly answered in the negative. This is
because the surjective account ensures that PP is true in all models of ZF.
So, on the surjective account, it is possible for the Axiom of Choice to hold
while PP holds, and it is possible for the Axiom of choice to fail while PP
holds. Thus, the Axiom of Choice is logically independent of PP on the
surjective account (assuming ZF is consistent).60

4 Taking Intuitive Stock

I have discussed three accounts of set size—the injective account, the sur-
jective account, and numerosity theory (cf. section 1)—as well as how they
fare with respect to various alleged intuitive desiderata. Here I will expand
upon that discussion in order to obtain a more comprehensive picture of their
relative intuitive merits.

In what follows, when discussing whether the injective or surjective ac-
count entails a particular claim, I mean whether it entails that claim without
assuming the Axiom of Choice. Also, though I have not spelled out the math-
ematical details of numerosity theory, those details will largely be irrelevant
in my discussion.61

4.1 A Size for Every Set

The injective and surjective accounts entail that every set has a size—an
injective and surjective cardinality, respectively—regardless of whether any
axioms beyond ZF are assumed. In contrast, as Benci et al. (2006, 52) explain,
numerosity theory requires Global Choice (GC) in order to entail that every

59More precisely, Russell claims that PPinjective is equivalent to his “Multiplicative
Axiom,” which Russell (1908/2014) later proved to be equivalent to the Axiom of Choice.

60For similar reasons, the Axiom of Choice is logically independent of WPP on the
surjective account.

61I will discuss the relevant such details in footnotes.
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set has a size. Recall that this principle is more controversial than the Axiom
of Choice. It seems intuitively problematic that numerosity theory requires
it to ensure that every set has a size.

Because numerosity theory requires GC to ensure that every set has a
size, it cannot entail any principle that ascribes a size-related property to all
sets—e.g., Trichotomy, the Part-Whole Principle, the Partition Principle, or
the Weak Partition Principle—without assuming GC.

4.2 Trichotomy

According to Trichotomy, for any sets A and B, A is bigger than B, B
is bigger than A, or A is the same size as B. Recall that the injective and
surjective accounts entail Trichotomy just in case the Axiom of Choice is true.
This fact appears to be an intuitive deficiency of both accounts. Similarly,
numerosity theory entails Trichotomy just in case GC is true.62

4.3 The Part-Whole Principle

According to the Part-Whole Principle, every set is strictly bigger than any of
its proper subsets. Like the injective account, the surjective account entails
that this principle is false.63 This fact is an intuitive deficiency of the two
accounts. Although numerosity theory is often said to entail the Part-Whole
Principle, in fact it only entails the Part-Whole Principle if GC is assumed.
This fact seems to lessen the intuitive advantage numerosity theory might
have appeared to have with respect to this principle.64

62This follows from the fact that “numerosities”—i.e., set sizes in numerosity theory—
are part of a totally ordered field; see Benci and Baglini 2022.

63Since there is a bijection from the set of even numbers to the set of integers, the
surjective account also entails that the latter is not strictly bigger than the former.

64That said, numerosity theory does not require GC to entail restricted versions of the
Part-Whole Principle—e.g., one that only applies to countably infinite sets (Benci and Di
Nasso 2003) or one that only applies to sets of ordinals (Benci et al. 2006). Similarly for
restricted versions of Trichotomy and the claim that every set has a size.
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4.4 The Partition Principle and Weak Partition Prin-
ciple

The surjective account entails both the Partition Principle and the Weak
Partition Principle (and class-theoretic generalizations thereof). In contrast,
the injective account does not entail these principles if the Axiom of Choice
(or GC, in the class-theoretic case) is false. This fact is an intuitive deficiency
of the injective account. While numerosity theory requires GC to entail these
principles, the question of whether numerosity theory does indeed entail them
when GC is assumed has not (to my knowledge) been pursued.

4.5 Hume’s Principle and the Dual Hume’s Principle

According to Hume’s Principle,65 two sets are the same size if and only if
there is a bijection between them. Obviously, the injective account entails
this principle. While the surjective account entails the right-to-left direction
of this principle, it does not entail the left-to-right direction.66 Additionally,
while numerosity theory entails the left-to-right direction of this principle,67

it does not entail the right-to-left direction.68 As a number of philosophers
have regarded Hume’s Principle as central to the concept of set size, many
would regard the fact that neither the surjective account nor numerosity
theory entails this principle as intuitive defects of these accounts.

That said, the injective account does not entail the claim that if there
is a surjection from A onto B, then A is at least as big as B. As I argued
in section 3.1, this claim is at least as intuitively plausible as the injective
account’s claim that if there is an injection from B into A, then A is at least
as big as B. However, the injective account does entail that if A is at least
as big as B, then there is a surjection from A onto B. Of course, according
to the surjective account, A is at least as big as B if and only if there is a
surjection from A onto B. Moreover, this biconditional—in conjunction with
the claim, entailed by both accounts, that A and B are the same size if and
only if A is at least as big as B and B is at least as big as A—entails the

65So named by Boolos (1990).
66This follows from the fact that surjective account does not entail the Dual Schröder-

Bernstein Theorem if the Axiom of Choice is false (cf. section 3.2).
67The left-to-direct direction is what Benci et al. (2006) call the Half Cantor Principle.
68For example, there is a bijection between the set of even numbers and the set of

integers, but the latter set is bigger than the former on numerosity theory.
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following:

• Dual Hume’s Principle. A and B are the same size if and only if there
is a surjection from A onto B and a surjection from B onto A.

Thus, the Dual Hume’s Principle has a strong claim to being an intuitively
plausible alternative to Hume’s Principle. While the Dual Hume’s Principle is
entailed by the surjective account, only its left-to-right direction is entailed by
the injective account and numerosity theory.69 I will not take a stand here on
which principle (if either) is more intuitively plausible, but we must take care
not to let the historical prominence of Hume’s Principle by itself prejudice
us against its dual. After all, the dual principle has not (to my knowledge)
even been discussed—much less, defended—in the literature previously.70

4.6 Subtraction and Division

In section 3.4.2, I noted that the injective and surjective accounts have the
property that, in ZFC, the sum and product of two infinite cardinals is simply
their maximum. For example, |N|+|R| = |R|+|R| = |N|·|R| = |R|·|R| = |R|.
So, there are no unique cardinals m and n such that m + |R| = |R| and
n · |R| = |R|. As a result, while addition and multiplication are well-defined
for the two accounts, subtraction and division are not. This fact seems to be
an intuitive deficiency of the accounts. In contrast, subtraction and division
are well-defined in numerosity theory (as are addition and multiplication).71

4.7 Strong Cancellation Law

In section 3.4.2, I noted that, on the surjective account, the strong cancel-
lation law—i.e., k · m∗ �∗ k · n∗ implies m∗ �∗ n∗, for arbitrary positive
integer k—can fail in ZF¬C. While this fact is mathematically interesting,
it seems intuitively problematic.72 In contrast, on the injective account, the

69Recall that A ≈ B entails A ≈∗ B but A ≈∗ B does not entail A ≈ B.
70Apart from its intrinsic intuitive plausibility, the Dual Hume’s Principle might also

admit of an “extrinsic” justification similar to that which Hume’s Principle is often given.
In particular, Hume’s Principle is often extrinsically justified by pointing to the fact that
it can serve as a neo-logicist foundation for Peano arithmetic; see Tennant 2017 for an
overview. It would be interesting to explore whether such a justification can also be
provided for the dual principle.

71This is because numerosities are part of a field; see Benci and Baglini 2022.
72Thanks to Joshua Thong for pressing me on this point.
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analogous strong cancellation law involving injective cardinals is provable in
ZF. Numerosity theory also entails an analogous strong cancellation law.73

4.8 Comparative Size Principle

It is straightforward to show that the injective account entails the following
intuitively plausible principle:

• Comparative Size Principle. A is at least as big as B if and only if B
is the same size as some subset of A.74

Indeed, the injective account is often formulated by taking the same size as
relation as primitive—treating two sets as the same size just in case there
is a bijection between them—and defining at least as big as via the above
principle.75 Nonetheless, I do not know whether the surjective account entails
the Comparative Size Principle. If it does not, then that would seem to
be an intuitive deficiency of the surjective account. To my knowledge, it
is an open question whether numerosity theory entails the Comparative Size
Principle—and, moreover, whether numerosity theory is even consistent with
the principle when uncountably infinite sets are assigned sizes.76

4.9 Arbitrariness

Here is another apparent intuitive desideratum: our account of set size deter-
mines, by itself, how (and whether) any two sets compare in size. Note that
both the injective and surjective accounts readily satisfy this desideratum.
For example, whether A is at least as big as B is determined entirely by
whether there is an injection from B into A or a surjection from A onto B,
respectively.

In contrast, as Parker (2013) explains, numerosity theory does not satisfy
this desideratum. For example, let ODD be the set of odd numbers, EV EN
the set of even numbers, and EV EN+2 the set of even numbers greater than

73Let n(A) be the numerosity of a set A. In the context of numerosity theory, the
analogous cancellation law is: if k · n(A) ≤ k · n(B), then n(A) ≤ n(B). This readily
follows from the fact that numerosities belong to the nonnegative part of an ordered field
that includes all positive integers; see Benci and Baglini 2022.

74See Hamkins 2021, sect. 3.8.
75See, for example, Gödel 1947, 515.
76See Benci et al. 2006, sect. 4.1.



Cantor, Choice, and Paradox 35

2. That is, let ODD = {1, 3, 5, . . .}, EV EN = {2, 4, 6, . . .}, and EV EN +
2 = {4, 6, 8, . . .}. Numerosity theory is compatible with assigning the same
sizes to ODD and EV EN , but it is also compatible with assigning the same
sizes to ODD and EV EN + 2 (which, by the Part-Whole Principle, must
both be smaller than EV EN). Numerosity theory does not, by itself, tell us
how these sets compare in size. Rather, it is compatible with infinitely many
different assignments of size to them, each one of which intuitively seems to
be “arbitrary.”77

4.10 Summary

The following table summarizes the foregoing discussion. I have tried to
discuss the most prominent alleged intuitive desiderata among which the
three accounts differ, though I cannot adjudicate which are genuine intuitive
desiderata. Note that none of the accounts satisfy all of the desiderata—
even when the Axiom of Choice or Global Choice is assumed—and no set of
desiderata satisfied by one account is a subset of those satisfied by another.
This makes it difficult to assess which account, if any, is the most intuitive
of the bunch. For my part, I am simply inclined to view each account as
having its own distinctive intuitive virtues.

At this point, one might ask why we should care about how intuitive
an account of set size (or class size) is—and, moreover, why we should care
about how its intuitiveness compares to that of the injective account. After
all, the injective account has led to some beautiful mathematics—its relation
to intuition be damned. Nonetheless, it is worth noting that the consequences
of adopting the injective account—i.e., the basis of the textbook definition
of “cardinality”—have received a disproportionate amount of attention from
philosophers, and it is worth asking why this is the case.

Why, for example, have philosophers taken greater interest in the con-
sequences of adopting the textbook definition of “cardinality” than in the
consequences of adopting the textbook definition of “matrix”? Considera-
tions of mathematical fruit alone cannot explain this disparity, as matrix
theory does not seem less rich than the set theory that results from adopt-
ing Cantor’s definition of “cardinality” (along with standard axioms of sets).
Instead, it seems more plausible that, unlike the textbook definition of “ma-
trix,” Cantor’s definition of “cardinality” tracks intuitions we have about

77See Parker 2013 for further discussion.
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some pre-theoretic concept—namely, “set size”—that has immediate rele-
vance to philosophically significant questions—namely, those about the infi-
nite. (Is there more than one size of infinity? Is there a biggest infinity?)
As Carnap might have put the point, Cantorian “cardinality” explicates a
philosophically significant pre-theoretic concept.78 The concept of “matrix,”
while mathematically and scientifically fruitful, does not. So, if we can devise
an explication of “set size” that has intuitive virtues not possessed by the
injective account, there would appear to be philosophical value in doing so.
The surjective account and numerosity theory appear to be precisely such
explications.

78See Carnap 1950, chap. 1. That said, to my knowledge, Carnap did not specifically
discuss the question of how “set size” may be explicated.
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Intuitive Desideratum
Injective Surjective Numerosity

Without AC Without AC Without GC

With AC With AC With GC

Account entails. . .

Every set has a size
X
X

X
X

×
X

Trichotomy
×
X

×
X

×
X

Part-Whole Principle
×
×

×
×

×
X

Partition Principle
×
X

X
X

×
?

Weak Partition Principle
×
X

X
X

×
?

Hume’s Principle:
Left-to-right direction

X
X

×
X

X
X

Hume’s Principle:
Right-to-left direction

X
X

X
X

×
×

Dual Hume’s Principle:
Left-to-right direction

X
X

X
X

X
X

Dual Hume’s Principle:
Right-to-left direction

×
X

X
X

×
×

Strong Cancellation Law
X
X

×
X

X
X

Subtraction and division
are well-defined

×
×

×
×

X
X

Comparative Size
Principle

X
X

?
X

?
?

No arbitrary comparisons
of set size

X
X

X
X

×
×

Table 1: Differences in Accounts of Size. AC = Axiom of Choice. GC =
Global Choice. Note that the claims numerosity theory is known to entail
when GC is assumed—but not when GC is absent—are not entailed by nu-
merosity theory when AC is assumed but GC is absent. Additionally, neither
the injective nor surjective account entail the Part-Whole Principle or the
well-definedness of subtraction and division when GC is assumed. Further,
the class-theoretic version of the surjective account entails class-theoretic
versions of the Partition Principle and Weak Partition Principle without
assuming GC, but the class-theoretic version of the injective account only
entails them if GC is assumed.



Cantor, Choice, and Paradox 38

5 Conclusion

The surjective account of set size is a seemingly minor tweak to Cantor’s
injective account: simply understand comparisons of size fundamentally in
terms of surjections rather than injections. Nonetheless, this tweak yields
significant benefits: we arrive at an intuitively compelling and mathemati-
cally rich alternative account of set size (and of class size more generally),
gain insight into the debate concerning the Axiom of Choice, and shed philo-
sophical light on one of the oldest unsolved problems in set theory. I will
close with some final thoughts.

First, one might ask whether we can devise an account of size that satis-
fies all of the intuitive desiderata we have considered. This is not possible,
however, since the Part-Whole Principle is inconsistent with both Hume’s
Principle and the Dual Hume’s Principle. For my part, I am inclined to
regard numerosity theory simply as constituting a fundamentally different
approach to set size from the broadly Cantorian approaches of the injective
and surjective accounts.

Second, we might be tempted to regard the foregoing discussion as con-
stituting an argument for the Axiom of Choice. As the above table shows,
each of the three accounts satisfies more intuitive desiderata when the Axiom
of Choice or Global Choice is assumed. So, whether we opt for a broadly
Cantorian approach or not, we might think that we need to assume at least
the Axiom of Choice to arrive at a maximally intuitively plausible account
of size.

This inference strikes me as too quick, however. For one, it is not merely
an intuitive desideratum that we satisfy intuitive principles like the Partition
Principle; it is also an intuitive desideratum that we satisfy such principles
in an intuitive way. For example, recall the case of farmers and dogs from
section 3.1. Intuitively, it seems that the existence of a surjection from the
set of dogs onto the set of farmers should by itself entail that there are at
least as many dogs as farmers. We shouldn’t need to make the additional
inferences licensed by the Axiom of Choice to conclude this. Indeed, it seems
intuitively problematic that the injective account requires the axiom to de-
liver this verdict—and this is an intuitive cost that goes beyond the mere
epistemic possibility that the axiom is false. Of course, it might turn out to
be impossible for any account to entail a larger number of the aforementioned
principles in an intuitive way without the Axiom of Choice, but I think it is
too early to write off the prospects for such an account.
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Indeed, it seems to me that we have merely scratched the surface of the
space of intuitively compelling alternative accounts of size. First, I have
not yet mentioned modal variations of the above accounts, on which (for
example) the merely possible existence of a bijection from one set to another
suffices for them to be the same size.79 Second, recall that the intuitive
motivation for the surjective account is but a simple generalization of those
considerations that motivate the injective account’s understanding of at least
as big as. It may be that the motivation for the surjective account itself
admits of a simple generalization that enables us to satisfy nearly all of our
intuitive desiderata without assuming the Axiom of Choice. And it may be
that any account that results from such a generalization bears substantial
mathematical fruit in even less explored mathematical terrain. Regardless of
where this particular inquiry leads, the recent proliferation of approaches to
set size suggests we may be entering a rich new era in our exploration of the
infinite.

6 Appendix

Theorem 1. The injective and surjective accounts are equivalent in ZFC.

Proof. In what follows, (1)–(3) and (1∗)–(3∗) refer to the statements of the
injective and surjective accounts, respectively.

First, assume (1) and that A is at least as big as B. Since B � A, we
have that A �∗ B—i.e., (1∗) is true. The further assumption of (2) and
(3) then immediately entails (2∗) and (3∗). Now assume (1∗), the Axiom of
Choice, and that A is at least as big as B. Since the Axiom of Choice is true,
PPinjective is true (cf. section 3.2). So, since A �∗ B, we have that B � A—
i.e., (1) is true. The further assumption of (2∗) and (3∗) then immediately
entails (2) and (3).

Theorem 2. (1∗) and (1∗∗) are equivalent in ZF.

Proof. If A or B is empty, it is obvious that (1*) and (1∗∗) are equivalent.
So, suppose A and B are nonempty.

To show that (1*) entails (1**), let f be a surjective function from A onto
B. For every b ∈ B, let Ab = {x ∈ A|f(x) = b}. Note that P = {Ab|b ∈ B}

79Different modal extensions of the injective account have recently been explored by
Pruss (2020), Scambler (2021), and Builes and Wilson (2022).
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is a partition of A. Now define g : B → P such that g(x) = Ax. Clearly, if
x 6= y, then g(x) 6= g(y). So, g is injective.

To show that (1**) entails (1*), let f be an injection from B into some
partition of A. Let a be an arbitrary member of A. Note that, if a ∈ f(c)
for some c ∈ B, then c is unique since f(x) ∩ f(y) = ∅ for any distinct
x, y ∈ B. So, there is a function g : A → B such that, for some b ∈ B,
g(x) = c if x ∈ f(c) for some c ∈ B and g(x) = b otherwise. Moreover, g
is surjective: for any x ∈ B, there is some y ∈ A such that y ∈ f(x) and
therefore g(y) = x.

Theorem 3. The class-theoretic versions of the injective and surjective
accounts are equivalent in GB if GC holds.

Proof. Here (1)–(3) and (1∗)–(3∗) will refer to the class-theoretic generaliza-
tions of these claims.

The proof that (1)–(3) entail (1∗)–(3∗) is exactly analogous to the set-
theoretic case. Now assume (1∗), GC, and that A is at least as big as B.
Since GC is true, CPPinjective is true (cf. section 3.2.1). Since A �∗ B, it
follows that B � A—i.e., (1) is true. The further assumption of (2∗) and
(3∗) then immediately entails (2) and (3).
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sembles de Points en Parties Respectivement Congruentes.” Fundamenta
Mathematicae 6: 244–77.

Banaschewski, Bernhard and Gregory H. Moore. 1990. “The Dual Cantor-
Bernstein Theorem and the Partition Principle.” Notre Dame Journal of
Formal Logic 31, no. 3: 375–81.

Barton, Neil and Kameryn J. Williams. 2023. “Varieties of
Class-Theoretic Potentialism.” Review of Symbolic Logic, 1–33.
doi:10.1017/S1755020323000126.

Benci, Vieri and Mauro Di Nasso. 2003. “Numerosities of Labeled Sets: A
New Way of Counting.” Advances in Mathematics 173, no. 1: 50–67.



Cantor, Choice, and Paradox 41

Benci, Vieri, Mauro Di Nasso, and Marco Forti. 2006. “An Aristotelian No-
tion of Size.” Annals of Pure and Applied Logic 143, nos. 1–3: 43–53.

Benci, Vieri and Luperi Baglini. 2022. “Euclidean Numbers and Numerosi-
ties.” The Journal of Symbolic Logic, 1–35. doi:10.1017/jsl.2022.17.

Bernays, Paul. 1942. “A System of Axiomatic Set Theory: Part IV. General
Set Theory.” The Journal of Symbolic Logic 7, no. 4: 133–45.

Bernays, Paul. 1983. “On Platonism in Mathematics.” In Philosophy of Math-
ematics, 2nd ed., ed. Paul Benacerraf and Hilary Putnam, 258–71. Cam-
bridge: Cambridge University Press.

Bernstein, Felix. 1904. “Bemerkung zur Mengenlehre.” Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse: 557–60.

Boolos, George. 1990. “The Standard of Equality of Numbers.” In Meaning
and Method: Essays in Honor of Hilary Putnam, ed. George Boolos, 261–
77. Cambridge: Cambridge University Press.

Builes, David and Jessica M. Wilson. 2022. “In Defense of Countabilism.”
Philosophical Studies 179: 2199–236.

Cantor, Georg. 1883/1996. “Foundations of a General Theory of Manifolds:
A Mathematico-Philosophical Investigation into the Theory of the Infi-
nite.” In From Kant to Hilbert: A Source Book in the Foundations of
Mathematics, Volume II, ed. and trans. William Ewald, 881–920. Oxford:
Clarendon Press.

Carnap, Rudolf. 1950. Logical Foundations of Probability. Chicago: Univer-
sity of Chicago Press.

Felgner, Ulrich. 1976. “Choice Functions on Sets and Classes.” In Sets and
Classes, ed. Gert H. Muller, 217–55. Amsterdam: North-Holland.
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Recherches de la Théorie des Ensembles.” In Alfred Tarski, Collected Pa-
pers, vol. 1, ed. by Steven R. Givant and Ralph N. McKenzie, 173–204.
Basel: Birkhäuser Verlag.
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