Skip to main content

Evidential Reasoning

  • Chapter
  • First Online:

Abstract

When a suspect appears in front of a criminal court, there is a high probability that he will be found guilty. In the USA, statistics for recent years show that the conviction rate in federal courts is roughly 90%, and in Japan reaches as high a rate as 99%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    On the conviction rate in US federal courts, see the statistical reports of the Offices of the United States Attorneys, available at www.justice.gov/usao/resources/annual-statistical-reports. Most of these convictions are guilty pleas, not convictions after trial. On Japan’s conviction rate, see White Paper on Crime 2014, Part 2, Chap. 3, Sect. 1, available at http://hakusyo1.moj.go.jp/en/63/nfm/mokuji.html.

  2. 2.

    On the UK conviction rate, see Criminal Justice Statistics–March 2014, available at www.gov.uk/government/statistics. As in the US case, the rate include mostly guilty pleas. For the Netherlands, see CBS, the Dutch central bureau of statistics, publishing its data at www.cbs.nl.

  3. 3.

    See www.fbi.gov/services/laboratory/biometric-analysis/codis.

  4. 4.

    See www.cstl.nist.gov/strbase/str_CSF1PO.htm.

  5. 5.

    We use the terms “factually guilty” or simply “guilty” to express factual guilt, which is not the same as the legal verdict of guilt.

  6. 6.

    At a rate of a dozen or more twin births per 1000 live births, identical twins are not that rare. Source https://en.wikipedia.org/wiki/Twin#Statistics.

  7. 7.

    Bayes’ theorem can be derived using the definition of conditional probability. We have \(\Pr (E|H) = \Pr (H\wedge E)/\Pr (H)\). Here, we use logical conjunction \(\wedge \) to write the combined event H and E. Since \(\Pr (H\wedge E)=\Pr (E|H)\cdot \Pr (H)\), it follows that \(\Pr (H|E) = \Pr (H \wedge E)/\Pr (E) = \Pr (E|H)\cdot \Pr (H)/\Pr (E)\), proving Bayes’ theorem. Note that the theorem holds generally for probability functions and does not assume a temporal ordering of taking evidence into account, as instead suggested by the terminology of “prior” and “posterior” probability. This terminology is standard in the context of Bayesian updating.

  8. 8.

    To see why, note that

    $$\begin{aligned} \frac{\Pr (H|E)}{\Pr (\lnot H | E)} = \frac{\Pr (E | H)}{\Pr (E| \lnot H)}\cdot \frac{\Pr (H)}{\Pr (\lnot H)}, \end{aligned}$$

    which implies

    $$\begin{aligned} \frac{\Pr (E|H)}{\Pr (E|\lnot H)}>1 \text { iff } \frac{\Pr (H|E)}{\Pr (\lnot H | E)} > \frac{\Pr (H)}{\Pr (\lnot H)}. \end{aligned}$$

    To prove the left-right direction of the equivalence in the text, if \(\Pr (H|E)> P(H)\), then \(1- \Pr (H|E)< 1- \Pr (H)\). This means that \(\frac{\Pr (H|E)}{1- \Pr (H | E)} > \frac{\Pr (H)}{1- \Pr (H)}\), and thus \(\frac{\Pr (H|E)}{\Pr (\lnot H | E)} > \frac{\Pr (H)}{\Pr (\lnot H)}\). So, by the equivalence above, \(\frac{\Pr (E|H)}{\Pr (E|\lnot H)}>1\). For the other direction, if \(\frac{\Pr (E|H)}{\Pr (E|\lnot H)}>1\), then \(\frac{\Pr (H|E)}{\Pr (\lnot H | E)} > \frac{\Pr (H)}{\Pr (\lnot H)}\), again by the equivalence above. The latter is the same as \(\frac{\Pr (H|E)}{1- \Pr (H | E)} > \frac{\Pr (H)}{1- \Pr (H)}\). To establish \(\Pr (H|E)> \Pr (H)\), suppose for contradiction that \(\Pr (H|E) \le \Pr (H)\), which implies \(1- \Pr (H|E) \ge 1- \Pr (H)\). This means that \(\frac{\Pr (H|E)}{1- \Pr (H | E)} \le \frac{\Pr (H)}{1- \Pr (H)}\). This contradicts \(\frac{\Pr (H|E)}{1- \Pr (H | E)} > \frac{\Pr (H)}{1- \Pr (H)}\), and thus \(\Pr (H|E)> \Pr (H)\).

  9. 9.

    To derive the likelihood ratio formula, one first applies Bayes’ theorem to both H and \(\lnot H\). We get \(\Pr (H|E) = \Pr (E|H)\cdot \Pr (H)/\Pr (E)\) and \(\Pr (\lnot H|E) = \Pr (E|\lnot H)\cdot \Pr (\lnot H)/\Pr (E)\). Using these, we find:

    $$\begin{aligned} \frac{\Pr (H|E)}{\Pr (\lnot H|E)} = \frac{\Pr (E|H)\cdot \Pr (H)/\Pr (E)}{\Pr (E|\lnot H)\cdot \Pr (\lnot H)/\Pr (E)} = \frac{\Pr (E|H)\cdot \Pr (H)}{\Pr (E|\lnot H)\cdot \Pr (\lnot H)}, \end{aligned}$$

    proving the likelihood ratio formula.

  10. 10.

    \(\Pr (H|E)=\frac{\Pr (H|E)}{\Pr (H|E)+\Pr (\lnot H|E)}=\frac{\frac{\Pr (H|E)}{\Pr (\lnot H|E)}}{\frac{\Pr (H|E)+\Pr (\lnot H|E)}{\Pr (\lnot H|E)}}=\frac{\frac{\Pr (H|E)}{\Pr (\lnot H|E)}}{\frac{\Pr (H|E)}{\Pr (\lnot H|E)}+1}\).

  11. 11.

    Since \(\frac{\Pr (\text {Guilt})}{\Pr (\lnot \text {Guilt})}=\frac{0.001}{0.999}\) and \(\frac{\Pr (\text {Camera} \vert \text {Guilt})}{\Pr (\text {Camera} \vert \lnot \text {Guilt})}=70\), by Bayes’ theorem, \(\frac{\Pr (\text {Guilt} \vert \text {Camera})}{\Pr (\lnot \text {Guilt} \vert \text {Camera})}=\frac{0.001}{0.999}\times 70 \approx 0.07\) and thus \(\Pr \)(Guilt\(\vert \)Camera)\( \approx \frac{0.07}{1+0.07}~\sim ~6.5\%\).

References

  • Allen, R.J. 2010. No plausible alternative to a plausible story of guilt as the rule of decision in criminal cases. In Prueba y Esandares de Prueba en el Derecho, ed. J. Cruz, and L. Laudan. Mexico: Instituto de Investigaciones Filosoficas-UNAM.

    Google Scholar 

  • Allen, R.J., and M.S. Pardo. 2007. The problematic value of mathematical models of evidence. Journal of Legal Studies 36 (1): 107–140.

    Article  Google Scholar 

  • Allen, R.J., and A. Stein. 2013. Evidence, probability and the burden of proof. Arizona Law Journal 55: 557–602.

    Google Scholar 

  • Allen, R.J., W.J. Stuntz, J.L. Hoffmann, D.A. Livingston, A.D. Leipold, and T.L. Meares. 2016. Comprehensive criminal procedure, 3rd ed. New York, N.Y.: Wolters Kluwer.

    Google Scholar 

  • Anderson, T., D. Schum, and W. Twining. 2005. Analysis of Evidence, 2nd ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Balding, D.J. 1999. When can a DNA profile be regarded as unique? Science & Justice 39.

    Article  Google Scholar 

  • Balding, D.J. 2005. Weight-of-evidence for forensic DNA profiles. West Sussex: Wiley.

    Book  Google Scholar 

  • Balding, D.J., and P. Donnely. 1996. Evaluating DNA profile evidence when the suspect is identified through a database search. Journal of Forensic Science 41: 603–607.

    Article  Google Scholar 

  • Bennett, W.L., and M.S. Feldman. 1981. Reconstructing reality in the courtroom. London: Tavistock Feldman.

    Google Scholar 

  • Bernoulli, J. 1713. Ars Conjectandi.

    Google Scholar 

  • Bex, F.J. 2011. Arguments, stories and criminal evidence: A formal hybrid theory. Berlin: Springer.

    Book  Google Scholar 

  • Bex, F.J., P.J. van Koppen, H. Prakken, and B. Verheij. 2010. A hybrid formal theory of arguments, stories and criminal evidence. Artificial Intelligence and Law 18: 1–30.

    Article  Google Scholar 

  • Bex, F.J., and B. Verheij. 2013. Legal stories and the process of proof. Artificial Intelligence and Law 21 (3): 253–278.

    Article  Google Scholar 

  • Biedermann, A., T. Hicks, F. Taroni, C. Champod, C. Aitken. On the use of the likelihood ratio for forensic evaluation: Response to Fenton, et al. 2014. Science and Justice 54 (4): 316–318.

    Google Scholar 

  • Bondarenko, A., P.M. Dung, R.A. Kowalski, and F. Toni. 1997. An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93: 63–101.

    Article  Google Scholar 

  • BonJour, L. 1985. The structure of empirical knowledge. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bovens, L., and S. Hartmann. 2003a. Bayesian Epistemology. Oxford: Oxford University Press.

    Google Scholar 

  • Bovens, L., and S. Hartmann. 2003b. Solving the riddle of coherence. Mind 112: 601–633.

    Article  Google Scholar 

  • Carnap, R. 1950. Logical foundations of probability. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Cheng, E. 2013. Reconceptualizing the burden of proof. Yale Law Journal 122 (5): 1104–1371.

    Google Scholar 

  • Cohen, L.J. 1977. The probable and the provable. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Cook, R., I.W. Evett, G. Jackson, P.J. Jones, and J.A. Lambert. 1998. A hierarchy of propositions: Deciding which level to address in casework. Science and Justice 38 (4): 231–239.

    Article  Google Scholar 

  • Crump, D. 2009. Eyewitness corroboration requirements as protections against wrongful conviction: The hidden questions. Ohio State Journal of Criminal Law 7 (1): 361–376.

    Google Scholar 

  • Crupi, V. 2015. Confirmation. In Stanford encyclopedia of philosophy, ed. E.N. Zalta. Stanford University.

    Google Scholar 

  • Darwiche, A. 2009. Modeling and reasoning with bayesian networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dawid, A.P. 1987. The difficulty about conjunction. Journal of the Royal Statistical Society. Series D (The Statistician) 36(2/3):91–92.

    Article  Google Scholar 

  • Dawid, A.P. 2002. Bayes’s theorem and weighing evidence by juries. In Bayes’s Theorem, vol. 113, 71–90, Oxford: Oxford University Press.

    Google Scholar 

  • Dawid, A.P. 2010. Beware of the DAG! In JMLR workshop and conference proceedings: Volume 6. Causality: Objectives and assessment (NIPS 2008 workshop), eds. I. Guyon, D. Janzing, and B. Schölkopf, 59–86. http://www.jmlr.org/

  • Dawid, A.P., W. Twining, and M. Vasiliki (eds.). 2011. Evidence, inference and enquiry. Oxford: Oxford University Press.

    Google Scholar 

  • Dung, P.M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77: 321–357.

    Article  Google Scholar 

  • Evett, I., G. Jackson, J.A. Lambert, and S. McCrossan. 2000. The impact of the principles of evidence interpretation on the structure and content of statements. Science and Justice 40 (4): 233–239.

    Article  Google Scholar 

  • Fenton, N., D. Berger, D. Lagnado, M. Neil, and A. Hsu. 2014. When “neutral” evidence still has probative value (with implications from the barry george case). Science and Justice 54 (4): 274–287.

    Article  Google Scholar 

  • Fenton, N., M. Neil, and D. Berger. 2016. Bayes and the law. Annual Review of Statistics and Its Application 3.

    Article  Google Scholar 

  • Fenton, N.E. 2011. Science and law: Improve statistics in court. Nature 479: 36–37.

    Article  Google Scholar 

  • Fenton, N.E., and M.D. Neil. 2013. Risk assessment and decision analysis with Bayesian networks. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Fenton, N.E., M.D. Neil, and D.A. Lagnado. 2013. A general structure for legal arguments about evidence using Bayesian Networks. Cognitive Science 37: 61–102.

    Article  Google Scholar 

  • Finkelstein, M.O., and W.B. Fairley. 1970. A Bayesian approach to identification evidence. Harvard Law Review 83: 489–517.

    Article  Google Scholar 

  • Finkelstein, M.O., and B. Levin. 2001. Statistics for lawyers. Berlin: Springer.

    Google Scholar 

  • Fisher, G. 2008. Evidence, 2nd ed. New York, N.Y.: Foundation Press.

    Google Scholar 

  • Fitelson, B. 1999. The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philosophy of Science 66: 362–378.

    Article  Google Scholar 

  • Freeman, J.B. 1991. Dialectics and the macrostructure of arguments. A theory of argument structure. Berlin: Foris.

    Book  Google Scholar 

  • Friedman, M. 1974. Explanation and scientific understanding. Journal of Philosophy 71: 5–19.

    Article  Google Scholar 

  • Friedman, R.D. 1987. Route analysis of credibility and hearsay. The Yale Law Journal 97 (4): 667–742.

    Article  Google Scholar 

  • Friedman, R.D. 2000. A presumption of innocence, not of even odds. Stanford Law Review 52: 873–887.

    Article  Google Scholar 

  • Frumkin, D., A. Wasserstrom, A. Davidson, and A. Grafit. 2009. Authentication of forensic DNA samples. Forensic Science International: Genetics 4 (2): 95–103.

    Article  Google Scholar 

  • Gabbay, D.M., C.J. Hogger, and J.A. Robinson (eds.). 1994. Handbook of logic in artificial intelligence and logic programming. Volume 3. Nonmonotonic reasoning and uncertain reasoning. Oxford: Clarendon Press.

    Google Scholar 

  • Gastwirth, J.L. (ed.). 2012. Statistical Science in the Courtroom. Berlin: Springer.

    Google Scholar 

  • Gordon, T.F., H. Prakken, and D.N. Walton. 2007. The Carneades model of argument and burden of proof. Artificial Intelligence 171 (10–15): 875–896.

    Article  Google Scholar 

  • Gordon, T.F., and D.N. Walton. 2009. Proof burdens and standards. In Argumentation in artificial intelligence, ed. I. Rahwan, and G.R. Simari, 239–258. Berlin: Springer.

    Chapter  Google Scholar 

  • Griffin, L.K. 2013. Narrative, truth, trial. Georgetown Law Journal 101: 281–335.

    Google Scholar 

  • Haack, S. 2008. Warrant, causation, and the atomist of evidence law. Journal of Social Epistemology 5: 253–265.

    Article  Google Scholar 

  • Haack, S. 2014. Legal probabilism: An epistemological dissent. In Science, proof, and truth in the law, ed. Evidence Matters, 47–77. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hacking, I. 2001. An introduction to probability and inductive logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hage, J.C. 1997. Reasoning with rules. An essay on legal reasoning and its underlying logic. Dordrecht: Kluwer.

    Google Scholar 

  • Hage, J.C. 2000. Dialectical models in artificial intelligence and law. Artificial Intelligence and Law 8: 137–172.

    Article  Google Scholar 

  • Hamer, D. 2004. Probabilistic standards of proof, their complements and the errors that are expected to flow from them. University of New England Law Journal 1 (1): 71–107.

    Google Scholar 

  • Hempel, C., and P. Oppenheim. 1948. Studies in the logic of explanation. Philosophy of Science 15: 135–175.

    Article  Google Scholar 

  • Hepler, A.B., A.P. Dawid, and V. Leucari. 2007. Object-oriented graphical representations of complex patterns of evidence. Law, Probability and Risk 6 (1–4): 275–293.

    Article  Google Scholar 

  • Hicks, T., J. Buckleton, J.-A. Bright, and D. Taylor. 2016. A framework for interpreting evidence. In Forensic DNA Evidence Interpretation (second edition), ed. J. Buckleton, J.-A. Bright, and D. Taylor. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ho, H.L. 2008. Philosophy of evidence law. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Jensen, F.V., and T.D. Nielsen. 2007. Bayesian networks and decision graphs. Berlin: Springer.

    Book  Google Scholar 

  • Kadane, J.B., and D.A. Schum. 1996. A probabilistic analysis of the Sacco and Vanzetti evidence. Chichester: Wiley.

    Google Scholar 

  • Kaplan, J. 1968. Decision theory and the fact-finding process. Stanford Law Review 20: 1065–1092.

    Article  Google Scholar 

  • Kaplow, L. 2012. Burden of proof. Yale Law Journal 121 (4): 738–1013.

    Google Scholar 

  • Kaptein, H., H. Prakken, and B. Verheij (eds.). 2009. Legal evidence and proof: statistics, stories, logic (Applied legal philosophy series). Farnham: Ashgate.

    Google Scholar 

  • Kaye, D.H. 1986. Do we need a calculus of weight to understand proof beyond a reasonable doubt? Boston University Law Review 66: 657–672.

    Google Scholar 

  • Kaye, D.H. 1993. DNA evidence: Probability, population genetics and the courts. Harvard Journal of Law and Technology 7: 101–172.

    Google Scholar 

  • Kaye, D.H. 1999. Clarifying the burden of persuasion: What Bayesian rules do and not do. International Commentary on Evidence 3: 1–28.

    Google Scholar 

  • Kaye, D.H. 2010. The double helix and the law of evidence. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Kaye, D.H. 2013. Beyond uniqueness: the birthday paradox, source attribution and individualization in forensic science. Law, Probability and Risk 12 (1): 3–11.

    Article  Google Scholar 

  • Kaye, D.H., and G.F. Sensabaugh. 2000. Reference guide on DNA evidence. In Reference manual on scientific evidence, 2nd ed., 576–585. Washington, D.C.: Federal Judicial Center.

    Google Scholar 

  • Keppens, J. 2012. Argument diagram extraction from evidential Bayesian networks. Artificial Intelligence and Law 20: 109–143.

    Article  Google Scholar 

  • Keppens, J., and B. Schafer. 2006. Knowledge based crime scenario modelling. Expert Systems with Applications 30 (2): 203–222.

    Article  Google Scholar 

  • Kirschner, P.A., S.J.B. Shum, and C.S. Carr. 2003. Visualizing argumentation: Software tools for collaborative and educational sense-making. Berlin: Springer.

    Book  Google Scholar 

  • Koehler, J.J. 1993. Error and exaggeration in the presentation of DNA evidence in trial. Jurimetrics Journal 34: 21–39.

    Google Scholar 

  • Koehler, J.J., and M.J. Saks. 2010. Individualization claims in forensic science: Still unwarranted. Brooklyn Law Review 75 (4): 1187–1208.

    Google Scholar 

  • Laplace, P.-S. 1814. Essai Philosophique sur les Probabilités.

    Google Scholar 

  • Laudan, L. 2006. Truth, error, and criminal law: An essay in legal epistemology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lempert, R.O. 1977. Modeling relevance. Michigan Law Review 75 (5/6): 1021–1057.

    Article  Google Scholar 

  • Lipton, P. 1991. Inference to the best explanation. New York, N.Y.: Routledge.

    Book  Google Scholar 

  • Loftus, E.F. 1996. Eyewitness testimony (revised edition). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Méndez, M.A. 2008. Evidence: The California code and the Federal rules, 4th ed. Eagan, MN: Thomson West.

    Google Scholar 

  • Mortera, J., and P. Dawid. 2007. Probability and evidence. In Handbook of probability theory, ed. T. Rudas. Los Angeles, CA: Sage.

    Google Scholar 

  • Nance, D.A. 2016. The burdens of proof: Discriminatory power, weight of evidence, and tenacity of belief. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Nesson, C.R. 1979. Reasonable doubt and permissive inferences: The value of complexity. Harvard Law Review 92 (6): 1187–1225.

    Article  Google Scholar 

  • NRC. 1996. The evaluation of forensic DNA evidence. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Pardo, M.S., and R.J. Allen. 2008. Juridical proof and the best explanation. Law and Philosophy 27: 223–268.

    Article  Google Scholar 

  • Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J. 2000/2009. Causality: Models, reasoning and inference, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pennington, N., and R. Hastie. 1993a. Inside the juror, chap. The story model for juror decision making, 192–221. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pennington, N., and R. Hastie. 1993b. Reasoning in explanation-based decision making. Cognition 49 (1–2): 123–163.

    Article  Google Scholar 

  • Picinali, F. 2013. Two meanings of “reasonableness”: Dispelling the “floating” reasonable doubt. Modern Law Review 76 (5): 845–875.

    Article  Google Scholar 

  • Pollock, J.L. 1987. Defeasible reasoning. Cognitive Science 11 (4): 481–518.

    Article  Google Scholar 

  • Pollock, J.L. 1995. Cognitive Carpentry: A blueprint for how to build a person. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Prakken, H. 1997. Logical tools for modelling legal argument. A study of defeasible reasoning in law. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Prakken, H. 2005. A study of accrual of arguments, with applications to evidential reasoning. In Proceedings of the tenth international conference on artificial intelligence and law, 85–94, New York (New York): ACM Press.

    Google Scholar 

  • Prakken, H. 2010. An abstract framework for argumentation with structured arguments. Argument and Computation 1 (2): 93–124.

    Article  Google Scholar 

  • Prakken, H., and G. Sartor. 2007. Formalising arguments about the burden of persuasion. In Proceedings of the 11th international conference on artificial intelligence and law, 97–106, New York, N.Y.: ACM Press.

    Google Scholar 

  • Prakken, H., and G. Sartor. 2009. A logical analysis of burdens of proof. In Legal evidence and proof: Statistics, stories, logic, chap. 9, ed. H. Kaptein, H. Prakken, and B. Verheij, 223–253, Farnham: Ashgate.

    Google Scholar 

  • Prakken, H., and G.A.W. Vreeswijk. 2002. Logics for defeasible argumentation. In Handbook of philosophical logic, vol. 4, 2nd ed. D.M. Gabbay, and F. Guenthner, 218–319. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Redmayne, M. 2015. Character evidence in the criminal trial. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Reed, C., and G. Rowe. 2004. Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools 14 (3–4): 961–980.

    Article  Google Scholar 

  • Robertson, B., and G.A. Vignaux. 1995. DNA evidence: Wrong answers or wrong questions? Genetica 96: 145–152.

    Article  Google Scholar 

  • Roberts, P., and A. Zuckerman. 2010. Criminal evidence, 2nd ed. Oxford: Oxford University Press.

    Google Scholar 

  • Salmon, W. 1984. Scientific explanation and the causal structure of the world. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Schank, R., and R. Abelson. 1977. Scripts, plans, goals and understanding, an inquiry into human knowledge structures. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Schneps, L., and C. Colmez. 2013. Math on trial: How numbers get used and abused in the courtroom. New York, N.Y.: Basic Books.

    Google Scholar 

  • Schum, D.A. 1994. The evidential foundations of probabilistic reasoning. New York, N.Y.: Wiley.

    Google Scholar 

  • Schum, D.A., and S. Starace. 2001. The evidential foundations of probabilistic reasoning. Evanston, Il.: Northwestern University Press.

    Google Scholar 

  • Shapiro, B. 1991. Beyond reasonable doubt and probable cause: Historical perspectives on the Anglo-American law of evidence. Oakland, Calif.: University of California Press.

    Google Scholar 

  • Simari, G.R., and R.P. Loui. 1992. A mathematical treatment of defeasible reasoning and its applications. Artificial Intelligence 53: 125–157.

    Article  Google Scholar 

  • Simons, D.J., and C.F. Chabris. 1999. Gorillas in our minds: Sustained inattention blindness for dynamic events. Perception 28: 1059–1074.

    Article  Google Scholar 

  • Skyrms, B. 2000. Choice and chance: An introduction to inductive logic, 4th ed. Belmont, CA: Wadsworth.

    Google Scholar 

  • Stein, A. 2005. Foundations of evidence law. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Swinburne, R. (ed.). 2002. Bayes’s theorem. Oxford: Oxford University Press.

    Google Scholar 

  • Tanaka, J.W., and M.J. Farah. 1993. Parts and whole in face recognition. The Quarterly Journal of Experimental Psychology 46A (3): 225–245.

    Article  Google Scholar 

  • Taroni, F., A. Biedermann, S. Bozza, P. Garbolino, and C. Aitken. 2014. Statistics in practice. In Bayesian networks for probabilistic inference and decision analysis in forensic science, 2nd ed. Chichester: Wiley.

    Google Scholar 

  • Taroni, F., C. Champod, and P. Margot. 1998. Forerunners of Bayesianism in early forensic science. Jurimetrics 38: 183–200.

    Google Scholar 

  • Thagard, P. 1989. Explanatory coherence. Behavioral and Brain Sciences 12: 435–502.

    Article  Google Scholar 

  • Thagard, P. 2001. Coherence in thought and action. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Thompson, S.G. 2008. Beyond a reasonable doubt? reconsidering uncorroborated eyewitness identification testimony. UC Davis Law Review 41: 1487–1545.

    Google Scholar 

  • Thompson, W.C., and E.L. Schumann. 1987. Interpretation of statistical evidence in criminal trials: The prosecutor’s fallacy and the defense attorney’s fallacy. Law and Human Behavior 11: 167–187.

    Article  Google Scholar 

  • Thompson, W.C., F. Taroni, and C.G.G. Aitken. 2003. How the probability of a false positive affects the value of DNA evidence. Journal of Forensic Science 48: 47–54.

    Google Scholar 

  • Thomson, J.J. 1986. Liability and individualized evidence. Law and Contemporary Problems 49 (3): 199–219.

    Article  Google Scholar 

  • Thomson, P. 1980. Margaret Thatcher: A new illusion. Perception 9 (4): 483–484.

    Article  Google Scholar 

  • Tillers, P. 2011. Trial by mathematics-reconsidered. Law, Probability and Risk 10: 167–173.

    Article  Google Scholar 

  • Timmer, S.T., J.J. Meyer, H. Prakken, S. Renooij, and B. Verheij. 2017. A two-phase method for extracting explanatory arguments from Bayesian networks. International Journal of Approximate Reasoning 80: 475–494.

    Article  Google Scholar 

  • Toulmin, S.E. 1958. The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tribe, L. 1971. Trial by mathematics: Precision and ritual in the legal process. Harvard Law Review 84: 1329–1393.

    Article  Google Scholar 

  • van Eemeren, F.H., B. Garssen, E.C.W. Krabbe, A.F. Snoeck Henkemans, B. Verheij, and J.H.M. Wagemans. 2014a. Chapter 11: Argumentation in artificial intelligence. In Handbook of argumentation theory. Berlin: Springer.

    Google Scholar 

  • van Eemeren, F.H., B. Garssen, E.C.W. Krabbe, A.F. Snoeck Henkemans, B. Verheij, and J.H.M. Wagemans. 2014b. Handbook of argumentation theory. Berlin: Springer.

    Book  Google Scholar 

  • van Gelder, T. 2003. Enhancing deliberation through computer supported argument visualization. In Visualizing argumentation: Software tools for collaborative and educational sense-making, ed. P.A. Kirschner, S.J.B. Shum, and C.S. Carr, 97–115. New York, N.Y.: Springer.

    Chapter  Google Scholar 

  • Velleman, D. 2003. Narrative explanation. The Philosophical Review 112 (1): 1–25.

    Article  Google Scholar 

  • Verheij, B. 1996. Rules, reasons, arguments. Formal studies of argumentation and defeat.. Maastricht: Dissertation Universiteit Maastricht.

    Google Scholar 

  • Verheij, B. 2003. DefLog: on the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation 13 (3): 319–346.

    Article  Google Scholar 

  • Verheij, B. 2005. Virtual arguments. On the design of argument assistants for lawyers and other arguers. The Hague: T.M.C. Asser Press.

    Google Scholar 

  • Verheij, B. 2014. To catch a thief with and without numbers: Arguments, scenarios and probabilities in evidential reasoning. Law, Probability and Risk 13: 307–325.

    Article  Google Scholar 

  • Verheij, B. 2017. Proof with and without probabilities. correct evidential reasoning with presumptive arguments, coherent hypotheses and degrees of uncertainty. Artifical Intelligence and Law 25(1):127–154.

    Article  Google Scholar 

  • Verheij, B., F.J. Bex, S.T. Timmer, C.S. Vlek, J.J. Meyer, S. Renooij, and H. Prakken. 2016. Arguments, scenarios and probabilities: Connections between three normative frameworks for evidential reasoning. Law, Probability and Risk 15 (1): 35–70.

    Article  Google Scholar 

  • Vlek, C.S., H. Prakken, S. Renooij, and B. Verheij. 2014. Building Bayesian Networks for legal evidence with narratives: a case study evaluation. Artifical Intelligence and Law 22 (4): 375–421.

    Article  Google Scholar 

  • Vlek, C.S., H. Prakken, S. Renooij, and B. Verheij. 2016. A method for explaining Bayesian Networks for legal evidence with scenarios. Artifical Intelligence and Law 24 (3): 285–324.

    Article  Google Scholar 

  • Vreeswijk, G.A.W. 1997. Abstract argumentation systems. Artificial Intelligence 90: 225–279.

    Article  Google Scholar 

  • Vrij, A. 2008. Detecting lies and deceit: The psychology of lying and the implications for professional practice. Chichester: Wiley.

    Google Scholar 

  • Wagenaar, W.A., P.J. van Koppen, and H.F.M. Crombag. 1993. Anchored narratives: The psychology of criminal evidence. London: Harvester Wheatsheaf.

    Google Scholar 

  • Walton, D.N., and E. Krabbe. 1995. Commitment in dialogue. Basic concepts of interpersonal reasoning. Albany (New York): State University of New York Press.

    Google Scholar 

  • Walton, D.N., C. Reed, and F. Macagno. 2008. Argumentation schemes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wasserman, D. 2008. Forensic DNA typing. In A companion to genethics, ed. J. Burley, and J. Harris. Malden, MA: Blackwell.

    Google Scholar 

  • Weir, B.S. 2007. The rarity of DNA profiles. The Annals of Applied Statistics 1: 358–370.

    Article  Google Scholar 

  • Wells, G.L. 1992. Naked statistical evidence of liability: Is subjective probability enough? Journal of Personality and Social Psychology 62: 793–752.

    Article  Google Scholar 

  • Wells, G.L., A. Memon, and S.D. Penrod. 2006. Eyewitness evidence: Improving its probative value. Psychological Science in the Public Interest 7 (2): 45–75.

    Article  Google Scholar 

  • Whitman, J.Q. 2008. The origins of reasonable doubt: Theological roots of the criminal trial. New Haven, CT: Yale University Press.

    Google Scholar 

  • Wigmore, J.H. 1913. The principles of judicial proof as given by logic, psychology, and general experience, and illustrated in judicial trials. Second edition 1931, third edition “The science of judicial proof” 1937. Boston, MA: Little, Brown and Company.

    Google Scholar 

  • Woodward, J. 2014. Scientific explanation. In The Stanford encyclopedia of philosophy, ed. E.N. Zalta. Stanford University.

    Google Scholar 

  • Zabell, S.L. 2005. Fingerprint evidence. Journal of Law and Policy 13: 143–179.

    Google Scholar 

Download references

Acknowledgements

This chapter has been developed in the context of the project “Designing and Understanding Forensic Bayesian Networks with Arguments and Scenarios,” funded in the NWO Forensic Science program (http://www.ai.rug.nl/~verheij/nwofs/). The first author would like to thank Infosys Limited which made possible his stay at the Institute for Advanced Study in Princeton for the academic year 2016–17 during which parts of this chapter were written. The second author would like to thank the Isaac Newton Institute for Mathematical Sciences at the University of Cambridge for its hospitality during the program “Probability and Statistics in Forensic Science” which was supported by EPSRC Grant Number EP/K032208/1. The authors would like to thank Ronald Allen, Alex Biedermann, Christian Dahlman, and Norman Fenton for helpful comments and suggestions on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Di Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Bello, M., Verheij, B. (2018). Evidential Reasoning. In: Bongiovanni, G., Postema, G., Rotolo, A., Sartor, G., Valentini, C., Walton, D. (eds) Handbook of Legal Reasoning and Argumentation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9452-0_16

Download citation

Publish with us

Policies and ethics