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ABSTRACT. For ethical or practical reasons, randomised cotrolled
trials are not always an option to test epidemiological hypotheses.
Epidemiologists are consequently faced with the problem of how to
make causal inferences from observational data, particularly when
confounding is present and not fully understood. The method of
instrumental variables can be exploited for this purpose in a process
known as Mendelian randomisation. However, the approach has not
been developed to deal satisfactorily with a binary outcome variable in
the presence of confounding. This has not been properly understood
in the medical literature. We show that by defining the problem
using a formal causal language, the difficulties can be identified and
misinterpretations avoided.

1 Introduction

Detection and assessment of the effect of some modifiable risk factor on a
disease with view to informing public health intervention policies are of fun-
damental concern in epidemiology. For example, it is now well established
that the risk of neural tube defects, such as spina bifida, can be greatly
reduced by periconceptual maternal folate supplementation (MRC Vitamin
Study Research Group, 1991; Czeizel and Dudés, 1992; Scholl and Johnson,
2000). A simple public health intervention of adding folic acid to flour and
bread has been reported to have reduced the risk by 30-50% in the USA
and Canada. The House of Commons Hansard Debates of October 19 2005
recommended this strategy for the UK which, if implemented, would be
the first mandatory fortification of food in the UK since the compulsory
addition of calcium, iron and vitamins B1 and B2 to flour after the second
World War.

Clearly, it is important to have solid evidence that such a public health in-
tervention will have an effect. The problem faced by epidemiologists is that
an observed association or correlation between a risk factor and a disease



does not necessarily mean that the risk factor is causal for the disease, and
if the relationship is not causal, the prescribed intervention will be useless.
Inferring causality from observational data is difficult as it is not always
clear which of two associated variables is the cause, or which the effect.
For example, sick people may change their diets or other aspects of their
lifestyle (reverse causation). On the other hand, both disease and exposure
levels may be associated purely through another possibly unmeasured factor
such as smoking (confounding). In randomised controlled trials (RCTs), the
random assignment of “treatment” levels to “experimental units” (Fisher,
1926) essentially renders reverse causation and confounding implausible, but
such trials are neither ethical nor practical for many exposures of epidemi-
ological interest like smoking, exercise regimes and alcohol consumption, to
name but a few (though some attempts at such trials have been made but
inevitably suffer from compliance and other problems).

In situations where randomisation is possible, epidemiological studies
have been severely criticised for the large numbers of reported associa-
tions that have been interpreted as causal and have failed to be replicated
in large-scale follow-up RCTs. For example, early observational findings
suggesting that increased dietary intake of the anti-oxidant vitamin beta-
carotene reduces the risk of smoking-related cancers (Peto et al., 1981) were
negated by subsequent RCT findings. (Alpha-Tocopherol, Beta Carotene
Cancer Prevention Study Group, 1994). Since only candidate causes with
the strongest observational support are evaluated in RCTs, we can only as-
sume that many reported associations, as yet untested, are even less likely
to be causal (Davey Smith et al., 2005). Confounding is usually the main
reason for such spurious findings as reverse causation can often be ruled out
by the underlying biology. It is sometimes possible to control for confound-
ing but in general it is difficult to know whether all the relevant confounders
(or a sufficient subset of these) have been accounted for. Furthermore, con-
founding in these applications is usually due to social, behavioural or physi-
ological factors which are difficult to control for and particularly difficult to
measure accurately. Epidemiological exposures are also prone to reporting
bias. Heavy drinkers, for example, will often under-estimate their alcohol
intake.

There is hence a need to infer causality from observational data in the
presence of confounding that cannot be controlled for because it is not fully
understood. A possible approach in this situation is based on the method of
instrumental variables (Bowden and Turkington, 1984; Angrist et al., 1996;
Greenland, 2000; Pearl, 2000) which is known under the name of ‘Mendelian
randomisation’ * if the instrument is a genetic predisposition (Davey Smith

1The term ‘Mendelian randomisation’ seems to have become a fixed expression in the
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and Ebrahim, 2003; Katan, 2004; Thomas and Conti, 2004). For exam-
ple, observational studies have indicated that elevated plasma homocysteine
levels are associated with increased risk of coronary heart disease (CHD)
(Ford et al., 2002) but this effect is suspected to be heavily confounded by
the usual factors such as smoking and socioeconomic status (Davey Smith
and Ebrahim, 2003). RCTs have confirmed that homocysteine levels can
be reduced substantially with a small increase in folate consumption (Ho-
mocysteine Lowering Trialists’ Collaboration, 1998). However, the T allele
of the MTHFR gene is known to be associated with higher homocysteine
levels than the more common C allele and thus mimics the effect of low
folate intake. In the absence of a definitive folate trial, the causal effect of
homocysteine levels (and hence of folate intake) on CHD can be investigated
by examining the association of the MTHFR genotype with CHD instead.
The former association is affected by confounding but the latter can often
be assumed to be free of confounding since alleles are assigned randomly
from the two copies of the parents and so causality can be inferred. If
the relationship between homocysteine and CHD is truly causal, adding a
given quantity of folate to flour would also be worthwhile as a public health
intervention to reduce CHD risk in the general population.

The practical difficulties typically encountered when inferring causation
from observational data are compounded by the theoretical problem of ex-
pressing causal aims and methods in a mathematical language. Causal
vocabulary features regularly in the epidemiological literature but this is
often accompanied by standard regression methods that do not justify any
causal conclusions. Despite recently proposed advances towards a formal
causal framework for epidemiological applications (Greenland et al., 1999;
Robins, 2001; Hernén, 2004; Herndn et al., 2004) such frameworks are not
very widely adopted in general and in particular, are not reflected in the
Mendelian randomisation literature at all.

The purpose of this article is to show that a formal, mathematically pre-
cise, causal framework is required for Mendelian randomisation applications.
It is necessary, firstly, to state precisely what the quantity (parameter) of
interest is (e.g. the amount by which CHD risk is reduced from adding folate
to flour) and secondly, to formalise how associational findings and causal
implications are related in order to obtain an estimate for this particular
parameter. Failure to adopt a formal approach has led to misconceptions
in the medical literature.

literature, but note that this is not a randomisation by study design and hence not fully
comparable to a RCT. It has been suggested that ‘Mendelian deconfounding’ would be
a better term (Tobin et al., 2004).



2 A Formal Language for Causality

The medical literature often employs causal vocabulary loosely to express
something that is more than association between potential risk factors and
their effects. Underlying knowledge about the biology of the problem may
indeed allow one to deduce the direction of an observed association and
“causal pathways” for disease are familiar terms in the epidemiological lit-
erature (see Stanley et al. (2000) for example). The central argument in the
present paper is that it is imperative to formally differentiate, with appro-
priate mathematical notation, between association and causation in order
to be explicit about what can be inferred about causality from an observa-
tional study. Even the term “causal effect” is used loosely in practice and
can mean different things in different settings. We present three approaches
to defining a formal language for causality, each of which uses specific math-
ematical notation to represent that we are interested in interventions such
as the public health intervention of adding folic acid (folate) to flour.

2.1 Interventions

As in Pearl (1995); Lauritzen (2000); Dawid (2002, 2003) we regard causal
inference to be about the effect of intervening in a given system. For the
applications we are considering, this would typically be the motivation for
investigating a causal effect. There are many other notions of causality
such as used in a courtroom for retrospective assignment of guilt, but we
will not consider any other interpretations here. Let X be the cause under
investigation and Y the response. In epidemiological applications, X would
be the intermediate phenotype (homocysteine level) and and Y would be the
disease status (CHD). We focus on the question of whether intervening on
X has an effect on Y. By intervening on X, we mean that we can set X (or
more generally its distribution) to any value we choose without affecting the
distributions of the remaining variables in the system other than through
the resulting changes in X. This is clearly an idealistic situation and not
always easily justified for the examples of public health interventions given
above. For example, increasing dietary folate will not determine a specific
homocysteine level. However, a causal analysis can be used to generate
hypotheses that can afterwards be investigated by controlled randomised
trials where applicable. Moreover, if a risk factor is found to be causal in
the above sense, different types of intervention can then be explored.

2.2 Three Definitions of Causal effect

Roughly speaking, the causal effect contrasts the effects of different inter-
ventions in X on the outcome Y, in some sense or another. We will now
present three different approaches to doing this.
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Pearl’s do(-) Operator

Pearl (2000) suggests the notation P(Y|do(X = z)) to distinguish between
conditioning on intervention in X and ‘ordinary’ observational conditioning
P(Y|X = z) which is sometimes denoted by P(Y|see(X = x)) to make the
distinction clearer. The former reflects how the distribution of Y should
be modified given the information that X has been ‘forced’ to take on
the value x by some external intervention, whereas the latter reflects how
the distribution of Y should be modified when we have simply observed
X = z. The average causal effect (ACFE) is then defined as the difference
in expectations under different settings of X:

ACE(z1,22) = E(Y|do(X = 1)) — E(Y|do(X = x3)) (1.1)

where x5 is often chosen to represent some baseline value. In particular, X
is regarded as causal for Y if the average causal effect (1.1) is non-zero for
some values x1, s with x1 # 9.

Regime Indicators

This approach goes back to Pearl (1993) and has been further advocated
by Lauritzen (2000); Dawid (2002, 2003); Dawid and Didelez (2005). It is
based on an indicator Fx assuming values in X U () with Fix = z if X is
being set to the value x by external intervention and Fx = @ (or ‘Fix is
idle’) indicates that X is allowed to arise ‘naturally’. Observe that

PY|do(X =z))=PY|X =z,Fx =x)

and
P(Y|see(X =x)) = P(Y|X ==z,Fx =0).

Due to the deterministic relationship between F'x = z and X we have that
P(Y|X = z,Fx =z) = P(Y|Fx = z), or that X is independent of any
other variable given Fx = x.2 The advantage of including an intervention
indicator like F'x is that the intervention is made explicit and, as we will see
later, can be represented visually in a graph. Besides, while the properties
of the do() operator need to be formulated in separate ‘axioms’ (see Pearl,
2000, Section 3.4), Fx can be treated as a decision variable that is con-
ditioned on and the properties of conditional independence can be applied
(Dawid, 1979) to yield Pearl’s axioms. In this context it should be noted
that because Fx is a decision variable, it must always be in the conditioning
set of a conditional probability, and when we write Y L F'x|X, for example,

2Note that regime indicators can also be used for non-deterministic, i.e. random
regimes, where the value to be assigned is drawn from a distribution. We do not go
into more details here, but see Dawid and Didelez (2005).



we mean that P(Y|X =2, Fx =0) = P(Y|X =2, Fx =) for all z € X.
This intervention variable also permits generalisation of causal inference to
other types of intervention. For instance, interventions in X that depend
on variables that have been observed before the intervention took place can
be considered to reflect, for example, that the dosage of a drug should be
different for different sexes and age groups. In such more general situations
the type of intervention would be specified via the conditional distribution
P(X|C, Fx) where C represents some covariates that are taken into account
by the intervention. Conditional interventions such as these are difficult to
describe with the do(-) operator.

It is straightforward to reformulate the ACF using the regime indicator:

Counterfactuals

A philosophically quite different approach to causality is based on counter-
factual variables (Neyman, 1923; Rubin, 1974, 1978; Robins, 1989) Here,
Y., represents the outcome if a subject is set to the value X = x; whereas
Y., is the outcome if the same subject is set to the value X = x4. The vari-
ables are counterfactual because they can never both be observed together.
With this notation one may define the individual causal effect (ICE) as

ICE(x1,22) =Yy, — Y, (1.3)
The ACE is now expressed as
ACE(z1,22) = E(Yy —Ya,). (1.4)

Since this can be rewritten as E(Y,, ) — F(Y;,) we can see that under certain
assumptions we do not need to observe Y,,, and Y, together in order to make
inference about the average causal effect.

In epidemiological applications, the IC'E would represent the difference,
say, in CHD status of an individual who starts off with high homocysteine
levels as opposed to the same individual starting off with low levels, were
both observable at the same time. This example demonstrates that, even
though it might appear that counterfactuals do not require explicit specifi-
cation of an intervention, they are only well defined when an intervention is
implicit. How could the homocysteine level of a given individual be different
from what it actually was? (See Herndn (2004) for further discussion.) Ide-
ally, the risk factor (or potential cause), X, should be a variable on which
subjects could be randomised (Rubin, 1974). Hence, all three approaches
are only meaningful in the context of interventions that are actually fea-
sible. The implications, for our purposes, are that some concrete public
health intervention should be aimed at.
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Comments

One could argue informally that the intervention distribution P(Y|do(X =
z)), or P(Y|Fx = x), corresponds to the distribution of the counterfactual
Y., but we recommend some caution against this as Y under do(X = z) is
still not the same thing as Y,. In the case of the former, P(Y|Fx = x), we
consider one variable Y describing the outcome of interest, the distribution
of which has to be modified according to what we condition on. In the
case of the counterfactual, Y,, we consider a number of potential outcome
variables in parallel that have possibly different distributions and, in partic-
ular, have a joint distribution. In addition, we note that the IC'E being a
comparison between two values rather than two distributions, does not have
a counterpart in the other two frameworks. We will not give any further
consideration to the IC'E here as it represents a quantity that can never be
observed, even in principle. Methods that claim to identify the ICE typi-
cally make strong untestable assumptions. Furthermore, it would seem that
while the ACE is of obvious public health interest, the IC' E might be more
of medical/clinical interest. However, our aim is not to discuss the advan-
tages and disadvantages of the three approaches. (For further discussion,
see Dawid (2000) and the discussion of that paper, and also Dawid (2007)
in this volume.) We wish, rather, to point out that such formal frameworks
for causal inference exist and should be used more widely in epidemiological
reasoning, especially for Mendelian randomisation applications. We would
like to emphasise that it is neither possible to express the desired aim nor
quantify the effect of a public health intervention with the “usual” condi-
tional probabilities as the intervention creates a situation that is different
from the purely observational one. Some additional ‘ingredient’ is required
to clarify that a public health intervention will be applied to everyone (in
a targeted population) and that inferences about this new situation are of
interest. Only if this distinction is clearly made, can we work out the pre-
cise conditions that will allow such inference from the available data. We
will mainly use the approach that includes an intervention indicator F'x
but will also demonstrate how some things can be expressed in the other
frameworks.

2.3 Identifiability

A causal parameter is identifiable if we can show that it can be estimated
consistently from data under the conditions of how those data were obtained
(e.g. randomised trial, case-control study, cohort study etc.). Mathemati-
cally, this amounts to being able to express the parameter in terms that
do not involve the intervention (i.e. without do(-), Fx or counterfactuals)
by using ‘observational’ terms only. These can then be estimated from



data. As noted earlier and detailed in the following section, the distribution
under intervention is not necessarily the same as the observational distri-
bution because of confounding, for example. In cases when confounding
is well understood, it can be shown that the intervention distribution can
mathematically be re-expressed in observational terms and can hence be
estimated from the observed data by adjusting for certain variables (Sec-
tion 3.2) (Pearl, 1995, 2000; Lauritzen, 2000; Dawid, 2002). The instrumen-
tal variable technique on which Mendelian randomisation is based, permits
a different way of identifying causal parameters when the confounding is
poorly understood.

3 The Issue of Confounding

Inferring causality from observational data is complicated by problems that
may induce different types of bias. Here, we focus on the problem of con-
founding, as this is what Mendelian randomisation attempts to circumvent,
and show how at least some of the concepts can be formally clarified.

3.1 What is Confounding?

We will not attempt to provide a formal definition of confounding here. This
issue is addressed in almost every textbook on epidemiology with varying
degree of clarity (see Rothman and Greenland (1998), for example, and for
a discussion within the framework of causal graphs see Pearl (2000), chapter
6). We will, however, highlight a few central aspects that will be relevant
later.

Confounding could be said to be present whenever P(Y|X =z, Fix = 0)
is not equal to P(Y|Fx = z) or similarly if P(Y|X = x) is not P(Y,).
This dual notation reflects the common phrase “correlation is not causa-
tion”. The well known implication is that a typical model for the regression
of Y on X does not necessarily give us any information about the ACE.
However, this problem could also be due to reverse causation or time trends
which are typically not regarded as confounding but as separate mechanisms
inducing bias. A common explanation of confounding is that there exists
a variable (or set of variables) C that ‘affects’ both X and Y. As is well
understood in epidemiology (Weinberg, 1993), a crucial implication is that
C is not “on the causal pathway” between X and Y. This is important
since we do not want to adjust for such variables as the true effect of X on
Y could be hidden. Apart from being quite vague, such a requirement is
difficult if not impossible to verify from observational data and conditional
(in)dependencies since no testable implications arise in either scenario and
all variables could be mutually dependent.

Our causal framework allows a formal definition of the requirement that
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C should not be “on the causal pathway” as follows:
ClLFx (1.5)

i.e. C is not affected by whether or not we intervene in X. This amounts to
saying that we expect the marginal distribution of C' to be the same in an
observational study as in an RCT, for instance, where X has been randomly
allocated. In the counterfactual framework the condition analogous to (1.5)
is that there is no counterfactual version of C (i.e. there are no C,, and
Cy,), which implies that it is not affected by an intervention in X (see
Dawid’s contribution in this volume).

It is perhaps helpful at this point to demonstrate why P(Y|X = z, Fx = ()
and P(Y|Fx = x) are not necessarily the same in the presence of confound-
ing — and with the notion of interventions this can easily be formalised.
Consider the above situation where C' satisfies (1.5). Since

we have from (1.5) that P(C|Fx) = P(C). Furthermore, under interven-
tion, Fx = x, we have that P(X = 2/|C, Fx = z) = 1{z' = z}, where 1{-}
denotes the indicator function. Hence

PY,X =z,C|Fx =z) = PY|X =u1,C,Fx =z)P(C), and
P(Y,X =2/,C|Fx =z) = 0, whenever z’ # x.

On the other hand, under the observational regime, F'x = (),
PY,X,C|Fx =0)=PY|X,C,Fx =0)P(X|C, Fx =0)P(C).

Even if we are willing to assume that P(Y|X =2,C,Fx =z) = P(Y|X =
z,C, Fx = 0) (i.e. that Y L Fx|(X, C)), we can see immediately that the two
expressions differ by the factor P(X|C, Fix = 0). This factor reflects that in
the observational case, X is informative for C' whereas in the intervention
case it is not, and this can induce bias if C is predictive for Y. This is crucial
to the understanding of the difference between the intervention situation
that we are interested in for causal inference, and the observational situation
that the data represent.

3.2 Adjusting for Confounding

Confounding can be described in a purely operational manner by showing
how one can adjust, or control, for it. Consider a variable, or set of variables
C, such that

(i) CLFx,ie. Cis “not on the causal pathway”, and
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(i) YLFx|(X,C), i.e. once we know C' and X the distribution of Y is
independent of how X was generated.

Then C is called ‘a sufficient set of covariates’ for identifying the ACE
(Dawid, in this volume, calls it an ‘unconfounder’). More precisely, we can
show the following:

P(Y =y|Fx =) :ZP(Y:y|C:c,Fx =2)P(C =c|Fx =x)

QS P =y|X =2,0 = ¢ Fx = 2)P(C = [ Fx =)

@ S P(Y =X =2,C=c Fx =0)P(C = |Fx =0) (L6)

(Pearl, 1995; Dawid, 2002). Now all quantities are observational and the
ACE can be calculated by substituting x; and s, i.e. the causal effect is
identifiable from data on X, C,Y on imposition of an additional positivity
condition (Dawid, 2002).

Within the counterfactual framework, the corresponding assumptions
are:

(i*) X 1Y|C, the “no—unmeasured confounder” assumption, and
(ii*) Yy =Y if X = z, the “consistency” assumption.

The distribution of Y, can then be identified as
P(Y,=y) = Y PYo=y|C=c)P(C=0)
Y NP, =yl X = 2,0 = )P(C =)

() ZP(Y =yl X =2,C=c)P(C =c),

where again, all distributions in the last line are ‘counterfactual-free’ and
can hence be estimated from observational data.

Comments

We would like to point out that it is important to state explicitly the con-
ditions that enable adjustment for confounding and that, as before, this
requires a formal framework for interventions: otherwise it is difficult to
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express why the adjustment (1.6) gives us a desirable quantity. The con-
ditions (i) and (ii) (or (i*) and (ii*)) state precisely what is required to
connect the observational data situation to the interventional situation that
we are actually interested in. If we do adjust for confounding in the above
way we have to justify these conditions based on background knowledge or
prior studies for any given data situation. In addition, we need to be able
to identify, observe and measure a sufficient set C' in a way that ensures
that these conditions are satisfied. In practice this may be very difficult;
there are many ways to measure smoking behaviour or alcohol intake, for
example, and such factors are prone to measurement error and recording
bias.

3.3 Confounding in Linear Models

We now address a very popular class of models, linear models without in-
teractions. The assumption of such a model class means that very strong
restrictions regarding the shape of (causal) relations are imposed. In prac-
tice, these are often not justifiable, but some of the basic concepts explained
so far can be illustrated within this simplistic setting. In the following, omis-
sion of F'x from the conditioning set implies Fx = 0.

Assume that Y is continuous and that the causal dependence of Y on X
is linear (possibly after suitable transformations), i.e.

EY|Fx =z) = a+ fz.

In this case, the average causal effect is 3(x1 — 22) and can be summarised
simply by g which is now interpreted as the average effect on Y of increas-
ing X by one unit through some intervention. Similarly, we can make the
assumption that E(Y;) = o + Sz and obtain the same ACFE in the coun-
terfactual framework. In contrast, a standard linear regression models

EY|X =2,Fx =0)=a+ fz

and there is a priori no reason to assume that B = [ as discussed in previ-
ous sections. In rare cases one may be able to justify Y L Fx | X implying
E(Y|X =2,Fx =0) = E(Y|X = 2, Fx = z) so that in this case 3 =
holds. However, this relation usually cannot be assumed in the presence of
confounding and the following adjustment is necessary.

Now assume the situation where we include an additional variable (or set
of variables) C' to adjust for confounding, i.e. C'is not on the causal pathway
in the sense of (i) and also satisfies (ii). We still assume linear models for
all (observational) relationships:

EY|X=2C=c¢) = a+piz+pxc and
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(1.7)
E(X|C=¢) = 7v+dc
with both X and Y having constant (possibly different) conditional vari-

ances. In addition we assume that the first expectation is the same if we
intervene in X:

E(Y|C=c¢,Fx =2)=a+ iz + Bac.

This reflects assumption (ii): given X and C, the distribution of Y, and
hence its expectation, is the same regardless of how X was generated. From
the above, we have that

E(Y|FX = CC) = Ec|FX:zE(Y|C, FX = CC)
EcE(Y|C,Fx = )

= a+fir+ fapc

= a* +611‘5

where po = E(C) and using obvious notation for iterated conditional ex-
pectation. Hence
ACE(.’L‘l,mg) = ﬁl(l‘l - CCQ)

and so (31 is the causal parameter of interest.

A regression of Y on X alone corresponds to
EY|X =2,Fx =0) = E¢|x=arx=0EY|X =2,C, Fx =10)
= a+ bz + Bepo)e
where pcj, = E(C|X =z, Fx = () is typically not constant in z and, in
particular, is not equal to uc due to the dependence between X and C in
the observational regime. Hence 3; cannot be identified from a regression

of Y on X alone. However, as we have assumed that C is sufficient for
adjustment we can use our adjustment formula (1.6) to obtain

E(Y[Fx =2) = » E(Y|X=2,C=c¢)P(C=c)

= > (a+ Bz + fac)P(C =c)

c

= a+ fix+ Bapc

as desired. Hence, if we have data on X,Y and C' we can estimate 3; from
a linear regression of Y on X and C.
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Note that if X is binary the ACE is unique (up to its sign) given by
ACE(1,0) but in the more general cases of more than two categories of
X and/or nonlinear dependency the average causal effect is not necessarily
summarised by a single parameter.

4 Formal Graphical Representation

It is useful to introduce a formal graphical representation so that existing
substantive background knowledge can be formally encoded and conditions
such as (i) and (ii) can be verified visually. We use directed acyclic graphs
(DAGsS) to represent conditional independencies among a set of joint vari-
ables in the following way. A graph is denoted by G and consists of nodes
and directed edges. Every node of the graph represents a variable and these
can be linked by directed edges which we represent by arrows (—). If
a — b we say that a is a parent of b and b is a child of a. If a — -+ — b
then a is an ancestor of b and b is a descendant of a. A cycle occurs when a
node a is its own ancestor or descendant meaning that there exists an unbro-
ken sequence of directed edges leading from a back to itself. DAGs have no
such cycles. All the conditional independencies represented in the graph can
be derived from the Markov properties of the graph by which every node is
independent of all its non-descendants given its parents ((Pearl, 1988; Cow-
ell et al., 1999)). Furthermore, these Markov properties are equivalent to a
factorisation of the joint distribution. By this we mean that if X;,..., Xk
are the variables represented by the nodes of the graph and pa(i) denotes
the set of parents of X; in the graph, the above Markov properties hold if
and only if

K
P(Xy,..., Xk) = [[ P(Xi| Xpagi))- (1.8)

i=1

Some of the nodes can be decision variables, but these would typically not
have any parents and would always be conditioned on. Also note that the
requirement that the distribution of X given Fx = z be degenerate at z
(z # ) is not explicitly displayed in the graph and still has to be introduced
as an implicit, externally specified, constraint (Dawid, 2002).

The graph in Figure 1.1 represents a situation where the assumptions
(i) and (ii) of Section 3.2 are satisfied and the ACE can be identified by
adjusting for C. We can see that C' L F'x because they are non—descendants
of each other and have no parents and Y L Fix|(X, C) because Fx is a non—
descendant of Y and (X, C) are the parents of Y. The graph induces the
following factorisation

P(Y,X,C|Fx) = P(Y|X,C)P(X|C,Fx)P(C).



14

Fx

X = Y

Figure 1.1. A situation where the set C' is sufficient for identification of the
ACE.

Depending on what value Fx takes, the distribution P(X|C, Fx) is either
observational or a one—point distribution on the value z. In order to read off
the other conditional independencies that are implicit in the factorisation,
we can use either the moralisation criterion (Lauritzen et al., 1990; Cow-
ell et al., 1999) or alternatively, the method of d—separation (Pearl, 1988;
Verma and Pearl, 1990). The former constructs an undirected (moral) graph
g™ such that conditional independencies correspond to path separation in
this undirected graph. The moral graph is constructed by adding an undi-
rected edge between any two unconnected parents of a common child and
removing the directions from all remaining edges. Any separation in the re-
sulting undirected graph corresponds to a conditional independence in the
underlying probabilistic model, where we say that “C separates A and B”
if every (undirected) path between A and B contains nodes in C'. These
could equivalently be derived from the factorisation (1.8) but the graphical
manipulations are often easier to carry out than the algebraic ones.

Y
g gm

Figure 1.2. A graph G and corresponding moral graph G™ where C is not
sufficient to identify the causal effect.

Consider the example in Figure 1.2. In such a situation, C' is not sufficient
to identify the causal effect as can be seen from the moral graph on the
right: Y and Fx are not separated by {X, C} because there is a path Y—
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U—Fx linking them. Hence the condition Y L Fx|(X,C) is not satisfied.
However, the conditions Y L Fx|(X,C,U) and (C,U)LFx hold implying
that if U were observable, an adjustment with regard to both (U, C') would
be possible and yield valid causal inference.

Figure 1.3, on the other hand, depicts a situation where each of C or D
alone is sufficient for adjustment. Here we have that C L Fx and D1 Fx,
as the two variables in each statement are non—descendants of each other,
and both Y L Fx|(X,C) and Y L Fx|(X, D), as can be seen from the cor-
responding moral graph G". This situation illustrates the claim by Dawid
(2002) that we do not need to adjust for ‘all confounders’ in the following
sense. According to standard definitions of confounding that do not use a
formal causal framework, each of C' and D in Figure 1.3 are confounders in
that they are not ‘on the causal pathway’ and they are both ‘affecting” X
and predicting Y. However, as we have shown, it is sufficient to adjust for
only one of them in order to estimate the ACE..

L L

g gm

[

Figure 1.3. A graph G and corresponding moral graph G indicating that
C or D are each on their own sufficient for adjustment.

5 Mendelian Randomisation

‘Mendelian randomisation’ denotes the random assortment of genes from
parents to offspring that occurs during gamete formation and conception.
This ‘randomness’ can be exploited to test for, or estimate, the causal effect
of an intermediate phenotype that has a genetic component on a disease
in situations where confounding between the phenotype and the disease
status is believed to be likely and is not fully understood (Davey Smith and
Ebrahim, 2003; Katan, 2004; Thomas and Conti, 2004). There are other
uses of the method including the provision of information about alternative
biological pathways to a disease (Davey Smith and Ebrahim, 2004; Davey
Smith et al., 2005). However, our focus here will be on its use to test for
and estimate the causal effect of an intermediate phenotype on a disease in
order to inform public health interventions.
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5.1 The Basic Idea

The notion of Mendelian randomisation that we will use derives from an
idea put forth by Katan (1986). In the mid-1980s, there was much debate
over the direction of an observed association between low serum cholesterol
levels and cancer. The hypothesis of interest was that low serum cholesterol
increases the risk of cancer but it is also plausible that hidden tumours lower
cholesterol in future cancer patients or other lifestyle factors affect both
cholesterol levels and cancer risk. (Katan, 2004). Katan noted that people
with the rare genetic disease abetalipoproteinaemia, resulting in extremely
low serum cholesterol levels, do not seem especially predisposed to getting
cancer prematurely. It was known that the apolipoprotein E (APOE) gene
is associated with cholesterol levels and that the E2 allele relates to lower
levels than either E3 or E4. Crucially, by Mendel’s Second Law (the law
of assortment), E2 carriers should be no different from other genotypes in
socioeconomic position, lifestyle and all other respects (this can be violated
for various reasons and should always be checked in the light of background
knowledge). Katan reasoned that if low serum cholesterol level is really a
risk factor for cancer, then patients should have more E2 alleles and controls
should have more E3 and E4 alleles. Otherwise, APOE alleles should be
equally distributed across both groups.

The causality of the low cholesterol-cancer association was disproved by
the subsequent large statin trials primarily concerned with the effects of high
cholesterol levels on CHD risk (Scandinavian Simvastin Survival Study (4S),
1994; Heart Protection Study Collaborative Group, 2002), but the idea has
been applied several times since and is what is now understood as Mendelian
randomisation in the epidemiological literature. Katan’s original idea was
centred around hypothesis testing to confirm or disprove causality but the
method is also used to estimate the size of the effect of the phenotype on the
disease (Minelli et al., 2004) and, indeed, to compare this estimate with that
obtained from observational studies in order to assess the extent to which
confounding has been accounted for. Essentially, this approach exploits the
idea that a genotype affecting the phenotype of interest, and thus indirectly
affecting the disease status, is assigned randomly at meiosis, given the par-
ents’ genotype, independently of any possible confounding factors. It is well
known in the econometrics and causal literatures (Bowden and Turkington,
1984) that these properties define an instrumental variable but additional
fairly strong assumptions are required for unique identification of the causal
effect of the phenotype on the disease status. These additional assumptions
can take the form of linearity and additivity assumptions for all dependen-
cies, as are typically assumed in econometrics applications but could also be
assumptions about the compliance behaviour of subjects under study, as are
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often made in the context of randomised trials with incomplete compliance
(Angrist et al., 1996),

5.2 Instrumental Variables

We will present the basic properties that characterise an instrumental vari-
able in terms of conditional independence statements. These conditions have
been given in many different forms, using intervention indicators (Dawid,
2003) or counterfactuals (Greenland, 2000; Angrist et al., 1996; Robins,
1997) or linear structural equations (Goldberger, 1972; Pearl, 2000) and a
comparison of some of these can be found in Galles and Pearl (1998). The
conditions we give below are common to most instrumental variable meth-
ods but on their own they do not necessarily allow for identification of the
ACE as we will discuss more fully in the following sections. For now, we
will focus on these core assumptions and illustrate their meaning.

Core Conditions

Let X and Y be defined as above with the causal effect of X (e.g. homo-
cysteine level) on Y (e.g. CHD) being of primary interest and Fx being the
intervention indicator. Furthermore, let G be the variable that we want to
use as the instrument (the MTHFR genotype in our case).

The following ‘core conditions’ that G has to satisfy (e.g. Greenland
(2000); Dawid (2003)) assume the existence of a concrete, although pos-
sibly unobservable, variable (or set of variables) U3 such that, under the
observational regime i.e. under Fxy = (),

1. GAU, ie. G must be (marginally) independent of U;
2. GV X, ie. G must not be (marginally) independent of X; and

3. YA1G | (X,U), i.e. conditionally on X and U, the instrument and the
response are independent.

These alone do not allow us to infer anything about the intervention situ-
ation, i.e. about quantities under F'x = x. Hence, we need to supplement
them with suitable further assumptions. We note that such extra assump-
tions are only implicit in the counterfactual approach of Greenland (2000)
and also that of Pearl (2000). To motivate these additional assumptions,
note that the conditional independencies of condition 1 and 3 are equivalent

3Note that Dawid (2003) points out that “there is no compelling reason to posit the
existence of such an unobserved variable. To make this assumption is to say something
non—trivial about how the world is. And even if it can be assumed to exist, there is no
reason why the variable U should be essentially unique.”
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to the factorisation

P(Y,X,U,G|Fx =0) =
P(Y|X,U,Fx =0)P(X|U,G,Fx = 0)P(U|Fx = 0)P(G|Fx = 0).

We now assume that if we change to the interventional setting, only the
factor P(X|U,G, Fx = () changes to P(X = 2'|U,G, Fx = z) = I{z' =z}
while the other terms remain the same. This reflects the crucial assumption
that an intervention in X is possible without affecting the generation of the
remaining variables in the system. Clearly, this would be quite idealistic in
many circumstances. More formally it means that our intervention is such
that

(G,U)LFx and Y LFx|(X,U) (1.9)

i.e. G and U are ‘not on the causal pathway’ from X to Y, and U would be
sufficient for identifying the causal effect by adjustment if it were observ-
able. As it is not we might call it a sufficient concomitant (Dawid, 2003).
The distribution under intervention in X hence satisfies the following fac-
torisation,

P(Y, X = 2,U,G|Fx =) =

where P(Y, X = 2/, U,G|Fx =) =0if 2/ # 2.4

Just as in the case of the assumptions required for confounder adjustment
(Section 3.2), these conditions essentially have to be justified by subject
matter background knowledge. Conditions 1 — 3 could be tested if U were
observed, but otherwise they do not imply any testable independencies re-
garding the instrument G. In particular, they do not imply that G and Y
are independent either marginally or conditionally on X alone (as has been
assumed by Thomas and Conti (2004); Thompson et al. (2003) and implied
by Foster (1997)). Moreover, conditions (1.9) must also be justified by back-
ground knowledge and will depend on what kind of actual intervention is
being contemplated. Of course, U can be empty indicating that there is no
need to adjust for confounding and hence no need to use an instrumental
variable if X and Y can be simultaneously observed.

The typical Mendelian randomisation setting, where G corresponds to the
genotype for phenotype X usually provides very detailed biological back-
ground knowledge to verify conditions 1 — 3. We know that genes are

40One could tentatively formulate alternative conditions to 1 — 3 avoiding the assump-
tion of the existence of such a U as: 1A. GLFx, 2A. GY X, 3A. YLG|Fx = . This
has not been considered yet, but see Pearl (2000, p.248).
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randomly assigned at meiosis and can therefore be reasonably assumed not
to be associated with anything concerning lifestyle factors confounding the
relationship between X and Y, thus supporting condition 1. Condition 2 is
typically verified by the fact that we only use genes with well-understood bi-
ological function in these applications and likewise, the biology can also help
to exclude the possibility that G is affected by X (reverse causation), al-
though the direction of this association is not crucial. Likewise, the existence
of alternative biological pathways between G and Y other than through X
can often be ruled out thus supporting condition 3. The assumption that
we can intervene in the phenotype, setting it to a fixed value so that none
of the other variables are affected, is generally more problematic in terms
of justification.

Graphical Representation
(a) (b)
G X X Y
g gm

Figure 1.4. A graph G and corresponding moral graph G™ indicating that
the core conditions for G to be an instrument are satisfied.

Figure 1.4 (a) shows a DAG involving G, X, Y and U that satisfies the
core conditions 1 — 3, where the moral graph (b) in particular shows that
condition 3 holds as Y and G are separated by (X,U) despite the moral
edges that have to be added. In addition, by including the node Fx in
the way shown, we ensure (1.9). The conditional independence restrictions
imposed by the graph in Figure 1.4 (a) are equivalent to a factorisation of
the joint density in the following way:

P(Y,X,U,G|Fx) = P(Y|U,X)P(X|U,G, Fx)P(U)P(G).  (1.10)

From this, or from the moral graph in Figure 1.4 (b), it can be seen (by
integrating out Y and conditioning on X) that G/ U|(X, Fx = 0), for in-
stance. Similarly, by integrating out X and conditioning on Y, we have that
GY U|(Y, Fx = 0) despite P(G,U) = P(G)P(U) (under either, Fx = x or
Fx = (). This is the so—called selection effect whereby two variables such as
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G and U, which are marginally independent, may become dependent once
we condition on a common descendant. The selection effect is particularly
relevant to case—control data when everything is conditional on the outcome
Y. Hence the additional (moral) edge between G and U in the moral graph.

5.3 Linear No—Interaction Models

As mentioned above, the core conditions of Section 5.2 alone are not suffi-
cient to allow us to obtain the causal effect in the presence of confounding
for which we cannot adjust. More assumptions have to be made, typically
with regard to the parametric shape of the relationships amongst the vari-
ables. In this section we continue with the simplistic situation described in
Section 3.3 where a potential confounder is added, but this time we call it
U to emphasise that it is unobservable.

As in Section 3.3 (with U replacing C'), our model assumptions are that
UL Fx,ie. we assume (1.9), which as explained earlier (cf. equation (1.5))
can be regarded as stating that U is not on the “causal pathway” from X
to Y, and

EYX=2,U=u,Fx=0) = a+p0iz+pFu and
E(X|G=g,U=u,Fx =0) v + 619 + Sau.

In addition we assume that the first expectation is the same if we intervene
in X i.e.
E(Y|U =u,Fx =) =a+ B17 + Bau.

reflecting assumption (1.9), i.e. that Y L Fx|(X,U). As before, f; is the
causal parameter of interest here.

As we cannot adjust for U and a regression of ¥ on X alone does not
yield the correct parameter (as shown in Section 3.3), we instead consider a
regression of Y on G alone based on observational data, i.e. under F'x = ()
(omitted from the conditioning sets below for brevity). This corresponds to

EY|G=g) = Exuc=LY|X,UG=g)
Eyia—gEx .- E(Y|X,U) since Y LG|(X,U) by 3
EuExu,a=¢E(Y|X,U) since ULG by 1
Ey(a+ pi(y+ 019+ 62U) + B2U)
= a+ By + pio1g + (Bid2 + B2)uu
o 4 B1019.

Hence, the coefficient of G in a regression of Y on G is 319;.
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Furthermore, a regression of X on G alone based on observational data
corresponds to
E(X|G=yg) = Eye=gE(X|G=yg,U)
= 7+ g+ d2pu,

so the coeflicient of G in this regression is ;. Thus the causal parameter
of interest, 31, can be estimated consistently from the ratio of these two
regression coefficients where the requirement d; # 0 is ensured by core
condition 2. Note that the previous argument and model assumptions can
easily be generalised to the case where X and G are binary. The case where
Y is binary is more difficult and addressed below.

We should emphasise that, given that we are using the IV approach in
the first place because confounding is not sufficiently understood, it seems
unrealistic to believe that one would be willing to make such strong assump-
tions about U as are required for the above, in particular with regard to the
parametric shape of the dependence of Y on U. Note that generalisations
to the non—linear case have been developed in the econometrics literature
but cannot necessarily be used for the present purpose as they are often
targeted at situations with measurement errors (Amemiya, 1974; Hansen
and Singleton, 1982).

5.4 More Realistic Situations

The instrumental variable approach for linear models without interactions
as described above is well known from econometric theory. However, it
is only of limited value for typical epidemiological applications where the
primary aim of an investigation into the causal effect of a risk factor on a
disease is to inform public health interventions. Firstly, the response Y is
often a binary variable. Secondly, the data often arise from case—control
studies with retrospective sampling (i.e. conditional on Y). Based on the
above framework for causal inference we have shown (Didelez and Sheehan,
2005) that:

e If the core conditions 1 — 3 are satisfied, a test for no causal effect
of the intermediate phenotype on the disease can be performed by
testing that Y L G, regardless of whether the data have been collected
retrospectively and regardless of how the relevant variables have been
measured. This was in fact the original idea of Katan (1986).

e If G, X and Y are all binary, the well-known ratio estimate derived
in Section 5.3 cannot be applied. In fact, it is not straightforward



22

to even specify the causal parameter in the latter case and the case-
control scenario is further complicated by the fact that only odds ratios
can be used. This has often been overlooked in the epidemiological
literature.

Instead, bounds for the ACE can be derived as in Robins (1989);
Manski (1990); Balke and Pearl (1994); Lauritzen (2000) and without
assumptions about counterfactuals as in Dawid (2003). These can
be modified to account for the case—control situation when gene fre-
quencies P(G) are available (Didelez and Sheehan, 2005) and can also
be used as a rough test to rule out poor instruments. (Pearl, 2000)
The calculations become computationally expensive when some vari-
ables have more than two categories and are intractable for continuous
variables.

e An approximate check for confounding can be carried out when Y is
binary and X continuous as in many epidemiological applications.

5.5 Problems with Mendelian Randomisation

The limitations of Mendelian randomisation, from the perspective of compli-
cating features leading to poor estimation of the required genotype-phenotype
and genotype-disease associations, have been discussed in detail in several
places in the literature (Davey Smith and Ebrahim, 2003, 2004; Thomas
and Conti, 2004; Davey Smith et al., 2005; Nitsch et al., 2006). However,
existing approaches to testing and estimating the causal effect have not
been formally challenged. Background knowledge is always required to ver-
ify untestable assumptions in order to make causal inferences. Mendelian
randomisation applications have an advantage in that substantial biological
background information can frequently be exploited in order to check that a
particular genotype satisfies the conditions for an instrumental variable. It
is unlikely that our simple model of Figure 1.4 will pertain, in practice. The
common complex diseases that are of most interest from a public health per-
spective are generally multifactorial in nature and the definition of disease
outcome itself is often ambiguous. As before, we can use directed acyclic
graphs to represent the conditional dependencies that we believe are im-
plied by the underlying biology and check the core conditions visually. We
will illustrate this with a few examples below. Note however that, even if
the core conditions would appear to be satisfied, the additional parametric
assumptions that permit estimation of the causal effect of interest may not
be justifiable.

Linkage disequilibrium refers to an association between alleles at differ-
ent loci across the population and can be due either to tight linkage (i.e.
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Figure 1.5. The instrument G, is in linkage disequilibrium with G5 influ-
encing Y, directly as in (a), or influences Y indirectly via the confounder
U, as in (b).

because the loci are physically close on the chromosome and thus tend to be
inherited together) or to other reasons such as natural selection, assortative
mating, and migration, for example Lynch and Walsh (1998). If our chosen
instrument G is in linkage disequilibrium with another gene G5 which has a
direct influence on the disease Y, condition 3, Y LG1|(X,U), might be vio-
lated as shown in Figure 1.5 (a). If G5 affects Y indirectly via a route other
than through X, (Figure 1.5 (b)), condition 1, GLU might be violated.
Note that even if the conditions appear to hold, linkage disequilibrium can
cause attenuation of the genotype—phenotype association leading to poor
inference.

Pleiotropy is the phenomenon whereby a single gene may influence several
traits. If the chosen instrument G is associated with another intermediate
phenotype which is also associated with the disease Y (Figure 1.6 (a)),
condition 3 Y LG|(X1,U), is again violated. As before, the association
of Xy with Y can also be via U (e.g. pleiotropic effects might influence
consumption of tobacco or alcohol, for example) to violate condition 1 as in
Figure 1.6 (b).
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Figure 1.6. G has pleiotropic effects X7 and X3 where (a) both have a direct
effect on the outcome Y of interest, or (b) X; has a direct effect but X has
an indirect effect via the confounder U.

(b)

Figure 1.7. Two examples of population stratification where one of the
conditions for G' to be an instrument is violated (a) and all conditions are
satisfied (b).
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Population Stratification, referring to the co—existence of different disease
rates and allele frequencies within subgroups of individuals, could lead to
an association between the two at the population level which in turn can
result in confounding of the genotype-disease association. That the disease
rates and allele frequencies are different for different population strata is
represented in Figure 1.7 (a) by the arrows from P into G as well as into
Y. We see from this graph that condition 3, Y L G4|(X,U), is again vio-
lated: we need to condition on the population subgroup as well. However,
if population stratification causes an association between allele frequencies
and phenotype levels, as in Figure 1.7 (b), all conditions for G to be an
instrument are still satisfied, and, in this situation, the G — X association
may in fact be strengthened, as a result.

6 Summary and Discussion

The aim of this article is to justify our opinion that epidemiology in gen-
eral, and the applications of Mendelian randomisation in particular, can
benefit greatly from a formal framework for causal inference. We have pre-
sented three possible approaches. The first two, the do(-)—operator and
the intervention indicator F'x are very similar, with F'x being more general
and explicit. The third, based on counterfactuals, is philosophically quite
different especially with respect to the type of assumptions required. We
clearly lean towards the first two. Note that the counterfactual language has
been used very successfully to solve many intricate questions of causal in-
ference, especially in the field of epidemiology, although it is still not widely
adopted. Another formal approach that we have not considered here is pro-
vided by functional models (see Pearl, 2000, chapters 5-10) which include
linear structural equation models (Haavelmo, 1943; Goldberger, 1972) as a
special case. These are closely related to counterfactual reasoning and dis-
cussed in Dawid (2002), for example. Note that the models we considered in
Sections 3.3 and 5.3 can be regarded as (partial) sturctural mean models in
the sense that they provide equations for the mean of the response variable
that remain stable under interventions in X, but this alone does not permit
construction of the counterfactual responses for individuals.

We strongly advocate the adoption of a formal approach to causal infer-
ence in epidemiological applications—whichever of the above is favoured.
Such a framework allows explicit specification of what the causal aim under
investigation actually is: this cannot usually be expressed in a purely proba-
bilistic way with ‘normal’ conditional probabilities. In the typical Mendelian
randomisation setting, the causal aim would be some public health inter-
vention and thus it would seem particularly desirable to make such inter-
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ventions an integral part of the statistical model via decision variables such
as F'x. For one thing, such an explicit representation can aid communica-
tion between the biologist and the statistician. Moreover, a formal language
of causality allows explicit formulation of the conditions under which the
target of inference can be attained. This, again, seems important with re-
gard to facilitating the discussions and investigations that statisticians and
subject matter experts have to carry out together when assessing whether
the necessary conditions are satisfied and hence whether the ensuing causal
conclusions are valid. Recall, for example, that our core condition 3 has
been misinterpreted in the literature due to reliance on imprecise verbal
descriptions. A particular advantage of the Fx indicator is that we can
express the assumption that the core conditions 1 — 3 hold under Fxy = ()
and that in addition to these core conditions, (1.9) has to hold in order
to specify which variables remain unaffected by the particular intervention
that is being contemplated. The latter condition is implicit in Pearl’s do(-)
formalism and in the counterfactual approach.

We argue and confirm that Mendelian randomisation can often be rea-
sonably assumed to satisfy the instrumental variable conditions. Moreover,
subject matter background knowledge can be encoded using directed acyclic
graphs to facilitate verification of the core conditions by visual inspection,
and violations such as those of Section 5.5 can easily be identified. But
there is also reason for some concern as to whether the public health in-
terventions that can be carried out in practice satisfy conditions such as
(1.9). For example, we cannot expect to be able to fiz homocysteine at a
prespecified level for the whole population. We can fix the amount of folic
acid added to flour, but the amount of bread people eat and the amount by
which folic acid affects the homocysteine level of individuals will vary. Such
assumptions hence have to be scrutinised within the context of a specific
application and with a concrete intervention in mind. Further research is
required to address extending the notion of interventions in this respect.

On a more technical level, we showed in Didelez and Sheehan (2005)
that under the above conditions, testing for a phenotype-disease causal ef-
fect by testing for a genotype-disease association is reasonable in all cases
for practical purposes and that for calculation of the average causal effect,
one must rely on additional strong parametric assumptions such as linearity
and no interactions. In Sections 3.3 and 5.3 of the present article we have
considered the linear case in some more detail in order to exemplify the
use of the intervention indicator within this simple and well-known model
class. But we emphasise that this model class is typically not useful for
Mendelian randomisation settings, where non-linear models are called for
and interactions may play a role. We then have to deal with even more
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technical problems that have yet to be formally tackled, For example, in
the non-linear / interaction case, even the specification of the causal pa-
rameter is not obvious and determination of its relationship to the relevant
regression parameters is not straightforward. “There is, in fact, no agreed
upon generalisation of instrumental variables to non-linear systems” (see
Pearl (2000), p.248). However, the technical issues cannot be satisfactorily
addressed if the causal questions are not clearly stated in the first place.
We argue that this cannot be achieved consistently without adopting some
formal framework for causality.
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