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Abstract

We present an abstract model of rationality that focuses on structural properties

of attitudes. Rationality requires coherence between your attitudes, such as your

beliefs, values, and intentions. We define three ‘logical’ conditions on attitudes:

consistency, completeness, and closedness. They parallel the familiar logical con-

ditions on beliefs, but contrast with standard rationality conditions like preference

transitivity. We establish a formal correspondence between our logical conditions

and standard rationality conditions. Addressing John Broome’s programme ‘ra-

tionality through reasoning’, we formally characterize how you can (not) become

more logical by reasoning. Our analysis connects rationality with logic, and enables

logical talk about multi-attitude psychology.

1 Introduction

There exist various concrete theories and models of rationality. They differ, firstly,

in the object that qualifies as (not) rational, which could be preferences, binary

beliefs, probabilistic beliefs, intentions, strategies, or often combinations of these.

They differ, secondly, in the rationality requirements on that object, which could

for instance include transitivity for preferences, modus ponens for binary beliefs,

or additivity for probabilistic beliefs. Some rationality requirements link attitudes

of different types; for instance, ‘expected-utility rationality’ requires preferences

1We are grateful for helpful discussion with colleagues, including John Broome, Christian List,

Marcus Pivato, Alessandra Palmigiano, and Frederik van de Putte. We also thank anonym-

ous referees for extensive comments and helpful advice. This articles supersedes and strongly

extends our earlier working paper “Beyond belief: logic in multiple attitudes”. Franz Dietrich

acknowledges support from the French Research Agency through the grants ANR-17-CE26-0003,

ANR-16-FRAL-0010 and ANR-17-EURE-0001.

1



over uncertain prospects to respond rationally to probabilistic beliefs and outcome

evaluations, game theoretic rationality requires strategies to respond rationally to

preferences and beliefs about opponents, and, according to many philosophers, prac-

tical rationality requires intentions to respond rationally to ought-beliefs to prevent

akrasia.

In the face of such diversity, this paper aims for an abstract and unified model of

rationality theories that focuses on the structure of rationality requirements rather

than their substantive nature. For instance, substantively different requirements

such as transitivity for preferences and modus ponens for beliefs share the same

structure: that of a ‘closedness condition’, which requires that holding certain atti-

tudes implies holding a certain other attitude.

We model rationality as a property of the set of one’s ‘attitudes’, which could

contain beliefs, desires, preferences, intentions, admirations, or indeed any kinds of

attitudes. This matches Broome’s (2007, 2013) philosophical notion of rationality,

but is also compatible with standard rational-choice-theoretic models of rationality,

which could indeed be recast within our formalism.2 Broome’s approach is promin-

ent in contemporary philosophical theorising about rationality and reasoning (other

approaches include Kolodny 2005 and Boghossian 2014).

We take inspiration from logic at two levels. Firstly, our move to abstraction

within the theory of rationality is related in spirit to the move to abstraction within

abstract logic in a Tarskian tradition. Just as we shall focus on the structure of

rationality and abstract away the concrete nature of attitudes and requirements, so

abstract logic focuses on the structure of logical constructs (such as consequence

operators) and abstract away the concrete nature of the logic and its language.3

Secondly, we shall introduce three conditions on the set of one’s attitudes that have

a logical flavour and will be called ‘consistency’, ‘completeness’ and ‘closedness’.

Their structure differs considerably from that of standard rationality requirements

such as preference transitivity.

Our analysis proceeds in different steps. After setting the stage in Section 2,

we introduce our three logical conditions on multi-attitude psychology, which we

relate first to the concept of rationality in general (Section 3) and then to specific

2Standard rational-choice-theoretic models characterise the agent by mental constructs (such

as preferences, beliefs, utilities, and strategies) and define rationality in terms of these mental

constructs and their relations. The mental constructs characterising the agent can be remodelled

as a set of attitudes in our sense. But our Broomean model departs from a different, radically

behaviourist notion of rationality that can also be found in rational-choice theory and that defines

rationality as a property of choice patterns (technically, a choice function) rather than of mental

constructs, the role of which is downgraded to that of ‘choice representations’. For the contrast

between mentalist and behaviourist interpretations of rational-choice models, see Dietrich and List

(2016).
3The move to abstraction in logic goes back at least to Alfred Tarski’s work in the 1930s

about consequence operators on an abstract set of sentences (e.g., Tarski 1956) and has since then

evolved into many directions, including those of algebraic logic and algebraic semantics.
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rationality requirements of standard types such as preference transitivity (Section

4). Each of the two relationships will culminate in a theorem. Section 5 then

addresses a version of Broome’s (2013) central question of whether one can reason

towards more rational attitudes: can one reason towards more logical attitudes, i.e.,

towards consistent, or complete, or closed attitudes? A third theorem will provide a

tentative answer. Finally, Section 6 compares our abstract model of multi-attitude

psychology with concrete logics of attitudes, such as logics of preferences (e.g., Liu

2011), of beliefs (e.g., Halpern 2017), or of beliefs, desires and intentions (e.g., Van

der Hoek and Wooldridge 2003).

2 Attitudes and rationality

This section introduces basic concepts, following Broome’s (2013) philosophical

notion of rationality as formalised in Dietrich et al. (2019).

Attitudes. The agent — ‘you’ — holds several attitudes: beliefs, desires, preferences,

intentions, etc. Let  be the non-empty set of all possible attitudes, also called

mental states.  might contain: believing that it rains, believing that it is sunny,

desiring to stay dry, intending to dress warmly, preferring sunshine to rain, etc.

One might think of attitudes in  as pairs of an attitude content (an object)

and an attitude type (such as belief, desire, or intention). Some attitudes in 

could be graded (e.g., probabilistic beliefs4 or graded desires5) or vague (e.g., vague

probabilistic beliefs6 or vague graded desires7). For most philosophers, contents are

propositional: they are single propositions for monadic attitudes such as belief or

desire, pairs of propositions for dyadic attitudes such as preference, etc. We shall

say ‘attitude’ not only for mental states in  (such as: intention to swim), but

occasionally also for attitude types (such as: intention).

Those attitudes in  which you possess form your constitution. Formally:

Definition 1 A (mental) constitution is any set  ⊆ of mental states, ‘your’

states.

4Believing with subjective probability 0.8 that it rains is an attitude with content ‘it rains’ and

attitude type ‘belief to the (probabilistic) degree 0.8’.
5Desiring some outcome to the degree 7 is an attitude with content this outcome and with

attitude type ‘desire of degree 7’. Some would call the degree of desire the ‘utility’.
6A vague probabilistic belief in something is often captured by a non-empty probability interval

 ⊆ [0 1] (which becomes a sharp belief if  contains a single number). For instance, believing
with vague subjective probability [06 08] that it rains is an attitude with content ‘it rains’ and

attitude type ‘belief of vague probabilistic degree [06 08]’.
7A vague desire can be captured by a non-empty ‘utility interval’  ⊆ R. For instance, desiring

an outcome to the vague degree [10 15] is an attitude with content the outcome and type ‘desire

of vague degree [10 15]’.
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The description of an agent in a choice-theoretic model can usually be recast as

a constitution within our framework.8

Rationality. Certain constitutions count as ‘rational’, the others as ‘irrational’.

We identify a notion or theory of rationality with the set of constitutions it deems

rational. Formally:

Definition 2 A notion or theory of rationality is a set  ⊆ 2 of (‘rational’)

constitutions.

Rationality notions in rational-choice theory can usually be recast within our

framework.9

An illustration. In practice, theories of rationality can be defined by specifying

conditions on attitudes. Rational constitutions are then constitutions satisfying

these conditions. To give examples of conditions, let us first formalise the structure

of states. Let  be a set of propositions. Let  be a set of attitude types, each one

endowed with

• an arity  ∈ {1 2 }, which is usually 1 (for unary or monadic attitudes) or
2 (for binary or dyadic attitudes), and

• a domain  ⊆  of possible objects (contents) of the attitude. For instance,

the domain of intention is the set of propositions one can intend.10

 could contain the (monadic) attitudes types of belief , desire  and intention

, and the (dyadic) attitude types of preference Â and indifference ∼, each having
certain domains. Let the states in  be the tuples  = (1   ) in which  is

an attitude type in ,  is ’s arity, and 1   are propositions from ’s domain.

For instance, ( ) is believing , ( ) is intending , ( Â) is preferring 

to , etc. Here are some typical conditions on your constitution , more precisely

condition schemas parameterized by propositions (where we assume for simplicity

that each attitude type has full domain  = , i.e., that any proposition can be

believed, intended, etc.):

8For instance, the description of a Savage agent by a probability measure, a utility function

and a preference relation can be recast as a constitution consisting of probabilistic beliefs (of type

believing event such-and-such to the probabilistic degree such-and-such), graded values/desires

(of type valuing/desiring outcome such-and-such to the degree/utility such-and-such) and weak

preferences (of type weakly preferring act such-and-such to act such-and-such).
9For instance, the constitution of a Savage agent (see footnote 8) is rational in the expected-

utility sense if and only if its beliefs obey the probability axioms and its preferences are linked

to its beliefs and values through the expected-utility criterion. In a different formalisation of the

Savage agent which suppresses beliefs and values, that agent’s constitution consists only of weak

preferences (not of beliefs or values) and is rational if and only if its preferences obey Savage’s

axioms.
10When recasting standard rational-choice models within the present framework, then an agent’s

different attitude types indeed have different domains. For instance, a Savage agent holds (prob-

abilistic) beliefs about Savage events but preferences about Savage acts, and a player in a game

holds beliefs about moves of other players but intentions (strategies) about own moves.

4



R1: Modus Ponens: Believing  and     implies believing , formally

( ) (    ) ∈  ⇒ ( ) ∈ . Parameters:   ∈ .

R2: Non-Contradictory Desires: Desiring  excludes desiring  , formally ( ) ∈
 ⇒ (  ) 6∈ . Parameter:  ∈ .

R3: Enkrasia (Non-Akrasia): Believing that   implies intending ,

formally (  ) ∈  ⇒ ( ) ∈ . Parameter:  ∈ .

R4: Instrumental Rationality: intending  and believing     

  implies intending , formally ( ) (       ) ∈
 ⇒ ( ) ∈ . Parameters:   ∈ .

R5: Preference Transitivity: preferring  to  and  to  implies preferring  to ,

formally ( Â) ( Â) ∈  ⇒ ( Â) ∈ . Parameters:    ∈ .

R6: Preference Acyclicity: you do not simultaneously prefer 1 to 2, 2 to 3,

..., −1 to , and  to 1, formally (1 2Â) (2 3Â)  (−1 Â) ∈
 ⇒ ( 1Â) 6∈ . Parameters: any number  ≥ 1 and any 1   ∈ .

R7: Preference Completeness: you have some preference or indifference between

 and , formally ( Â) ∈  or ( Â) ∈  or ( ∼) ∈ . Parameters:

  ∈ .

Are these conditions requirements of rationality? Should we refine their formu-

lation? What else does rationality require? These important questions are not our

topic. What matters for us is that any given list of conditions defines a theory

of rationality: the theory  that deems (only) the constitutions satisfying these

conditions rational. For instance,  could be defined as the set of constitutions

 ⊆ satisfying R1—R7. This definition can of course only be plausible if the only

attitude types in  are , , , Â, and ∼. It is no longer plausible if, say, 
also contains probabilistic beliefs, i.e., if for each  ∈ [0 1]  contains an attitude

 of belief with subjective probability . For such probabilistic beliefs, rationality

might require additivity and other properties.11

In stating R1—R7, we have implicitly assumed that certain composite proposi-

tions can be formed within . Specifically, whenever  contains propositions  and

,  contains specific propositions  ,    ,  , and   

   .12 Some readers might want to model propositions syntactic-

11Additivity says: if you believe  to degree  and  to degree 0 and    to degree 00 then
00 =  + 0, formally ( ) ( 0) (   00) ∈  ⇒ 00 =  + 0, with parameters any
mutually inconsistent propositions   ∈  and any  0 00 ∈ [0 1]. One might also require that
no proposition is believed to two different degrees, and that tautologies can only be believed to

degree 1. More demandingly, one might require existence of probabilistic beliefs about certain

propositions (e.g., the ‘events’ in a Savage framework): you believe  to some degree, formally

there exists a  ∈ [0 1] such that ( ) ∈ , with parameter any proposition  from a given ‘belief

domain’  ⊆ . All these conditions are required under a standard Savagean expected-utility

model of rationality.
12Technically, the assignments  7→   and  7→   define two unary operators

 → , and the assignments ( ) 7→     and ( ) 7→        define

two dyadic operators × → .
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ally (intensionally), letting  contain the well-formed sentences of a suitable formal

language. Then the mentioned composite propositions are composite sentences: 

 stands for ¬,   stands for () where  is a sentential ‘obligation’

operator, etc. Other readers, especially economists, might want to model proposi-

tions semantically (extensionally), letting  contain subsets of a given set of possible

worlds Ω. Here the mentioned composite propositions are constructed semantically:

  is the complement Ω\,   is (), where  is a semantic ‘ob-

ligation’ operator mapping Ω-subsets to Ω-subsets, etc. For our purposes it is not

necessary to model the propositions in : they can be primitive objects. But if one

wants to model propositions, then the choice between the syntactic and semantic

models is to some extent a matter of taste and convenience; the semantic model is

probably simpler, but certainly less fine-grained.13 The philosophical plausibility of

each model depends on one’s view about the nature of propositions.14

3 Three ‘logical’ conditions on attitudes

Can your attitudes commit a logical mistake? That is, are attitudes subject to

requirements of a distinctively logical flavour, as opposed to common rationality

requirements like those in R1—R7? We now introduce three logical conditions on

attitudes. We call them ‘consistency’, ‘completeness’, and ‘closedness’ because they

are multi-attitude counterparts of the equally-named logical conditions on beliefs.

The logical notions could be related to the rationality notion in two opposite

ways: either rationality generates logical notions, or logical notions generate a ra-

tionality notion. We shall explore both approaches (Sections 3.1 and 3.2). We

then compare both approaches, but setting aside difficult questions of conceptual

or metaphysical priority between rationality and logical notions (Section 3.3). We

finally discuss the special status of completeness (Sections 3.4). Appendix A relates

13It cannot distinguish between logically equivalent propositions:     

and           correspond to the same set of worlds, hence to the

same proposition. This can be problematic because attitudes often distinguish between equivalent

propositions: we often believe or intend something without believing or intending something

equivalent, for instance out of unawareness of the equivalence.
14The syntactic model of propositions is philosophically natural under a structural notion of pro-

position according to which propositions have an internal structure that parallels at least roughly

that of sentences expressing them (although sentences may be more fine-grained). The semantic

or set-theoretic model of propositions is philosophically natural under a non-structural notion of

propositions. King (2019) reviews both notions of proposition. Whether a syntactic or semantic

model of propositions is more plausible is also related to whether one has an intensional or ex-

tensional notion of proposition, i.e., whether one takes proposition to be intensions or extensions

of sentences — but here we enter controversial questions about the nature of extension (reference,

Bedeutung) and intension (meaning, Sinn). Under an arguably plausible view, a sentence’s ex-

tension and intension is structurally similar to a set of worlds or the sentence itself, respectively.

Under an arguably less plausible Fregean view, they are structurally like a truth value or a set of

worlds, respectively; this other view makes the semantic model extensional, not intensional.
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our three logical notions to their standard belief-theoretic counterparts.

3.1 Top-down: from rationality to logical notions

The first way to model the three logical notions starts with a theory of rational-

ity (given for instance by axioms such as R1—R7) and then constructs the logical

notions. This can be done as follows:

Definition 3 Given a theory of rationality  , a constitution  is

• consistent if there exists a rational constitution  0 ⊇ ,

• complete if there exists a rational constitution  0 ⊆ ,

• closed if  contains each attitude in  that it (rationally) entails, where

being (rationally) entailed or  -entailed by  means being contained in

all rational constitutions  0 ⊇ .

What is the intuition behind these definitions?

• Consistency means that your attitudes cohere with one another, i.e., do not
rule out one another. You are permitted to have your attitudes simultaneously.

You might be forbidden to hold only them; but you can hold at least them.

For instance, suppose you intend , believe       , but

do not intend . Your constitution is then not rational, assuming rationality

requires Enkrasia R5; but your constitution is consistent, as long as it could

be made rational by adding suitable attitudes including the intention of .

• Completeness means that you have ‘enough’ attitudes. Your attitudes do not
require additional attitudes. You are permitted to have no more than your

attitudes. You might be forbidden to hold all your attitudes; but you can

hold no more than them. For instance, assume you prefer  to  and also

prefer  to . Then your constitution is not rational, assuming rationality

requires Preference Acyclicity R6; but your constitution is complete, as long

as it could be made rational by removing suitable attitudes, including one of

the two mentioned preferences.

• Closedness means that you have each attitude that rationally follows from
your attitudes. For instance, supposing rationality requires Instrumental Ra-

tionality R4, then believing   rationally entails intending ; so,

closed constitutions containing the mentioned belief also contain the intention.

Closed constitutions need not be consistent or complete, let alone rational. For

instance, the maximal constitution  =  — where you believe everything,

intend everything, etc. — is trivially closed, but it is irrational (in fact, in-

consistent) under plausible theories of rationality. At the other extreme, the

empty constitution  = ∅ — where you have no attitude whatsoever — is,

under some theories of rationality, closed but irrational (in fact, incomplete).
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3.2 Bottom-up: from logical notions to rationality

Under the previous approach, the three logical notions are children of rationality.

We now take the opposite approach. We start from logical notions and derive a

theory of rationality — like when logicians use logical notions to define which belief

sets are rational. But what do we mean by logical notions, in all abstract generality?

Definition 4 (a) A consistency notion is a set  ⊆ 2 of (‘consistent’)

constitutions such that whenever  ∈  and  0 ⊆  then  0 ∈ 

(‘losing attitudes preserves consistency’).

(b) A completeness notion is a set  ⊆ 2 of (‘complete’) constitutions

such that whenever  ∈  and  ⊆  0 (⊆) then  0 ∈  (‘gaining

attitudes preserves completeness’).

(c) A closedness notion is a set  ⊆ 2 of (‘closed’) constitutions that

consists of all constitutions which are closed under some classical consequence

operator, i.e., that equals { ⊆  :  = ()} for some classical con-
sequence operator  over  .15

A consistency notion  captures the absence of tensions between attitudes

by some standard (and is accordingly closed under taking subsets). A completeness

notion  captures the presence of enough attitudes by some standard (and is

accordingly closed under taking supersets). A closedness notion  captures the

presence of all attitudes that follow from present attitudes by some standard (and

is accordingly closed under some classical consequence operator).

In Section 3.1 we had defined special logical notions based on a theory of ra-

tionality  . We henceforth denote them by

 = { :  ⊆  0 for some  0 ∈ }
 = { :  ⊇  0 for some  0 ∈ }
 = { :  contains all  ∈ s.t.   -entails }.

These are indeed logical notions in the general sense of Definition 4, because 

is closed under taking subsets,  is closed under taking supersets, and 

consists of the closed constitutions under the consequence operator  that maps

any  ⊆ to

 () = set of attitudes  -entailed by 

= { ∈ :  is in all  0 ∈  s.t.  ⊆  0} = ∩0∈ :⊆0 0

15Recall that a consequence operator over (here) the set  is a function  mapping each set

 ⊆  to a set () ⊆  (of ‘consequences’ of ). It is called classical or a closure operator

if it is inclusive (‘() ⊇ ’), monotonic (‘ ⊆  0 ⇒ () ⊆ (0)’), and idempotent
(‘(()) = ()’). The classical consequence operator  underlying a given closedness

notion  is unique, and maps each  ⊆ to its smallest extension in . By this unique-

ness, closedness notions and classical consequence operators are interdefinable.

8



Deriving logical notions from a full-fledged theory of rationality  is a ‘top-down’

approach to logical notions. But under a ‘bottom-up’ approach, where could the

logical notions  ,  and  come from? They could emerge from in-

dividual axioms about attitudes. For instance, the axiom schemas R1—R7 in our

‘illustration’ in Section 2 can serve to define logical notions, where we must carefully

select the right axioms for each logical notion:

• A consistency notion  can be defined by the consistency-type16 schemas

R2 (Non-Contradictory Desires) and R6 (Preference Acyclicity). Formally,

 = { :  satisfies R2 & R6}.
• A completeness notion can be defined by the completeness-type17 schema

R7 (Preference Completeness).

• A closedness notion  can be defined by the closedness-type18 schemas

R1 (Modus Ponens), R3 (Enkrasia), R4 (Instrumental Rationality), and R5

(Preference Transitivity).

Any logical notions can be used to define a theory of rationality:

Definition 5 The theory of rationality generated by notions of consistency  ,

completeness  and closedness  is the theory that requires consistent, com-

plete and closed constitutions, i.e., the theory  =  ∩  ∩ .

One might wonder about the appropriateness of requiring completeness for ra-

tionality, given that preferences and logical beliefs are often not required to be com-

plete. We discuss this issue in Section 3.4, but let us anticipate that this problem is

only apparent since one can assume a vacuous completeness notion  = 2 , in

which case rationality is effectively generated by consistency and closedness alone.

3.3 Comparing the top-down and bottom-up approaches to

logical notions

We have considered two opposite approaches:

• Starting from a theory of rationality  and generating logical notions  ,

 ,  .

• Starting from logical notions  ,  ,  and generating a theory of

rationality  =  ∩  ∩ .
Interpretive differences aside, are both approaches formally equivalent? That is, are

theories of rationality and logical notions interdefinable through some one-to-one

correspondence? The answer is negative, for two reasons.

16The expressions ‘consistency-type schema’,‘completeness-type schema’, and ‘closedness-type

schema’ should be intuitively clear. Technically, they denote schemas of, respectively, consistency

conditions, completeness conditions, or closedness conditions, in a sense defined formally in Section

4.2.
17See footnote 16.
18See footnote 16.
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For one, some notions of rationality  are not reducible to any logical notions

at all, because they are simply not structured along strict logical lines. So to say,

rationality could go beyond logic. Rationality notions that are reducible to logical

notions will be called ‘classical’, to highlight the parallel to classical notions of

rational beliefs, which is indeed derived from the logical notions (cf. Appendix A).

Formally:

Definition 6 A theory of rationality  is classical if there exist notions of consist-

ency  , completeness  and closedness  that generate  , i.e., satisfy

 =  ∩  ∩ .

For instance, the illustrative theory in Section 2,  = { :  satisfies R1—R7},
is classical, being generated by the consistency notion  = { :  satisfies R2

& R6}, the completeness notion  = { :  satisfies R7}, and the closedness
notion  = { :  satisfies R1, R3, R4 & R5} (cf. Section 3.2).
For another, one and the same (classical) notion of rationality can be generated

by two different triples of logical notions.19 So the ‘true’ logical notions are under-

determined by the notion of rationality. Yet, despite this underdetermination, one

triple of logical notions stands out as canonical in that it consists in the logically

strongest logical notions that generate the given (classical) theory  . The canonical

logical notions are precisely the logical notions  ,  and  from the

top-town approach in Section 3.1. We now formally state this result, proved in

Appendix B.

Theorem 1 For every classical theory of rationality  ,  ,  and 

are the logically strongest consistency, completeness and closedness notions gener-

ating  , i.e.,  =  ∩  ∩  and all consistency, completeness and

closedness notions  ,  and  with  =  ∩  ∩  satisfy

 ⊆  ,  ⊆  and  ⊆ .

This result gives some salience to the logical notions from Section 3.1, and

provides some support for the top-down approach to modelling logical notions.

3.4 Completeness — really?

In logic just as in rational-choice theory, completeness assumptions are often re-

garded as convenient assumptions rather than a requirement of rationality. Argu-

ably, rationality does not require holding beliefs about everything, or preferences

19For instance, for a fixed ∗ ∈  , the theory  = { ⊆  : ∗ 6∈ } is the intersection
of the consistency notion  =  , the vacuous completeness notion  = 2 , and the

vacuous closedness notion  = 2 , but also the intersection of the notions of consistency

 = 2\{}, completeness  = 2 , and closedness  =  ∪ {} = { : ∗ ∈  ⇒
 =}
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between any two options. Does this idea clash with our analysis that makes com-

pleteness a requirement of rationality? No, because our concept of completeness

is very flexible. We allow the vacuous completeness notion 2 , which deems all

constitutions complete — even the empty constitution  = ∅. If one deems it
permissible to hold no beliefs and no preferences, then one effectively endorses a

completeness notion that does not require any beliefs or preferences. A slightly more

restrictive completeness notion requires believing tautologies and being indifferent

between options and themselves, without requiring anything else about beliefs or

preferences.

This represents a departure of our abstract completeness notion from stand-

ard belief- or preference-theoretic completeness. ‘Our’ completeness is by definition

rationally required but can be undemanding or even vacuous.20 ‘Standard’ com-

pleteness (of beliefs or preferences) is very demanding but might not be rationally

required. In principle, something similar applies to both other logical conditions:

‘our’ consistency and closedness are by definition rationally required but can be

vacuous, whereas ‘standard’ consistency and closedness (of beliefs or preferences)

may or not be rationally required. But here the contrast is smaller than for com-

pleteness, since the rationality of ‘standard’ consistency and closedness is far less

controversial.

The point we just made holds under both approaches, i.e., regardless of the

priority between the rationality notion and the logical notions. Let us restate the

point formally:

Remark 1 Any of the logical notions  ,  and  generated by a

given theory of rationality  (top-down approach) can be vacuous, i.e., equal to

2 .21 Similarly, any of the logical notions  ,  and  generating a

(classical) theory of rationality  =  ∩  ∩  (bottom-up approach)

can be vacuous, i.e., equal to 2 .22

ConventionWhen generating a theory of rationality from logical notions (bottom-

up approach), vacuous logical notions need not be mentioned, as they drop out of

the intersection of logical notions. For instance, we call a theory  generated by

 and  if  =  ∩ , i.e., if  is generated by  , 2 and

.

To honour the fact that standard theories of rationality often impose no (non-

vacuous) completeness requirement, let us call a classical theory ‘fully classical’ if

20This is true under the top-down and bottom-up approaches to modelling completeness and

the other logical notions (cf. Sections 3.1 and 4.2).
21Trivial examples are that  = 2

 if ∅ ∈  ,  = 2
 if  ∈  , and  = 2 if

 = 2 .
22The reason is that 2 is a constancy notion (as it is subset-closed), is a completeness notion

(as it is superset-closed), and is a closedness notion (as it is closed under the trivial classical

consequence operator  given by () =  for all  ⊆).
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it is generatable without completeness notion, i.e., with a vacuous completeness

notion:

Definition 7 A theory of rationality  is fully classical if there exist notions of

consistency  and closedness  that generate  , i.e., satisfy  =  ∩


Theorem 1 has a corollary for fully classical theories, as shown in Appendix B:

Corollary 1 For every fully classical theory of rationality  ,  and 

are the logically strongest consistency and closedness notions generating  , i.e.,

 =  ∩  and all consistency and closedness notions  and 

with  =  ∩  satisfy  ⊆  and  ⊆ .

4 Logical versus standard requirements of ration-

ality

How are our logical conditions on multi-attitude psychology — consistency, com-

pleteness, closedness — related to standard conditions such as preference transitiv-

ity and the other conditions in R1—R7? To address this question, we must first

settle on one of the two modelling approaches outlined in Section 3. Should our

primitive object be a theory of rationality  or a triple of logical notions? Neither

approach is fully general, because neither of the two objects generally determines

the other. One might therefore reject both approaches and make both objects

primitive, i.e., start with a primitive theory of rationality  and a primitive triple

of logical notions  ,  and . One would then assume that the two

objects are compatible, in the sense that rational constitutions satisfy the logical

notions, i.e., that  ⊆  ∩  ∩ . Assuming compatibility would be

more general than assuming that the logical notions generate rationality, i.e., that

 =  ∩ ∩, or that rationality generate the logical notions, i.e., that
 =  ,  =  , and  =  . While interesting, this gen-

eral approach will be set aside, for the sake of formal parsimony. Further, we shall

not let rationality be determined by logical notions, because this reductive approach

would restrict us to classical theories of rationality — a limitation of generality we

wish to avoid. Instead we shall make rationality our formal primitive, encouraged

by the fact that, firstly, this approach leaves the theory of rationality  entirely

general, and secondly, the logical notions  ,  and  derived from

the theory  , while not the only logical notions compatible with  , are somewhat

canonical by Theorem 1.

So, the rest of the main text assumes that the notions of consistency, complete-

ness and closedness are those determined by a given theory of rationality. The
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current section discusses the conceptual difference between logical and standard re-

quirements of rationality (Section 4.1) and then presents a theorem that establishes

a formal correspondence between both types of requirement (Section 4.2).

4.1 The conceptual difference between logical and standard

requirements

Our logical requirements and standard rationality requirements like those in R1—R7

share an obvious feature: both are rationality requirements. Let us spell this fact

out formally.

Definition 8 A condition is a constraint on constitutions, formally a set  ⊆ 2
of constitutions (those ‘satisfying’ the condition). A condition  is a requirement

of a theory of rationality  — for short, a rationality requirement — if it is satisfied

by all rational constitutions, i.e., if  ⊆ .

Remark 2 The three logical conditions  ,  and  given by a the-

ory of rationality  are rationality requirements.

Having made this trivial point, let us see how logical and standard requirements

differ.

1. Abstract versus concrete. Logical requirements are abstract and structural,

since their definitions do not refer to the type or content of attitudes, but to struc-

tural relations between attitudes. Standard rationality requirements are concrete

and attitude-specific, since they are defined in terms of particular attitudes, such

as preferences (in R5—R7) or intentions and beliefs (in R3—R4).

2. Global versus local. Logical requirements are global: they affect the con-

stitution as a whole. Standard requirements are local: they concern only the

(non-)possession of certain attitudes, regardless of the rest of the constitution.

They are effectively constraints on a small subset of the constitution . For in-

stance, an instance of Preference Transitivity R5 concerns only ’s intersection

with {( Â) ( Â) ( Â)}, and an instance of Enkrasia R3 concerns only
’s intersection with {(  ) ( )}. Christensen (2004) draws a
similar global/local distinction, but for beliefs only.

3. Rationality-determined versus rationality-determining. This difference

arises only under our current top-down approach of modelling logical notions as de-

rivative objects; it should therefore not be universalised. While logical requirements

are (under the top-down approach) determined by rationality, standard rationality

requirements typically determine rationality. For instance, the ‘illustration’ in Sec-

tion 2 invokes schemas R1—R7 of standard requirements that jointly determine or
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define a theory of rationality, which in turn determines or defines logical require-

ments. This striking difference in status or priority between standard and logical

requirements could be given thinner or heavier meanings depending on what is read

into ‘determining’. Possible interpretations range from a mere functional or super-

venience relationship between both objects to an explanatory relationship or even

a relationship of metaphysical grounding.

4.2 The formal correspondence between logical and stand-

ard requirements

Despite all differences, logical and standard requirements of rationality stand in

a tight formal relationship: each logical requirement is equivalent to a particular

class of rationality requirements of standard type. But first, what are rationality

requirements of standard type? A simple inspection of the rationality requirements

discussed in philosophy or choice theory reveals that most of them, including those

in the schemas R1—R7, fall into a three-kind typology. This typology is implicit in

the work of Broome and others and formally introduced in Dietrich et al. (2019):

Definition 9 The three standard types of condition consist of the following con-

ditions, respectively:

(1) A consistency condition  forbids having all of certain attitudes, i.e.,  =

{ : not  ⊆ } for some set  6= ∅ of attitudes (the ‘forbidden set’).
(2) A completeness condition  forbids having none of certain attitudes, i.e.,

 = { : not  ∩  = ∅} for some set  6= ∅ of attitudes (the ‘unavoidable
set’).

(3) A closedness condition  demands that having certain attitudes implies

having a certain attitude, i.e.,  = { :  ⊆  ⇒  ∈ } for some set of
(‘premise-’)attitudes  and some (‘conclusion-’)attitude .

The conditions in R1—R7 fall into this typology:

• Non-Contradictory Desires R2 and Preference Acyclicity R6 are schemas of
consistency conditions, with forbidden set {( ) (  )} or {(1 2Â
) (2 3Â)  (−1 Â) ( 1Â)}, respectively.

• Preference Completeness R7 is a schema of completeness conditions, with un-
avoidable set {( Â) ( Â) ( ∼)}. Another schema of completeness
conditions is the schema in footnote 16, an instance of which requires holding

some probabilistic belief in a given proposition.

• Modus Ponens R1, Enkrasia R3, Instrumental Rationality R4, and Preference
Transitivity R5 are schemas of closedness conditions. In R1, the set of premise-

attitudes is {( ) (    )} and the conclusion-attitude is ( ).
Having formalised logical conditions as well as conditions of standard type, we

are ready to state the formal relationship between both kinds of condition. A tight

correspondence holds by the following theorem.
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Definition 10 A consistency/completeness/closedness requirement of a the-

ory of rationality  is a consistency/completeness/closedness condition that is a

requirement of  (i.e., satisfies  ⊆ ).

Theorem 2 Given any theory of rationality  6= ∅, a constitution  is

(a) logically consistent if and only if it satisfies all consistency requirements of  ,

(b) logically complete if and only if it satisfies all completeness requirements of  ,

(c) logically closed if and only if it satisfies all closedness requirements of  ,

(d) fully rational if and only if it satisfies all requirements of  .

Parts (a)—(c) connect the logical world of abstract requirements to the choice-

theoretic or philosophical world of rationality requirements of standard type. Part

(d) is an addendum, of interest in its own right.

Figure 1 displays schematically the requirements of a typical theory of rationality

 . As usual in choice theory, the theory has been constructed from some set A of

basic principles or ‘axioms’, for example the instances of the schemas R1—R7. That

is, the rational constitutions are the constitutions satisfying the conditions in A:
 =  (A) = { :  ∈  for all  ∈ A} = ∩∈A

Let all axioms be of a standard type: A consists of consistency conditions, com-

Dropbox/Franz Dietrich/R-Misc/R-Broome/AbstractRationality-

TheLogicalStructureOfAttitudes/Fig1.png

Figure 1: The rationality requirements of the theory  (A)

pleteness conditions, and closedness conditions. Of course, some other theories have

no axiom of one of the three standard types (e.g., no completeness axiom) or have

additional axioms of non-standard type; but in Figure 1 all three standard types,

and only these types, occur among the axioms. The theory implies plenty of other

requirements besides the axioms. As indicated by the different areas in Figure 1,

some additional requirements still fall within the standard typology.23 The most sa-

23For instance, if A includes Preference Transitivity R5, then the theory  (A) implies the
following schema of closedness requirement (similar to R5 but with four propositions)
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lient requirements outside the typology are perhaps the three logical requirements;

each of them is equivalent to a class of requirements of standard type by Theorem

2, as the arrows ‘↔’ in Figure 1 indicate. Other requirements outside the typology
are often artificial, including conjunctions or disjunctions of axioms.

Since the set of axioms A can be partitioned into sets Acon, Acom and Aclo
of consistency, completeness, or closedness conditions, respectively, the resulting

theory of rationality  =  (A) is classical, being generated by (i.e., being the
intersection of) the logical notions

 = { :  ∈  for all  ∈ Acon}
 = { :  ∈  for all  ∈ Acom}
 = { :  ∈  for all  ∈ Aclo}.

The theory would be even fully classical if, unlike in Figure 1, we had an empty set of

closedness axioms Acom = ∅ and hence a vacuous completeness notion  = 2 .

5 Becoming more logical by reasoning

We have presented an abstract analysis of multi-attitude psychology that focuses

on the structure of attitudes at a given time. Yet attitudes change over time, and

such change may again display ‘structure’, hence be again open to an abstract

analysis. Addressing the statics as well as the dynamics of attitudes is very much

in the Broomean spirit. Broome’s larger programme is indeed to investigate the

relationship between rationality and reasoning, where rationality is a static property

of coherence between your attitudes at a given time while reasoning is a dynamic

mental process in which you consciously form new attitudes.

Broome’s central question is whether rationality can be achieved by reasoning.

This question is important, because the standard assumption of choice theorists

that agents are rational (descriptively speaking) or should be rational (normat-

ively speaking) would become much less plausible if rationality were unachievable

by reasoning. Broome points out that many writers on rationality ‘seem to think

that they have finished their job when they have described requirements of ration-

ality’. He suggests that these writers ‘must believe that, starting from knowledge

of a particular requirement, you can reason your way actively to satisfying that

requirement’ (2013: 208—209), and asks whether that belief is justified. Broome

(2013) explores this issue in relation to standard rationality conditions, and reaches

largely negative conclusions; his analysis is formalised and extended by Dietrich et

al. (2019).

R5* preferring  to  and  to  and  to  implies preferring  to , formally, ( Â) ( Â
) ( Â) ∈  ⇒ ( Â) ∈ . Parameters:     ∈ .

Instances of R5* are indeed requirements because, whenever ( Â) ( Â) ( Â) ∈ , then

( Â) ∈  by R5 applied to   , and thus ( Â) ∈  by R5 applied to   .
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We now ask Broome’s question, but in relation to the three logical requirements

rather than standard requirements. So, we ask whether reasoning helps making

your attitudes consistent, complete, or closed, not for instance whether it helps

making your preferences transitive. In short, we ask whether reasoning makes you

more ‘logical’, not more standardly rational. Needless to say, in real life your

constitution is often inconsistent, incomplete, and unclosed. Can reasoning repair

this flaw?

We must emphasise that our analysis will rest on Broome’s special notion of

reasoning, as that is formalised in Dietrich et al. (2019). As in that paper, we

will set aside the possibility — entertained by Broome (2013: 189—190 and 263—264)

and analysed by Dietrich and Staras (forth.) — that reasoning can be indetermin-

istic. After introducing Broomean reasoning (Section 5.1), we shall compare it with

broader notions of reasoning (Section 5.2), before presenting a theorem about the

achievability of logical requirements through reasoning (Section 5.3).

5.1 Reasoning in attitudes

Let us first introduce the Broomean notion of reasoning and formalise it following

Dietrich et al. (2019). For Broome (2013), reasoning is a process of forming atti-

tudes from existing attitudes: forming beliefs from beliefs, or intentions from beliefs

and intentions, or preferences from preferences, etc. The process is causal. Unlike

other causal processes, it is conscious and constitutes a mental act. It is explicit:

you bring the premise-attitudes to mind by ‘saying’ their contents to yourself, usu-

ally through internal speech, which causes you to ‘construct’ and thereby acquire

some conclusion-attitude, again using (usually internal) speech.

Here is a stylised instance of reasoning with a single premise. You say this to

yourself:

Doctors recommend resting. So, I shall rest.

This is reasoning from a belief into an intention. The ‘So’ is not part of the con-

clusion, but expresses the act of drawing the conclusion. In reasoning, you say to

yourself, not contents of attitudes simpliciter, but marked contents, i.e., contents

with a marker indicating how you entertain the content: as a belief, or an inten-

tion, etc. In reaching the intention with content ‘I rest’, you say ‘I shall rest’, here

using ‘shall ’ as a marker for intention.24 The English language provides markers for

various attitudes, including desire and preference (Broome 2013). Beliefs are spe-

cial: they need no explicit marker (in English), as the same sentence expresses the

content and the marked content. Note that you do not reason about your attitudes.

Reasoning about attitudes is a meta-level process by which you discover that you

have an attitude rather than forming that attitude; for details, see Section 6.2.

Reasoning in attitudes is rule-governed: you draw the conclusion by following

24Other conventions for marking intentions are possible in English.
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a rule. Rules can be individuated more or less broadly. In the example, the rule

could be

• specific: from believing that doctors recommend resting, to intending to rest.
• broader: from believing that doctors recommend -ing to intending to .

Parameter: any act .

• even broader: from believing that expert  recommends -ing towards in-

tending to . Parameters: any expert  (not necessarily a doctor) and act

.

We will work with specific rules, to avoid dealing with schemas and parameters.

Nothing hinges on this technical choice: our results could be re-stated (more clum-

sily) using a broader notion of rule. Given our choice, we identify a rule with a

specific premises/conclusion combination. Technically, a reasoning rule is a pair

( ) of a set of (‘premise-’)attitudes  ⊆ and a (‘conclusion-’)attitude  ∈ ,

representing the formation of  from  . In the rule in the example above,  contains

just believing that doctors recommend resting, and  is intending to rest.

In his concept of reasoning, Broome distinguishes between your ‘endorsement’

of a rule and its ‘correctness’. A rule is yours if it captures premise-to-conclusion

processes that you endorse, i.e., that ‘seem right to you’ (Broome, 2013: 237—8).

Whenever you follow a rule in a way that seems right to you, you are reasoning.

You are reasoning correctly only if that rule is correct according to some universal

or intersubjective standard. For example, the rule ({( Â) ( Â)} ( Â))
may seem right to most people and is arguably correct, but its putative rightness

and correctness are outside the scope of our abstract model.

The totality of your rules is your ‘reasoning system’, representing your reasoning

policy. Technically, a reasoning system is a set  of reasoning rules. Starting

from your initial constitution, you can reason with your rules: whenever you have

a rule’s premise-attitudes, you can form the rule’s conclusion-attitude, which is

added to your constitution. You can do this until your constitution is stable. A

constitution  is stable under  (‘under reasoning’) if reasoning makes no

change, i.e.,  already contains the conclusion-attitude of each rule in  whose

premise-attitudes it contains. The stable constitution reached by reasoning from

your initial constitution  using your reasoning system  is denoted | and called
the revision of  through  (‘through reasoning’). Technically, | is defined
as the minimal extension of  stable under .25 Provided your reasoning system

 is finite, you can reach | is in finitely many reasoning steps. You first apply
a rule ( ) in  that is effective (‘difference-making’) on , i.e., for which  ⊆ 

but  6∈ ; your constitution becomes  ∪ {}. You then apply another rule ( 0 0)
in  that is effective on ∪{}; your constitution becomes ∪{ 0}. You continue
until all your rules are ineffective. The order in which you reason, i.e., apply rules,

is irrelevant: you inevitably converge to the same stable constitution |. All
25This (with respect to set-inclusion) minimal stable extension exists and is unique. It is the

intersection of all stable extensions  0 ⊇ .
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this can be stated formally.26 For infinite reasoning systems , one might argue

that | was defined too largely, as including even attitudes that are reachable ‘in
infinitely many steps’ (so to say) without being ‘really’ reachable. For infinite  our

definition of | is therefore appropriate for ‘infinite reasoners’ rather than ‘real
reasoners’ — a questionable but convenient idealisation.

5.2 Comparison with broader accounts of reasoning

Our Broomean account of reasoning differs from other accounts. We now discuss

some key differences; our formal result will hinge on them.

Broomean reasoning is broad in that it operates within general attitudes, not

just beliefs. But it is narrow in that it (i) forms but never removes attitudes,

and (ii) is based on the presence but never the absence of attitudes. In short,

you cannot reason to, or from, absences; you for instance cannot reason from not

believing something to no longer intending something. These two features make

the Broomean reasoning operator inclusive and monotonic.27

But our Broomean approach does not deny the existence of other mental pro-

cesses that produce, or start from, absences of attitudes, such as processes of losing

intentions based on lacking certain beliefs. On the contrary, our Broomean ap-

proach regards such processes as a central element of psychology: an automatic

element distinct from reasoning. Such automatic processes help improve rationality

where reasoning alone is unsuccessful (Broome 2013 and Dietrich et al. 2019). This

idea will be confirmed in Section 5.3.

But let us mention possible criticisms of our Broomean account of reasoning.

For one, this account is restricted to deterministic reasoning: your current attitudes

fully determine what conclusion-attitude you form. Under a generalised account, the

reasoner can choose between possible conclusions. Choice in reasoning is studied in

Dietrich and Staras (forth.) using indeterministic rules. For another, by precluding

reasoning to or from absences, the Broomean account seems to clash with belief

26Write |1|2| · · · | for the result of revising  through rule 1, then through rule 2, etc.

until . For finite , | can be shown to equal |1|2| · · · | for any sequence (1  ) of
-rules that is maximal subject to each rule  being effective on the previously reached constitu-

tion |1|2| · · · |−1. In this representation of | through consecutive reasoning, the sequence
(1  ) (the way to reason) is only to a limited extent unique: all such sequences (1  )

have the same length (number of reasoning steps)  and the same set of conclusion-attitudes { :
some of 1   concludes in }.
27In our framework, a reasoning operator can be defined as any function transforming each ini-

tial constitution  ⊆ into a post-reasoning constitution ∗ ⊆ . In particular, our Broomean

reasoning operator transforms each  into ∗ = |, the revision of  under your (fixed) reas-

oning system . This special reasoning operator obeys two axioms. Inclusiveness: for all initial

constitutions , we have  ⊆ ∗ — reasoning does not remove attitudes. Monotonicity : for all
initial constitutions  and , if  ⊆  then ∗ ⊆ ∗ — additional attitudes cannot prevent (but
can enable) new attitudes, equivalently additional absences of attitudes cannot enable (but can

prevent) new attitudes.
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elimination in AGM-type belief revision theory (Alchourrón et al. 1985) and with

non-monotonic logics (Horty 2001). One might try to reconcile Broomean reasoning

with these formal developments by interpreting AGM-type belief revision and non-

monotonic logical consequence as capturing not reasoning alone but a combination

of reasoning and automatic mental processes. We cannot explore here whether and

how such a reconciliation works.

At a more philosophical level, Drucker (2021) has recently challenged Broome’s

concept of reasoning, defending a broader concept (based on Boghossian 2018). He

argues that reasoning can not just add, but also remove attitudes. Roughly, accord-

ing to his central thesis called ‘Argumentalism’, you reason towards an arbitrary

attitudinal change (e.g., an attitude loss) when you run an argument that convinces

you and that ends with a conclusion whose utterance expresses this change. For

instance, suppose you have the initial belief that it rains. You reason towards losing

that belief if you run an argument that convinces you and that concludes that it

does not rain. In convincing you, the argument has a causal effect on your atti-

tudes: you gain the belief that it does not rain and lose the belief that it rains. By

uttering the conclusion of the argument, you express both the belief acquisition and

the belief loss.

Unlike Broomean reasoning, Druckerian reasoning is not explicit all the way.

It is explicit in the sense that it follows an argument in language. But Drucker

leaves the explicit paradigm in attributing to reasoning various implicit attitudinal

changes that the argument induces. In the ‘rain’ example, the explicit reasoning by

which you acquire the ‘no rain’ belief is both Druckerian and Broomean reasoning

towards a belief, but the loss of the ‘rain’ belief is attributable to reasoning only in

an implicit and non-Broomean sense.

Broome and Drucker have different notions of ‘expressing’. For Broome, your

sentence expresses its (literal) content, in that it denotes or represents it. For

Drucker, your utterance of a sentence expresses an attitude (change) of yours just

if, according to the rules of the language, you could not utter that sentence sincerely

while knowing that the utterance is not caused non-deviantly by the occurrence of

the attitude (change).28 Thus, for Broome, the conclusion sentence ‘it does not

rain’ expresses the marked content of the ‘no rain’ belief. For Drucker, uttering

that sentence expresses both the acquisition of the ‘no rain’ belief and the loss of

the ‘rain’ belief.

In sum, Druckerian reasoning goes beyond Broomean reasoning in including

processes that would count as automatic under our Broomean account. We find the

Broomean notion of reasoning useful — for philosophy, but also cognitive science, de-

cision theory, and behavioural science — because it aims at a clear conceptual separ-

ation between processes under a reasoner’s explicit control and automatic processes

28While Drucker only defines ‘expressing an attitude’ (p. 6), we read his definition as applying

analogously to ‘expressing attitude changes’, because the latter is what is ultimately needed in

his Argumentalism.
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beyond such control. This mirrors the psychological distinction between System

2 and System 1 processes (Watson and Evans 1974, Kahneman 2011). However,

we acknowledge that the two kinds of process can interact in ways that are not

represented explicitly in the Broomean model.29

5.3 Which logical requirements are achievable through reas-

oning?

What would it mean to achieve a logical requirement or even full rationality through

reasoning? Given a theory of rationality, a reasoning system  achieves consist-

ency, completeness, closedness, or (full) rationality if for each initial constitution

 ⊆ the revision | is, respectively, consistent, complete, closed, or rational.
We shall want reasoning to not only achieve certain requirements, but also to

preserve consistency. Formally, a reasoning system  preserves consistency if

for each consistent constitution  its revision | is still consistent. Preserving

consistency matters because there would be little point in achieving some logical

requirement if one thereby lost consistency, the arguably most basic and ‘least

sacrificeable’ logical requirement.

By Theorem 2, achieving consistency, completeness, or closedness is respect-

ively equivalent to achieving certain rationality requirements of standard type. But

whether these standard-type requirements are achievable is known; it is inform-

ally contained in Broome’s work, and formally presented in Dietrich et al. (2019).

Details aside, reasoning can successfully achieve closedness requirements, but not

consistency or completeness requirements. Using this fact, Theorem 2 implies an-

other theorem as a corollary, which (roughly) says that

• reasoning can achieve closedness while preserving consistency,
• reasoning cannot achieve consistency,
• reasoning can achieve completeness, but only while sacrificing consistency.
Formally:

Theorem 3 Given any theory of rationality  ,

(a) some reasoning system achieves closedness while preserving consistency,

(b) no reasoning system achieves consistency (unless consistency is trivial30),

(c) no reasoning system achieves completeness while preserving consistency (un-

less completeness is essentially trivial31),

(d) no reasoning system achieves full rationality (unless consistency is trivial).

In (b)—(d), ‘unless’ can be read not only in its weak sense (‘if it is not the

case that’), but even in its strong sense (‘if and only if it is not the case that’).

29Broome (2013: 206—207) points out that some automatic processes have semantic features, and

that this fact raises ‘interesting and difficult questions’ that are outside the scope of his analysis.
30i.e., unless the theory deems all constitutions consistent (or equivalently, deems the all-

attitudes constitution  = rational).
31i.e., unless the theory deems essentially every constitution complete, in a sense defined below.
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So Theorem 3 provides necessary and sufficient conditions for the possibility of

successful reasoning, in four senses of ‘successful’.32

The message of Theorem 3 is gloomy, though quite ‘Broomean’: you cannot

reason towards two of three logical requirements, just as (following Broome) you

cannot reason towards many ordinary rationality requirements. This result is in-

dependent of the attitude type: it even holds for ordinary ‘theoretic’ reasoning in

beliefs.

A more nuanced picture emerges after cashing in that other mental processes

than reasoning could jump in to make your attitudes inch closer to completeness

(by creating attitudes) or consistency (by removing attitudes). For instance, some

beliefs or intentions might crowd out other ones that are inconsistent with them,

making you ‘more consistent’. We can become ’more logical’, but not through

reasoning alone. Furthermore, if the concept of reasoning were defined more broadly

to include indeterministic reasoning (as in Dietrich and Staras, forth.), then part (c)

of Theorem 3 would no longer hold, so that you could reason (indeterministically)

to completeness.

We now discuss each part in turn.

Part (a): the achievability of closedness. By part (a), you can develop closed

attitudes through reasoning — without losing consistency. Why? By Theorem 2,

closedness is achieved once all the theory’s closedness requirements are achieved.

A closedness requirement says: having a certain set of attitudes  implies having

a certain attitude . You achieve this requirement if you have the rule  = ( ).

You achieve all of the theory’s closedness requirements if you have all correspond-

ing rules. If these are your only rules, reasoning provably preserves consistency.

Although this reasoning system does the job, it is peculiar: it is so rich in rules that

you can reason towards each closedness requirement of the theory in a single step.

In practice, much slimmer (and cognitively more plausible) reasoning systems also

achieve closedness and preserve consistency. You only need rules corresponding to

some of the theory’s closedness requirements. Suppose rationality requires that be-

lieving  and     implies believing , and that believing  implies intending

. Then rationality also requires that believing  and     implies intending

. If you have the rules corresponding to the first two closedness requirements,

 = ({( ) (    )} ( )) and 0 = ({( )} ( )),

then you need not have the rule corresponding to the third requirement, 00 =
({( ) (    )} ( )), because the third requirement is achievable
through applying first  and then 0. Real people presumably reason with few and
simple rules.

32In part (c), the stronger reading of ‘unless’ requires a compactness assumption: each incon-

sistent set of states  ⊆  has a finite inconsistent subset. Compactness holds trivially if  is

finite. Compactness is the multi-attitude counterpart of ordinary logical compactness.
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Part (b): the unachievability of consistency. Part (b) is mathematically

trivial, but philosophically disturbing. It is trivial (without even consulting The-

orem 2) because Broomean reasoning never removes attitudes, hence never makes

inconsistent constitutions consistent. Broome acknowledges that inconsistencies of-

ten disappear, but insists that they disappear, not through reasoning, but through

automatic mental processes, such as when you find yourself losing a belief after

realizing a conflict with other beliefs. The impossibility to reason yourself out of

inconsistency is disturbing because consistency is a more basic normative desid-

eratum than completeness and closedness. One would have hoped that reasoning

can at least make consistent. Instead reasoning can make closed, but not consist-

ent. The problem is only avoided for trivial theories of rationality that deem all

constitutions consistent.

Part (c): the unachievability of completeness. Why does part (c) hold?

Given the theory of rationality, we call a set of attitudes avoidable if some ra-

tional constitution contains none of its states, and unavoidable otherwise. Typ-

ical avoidable sets are {( ) (  )}, {( ) ( ) ( )}, and {( Â
) ( Â) ( ∼)}, for propositions  and  — though these sets are unavoidable

if the theory requires holding ‘beliefs about anything’ and ‘preferences between any

options’. The theory’s unavoidable sets stand in one-to-one correspondence with

the theory’s completeness requirements: a set  ⊆  is unavoidable if and only

if the theory makes the completeness requirement of having some attitude from  .

Now by Theorem 2, completeness is achieved once you satisfy the theory’s complete-

ness requirements, or equivalently, once you have acquired some attitude from each

unavoidable set. There is a trivial (but implausible) way to acquire such attitudes:

for each unavoidable set  , you simply have a rule that always generates a given

attitude in  (formally, a rule  = (∅) which has no premise-attitudes and some
conclusion-attitude  in ).

This trivial way to reason towards completeness is unconvincing. It seems ad

hoc, if not stubborn and blind, to always acquire the same attitude from a given

unavoidable set  , regardless of the web of existing attitudes. What matters is not

just that you form an intention (from an unavoidable set of intentions ), but also

which intention you form. Otherwise the new intention can be inconsistent with

your beliefs, preferences, or other existing attitudes. Formally, the trivial reasoning

system achieves completeness by sacrificing consistency. Unfortunately, also all

other reasoning systems that achieve completeness fail to preserve consistency.

This argument presupposes that completeness is not essentially trivial, as shown

in the proof. Completeness is trivial if the theory deems all constitutions complete;

or equivalently, the empty constitution is rational. Here there are no unavoidable

sets  . More generally, completeness is essentially trivial if all constitutions

containing at least the unfalsifiable attitudes (if any) are complete; or equivalently,

some constitution containing at most unfalsifiable attitudes is rational. An attitude
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 is unfalsifiable if it never conflicts with other attitudes, i.e., if {} ∪  is

consistent whenever  is consistent. The main example are attitudes that are

‘tautological’, i.e., contained in all rational constitutions. Standard theories of

rationality deem all attitudes aside from tautological ones falsifiable: desiring 

is falsifiable by conflicting with desiring  ; preferring  to  is falsifiable by

conflicting with being indifferent between  and , or with preferring  to , or

with preferring  to  and also  to ; etc. So, for standard theories of rationality,

essentially trivial completeness just means trivial completeness.

Part (d): the unachievability of full rationality. Since consistency is un-

achievable by part (b), so is full rationality. This again presupposes that not all

constitutions count as consistent — otherwise you could trivially become rational by

having all reasoning rules, making you form all attitudes.

6 Abstract rationality versus concrete logics of

rational attitudes

Our abstract model of multi-attitude psychology employs no concrete logic, i.e., no

formal syntax or semantics. There exist many concrete logics of attitudes, such as

beliefs or preferences. This section briefly compares our abstract approach with

concrete logical approaches. The comparison is made first with respect to the

statics of attitudes (Section 6.1) and then with respect to the dynamics of attitudes

(Section 6.2).

6.1 The statics of multiple attitudes

The statics of multi-attitude psychology concern your attitudes at a given time. Our

abstract logical requirements — consistency, completeness, closedness — are purely

static. An alternative to our abstract approach would be to use some concrete logic

of attitudes. Mono-modal logics involve just one attitude, for instance belief in

‘doxastic logics’ (e.g., Halpern 2005) or preferences in ‘preference logics’ (e.g., Liu

2011). Multi-modal logics involve two or more attitudes, for instance beliefs, desires

and intentions in ‘BDI logics’ (e.g., Van der Hoek and Wooldridge 2003). Attitudes

are represented by modal operators, and rationality by axioms that constrain atti-

tudes. This machinery provides concrete representations of attitude types (through

attitude operators), but also of attitude contents (through logical sentences). Since

these contents can themselves involve attitudes, one can explicitly form and study

nested attitudes (meta-attitudes) such as intentions to desire to believe something.

Like our abstract model, such a concrete logical model can of course be used to

define notions of attitudinal consistency, completeness, and closedness, though one

would be limited to the (often few) attitudes present in the logic in question.
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6.2 The dynamics of multiple attitudes

The dynamics of multi-attitude psychology concern attitude change. Modal lo-

gics of the sort just discussed can model (deductive33) reasoning about attitudes,

through the entailment relation. But reasoning about attitudes is a process of atti-

tude discovery, not attitude change; it differs from reasoning in attitudes (or ‘with’

attitudes, in Broome’s words), a process of attitude formation. Establishing that

this difference is real and could not be easily overcome through some formal reduc-

tion requires a careful analysis, which we undertake in Dietrich and Staras (forth.).

Here, a few remarks should suffice.

If someone reasons about your attitudes, then what changes are not your at-

titudes, but the reasoner’s beliefs about them. Even when it is you yourself who

reason about some of your attitudes, then not those attitudes change, but your

(meta-)beliefs about them.34 In our earlier example, you reason in your attitudes

by saying:

Doctors recommend resting. So, I shall rest.

You thereby form an intention from a belief. An observer (possibly you) might

reason about your attitudes by saying:

You believe doctors recommend resting. So, you intend to rest.

This and other reasoning about attitudes can be modelled modal-logically, using

entailments between atomic attitude-sentences of type ‘you hold attitude such-and-

such towards such-and-such’, formally () with an operator  representing the

attitude type and a sentence  representing the attitude content. Thanks to building

appropriate rationality axioms into the logic, the right entailments hold between

such ‘atomic’ attitude-sentences. The logic also provides entailments between plenty

of ‘non-atomic’ attitude-sentences, such as: ‘you do not desire this’, ‘you either

believe this or intend that’, etc. Reasoning about attitudes can thus start from, or

conclude in absences of attitudes (or disjunctions of attitudes etc.) — meaning that

the reasoner discovers that absence (or disjunction etc.). But Broomean reasoning

in attitudes cannot start from, or conclude in, absences — meaning that reasoning

starts from attitudes you have and generates rather than removes attitudes (cf.

Section 5.2).

Overall, analogies between our abstract approach to multi-attitude psychology

and concrete attitude logics are easier to draw at the static level than at the dy-

namic level. At the static level, both approaches include notions of consistency,

33But logical entailment cannot model non-deductive reasoning. According to the dominant

view in philosophy of logic, crystallised by Harman’s (1984) distinction between inference and

implication, logic is not primarily about reasoning (inference), but about entailment (implication).

Christensen (2004) also analyses this distinction.
34Your introspective reasoning may spark some causal process that changes your attitudes (in

some direction), but this is another issue.
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completeness and closedness. At the dynamic level, our abstract model of reason-

ing departs from logical entailment between attitudes, as it captures reasoning in

attitudes rather than about attitudes.

A Relation between our logical conditions on at-

titudes and standard logical conditions on be-

liefs

This appendix clarifies how our three logical conditions on multiple attitudes gen-

eralise standard logical conditions on beliefs only. We continue to assume that

our logical conditions are derived from a theory of rationality, i.e., we retain the

top-down approach of Section 3.1 that has guided much of our analysis.

Informally, the standard logical conditions on (a set of) beliefs say the following:

(a) Consistency says: believe only propositions that are mutually consistent, i.e.,

can be simultaneously true.

(b) Completeness comes in two variants. Local completeness says: believe a mem-

ber of each proposition-negation pair {,  }. General or global complete-
ness says something stronger: believe a member of each set of mutually ex-

haustive propositions, i.e., propositions that cannot be simultaneously false.

There are many such sets: proposition-negation pairs {  }, sets of type
{  [ ]  [ ]}, etc.

(c) Closedness says: believe all deductive consequences of your beliefs, i.e., all

beliefs that are true whenever your existing beliefs are true.

To state these definitions formally, consider a set  of propositions defined syn-

tactically or semantically, as in the ‘illustration’ in Section 2.35 A belief set is a set

of (‘believed’) propositions  ⊆ . It is

• consistent if it is members can be jointly true. Given the semantic model, this
means that ∩∈ 6= ∅. Given the syntactic model, it means that  entails

no contradiction.

• closed if it contains all  ∈  which it entails. In the semantic model, 

entails  just in case ∩∈ ⊆ .

• locally complete if it contains a member of each proposition-negation pair, i.e.,
each pair {Ω\} ⊆  (given the semantic model) or each pair {¬} ⊆ 

(given the syntactic model).

• globally complete if it contains a member of each exhaustive set  ⊆ . A

35In the syntactic case we assume that the logic is a standard propositional logic, or more

generally any well-behaved logic such as a standard propositional, predicate, modal, or conditional

logic. Formally, the logic must obey a few classic conditions (namely L1—L4 in Dietrich 2007) which

guarantee ‘regular’ notions of logical consistency and logical entailment. The notable condition is

monotonicity, whereby entailments are preserved under adding premises, and so consistency of a

set is preserved under removing elements.
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set  ⊆  is exhaustive if necessarily at least one member is true. i.e., if

∪∈  = Ω (given the semantic model) or if the set {¬ :  ∈  } is in-
consistent (given the syntactic model). The simplest exhaustive sets are the

proposition-negation pairs. Global completeness implies local completeness,

since local completeness quantifies over fewer exhaustive sets, namely only

over proposition-negation pairs. An equivalent definition of ‘globally com-

plete’ is given in Lemma 1(b).

We can now compare these standard conditions to ours.

A difference between our and standard logical conditions. While our lo-

gical conditions on attitudes are derived from a notion of rationality and are thus

by definition requirements of rationality, the standard logical conditions on beliefs

may or not be required, depending on what counts as rational for beliefs. Com-

pleteness is controversial as a rationality requirement on beliefs, while consistency

and closedness are widely accepted. We shall therefore regard a belief set  ⊆ 

as rational in the standard sense if it is consistent and closed, and as rational in

a stronger sense if it is moreover complete (in the local or global sense, which are

equivalent given consistency).

The conditional equivalence between our and standard logical conditions.

Our logical conditions on attitudes are equivalent to the ordinary logical conditions

on beliefs if beliefs are the only attitudes and the theory of rationality is standard.

Why? We assume the framework of the ‘illustration’ in Section 2 in the belief-only

special case  = {} (where  contains semantic or syntactic propositions36). So
 contains only belief-attitudes:  = {( ) :  ∈ }. Beliefs being the only
attitudes, constitutions are equivalent to belief sets: to any constitution  ⊆ 

corresponds a belief set  = { ∈  : ( ) ∈ }, and to any belief set  ⊆ 

corresponds a constitution  = {( ) :  ∈ }. In this belief-only framework,
theories of rationality  are essentially theories of rational beliefs. Two theories of

rationality are particularly salient in this context, as they reflect what is usually

required from beliefs:

• The standard theory of rationality is the theory stan such that a constitution
 ⊆  is rational (i.e., in stan) if and only if the corresponding belief set

 = { : ( ) ∈ } is consistent and closed.
• The standard complete theory of rationality is the theory stan+ such that a

constitution  ⊆ is rational (i.e., in stan+) if and only if the corresponding

belief set  = { : ( ) ∈ } is consistent and complete (in the local
or, equivalently, global sense), and thus by implication closed. Note that

stan+ ⊆ stan.

Our logical conditions then reduce to the standard ones:

36and where in the syntactic case the logic is well-behaved as defined in footnote 35
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Theorem 4 In the above belief-only framework, for any constitution  with cor-

responding belief set ,

(a)  is consistent under theory stan+ or stan if and only if  is consistent,

(b)  is complete under theory stan+ if and only if  is complete in the global

sense,

(c)  is closed under theory stan+ or stan if and only if  is closed.

This result makes precise how our logical conditions generalise the ordinary ones.

The connection is tight for consistency and closedness, and weaker for completeness,

reinforcing arguments in Section 3.4.

To prove Theorem 4, we start by characterizing the standard logical conditions

on beliefs in ways similar to our definition of logical conditions on constitutions:

Lemma 1 A belief set  ⊆  is

(a) consistent if and only if  ⊆ 0 for some complete and consistent belief set
0 ⊆ ,

(b) complete (understood globally) if and only if  ⊇ 0 for some complete and
consistent belief set 0,

(c) closed if and only if  contains each proposition which it entails, where being

entailed means being contained in all complete and consistent extensions 0 ⊇
.

Proof. Let  ⊆  be a belief set, and B the set of complete and consistent belief

sets.

(a) We distinguish between the semantic and syntactic model of . In the

semantic case the equivalence holds trivially (if  is consistent, we can pick a

 ∈ ∩∈ and define 0 as { ∈  :  ∈ }). In the syntactic case the equivalence
follows from a basic property in logic, often referred to as ‘Lindenbaum’s lemma’,

which states that any consistent set of sentences in a logic is extendable to a com-

plete and still consistent set. This property holds in well-behaved logics of the sort

assumed here (see footnote 35).

(b) First let  have a subset 0 ∈ B. To show that  is (globally) complete,

consider any exhaustive set  ⊆ . We must prove that  ∩  6= ∅. As 0 ⊆  it

suffices to show that  ∩0 6= ∅, which holds by the following argument, spelt out
separately for syntactic and semantic propositions:

• In the syntactic case, note that the (inconsistent) set {¬ :  ∈  } cannot be
a subset of the (consistent) set 0. So there is a  ∈  such that ¬ 6∈ 0,
and thus  ∈ 0 as 0 is complete. So  ∩0 6= ∅.

• In the semantic case, since {Ω\ :  ∈  } has empty intersection (as  has

union Ω) while 0 has non-empty intersection (as 0 is consistent), the set
{Ω\ :  ∈  } cannot be a subset of 0. So there is a  ∈  such that

Ω\ 6∈ 0, and hence  ∈ 0 as 0 is complete. So  ∩0 6= ∅.
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Conversely, assume that  does not include any 0 ∈ B. We show that  is not
(globally) complete. By assumption, for each 0 ∈ B there is a 0 ∈ 0\. Let
 := {0 : 0 ∈ B}. This set  is exhaustive — in the semantic case because each

world  ∈ Ω belongs to some member of  (namely to 0 where 
0 := { ∈  :

 ∈ }), in the syntactic case because {¬ :  ∈  } is not included in any 0 ∈ B
and so is inconsistent by (a). Yet  ∩  = ∅ by construction of  . So  is not

complete.

(c) We show that  is closed just in case  = ∩0∈B:0⊇0. In the syntactic
case, this is a familiar fact (in the well-behaved logics considered here; cf. footnote

35). Now consider the semantic case. If  = ∩0∈B:0⊇0, then  is clearly

closed. Conversely, if  is closed, then  = { ∈  :  ⊇ ∩∈}, implying
 = ∩0∈B:0⊇0. ¥

Proof of Theorem 4. Suppose the theorem’s assumptions. For brevity, we only

prove the claims relating to the theory stan+. Write  for stan+. Denote the

content of a (belief) state  by b and the belief set corresponding to a constitution

 ⊆ by b = {b :  ∈ }. Fix a constitution .

First,

 is consistent ⇔  ⊆  0 for some  0 ∈ 

⇔ b ⊆c 0 for some  0 ∈ 

⇔ b ⊆  for some consistent and complete  ⊆ 

⇔ b is consistent, by Lemma 1(a).

Second,

 is complete ⇔  ⊇  0 for some  0 ∈ 

⇔ b ⊇c 0 for some  0 ∈ 

⇔ b ⊇  for some consistent and complete  ⊆ 

⇔ b is globally complete, by Lemma 1(b).

Third, writing b := { b :  ∈ } = { ⊆  :  is complete and consistent},
 is closed ⇔  3  for all  entailed by , i.e., all  ∈ ∩0∈ :0⊇ 0

⇔ b 3 b for all  entailed by , i.e., all  ∈ ∩0∈ :0⊇ 0

⇔ b 3  for all  entailed by b, i.e., all  ∈ ∩∈ :⊇ 
⇔ b is closed, by Lemma 1(c). ¥

B Proof of Theorem 1 and its corollary

The proof of Theorem 1 rests on two lemmas. The first lemma is an equivalent

re-statement of a well-known fact in abstract logic, whose proof we include for

completeness:

Lemma 2 A set  (⊆ 2) is a closedness notion if and only if it is closed

under intersection, i.e.,  ⊆ ⇒ ∩ ∈  (where by convention ∩∅ =).
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Proof. First, if  is closed under intersection, then define the consequence

() of a set  ⊆  as the smallest extension of  in , i.e., as ∩{ 0 ∈
 :  0 ⊇ }; and verify that the so-defined operator  is classical and that
 = { ⊆  : () = }. Conversely, assume  is a closedness notion,

say with respect to the classical consequence operator . To show closedness under

intersection, we fix a  ⊆  and show that ∩ ∈ , i.e., that (∩ ) = ∩ .
For one, ∩ ⊆ (∩ ), as  is inclusive. For another, (∩ ) ⊆ ∩ , as for each
 ∈  we have (∩ ) ⊆ () = , where the ‘⊆’ holds as  is monotonic
and the ‘=’ holds as  ∈ . ¥

Lemma 3 For any theory of rationality  ,  is the closure of  under inter-

section, i.e.,  = {∩ :  ⊆ }.

Proof. Let  be any theory. Since  includes  and is, like any closedness

notion, closed under intersection (Lemma ??),  includes  ’s closure under

intersection:  ⊇ {∩ :  ⊆ }. To show that  ⊆ {∩ :  ⊆ }, we
fix a  ∈  , define  = { 0 ∈  :  ⊆  0}, and show that  = ∩ . All
attitudes in ∩ are ( -)entailed by , hence belong to  as  is ( -)closed. So,

 = ∩ . ¥

Proof of Theorem 1. Assume  is classical, say  =  ∩  ∩ 

for some notions of consistency  , completeness  , and closedness .

We must show that (i)  =  ∩  ∩  , (ii)  ⊆  , (iii)

 ⊆  and (iv)  ⊆ . Observe that (i) follows from (ii)—(iv) and

the fact that  =  ∩ ∩,  ⊆  ,  ⊆  , and  ⊆  .

So it suffices to show (ii)—(iv).

To show (ii), let  ∈  . Pick a  0 ∈  such that  ⊆  0. As  0 ∈ 

and  ⊆  , we have  0 ∈  ; hence  ∈  since  is a consistency

notion and  ⊆  0. This shows (ii).
To show (iii), consider a  ∈  . Pick a  0 ∈  such that  0 ⊆ . Now

 0 ∈  (as  0 ∈  ⊆ ), and thus  ∈  (as  0 ⊆  and  is a

completeness notion).

We finally show (iv). As  includes  and is closed under intersection (by

Lemma 2),  includes  ’s closure under intersection, which equals  by

Lemma 3. So,  ⊇  . ¥

Proof of Corollary 1. Let  be fully classical, say  =  ∩ for notions

of consistency  and closedness . Then (*)  =  ∩  ∩ 

with the vacuous completeness notion  = 2 . By Theorem 1, (**)  =

 ∩  ∩  , and (***)  ⊆  ,  ⊆  ,  ⊆
. It remains to show that  =  ∩  . By (*), (**) and (***),

 =  ∩  ∩  . So, as  = 2 ,  =  ∩  . ¥
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We also present an (alternative) direct proof of Corollary 1. It is again based

on two lemmas, namely on Lemma 2 and on an interesting fact about fully classical

theories:

Lemma 4 If  is a fully classical theory of rationality, then  =  ∪ {}.

Proof. Obviously, for any theory  (whether or not fully classical)  includes

 and contains ; hence, ∪{} ⊆  . To show the reverse inclusion, let  be

fully classical, say  = ∩ for notions of consistency  and closedness

. By Lemma 2,  is closed under intersection:  ⊆  ⇒ ∩ ∈ .

Moreover,  is closed under non-empty intersection: ∅ 6=  ⊆  ⇒ ∩ ∈
 . It follows that  =  ∩  is closed under non-empty intersection.

By implication,  ∪ {} is closed under intersection.
We are ready to show that  ⊆  ∪ {}. We let  ∈  and prove

 ∈  ∪ {}. Now  ( -)entails all attitudes in ∩{ 0 ∈  :  ⊆  0}, hence
contains all of them as  is ( -)closed. So,  = ∩{ 0 ∈  :  ⊆  0}. Meanwhile
∩{ 0 ∈  :  ⊆  0} ∈  ∪ {} as  ∪ {} is closed under intersection. Therefore
 ∈  ∪ {}. ¥

Direct proof of Corollary 1. Suppose  is a fully classical theory, say  =

 ∩ for notions of consistency  and closedness . We must show

that (i)  =  ∩  , (ii)  ⊆  , and (iii)  ⊆ . Note

that (i) follows from (ii) and (iii) because  =  ∩ ,  ⊆  , and

 ⊆  . It thus remains to show (ii) and (iii). Condition (ii) holds for the same

reason as in the proof of Theorem 1. To show (iii), we must by Lemma 4 prove

that  ∪ {} ⊆ . This holds because  ⊆  (as  =  ∩ ) and
because  ∈  by Lemma 2. ¥

C Proof of Theorem 2

Fix a theory of rationality  and a constitution . Let  6= ∅, an assumption
needed only in parts (a) and (b). We now prove each part.

Part (a). We prove both directions of implication. We may assume  6= ∅,
since otherwise  is trivially consistent (as  6= ∅) and satisfies all consistency
requirements.

• First let  satisfy  ’s consistency requirements. We show that  is consist-

ent. Consider the consistency requirement ∗ of not holding all states in :

∗ = { 0 :  6⊆  0}. Since  violates ∗ while satisfying  ’s consistency

requirements, ∗ cannot be a requirement of  . So some rational constitution
 0 ∈  violates ∗, i.e.,  ⊆  0. So  is consistent.

• Conversely, assume  is consistent. Consider any consistency requirement 

of  ; we must prove that  satisfies it.  takes the form  = { 0 :  6⊆  0}
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for some ‘forbidden set’  . Being consistent,  has a rational extension +.

As + is rational, it satisfies  ’s requirements, so satisfies , i.e.,  6⊆ +.

As  ⊆ +, it follows that  6⊆ . So  satisfies .

Part (b). The proof is the ‘dual’ of that for part (a). We may suppose  6=  ,

because otherwise  is trivially complete (as  6= ∅) and satisfies all completeness
requirements.

• First let  satisfy  ’s completeness requirements. We show that  is com-

plete. Note that  violates the (completeness) requirement of containing a

state outside , ∗ = { 0 : (\)∩ 0 6= ∅}. So, as  satisfies  ’s complete-
ness requirements, ∗ is not a requirement of  . So some rational constitution
 0 ∈  violates ∗; hence (\) ∩  0 = ∅, i.e.,  0 ⊆ . So  is complete.

• Conversely, let  be complete. Let  be any completeness requirement of

 ; we show that  satisfies it.  requires having at least one states from

an (unavoidable) set  :  = { 0 :  0 ∩  6= ∅}. As  is complete, it has

a rational subset −. Being rational, − satisfies  ’s requirements, hence
satisfies , i.e., − ∩  6= ∅. So, as − ⊆ ,  ∩  6= ∅. Hence,  satisfies

.

Part (c). Again, both directions of implication are to be shown.

• First, let  satisfy  ’s closedness requirements. To show that  is closed,

consider a state  entailed by ; we must show that  ∈ . Consider the

closedness requirement ∗ with set of premise states  and conclusion state

: ∗ = { 0 :  ⊆  0 ⇒  ∈  0}. As  entails , ∗ is a requirement of
 . So, as  satisfies  ’s closedness requirements, it satisfies ∗. Hence, as
 ⊆ , we have  ∈ .

• Conversely, assume  is closed. Consider a closedness requirement  of the

theory, say  = { 0 :  ⊆  0 ⇒  ∈  0} for some (premise) set  ⊆  and

some (conclusion) state  ∈  . To show that  satisfies , assume  ⊆ ;

we must prove  ∈ . Since  is a requirement of  , all rational constitutions

which include  contain , which in turn means that  entails  (by definition

of entailment). So also the larger set  ⊇  entails  (again by definition of

entailment). Hence  ∈ , as  is closed.

Part (d). Trivially, rationality is equivalent to satisfaction of the theory’s strongest

requirement  =  , which is equivalent to satisfaction of all the theory’s require-

ments  ⊇  . ¥

D Proof of Theorem 3

Again, fix a theory of rationality  . A reasoning system  achieves a requirement

 if | satisfies  for all constitutions . For parts (b), (c) and (d) we prove two
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directions of implication, as ‘unless’ is taken to mean ‘if and only if it is not the

case that’.

For the trivial theory  = ∅, all parts hold. Part (a) holds because the maximal
reasoning system , which contains all rules, achieves closedness (by transforming

each constitution into  , the only closed constitution) and trivially preserves con-

sistency since no constitution is consistent. Parts (b), (c) and (d) hold because

consistency, completeness and rationality are all trivially unachievable by the ab-

sence of any consistent, complete or rational constitutions (regarding (c), note also

the absence of avoidable sets).

Henceforth let  6= ∅. We prove the four parts in turn.

Part (a). By Theorem 2(c), achieving closedness is equivalent to achieving all

closedness requirements of  . Meanwhile, by Theorem 1 in Dietrich et al. (2019)

there exists a reasoning schema  which achieves all closedness requirements and

preserves consistency. So  achieves closedness while preserving consistency.

Part (b). First, if consistency is trivial (i.e.,  = is rational), then consistency

is achieved by any reasoning system. Conversely, assume consistency is non-trivial.

Let  be any reasoning system. It fails to achieve consistency, because by non-

triviality there is an inconsistent constitution  (e.g.,  = ), and as | ⊇ 

also | is inconsistent.

Part (c). First, assume completeness is trivial (along with the background assump-

tion of compactness, whereby each inconsistent set of states has a finite inconsistent

subset). For each unavoidable set  we can pick an unfalsifiable state  ∈  .

The reasoning system  = {(∅) :  is unavoidable} achieves each complete-
ness requirement of theory  , because for each completeness requirement of  a

state from its unavoidable set is formed. So  achieves completeness simpliciter,

by Theorem 2. We now show that  preserves consistency. For a contradiction,

consider a consistent constitution  such that | is inconsistent. By compactness,
| has a finite inconsistent subset  0. By definition of , | =  ∪ { :  is

an unavoidable set} So we may pick finitely many unavoidable sets 1   such

that  0 ⊆  ∪ {12 }. Since  is consistent, so is  ∪ {1}, as 1

is non-falsifiable; hence so is  ∪ {1 2}, as 2 is non-falsifiable. Repeating

this argument  times, it follows that  ∪ {12 } is consistent. Hence
its subset  0 is consistent.
Conversely, suppose some set of falsifiable states is unavoidable. Let  be the

corresponding completeness requirement. It suffices to show that no reasoning sys-

tem achieves , because by Theorem 2 achieving completeness is equivalent to

achieving all completeness requirements of the theory. By Theorem 3 in Dietrich

et al. (2019), no reasoning system achieves any completeness requirement of the

theory whose unavoidable set consists of falsifiable states. So no reasoning system

 achieves .
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Part (d). First, for (degenerate) theories that deem  = rational, rationality is

trivially achieved by the reasoning system  containing all rules, for which| =

for all initial constitutions . Conversely, if  = is irrational, the unachievability

of rationality follows from that of the weaker demand of consistency (see part (b)).

¥
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