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Abstract

In judgment aggregation, unlike preference aggregation, not much is known about
domain restrictions that guarantee consistent majority outcomes. We introduce
several conditions on individual judgments su¢ cient for consistent majority judg-
ments. Some are based on global orders of propositions or individuals, others
on local orders, still others not on orders at all. Some generalize classic social-
choice-theoretic domain conditions, others have no counterpart. Our most gen-
eral condition generalizes Sen�s triplewise value-restriction, itself the most general
classic condition. We also prove a new characterization theorem: for a large class
of domains, if there exists any aggregation function satisfying some democratic
conditions, then majority voting is the unique such function. Taken together, our
results support the robustness of majority rule.

1 Introduction

In the theory of preference aggregation, it is well known that majority voting on pairs
of alternatives may generate inconsistent (i.e., cyclical) majority preferences even when
all individuals�preferences are consistent (i.e., acyclical). The most famous example
is Condorcet�s paradox. Here one individual prefers x to y to z, a second y to z
to x, and a third z to x to y, and thus there are majorities for x against y, for y
against z, and for z against x, a �cycle�. But it is equally well known that if individual
preferences fall into a suitably restricted domain, majority cycles can be avoided (see
Gaertner [14] for an overview). The most famous domain restriction with this e¤ect
is Black�s single-peakedness [1]. A pro�le of individual preferences is single-peaked if
the alternatives can be ordered from �left�to �right�such that each individual has a
most preferred alternative with decreasing preference for other alternatives as we move
away from it in either direction. Inada [17] showed that another condition called single-
cavedness and interpretable as the mirror image of single-peakedness also su¢ ces for
avoiding majority cycles: a pro�le is single-caved if, for some left-right order of the

�This paper draws on an unpublished draft circulated in July 2006. We are grateful to Lars
Ehlers, Ashley Piggins, Ben Polak, Clemens Puppe, Alejandro Saporiti and two anonymous reviewers
for helpful comments and discussions. Our work was supported by a Nu¢ eld Foundation New Career
Development Fellowship. Christian List�s work was also supported by a Philip Leverhulme Prize.
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alternatives, each individual has a least preferred alternative with increasing preference
for other alternatives as we move away from it in either direction. Sen [38] introduced
a very general domain condition, called triplewise value-restriction, that guarantees
acyclical majority preferences and is implied by Black�s, Inada�s and other conditions;
it therefore uni�es several domain-restriction conditions, yet has a technical �avour
without straightforward interpretation.

The wealth of domain-restriction conditions for avoiding majority cycles was sup-
plemented by another family of conditions based not on left-right orders of the al-
ternatives, but on left-right orders of the individuals. Important conditions in this
family are Grandmont�s intermediateness [16] and Rothstein�s order restriction ([34],
[35]) with its special case of single-crossingness (e.g., Roberts [32], Saporiti and Tohmé
[36], Saporiti [37]). To illustrate, a pro�le of individual preferences is order-restricted
if the individuals � rather than the alternatives � can be ordered from left to right
such that, for each pair of alternatives x and y, the individuals preferring x to y are
either all to the left, or all the right, of those preferring y to x.

In the theory of judgment aggregation, by contrast, domain restrictions have re-
ceived much less attention (the only exception is the work on unidimensional align-
ment, e.g., List [22]). This is an important gap in the literature since, here too, major-
ity voting with unrestricted but consistent individual inputs may generate inconsistent
collective outputs, while on a suitably restricted domain such inconsistencies can be
avoided. As illustrated by the much-discussed discursive paradox (e.g., Pettit [31]), if
one individual judges that a, a! b and b, a second that a, but not a! b and not b,
and a third that a! b, but not a and not b, there are majorities for a, for a! b and
yet for not b, an inconsistency. But if no individual rejects a ! b, for example, this
problem can never arise.

Surprisingly, however, despite the abundance of impossibility results generalizing
the discursive paradox as reviewed below, very little is known about the domains of in-
dividual judgments on which discursive paradoxes can occur (as opposed to agendas of
propositions susceptible to such problems, which have been extensively characterized
in the literature). If we can �nd compelling domain restrictions to ensure majority
consistency, this allows us to re�ne and possibly ameliorate the lessons of the discur-
sive paradox. Going beyond the standard impossibility results, which all assume an
unrestricted domain, we can then ask: in what political and economic contexts do the
identi�ed domain restrictions hold, so that majority voting becomes safe, and in what
contexts are they violated, so that majority voting becomes problematic?

This paper has two goals. The �rst is to introduce several conditions on pro�les
of individual judgments that guarantee consistent majority judgments. These can be
distinguished in at least two respects: �rst, in terms of whether they are based on
orders of propositions, on orders of individuals, or not on orders at all; and second, if
they are based on orders, in terms of whether these are �global�or �local�. We further
draw a distinction between product and non-product domains, which is relevant to
game-theoretic applications.

The second goal of the paper is to present a characterization result demonstrating
the robustness of majority voting. In analogy with May�s classic characterization of
majority voting in binary choices [25] and Dasgupta and Maskin�s theorem on the
robustness of majority voting in preference aggregation [2], we show that, for a very
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large class of domains, if there exists any aggregation function that satis�es some
minimal democratic conditions including consistency of its outcomes, then majority
voting is the unique such function. In combination with our domain-restriction condi-
tions, this theorem provides a powerful argument for majority voting in a broad range
of circumstances.

We pursue our two goals in reverse order, beginning with the characterization of
majority voting, followed by the discussion of domain restrictions. We state our results
for the general case in which individual and collective judgments are only required to
be consistent; they need not be complete (i.e., they need not take a view on every
proposition-negation pair). But we also consider the important special case of full
rationality, i.e., the conjunction of consistency and completeness. Some of our proofs
are given in the main text, others in the appendix.

Let us brie�y comment on how the two central distinctions underlying the domain-
restriction conditions discussed in this paper relate to the literature on domain restric-
tions in preference aggregation. First, as noted, some of our conditions are based on
orders of propositions, others on orders of individuals, and yet others not on orders at
all. The conditions based on orders of individuals generalize some of the conditions on
preferences reviewed above, notably Grandmont�s intermediateness and Rothstein�s
order restriction, and reduce to them when applied to judgments on binary ranking
propositions that can represent preferences (such as xPy, yPz, xPz and so on). By
contrast, the conditions based on orders of propositions are not obviously analogous
to any standard conditions on preferences. (An exception may be La¤ond and Lainé�s
[20] condition of single-switch preferences in the di¤erent context of Ostrogorski�s
paradox, where individuals�most preferred positions on multiple, albeit unconnected,
issues are restricted relative to some order of issues.) While an order of individuals can
be interpreted similarly in judgment and preference aggregation �namely in terms of
the individuals�positions on a normative or cognitive dimension �an order of proposi-
tions in judgment aggregation is conceptually distinct from an order of alternatives in
preference aggregation. Propositions, unlike alternatives, are not mutually exclusive.
It is therefore surprising that su¢ cient conditions for consistent majority judgments
can be given even based on orders of propositions. We also introduce a very general
domain-restriction condition not based on orders at all, which generalizes Sen�s con-
dition of triplewise value-restriction, and characterize the maximal domain on which
majority voting yields consistent collective judgments.

Secondly, as we have also pointed out, our domain-restriction conditions based
on orders admit global and local variants. In the global case, the individuals�judg-
ments on all propositions on the agenda are constrained by the same left-right order
of propositions or individuals, whereas in the local case, that order may di¤er across
subsets of the agenda. To relate this to the more familiar context of preference ag-
gregation, single-peakedness and single-cavedness are global conditions, whereas the
restriction of these conditions to triples of alternatives yields local ones. But while in
preference aggregation local conditions result from the restriction of global conditions
to triples of alternatives, the picture is more general in judgment aggregation. Here
di¤erent left-right orders may apply to di¤erent subagendas, which correspond to dif-
ferent semantic �elds. We give precise criteria for selecting appropriate subagendas.
An individual can be left-wing on a �social�subagenda and right-wing on an �economic�
one, for example.
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Finally, a few remarks about the literature on judgment aggregation are due.
The recent �eld of judgment aggregation emerged from the areas of law and politi-
cal philosophy (e.g., Kornhauser and Sager [19] and Pettit [31]) and was formalized
social-choice-theoretically by List and Pettit [23]. The literature contains several im-
possibility results generalizing the observation that on an unrestricted domain major-
ity judgments can be logically inconsistent (e.g., List and Pettit [23] and [24], Pauly
and van Hees [30], Dietrich [3], Gärdenfors [15], Nehring and Puppe [29], van Hees
[39], Mongin [26], Dietrich and List [7], and Dokow and Holzman [12]). Some of
these impossibility results build on Nehring and Puppe�s [27] results on strategy-proof
social choice in the framework of property spaces. Earlier precursors include works
on abstract aggregation (Wilson [40], Rubinstein and Fishburn [33]). But so far the
only domain-restriction condition known to guarantee consistent majority judgments
is List�s unidimensional alignment ([21], [22]), a global non-product domain condition
based on orders of individuals.

2 The model

We consider a group of individuals N = f1; 2;...; ng (n � 2) making judgments on
some propositions. To represent propositions, we use Dietrich�s [4] model of general
logics, which generalizes the approach in List and Pettit [23] and [24].

Logic. A logic is given by a language and a notion of consistency. The language
is a non-empty set L of sentences (called propositions) closed under negation (i.e.,
p 2 L implies :p 2 L, where : is the negation symbol). For example, in standard
propositional logic, L contains propositions such as a, b, a^ b, a_ b, :(a! b), where
^, _,! denote �and�, �or�, �if-then�, respectively. In other logics, the language may in-
volve additional connectives, such as modal operators (�it is necessary/possible that�),
deontic operators (�it is obligatory/permissible that�), subjunctive conditionals (�if p
were the case, then q would be the case�), or quanti�ers (�for all/some�). The notion
of consistency captures the logical connections between propositions by stipulating
that some sets of propositions S � L are consistent (and the others inconsistent),
subject to some regularity axioms.1 A proposition p 2 L is a contradiction if fpg is
inconsistent and a tautology if f:pg is inconsistent. We further say that a set S � L
entails a proposition p 2 L if S[f:pg is inconsistent. For example, in standard logics,
fa; a ! b; bg and fa ^ bg are consistent and fa;:ag and fa; a ! b;:bg inconsistent;
a ^ :a is a contradiction and a _ :a a tautology; and fa; a! bg entails b.

Agenda. The agenda is the set of propositions on which judgments are to be made.
It is a non-empty set X � L expressible as X = fp;:p : p 2 X+g for some set
X+ of unnegated propositions (this avoids double-negations inX). In our introductory
example, the agenda is X = fa;:a; a ! b;:(a ! b); b;:bg. For convenience, we
assume that X is �nite.2 As a notational convention, we cancel double-negations in

1Self-entailment: Any pair fp;:pg � L is inconsistent. Monotonicity: Subsets of consistent sets
S � L are consistent. Completability: ; is consistent, and each consistent set S � L has a consistent
superset T � L containing a member of each pair p;:p 2 L. See Dietrich [4].

2For in�nite X, our results hold either as stated or under compactness of the logic.
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front of propositions in X.3 Further, for any Y � X, we write Y � = fp;:p : p 2 Y g
to denote the (single-)negation closure of Y .

Judgment sets. An individual�s judgment set is the set A � X of propositions in
the agenda that he or she accepts (e.g., �believes�). A pro�le is an n-tuple (A1; : : : ; An)
of judgment sets across individuals. A judgment set is consistent if it is consistent in
L; it is complete if it contains at least one member of each proposition-negation pair
p;:p 2 X; it is opinionated if it contains precisely one member of each proposition-
negation pair p;:p 2 X. (Clearly, consistency and completeness jointly imply opin-
ionation.) Our results mostly do not require completeness, in line with several works
on the aggregation of incomplete judgments (Gärdenfors [15]; Dietrich and List [9],
[10], [11]; Dokow and Holzman [13]; List and Pettit [23]). This strengthens our possi-
bility results as the identi�ed possibilities hold on larger domains of pro�les. But we
also consider the complete case.

Aggregation functions. A domain is a set D of pro�les, interpreted as admissible
inputs to the aggregation. An aggregation function is a function F that maps each
pro�le (A1; : : : ; An) in a given domain D to a collective judgment set F (A1; : : : ; An) =
A � X. While the literature focuses on the universal domain, which consists of all
pro�les of consistent and complete judgment sets, we here focus mainly on domains
that are less restrictive in that they allow for incomplete judgments, but more restric-
tive in that we impose some structural conditions. We call an aggregation function
consistent or complete, respectively, if it generates a consistent or complete judgment
set for each pro�le in its domain. The majority outcome on a pro�le (A1; :::; An) is
the judgment set

fp 2 X : there are more individuals i 2 N with p 2 Ai than with p =2 Aig.

The aggregation function that generates the majority outcome on each pro�le in its
domain D is called majority voting on D.4

Preference aggregation as a special case. To relate our results to existing re-
sults on preference aggregation, we must explain how preference aggregation can be
represented in our model (following Dietrich and List [7] and List and Pettit [24]).
Since preference relations are binary relations on a set of alternatives K = fx; y; :::g,
they can be represented as judgments on an agenda of binary ranking propositions of
the form xPy (�x is preferable to y�), where x; y 2 K. Formally, the preference agenda
is

XK = fxPy 2 L : x; y 2 Kg� � L,

where L is a simple predicate language with the set of constants K (representing
alternatives) and the two-place predicate P (representing strict preference), and any
set S � L is consistent if it is consistent with the rationality conditions on strict

3More precisely, if p 2 X is already of the form p = :q, we write :p to mean q rather than ::q.
This ensures that, whenever p 2 X, then :p 2 X.

4Other widely discussed aggregation functions include dictatorships, supermajority functions, and
premise-based or conclusion-based functions.

5



preferences.5 Now preference relations and opinionated judgment sets stand in a one-
to-one correspondence:

� To any preference relation (arbitrary binary relation) � on K corresponds the
opinionated judgment set A� � XK such that

A� = fxPy : x; y 2 K and x � yg [ f:xPy : x; y 2 K and x 6� yg.

� Conversely, to any opinionated judgment set A � XK corresponds the preference
relation �A on K such that, for all x; y 2 K,

x �A y , xPy 2 A.

Since we have built the rationality conditions on preferences into the notion of
consistency governing the logic, a preference relation � is fully rational (i.e., asym-
metric, transitive and connected) if and only if A� is consistent. Moreover, a judgment
aggregation function (for opinionated judgment sets) represents a preference aggrega-
tion function, and majority voting as de�ned above corresponds to pairwise majority
voting in the standard Condorcetian sense.

3 Why majority voting?

To motivate our focus on majority voting, we begin by presenting a new characteriza-
tion of it on a large class of domains. We use two democratic conditions in addition
to the requirement of consistent collective judgment sets.

Anonymity. For any pro�les (A1; : : : ; An), (A�1; : : : ; A
�
n) in the domain of F that are

permutations of each other, F (A1; : : : ; An) = F (A�1; : : : ; A
�
n):

Acceptance/rejection neutrality. For any pro�les (A1; : : : ; An), (A�1; : : : ; A
�
n) in

the domain of F and any proposition p 2 X,

[for all i 2 N , p 2 Ai , p 62 A�i ] ) [p 2 F (A1; : : : ; An), p 62 F (A�1; : : : ; A�n)].

Both conditions are familiar from May�s classic characterization of majority voting
in a single binary choice [25].6 Anonymity requires equal treatment of all individuals,
and acceptance/rejection neutrality prevents the aggregation function from favouring
the acceptance of a proposition over its rejection or vice versa; i.e., if the individuals
accepting a given proposition in one pro�le are the same as those rejecting it in
another, then the proposition must be collectively accepted in the �rst pro�le if and
only if it is collectively rejected in the second.7

5Formally, this requires S [ Z to be consistent in the standard sense of predicate logic, where Z
consists of (8v1)(8v2)(v1Pv2 ! :v2Pv1) (asymmetry), (8v1)(8v2)(8v3)((v1Pv2 ^ v2Pv3) ! v1Pv3)
(transitivity), (8v1)(8v2)(: v1 = v2 ! (v1Pv2 _ v2Pv1)) (connectedness) and, for each pair of distinct
constants x; y 2 K, :x = y (exclusiveness of alternatives).

6Further, if we require consistency and completeness of individual and collective judgment sets,
acceptance/rejection neutrality becomes equivalent to �unbiasedness�(Dietrich and List [6]) and, suit-
ably translated, �neutrality-within-issues�(Nehring and Puppe [28]).

7Majority voting satis�es acceptance/rejection neutrality as stated here only if n is odd, since
rejection by exactly n=2 individuals leads to rejection but acceptance by the same n=2 individuals
does not lead to acceptance. This problem can be bypassed by subtly weakening acceptance/rejection
neutrality, but for simplicity we set these technicalities aside.
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Suppose, for the purposes of our �rst theorem, that the agenda X contains no
tautologies or contradictions.8 Call a domain D minimally rich if it includes all
bipolar pro�les, where a pro�le (A1; :::; An) is bipolar if there exists a proposition
p 2 X such that every non-empty Ai is either fpg or f:pg.

Theorem 1 If an aggregation function F on a minimally rich domain D is consistent,
anonymous and acceptance/rejection neutral, then it is majority voting on D.

This result is surprising in at least two respects. First, unlike May�s theorem, it
requires no monotonicity condition on the aggregation function; monotonicity follows
from the other conditions. Second, unlike almost all results in the �eld of judgment
aggregation, it requires no assumptions about the agenda, apart from the exclusion
of tautologies and contradictions. Existing theorems usually need some agenda com-
plexity assumptions, for example to derive monotonicity if it is not explicitly imposed;
so the validity of a theorem for essentially all agendas is rather atypical.

How can we interpret Theorem 1? As noted in the introduction, its lesson is some-
what similar to that of Dasgupta and Maskin�s much-discussed result on the robust-
ness of majority voting in preference aggregation [2]. Theorem 1 shows that, for all
minimally rich domains, if there is any consistent aggregation function that satis�es
anonymity and acceptance/rejection neutrality, then majority voting is the unique
such function. Practically all interesting and non-degenerate domains, such as those
introduced below, fall into this class of domains.

To prove Theorem 1, we �rst state a lemma, proved in the appendix. Using
standard terminology, call aggregation function F independent if, for any pro�les
(A1; : : : ; An), (A�1; : : : ; A

�
n) in the domain of F and any proposition p 2 X,

[for all i 2 N , p 2 Ai , p 2 A�i ] ) [p 2 F (A1; : : : ; An), p 2 F (A�1; : : : ; A�n)].

Lemma 1 Every consistent and acceptance/rejection neutral aggregation function F
on a minimally rich domain D is independent.

Proof of Theorem 1. Consider any agenda X without tautologies, and let F and
D be as speci�ed. By Lemma 1, F is independent. For every p 2 X, let Kp be the
set of numbers k 2 f0; :::; ng such that p 2 F (A1; :::; An) for some (and hence, by
independence and anonymity, every) pro�le (A1; :::; An) 2 D with jfi : p 2 Aigj = k.
We prove three claims, the second one being the key step.

Claim 1: For all p 2 X and all k 2 f0; :::; ng, k 2 Kp , n� k =2 Kp.
8Our other results do not require this restriction. Whether Theorem 1 continues to hold when

tautologies and contradictions are permitted in X depends on how the de�nition of bipolarity (and by
implication minimal richness) is extended to this case. If, in the de�nition of bipolarity, we quantify
over all propositions p 2 X, including tautologies and contradictions, minimally rich domains will
be forced to include pro�les containing inconsistent judgment sets, which renders minimal richness
less interpretationally plausible. But then the theorem continues to hold. If, on the other hand, we
extend bipolarity by quantifying only over non-tautological and non-contradictory propositions p 2 X,
there are counterexamples to the theorem: Let X contain a tautology t, and let X have no minimal
inconsistent subset of size three or more (so that majority voting is consistent). Let n be odd and de�ne
F on the smallest minimally rich agenda D as follows: (i) t 2 F (A1; :::; An) , jfi : t 2 Aigj < n=2;
(ii) :t =2 F (A1; :::; An); (iii) for all p 2 Xnft;:tg, p 2 F (A1; :::; An), jfi : p 2 Aigj > n=2.
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Consider any p 2 X and any k 2 f0; ::; ng. Let C � N be a coalition of size k. As
D is minimally rich, it contains a pro�le (A1; :::; An) for which fi 2 N : p 2 Aig = C
(take the bipolar pro�le given by Ai = fpg for i 2 C, and Ai = ? for i =2 C).
Analogously, there exists a pro�le (A�1; :::; A

�
n) 2 D such that fi 2 N : p 2 A�i g = NnC.

By acceptance/rejection neutrality, p 2 F (A1; :::; An) , p =2 F (A�1; :::; A�n). In this
equivalence, the left-hand-side is equivalent to k 2 Kp, and the right-hand-side to
n� k =2 Kp. So k 2 Kp , n� k =2 Kp, as required.

Claim 2: For all p 2 X and all k 2 f0; :::; ng, k 2 Kp ) k > n=2.

Let p 2 X, and assume for a contradiction that Kp contains k � n=2. By Claim
1, K:p contains exactly one of k; n � k. De�ne k� as k if k 2 K:p and as n � k if
n � k 2 K:p. As k � n=2, we have k + k� � n. So, there is a pro�le (A1; :::; An) in
which exactly k of the sets Ai are fpg, exactly k� of them are f:pg, while the rest (if
any) of them are empty. As D is minimally rich, it contains this pro�le. As k 2 Kp
and k� 2 K:p, we have p;:p 2 F (A1; :::; An), contradicting consistency.

Claim 3: For all p 2 X and all k 2 f0; :::; ng, k 2 Kp , k > n=2 (which completes
the proof that F is majority voting on D).

Let p 2 X and k 2 f0; :::; ng. By Claim 2, k 2 Kp ) k > n=2. Conversely, let
k =2 Kp. Then n � k 2 Kp by Claim 1. So, by Claim 2, n � k > n=2, i.e. k < n=2.
Hence k 6> n=2, as required. �

4 Conditions for majority consistency based on global
orders

We have seen that, on every minimally rich domain, if there is any consistent aggrega-
tion function at all that satis�es anonymity and acceptance/rejection neutrality, then
majority voting is the unique such function. But we already know from the discur-
sive paradox that without any domain restriction majority voting can be inconsistent.
Majority inconsistencies can arise on the universal domain whenever the agenda has
a minimal inconsistent subset of three or more propositions (i.e., an inconsistent sub-
set of that size all of whose proper subsets are in turn consistent), such as the set
fa; a ! b;:bg in the example from the introduction.9 However, we now show that
there exist many compelling domains on which majority voting is consistent. On these
domains, then, majority voting not only follows from the conditions of Theorem 1 but
also satis�es them.10

4.1 Conditions based on orders of propositions

We begin with two conditions based on global orders of the propositions. An order of
the propositions (in X) is a linear order � on X.11

9For a proof of this fact under consistency alone, see Dietrich and List [9]; under full rationality,
see Nehring and Puppe [28].
10For odd n; recall the earlier note about even n.
11Thus � is re�exive (x � x 8x), transitive ([x � y and y � z] ) x � z 8x; y; z), connected

(x 6= y ) [x � y or y � x] 8x; y) and antisymmetric ([x � y and y � x]) x = y 8x; y).
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Single-plateauedness. A judgment set A is single-plateaued relative to � if

A = fp 2 X : pleft � p � prightg for some pleft; pright 2 X,

and a pro�le is (A1; :::; An) is single-plateaued relative to � if every Ai is single-
plateaued relative to �.

Single-canyonedness. A judgment set A is single-canyoned relative to � if

A = Xnfp 2 X : pleft � p � prightg for some pleft; pright 2 X,

and a pro�le is (A1; :::; An) is single-canyoned relative to � if every Ai is single-
canyoned relative to �.12

An order � that renders a pro�le single-plateaued or single-canyoned is called a
structuring order ; it need not be unique. If a pro�le is single-plateaued or single-
canyoned relative to some �, we also call it single-plateaued or single-canyoned sim-
pliciter. The order � may represent a normative or cognitive dimension on which
propositions are located.

Informally, single-plateauedness requires that every individual�s judgment set con-
stitute an interval (a �plateau�) relative to a particular left-right order of the propo-
sitions; single-canyonedness that every individual�s set of rejected propositions (i.e.,
the complement of his or her judgment set) form such an interval (a �canyon�). As an
illustration, consider the agenda X = fa; b; a! bg�, with the following interpretation:

a : �CO2 emissions will increase dramatically by 2020.�
b : �The frequency of hurricanes will double by 2030.�
a! b : �If CO2 emissions increase dramatically by 2020, then the

frequency of hurricanes will double by 2030.�

Now it is conceivable that individuals hold single-plateaued judgment sets on this
agenda relative to an order of the propositions from �most pessimistic�to �most opti-
mistic�. Proposition a can plausibly be described as more pessimistic than b, because
of its consequences over and above the occurrence of hurricanes; b as more pessimistic
than a ! b, since the latter entails b only under the pessimistic circumstances of a;
and the three unnegated propositions as more pessimistic than the three negated ones.
Table 1 shows a pro�le of single-plateaued judgment sets relative to this order. The
location of each individual�s plateau re�ects his or her viewpoint on the issue of global
warming.

Propositions (in the order) a b a! b :a :b :(a! b)

Individual 1 (a �pessimist�) X X X
Individual 2 (a �moderate�) X X X
Individual 3 (an �optimist�) X X

Table 1: A single-plateaued pro�le

12 In the de�nitions of single-plateauedness and single-canyonedness, we do not require pleft � pright,
i.e., fp : pleft � p � prightg may be empty.
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By contrast, an individual who accepts only very pessimistic propositions and
very optimistic ones, but nothing in between, holds a single-canyoned judgment set
relative to the given order, as illustrated in Table 2. (Important special cases of single-
canyoned judgment sets are also those in which only �extreme�propositions of one kind
�i.e., only pessimistic ones or only optimistic ones �are accepted.)

Propositions (in the order) a b a! b :a :b :(a! b)

An individual (an �extremist�) X X X

Table 2: A single-canyoned judgment set relative to the given order

We can easily think of other cases in which single-plateauedness is plausible. If the
agenda contains propositions about various tax or budget policies, for instance, the
propositions may be ordered on a classical socio-economic dimension from �socialist�
to �libertarian�, with the individuals�plateaus representing their political positions. If
the agenda contains propositions about science education in public schools, the order
may range from �closest to endorsing evolutionary theory� to �closest to endorsing
creationism�, with individual plateaus representing di¤erent educational viewpoints.

Before we state our main result about the implications of single-plateauedness and
single-canyonedness, we observe that every single-canyoned pro�le is single-plateaued,
as proved in the appendix. Our proof reorders the propositions so as to �glue together�
any individual�s two extreme sets of propositions into a single plateau.

Remark 1 Every single-canyoned pro�le (A1; :::; An) of consistent judgment sets is
single-plateaued.

As anticipated, majority voting preserves consistency on single-plateaued pro�les.
On single-canyoned pro�les, it does even more: it also preserves single-canyonedness.

Proposition 1 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is single-plateaued, the majority outcome is consistent;
(b) if (A1; :::; An) is single-canyoned, the majority outcome is consistent and single-

canyoned (relative to the same structuring order).

Proof. Consider a pro�le (A1; :::; An). The following notation is used in this and
other proofs. Let A be the majority outcome. For each p 2 X, de�ne Np = fi 2 N :
p 2 Aig. Whenever we consider an order � of X, let [p; q] = fr 2 X : p � r � qg, for
each p; q 2 X. An order � is sometimes identi�ed with the corresponding ascending
list of propositions p1:::p2k (from left to right), where 2k is the size of X (which is
even as X is a union of pairs fp;:pg). Now let each Ai be consistent.

(a) Assume single-plateauedness, say relative to �. Among all propositions in A,
let p and q be, respectively, the smallest and largest proposition with respect to �.
So A � [p; q]. As Np and Nq each contain a majority of the individuals, we have
Np \Nq 6= ?, and so there is an i 2 Np \Nq. As Ai is single-plateaued and p; q 2 Ai,
we have [p; q] � Ai and thus A � Ai. Therefore A is consistent.

(b) Let (A1; :::; An) be single-canyoned, say relative to �. By part (a) and Remark
1, A is consistent. As one easily checks, A is single-canyoned relative to � if and only
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if, for all p 2 A, we have fq 2 X : q � pg � A or fq 2 X : q � pg � A. So it su¢ ces
to establish the right-hand side of this equivalence. Consider any p 2 A. Check that
either (i) jfq 2 X : q � pgj � k < jfq 2 X : p � qgj or (ii) jfq 2 X : p � qgj � k <
jfq 2 X : q � pgj. We assume (i) and show that fq 2 X : q � pg � A (analogously,
(ii) implies fq 2 X : p � qg � A). For each i 2 Np, single-canyonedness implies that
fq 2 X : q � pg � Ai or fq 2 X : p � qg � Ai. But the latter is impossible: otherwise
jAij > k by (i), so that Ai would contain a pair p;:p, contradicting consistency. So
we have fq 2 X : q � pg � Ai for all i 2 Np and thus for a majority of the individuals.
It follows that fq 2 X : q � pg � A, as required. �

4.2 Conditions based on orders of individuals

Let us now turn to two conditions based on global orders of the individuals. An
order of the individuals (in N) is linear order 
 on N . For any sets of individuals
N1; N2 � N; we write N1
N2 if i
j for all i 2 N1 and j 2 N2.

Unidimensional orderedness.13 A pro�le (A1; :::; An) is unidimensionally ordered
relative to 
 if, for all p 2 X,

fi 2 N : p 2 Aig = fi 2 N : ileft
i
irightg for some ileft; iright 2 N .

Unidimensional alignment. (List [22]) A pro�le (A1; :::; An) is unidimensionally
aligned relative to 
 if, for all p 2 X,

fi 2 N : p 2 Aig
fi 2 N : p =2 Aig or fi 2 N : p =2 Aig
fi 2 N : p 2 Aig.

In analogy to the earlier de�nition, an order 
 that renders a pro�le unidimension-
ally ordered or unidimensionally aligned is called a structuring order ; again, it need
not be unique. If a pro�le is unidimensionally ordered or unidimensionally aligned rel-
ative to some 
, we also call it unidimensionally ordered or unidimensionally aligned
simpliciter. Unidimensional alignment is the special case of unidimensional ordered-
ness in which, for every p 2 X, at least one of ileft; iright is the left-most or right-most
individual in the structuring order 
.

Remark 2 Every unidimensionally aligned pro�le (A1; :::; An) is unidimensionally
ordered.

Informally, a pro�le is unidimensionally ordered if the individuals can be ordered
from left to right such that, for each proposition, the individuals accepting it are
all adjacent to each other. A pro�le is unidimensionally aligned if, in addition, the
individuals accepting each proposition are either all to the left or all to right of those
rejecting it. The order of the individuals can be interpreted as re�ecting their location
on some underlying normative or cognitive dimension.

To illustrate unidimensional orderedness and unidimensional alignment, consider
again the agenda X = fa; b; a! bg�, this time with the following interpretation:
13 In this de�nition, we do not require ileft
iright, i.e., fi : ileft
i
irightg may be empty.
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a : �A growth in government expenditure is acceptable.�
b : �Defence spending should be increased.�
a! b : �If a growth in government expenditure is acceptable, then

defence spending should be increased.�

We can imagine a political left-right order of individuals such that those on the
left tend to �nd a growth in government expenditure acceptable (proposition a), while
those further to the right accept its negation (:a); moreover, those on the right tend
to favour an increase in defence spending (proposition b), while those far enough to
the left accept its negation (:b); and �nally, those in the middle tend to accept a
connection between the two (proposition a! b), while others are either uncommitted
on this matter or accept its negation (:(a ! b)). The resulting pro�le satis�es
unidimensional orderedness, as shown in Table 3.

Individuals (in the order) 1 2 3 4 5

a X X X
b X X X
a! b X X
:a X X
:b X
:(a! b) X X

Table 3: A unidimensionally ordered pro�le

In this example, the pro�le would become unidimensionally aligned if individual 5
accepted rather than rejected a ! b, thereby making it the case that the individuals
accepting each proposition are opposite those rejecting it on the given left-right order.
Table 4 shows the required modi�cation of the pro�le.

Individuals (in the order) 1 2 3 4 5

a! b X X X

Table 4: A unidimensionally aligned combination of judgments relative to the given
order

Below we o¤er a uni�ed interpretation of all four domain-restriction conditions
introduced so far. Let us now turn to the implications of unidimensional orderedness
and unidimensional alignment. On unidimensionally ordered pro�les, majority voting
preserves consistency, and its outcome is always a subset of the middle individual�s
judgment set (or, for even n, a subset of the intersection of the two middle individuals�
judgment sets). If the pro�le is unidimensionally aligned, the majority outcome is not
just included in that set but coincides with it.

Proposition 2 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is unidimensionally ordered, the majority outcome A is consistent

and

A �
�
Am if n is odd,
Am1 \Am2 if n is even,

where m is the middle individual (if n is odd) and m1;m2 the middle pair of
individuals (if n is even) in any structuring order 
;
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(b) (List [22]) if (A1; :::; An) is unidimensionally aligned, the majority outcome is
as stated in part (a) with � replaced by =.

Proof. Let each Ai be consistent. We use earlier proof notation.

(a) Suppose unidimensional orderedness, say relative to 
. For all p 2 A, Np is
some interval [ileft; iright]. By jNpj > n=2, [ileft; iright] is long enough to contain the
middle individual m (if n is odd) or the middle pair of individuals m1;m2 (if n is
even); so p 2 Am (if n is odd) or p 2 Am1 \Am2 (if n is even). Therefore A � Am (if n
is odd) or A � Am1 \Am2 (if n is even), as required. By implication, A is consistent.

(b) See List [22], or check that, under unidimensional alignment, the converse
inclusions Am � A (if n is odd) or Am1 \Am2 � A (if n is even) also hold in the proof
of (a). �

4.3 A uni�ed interpretation of all four conditions

Although the four domain-restriction conditions introduced up to this point are quite
distinct from each other, they can all be interpreted in terms of a common spatial
framework. To introduce this framework, suppose that there exists a single left-right
axis on which both propositions and individuals are located, as illustrated in Figure
1 for three individuals and six propositions. Each of the four conditions can now be

Figure 1: The positions of three individuals and six propositions

interpreted in terms of the particular way in which the locations of the individuals
and the propositions constrain judgments.

Single-plateauedness and single-canyonedness are de�ned in terms of acceptance
regions assigned to individuals, relative to such a spatial representation. Speci�cally,
a pro�le is single-plateaued if each individual accepts all propositions away from his
or her location by at most a certain distance, where the �cut-o¤�distance may di¤er
from individual to individual (see Case 1 in Figure 2). If each individual�s acceptance
interval is left-justi�ed or right-justi�ed (a property met only by individual 1 in the
example of Case 1), we obtain a special case of single-canyonedness. A general inter-
pretation of single-canyonedness is obtained by reinterpreting someone�s �location�as
the position he or she deems least acceptable, rather than most acceptable, and by
assuming that each individual rejects, rather than accepts, all propositions away from
his or her location by at most a certain distance (see Case 2 in Figure 2).

Unidimensional orderedness and unidimensional alignment, on the other hand, are
de�ned in terms of intervals associated with propositions, rather than individuals. A
pro�le is unidimensionally ordered if each proposition is accepted by those individuals
who are away from it by at most a certain distance, where the �cut-o¤� distance
depends on the proposition, rather than the individual (Case 3 in Figure 2). If each
individual�s acceptance interval is left-justi�ed or right-justi�ed, the pro�le becomes
unidimensionally aligned. An alternative interpretation of unidimensional alignment
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Figure 2: A uni�ed spatial interpretation of the four conditions
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is obtained by reinterpreting a proposition�s �location�as constituting an acceptance
threshold (which may vary across propositions) and assuming that the individuals
accepting the proposition are either all to the left or all to the right of this threshold
(Case 4 in Figure 2). Thus the extreme positions on the left-right axis correspond
either to clear acceptance or to clear rejection of each proposition, and the relevant
threshold divides the �acceptance interval�from the �rejection interval�.

Given the present spatial representation, each four domain-restriction conditions,
like single-peakedness in preference aggregation, can be interpreted as indicating a
form of �meta-agreement�among the individuals on a single normative or cognitive
dimension in terms of which their di¤erent judgment sets can be rationalized, as
distinct from a �substantive agreement�on which judgment set to hold (List [21]).

4.4 The logical relationships between the four conditions

We have already seen that single-canyonedness implies single-plateauedness, and that
unidimensional alignment implies unidimensional orderedness. A natural question is
how the �rst two conditions, which are based on orders of the propositions, are related
to the second two, which are based on orders of the individuals. The following result
answers this question.14

Proposition 3 (a) Restricted to pro�les of consistent judgment sets,
� unidimensional alignment implies any of the other three conditions;
� single-canyonedness implies single-plateauedness;
� there are no other pairwise implications between the four conditions.

(b) Restricted to pro�les of consistent and complete (or just of opinionated) judg-
ment sets, the four conditions are equivalent.

Proof. (a) We already know that single-canyonedness implies single-plateauedness,
and that unidimensional alignment implies unidimensional orderedness. To show that
unidimensional alignment implies the other conditions too, it su¢ ces to establish that
it implies single-canyonedness. We do this in the appendix, where we also show by
counterexamples that there are no other implications.

(b) Let (A1; :::; An) be a pro�le of consistent and complete (or just opinionated)
judgment sets. Then each Ai contains exactly k = jXj=2 propositions. Since, by part
(a), unidimensional alignment implies single-canyonedness, and single-canyonedness
implies single-plateauedness, the equivalence of all four conditions follows from the
following additional implications, which we now prove using the fact that jAij = k for
all i. We use the notation from an earlier proof.

Single-plateauedness ) unidimensional orderedness. Suppose single-plateauedness,
say relative to the order p1:::p2k. Then, for all i, there is (using jAij = k) an index
j(i) 2 f1; :::; 2kg such that Ai = [pj(i); pj(i)+k�1]. Consider an order of the individuals
i1:::in such that j(i1) � j(i2) � ::: � j(in). To check unidimensional orderedness

14The non-implication claims in (a) do not refer to a �xed agenda X and group size n. Rather,
for some (in fact, most) X and n, there are pro�les satisfying one condition but not the other. For
special X or n, e.g., for X = fp;:pg or n = 2, all conditions hold trivially.
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relative to i1:::in, note that, for all p = pl 2 X, we have

fi : pl 2 Aig = fi : pl 2 [pj(i); pj(i)+k�1]g = fi : j(i) � l < j(i) + kg
= fi : �l � �j(i) < k � lg = fi : l � k < j(i) � lg,

which is an interval of the order i1:::in, as required.

Unidimensional orderedness ) unidimensional alignment. Let (A1; :::; An) be uni-
dimensionally ordered, say relative to the order 
. To see that it is also unidimension-
ally aligned relative to the same order 
, consider any p 2 X. As each Ai contains
exactly one member of each pair p;:p 2 X, N:p = NnNp. Further, by unidimen-
sional orderedness, Np and N:p are (
-)intervals. So Np and NnNp are intervals.
Hence Np
NnNp or NnNp
Np, as required. �

4.5 Applications to preference aggregation: order restriction and
intermediateness

What do our present domain-restriction conditions amount to when translated into
the classical framework of preference aggregation? As we have already noted, the con-
ditions based on orders of propositions, although formally applicable to the preference
agenda, have no obvious standard counterparts when applied to it. They do, however,
resemble the condition of single-switch preferences (La¤ond and Lainé [20]), which
de�nes a domain restriction in a framework in which individuals have preferences over
combinations of positions on multiple logically unconnected issues, such as multiple
referendum items. La¤ond and Lainé show that this condition, which is de�ned in
terms of an order of issues, is su¢ cient for ensuring that two distinct majoritarian
voting procedures yield the same outcome, and thus for avoiding �Ostrogorski�s para-
dox�.15

Our conditions based on orders of individuals are more closely related to standard
conditions on preferences. We now relate unidimensional orderedness to Grandmont�s
intermediateness [16] and unidimensional alignment to Rothstein�s order restriction
([34], [35]).

To introduce intermediateness and order restriction, de�ne a (strict) preference
relation be a binary relation � on K (so far, we do not impose any rationality condi-
tions on preferences), and de�ne a preference pro�le to be an n-tuple (�1; :::;�n) of
such relations.16

15Ostrogorski�s paradox identi�es a con�ict between issue-by-issue majority voting and pairwise
majority voting over combinations of issues. It shows that, if each individual�s preferences over
combinations of positions on those issues are determined by their symmetrical distance from the
individual�s most preferred combination, issue-by-issue majority voting may lead to a combination of
positions that would lose in pairwise majority voting over combinations of issues. La¤ond and Lainé
[20] show that when individuals�most preferred combinations satisfy a particular restriction based
on an ordering of issues �every ideal combination is characterized by a single switch from accepted
issues to rejected issues or vice versa �then Ostrogorski�s paradox cannot occur. The order of issues
used in La¤ond and Lainé�s condition is analogous to the order of propositions used in the conditions
of single-plateauedness and single-canyonedness discussed here. We thank an anonymous reviewer for
raising this point.
16Rothstein and Grandmont formulate their de�nitions more generally for weak preference relations

�i.
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Intermediateness. (Grandmont [16]) A preference pro�le (�1; :::;�n) is interme-
diate relative to 
 if, for all x; y 2 K for all i; j; k 2 N with i
j
k,

[x �i y and x �k y]) x �j y:

Order restriction. (Rothstein [34], [35]) A preference pro�le (�1; :::;�n) is order
restricted relative to 
 if, for all x; y 2 X,

fi 2 N : x �i yg
fi 2 N : y �i xg or fi 2 N : y �i xg
fi 2 N : x �i yg.

The following is easy to check:

Remark 3 (a) A preference pro�le (�1; :::;�n) is order restricted (relative to some

) if and only if the corresponding judgment pro�le (A�1 ; :::; A�n) is unidimen-
sionally aligned (relative to the same 
).

(b) An opinionated preference pro�le (�1; :::;�n) is intermediate (relative to some

) if and only if the corresponding judgment pro�le (A�1 ; :::; A�n) is unidimen-
sionally ordered (relative to the same 
), where opinionation means that, for
each i 2 N and all distinct x; y 2 K, precisely one of x �i y or y �i x holds.

The restriction to opinionated preference pro�les in part (b) can be dropped under
an alternative correspondence between preference relations and judgment sets.17

5 Conditions for majority consistency based on local
orders

For many agendas, the four domain-restriction conditions discussed so far are stronger
than necessary for achieving majority consistency. Our goal in this section is to
weaken them by applying them not to judgments on all propositions in X, but rather

17Without opinionation of each �i, intermediateness of (�1; :::;�n) is not equivalent to unidimen-
sional orderedness of (A�1 ; :::; A�n). For all x; y 2 K, the former requires that fi 2 N : xPy 2 Aig
be an interval, the latter that fi 2 N : :xPy 2 Aig be an interval too. But under another correspon-
dence between preference relations �2 K�K and judgment sets A � XK , intermediateness becomes
equivalent to unidimensional orderedness (and order restriction remains equivalent to unidimensional
alignment). On our earlier de�nition, the judgment set A� corresponding to a preference relation �
is always opinionated. But a judgment set A � XK need not be opinionated. In particular, if x 6� y,
this can have two distinct interpretations: either �not considering x preferable to y�or �considering x
not preferable to y�, corresponding to not accepting p and accepting :p, where p is �x is preferable to
y�. Our earlier de�nition of A� assumes the second (stronger) interpretation of x 6� y, because A�
contains :xPy if x 6� y. While a preference relation �� K�K is ambiguous between the two interpre-
tations, a judgment set A � XK is not. For any distinct x; y 2 K, a preference relation � can display
four di¤erent patterns: x � y&y 6� x, x 6� y&y � x, x 6� y&y 6� x, or x � y&y � x; a judgment set
A � XK can display 24 = 16 di¤erent patterns, depending on which of xPy;:xPy; yPx;:yPx are
contained in A. Under the weaker interpretation of x 6� y, we de�ne A� = fxPy : x; y 2 K&x � yg
(an incomplete judgment set, unless � is the total relation). Now a preference relation � is fully
rational (i.e., asymmetric, transitive and connected) if and only if A� is consistent and contains a
member of each pair xPy; yPx 2 X with x 6= y. Intermediateness of (�1; :::;�n) then translates into
unidimensional orderedness of (A�1 ; :::; A�n).
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to judgments on various subagendas of X, thereby allowing the relevant structuring
order of individuals or propositions to vary across di¤erent subagendas.

Consider, for instance, the agenda X = fa; b; c; a! b; a! cg�, where a and b are
the propositions �CO2 emissions will increase dramatically by 2020�and �The frequency
of hurricanes will double by 2030�as in one of our earlier examples, and c is the propo-
sition �We should introduce a scheme of carbon taxes in which taxes on CO2 emissions
increase over time�. Here the agenda has two semantically very di¤erent non-trivial
subagendas, namely fa; b; a! bg� and fa; c; a! cg�, one concerning environmental
aspects of global warming, the other concerning policy responses. Although some of
our domain-restriction conditions may well be plausible when applied to each sub-
agenda separately, it seems unduly demanding to require the same structuring order
for both subagendas. Instead, di¤erent �local� structuring orders corresponding to
di¤erent subagendas may be warranted.

The move from global to local structuring orders parallels the move in preference
aggregation from single-peakedness to single-peakedness restricted to triples of alter-
natives. We begin by introducing the general form of our local domain restriction
conditions; then we discuss two approaches to specifying the relevant subagendas.

5.1 The general form of the local conditions

A subagenda (of X) is a subset Y � X that is itself an agenda (i.e., non-empty and
closed under single negation). For each of our four global domain-restriction condi-
tions, we say that a pro�le (A1; :::; An) satis�es the given condition on a subagenda
Y � X if the restricted pro�le (A1 \ Y; :::; An \ Y ), viewed as a pro�le of judgment
sets on the agenda Y , satis�es it. The relevant structuring order is then called a
structuring order on Y and denoted �Y (if it is an order of propositions) or 
Y (if it
is an order of individuals). Whenever one of the conditions is satis�ed globally, then
it is also satis�ed on every Y � X. But we now de�ne a local counterpart of each
global condition. Let Y be some set of subagendas.

Local single-plateauedness / single-canyonedness / unidimensional ordered-
ness / unidimensional alignment. A pro�le (A1; :::; An) satis�es the local coun-
terpart of each global condition (with respect to a given set of subagendas Y) if it
satis�es the global condition on every Y 2 Y.

This allows di¤erent structuring orders �Y or 
Y for di¤erent subpro�les (A1 \
Y; :::; An \ Y ) (with Y 2 Y). Any implications and equivalences between our four
global conditions, as stated in Proposition 3, carry over to their local counterparts
(each de�ned with respect to the same Y).18

Corollary 1 (a) Restricted to pro�les of consistent judgment sets,
� local unidimensional alignment implies any of the other three local condi-
tions;

18Analogously to proposition 3, the non-implication claims in (a) do not refer to a �xed agenda
X, set of subagendas Y, and group size n. Rather, for some (in fact, most) X, Y and n, there are
pro�les satisfying one condition but not the other. In special cases, e.g., for Y = ;, all conditions hold
trivially.
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� local single-canyonedness implies local single-plateauedness;
� there are no other pairwise implications between the four local conditions.

(b) Restricted to pro�les of consistent and complete (or just of opinionated) judg-
ment sets, the four local conditions are equivalent.

Our choice of subagendas in Y, with respect to which our local conditions are
de�ned, is guided by two goals. The �rst is to ensure that a consistent majority
outcome for every subagenda implies a consistent majority outcome overall (just as
acyclicity on triples of alternatives in preference aggregation implies acyclicity overall).
The second is to minimize the total number and size of subagendas, so as to make
our local domain-restriction conditions as unrestrictive as possible. Accordingly, the
subagendas in Y must be carefully chosen. Choosing them according to their size
(e.g., by including in Y all subagendas of size less than some k) or according to the
syntactic form of propositions in them (e.g., by including in Y all subagendas whose
propositions contain only a certain type or number of logical connectives) does not
generally work.

5.2 Selecting subagendas I: minimal inconsistent sets

What set of subagendas Y should be chosen? In this subsection, we take the following
approach. Note that a judgment set A � X is inconsistent if and only if it has a
minimal inconsistent subset Y � X, i.e., a subset that is inconsistent but all of whose
proper subsets are consistent. So a consistent majority outcome can be achieved by
each of our local domain-restriction conditions where Y is de�ned as

Y = fY � : Y is a minimal inconsistent subset of Xg. (1)

Proposition 4 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) satis�es any of the four local conditions with respect to Y as de�ned

in (1), the majority outcome A is consistent;
(b) in the case of local unidimensional orderedness,

A �
�
[Y 2Y(AmY \ Y ) if n is odd,
[Y 2Y(AmY;1 \AmY;2 \ Y ) if n is even,

where, for each Y 2 Y, mY is the middle individual (if n is odd) and mY;1;mY;2

the middle pair of individuals (if n is even) in any structuring order 
Y on Y ;19

(c) in the case of local unidimensional alignment, A is as stated in part (b) with �
replaced by =.

Proof. Let Y and (A1; :::; An) be as speci�ed, with majority outcome A.
(a) To prove A�s consistency, it su¢ ces to prove that A has no minimal inconsistent

subset, hence to prove that A\Y is consistent for all Y 2 Y. So consider any subagenda
19The result continues to hold if every occurrence of the quanti�cation Y 2 Y in part (b) is

weakened to the quanti�cation Y 2 Y�, where Y� � Y is any subset of subagendas covering X, i.e.,
with [Y 2Y�Y = X. There are many ways to cover X; trivial ones are Y� = ffp;:pg : p 2 X+g
and Y� = Y. The representation of A becomes slim if Y� minimally covers X, i.e., covers X but no
Z ( Y� does so too.
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Y 2 Y. As (A1; :::; An) is, for example, single-plateaued on Y (the proof is similar for
single-canyonedness or unidimensinoal orderedness/alignment), (A1 \Y; :::; An \Y ) is
single-plateaued for the agenda Y and hence has a consistent majority outcome by
Proposition 1. But this majority outcome is A\Y . So A\Y is consistent, as required.

(b) Assume unidimensional orderedness and let the individuals (mY )Y 2Y (if n is
odd) or (mY;1;mY;2)Y 2Y (if n is even) be as speci�ed. To show that A � [Y 2Y(AmY \
Y ) (if n is even) or A � [Y 2Y(AmY;1\AmY;2\Y ) (if n is odd), it is by A = [Y 2Y(A\Y )
su¢ cient to show that, for all Y 2 Y, A \ Y � AmY \ Y (if n is even) or A \ Y �
AmY;1\AmY;2\Y (if n is odd). This follows from part (a) of Proposition 2 because A\Y
is the majority outcome on the unidimensionally ordered pro�le (A1 \ Y; :::; An \ Y ).

(c) The proof is analogous to that of part (b), with each "�" replaced by "=" and
where we now make use of part (b) (not (a)) of Proposition 2. �

5.3 Selecting subagendas II: irreducible sets

The set of subagendas generated from all minimal inconsistent subsets of the agenda
can be large, but using this rich set has been necessary in order to guarantee major-
ity consistency on domains that allow even for incomplete individual judgment sets.
However, in the important special case of individual completeness, it is enough for
majority consistency to impose any of our four local domain-restriction conditions
with a much slimmer de�nition of the relevant set of subagendas. We generate these
subagendas not from all minimal inconsistent subsets of the agenda, but only from
those that are irreducible in the following sense.20 For any inconsistent set Y � X,
we call another inconsistent set Z � X a reduction of Y if

jZj < jY j and each p 2 ZnY is entailed by some V � Y with jY nV j > 1,

and we call Y irreducible if it has no reduction.21 For instance, the inconsistent set
fa; a ! b; b ! c;:cg (where a; b; c are distinct atomic propositions) is reducible to
Z = fb; b ! c;:cg, since b is entailed by fa; a ! bg, whereas Z is irreducible. Now
de�ne

Y = fY � : Y is an irreducible subset of Xg. (2)

The set of subagendas de�ned in (2) is a subset of the one de�ned in (1) above,22

since every irreducible set is minimal inconsistent (a non-minimal inconsistent set
is reducible to any of its inconsistent proper subsets). The local domain-restriction
conditions resulting from (2) are therefore less restrictive than those resulting from
(1) above. The following lemma is crucial; a proof is given in the appendix.

Lemma 2 Every complete and inconsistent judgment set A � X has an irreducible
subset.
20Dietrich [5] has subsequently generalized this concept.
21 In the de�nition of reduction, the clause jY nV j > 1 is essential. Dropping it would render all

inconsistent sets Y � X of size three or more reducible, namely to any pair fp;:pg with p 2 Y ; :p
is entailed by Y nfpg.
22 It is usually a proper subset since many minimal inconsistent subsets of the agenda, such as

fa; a! b; b! c;:cg, are reducible.
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Using Lemma 2, we can prove our central claim: if individuals hold not only
consistent but also complete judgment sets, our local domain-restriction conditions
de�ned in terms of irreducible sets are enough to guarantee majority consistency. The
assumption of individual completeness ensures an (apart from ties) complete majority
outcome, so as to make Lemma 2 applicable in the proof.

Proposition 5 For any pro�le (A1; :::; An) of consistent and complete judgment sets,
if (A1; :::; An) satis�es any (hence by corollary 1 all) of the four local conditions with
respect to Y as de�ned in (2), the majority outcome is consistent.

Proof. We consider a pro�le (A1; :::; An) of the speci�ed kind and use the earlier
notation.

Case 1: n is odd. Then A is complete. So, by Lemma 2, to prove A�s consistency,
it su¢ ces to prove that A has no irreducible subset, hence to prove that A \ Y is
consistent for all Y 2 Y. The latter follows by an argument analogous to the one in
the proof of part (a) of Proposition 4.

Case 2: n is even. Let An+1 be any complete and consistent judgment set such
that (A1; :::; An+1) still satis�es the local condition, e.g. single-plateauedness on Y,
now for group size n + 1 (one might take An+1 = A1). By Case 1 the majority
outcome on (A1; :::; An+1) is a consistent judgment set eA. Check that A � eA. So A is
consistent, as required. �

5.4 Applications to preference aggregation: order restriction and
intermediateness on k-tuples of alternatives

What do our local conditions look like when applied to the preference agenda? To
answer this question, we must identify the set of subagendas Y under each of our
two criteria for selecting subagendas. A few de�nitions are needed. By our de�nition
of the logic of preferences, for any distinct x; y 2 K, :xPy and yPx are equivalent.
Call two judgment sets essentially identical if one arises from the other by (zero, one
or more) replacements of propositions by equivalent propositions. For any distinct
x1; :::; xk 2 K (k � 1), the cyclical preferences x1 � x2 � ::: � xk � x1 can be
represented by the set fx1Px2; x2Px3; :::; xk�1Pxk; xkPx1g. We call such a set, and
any set essentially identical to it, a cycle (of length k).

We are now in a position to identify the minimal inconsistent subsets of the pref-
erence agenda.

Remark 4 The minimal inconsistent sets Y � XK are the cycles.

Proof. This follows from the de�nition of the logic L for representing preferences.
First, any cycle is obviously minimal inconsistent in L. Second, suppose Y � XK is
minimal inconsistent. One can check that, by Y �s inconsistency, some subset Y � � Y
is a cycle. By minimal inconsistency, then, Y = Y �. �

Next let us identify the irreducible subsets of the preference agenda. Not all cycles
fall into this category. To illustrate, observe that any cycle of length k,

Y = fx1Px2; x2Px3; :::; xk�1Pxk; xkPx1g,
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with k � 4 is reducible, e.g., to the 3-cycle fx1Px2; x2Px3; x3Px1g, as x3Px1 is
entailed by fx3Px4; x4Px5; :::; xkPx1g.

Remark 5 The irreducible sets Y � XK are the cycles of length 1, 2 or 3.

Proof. First, consider any cycle Y of length at most three. If Y is a 1-cycle, i.e.,
Y = fxPxg for some x 2 K, or a 2-cycle, i.e., Y = fxPy; yPxg with distinct x; y 2 K,
then Y is obviously irreducible. Now let Y be a 3-cycle, i.e., Y = fxPy; yPz; zPxg for
distinct x; y; z 2 K. Suppose, for a contradiction, that Y is reducible, say to Z � X.
Then jZj � 2. Moreover each p 2 Z is entailed by a single member of Y , i.e. by one
of xPy; yPz; zPx. But the only proposition in X entailed by xPy is xPy (and the
logically equivalent :yPx), and similarly for yPz and zPx. So each p 2 Z is one of
xPy; yPz; zPx (or one of :yPx;:zPy;:xPz). Hence Z is (essentially identical to) a
proper subset of Y = fxPy; yPz; xPxg. So Z is consistent, a contradiction.

Second, suppose Y � XK is irreducible. Hence Y is minimal inconsistent. So, by
Remark 4, Y is a cycle, hence (essentially identical to) a set of type
fx1Px2; x2Px3; ::; xk�1Pxk; xkPx1g (k � 1). Now k � 3, as otherwise Y would be
reducible to Z := fx1Px2; x2Px3; x3Px1g. So Y is a 1- or 2- or 3-cycle. �

By Remark 4, the set of subagendas generated from minimal inconsistent sets is

Y = fY � : Y � XK is a cycleg,

and by Remark 5, the set of subagendas generated from irreducible sets is the smaller
set

Y = fY � : Y � XK is a cycle of length 1, 2 or 3g.

Just as in the global case, we are thus able to relate local unidimensional orderedness
and local unidimensional alignment to local versions of intermediateness and order
restriction. Consider the following two local conditions on preference pro�les:

Intermediateness on triples. (Grandmont [16]) A preference pro�le (�1; :::;�n)
is intermediate on triples if, for every subset K 0 � K with jK 0j = 3, the preference
pro�le restricted to K 0, i.e., (�1 jK0 ; :::;�n jK0), is intermediate (as de�ned above).

Order restriction on triples. (Rothstein [34], [35]) A preference pro�le (�1; :::;�n
) is order restricted on triples if, for every subset K 0 � K with jK 0j = 3, the preference
pro�le restricted to K 0, i.e., (�1 jK0 ; :::;�n jK0), is order restricted (as de�ned above).

It is easy to see that, when Y is de�ned as the set of subagendas of XK generated
from all cycles, unidimensional orderedness and unidimensional alignment with respect
to Y are more demanding than intermediateness and order restriction on triples, re-
spectively. Unlike the two triplewise conditions on preference pro�les, our conditions
require a structuring order of the individuals for every k-tuple of alternatives, not just
for every triple. As already noted, our stronger requirement is warranted when we
want to guarantee majority consistency even in the absence of individual complete-
ness; order restriction or intermediateness on triples do not guarantee acyclic majority
preferences when individual incompleteness is allowed.
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But in the case of individual completeness, it su¢ ces for majority consistency to
de�ne our local conditions in terms of irreducible sets, i.e., by de�ning Y as the set of
subagendas of XK generated from all cycles of length up to three. Local unidimen-
sional orderedness and alignment then become equivalent to the triplewise variants of
Grandmont�s and Rothstein�s conditions, as shown in the appendix:

Proposition 6 A pro�le (�1; :::;�n) of strict linear orders23 on K is intermediate
(equivalently, order restricted) on triples if and only if the associated judgment pro�le
(A�1 ; :::; A�n) is locally unidimensionally ordered (equivalently, aligned) with respect
to Y as de�ned by (2).

6 Conditions for majority consistency not based on
orders

Although our domain-restriction conditions based on local orders are already much less
restrictive than those based on global orders, it is possible to weaken them further.
Just as the various conditions based on orders in preference aggregation � single-
peakedness, single-cavedness etc. � can be generalized to a weaker, but less easily
interpretable, condition �namely Sen�s triplewise value-restriction [38] �so in judg-
ment aggregation the conditions based on orders can be weakened to a more abstract
condition, to be called value-restriction. When applied to the preference agenda, this
condition becomes non-trivially equivalent to Sen�s condition. But despite generaliz-
ing Sen�s condition, our condition is simpler to state; we thus also hope to o¤er a new
perspective on Sen�s condition.

6.1 Value-restriction

We state two variants of our condition, one based on minimal inconsistent sets, the
other based on irreducible sets.

Value-restriction. A pro�le (A1; :::; An) is value-restricted if every (non-singleton24)
minimal inconsistent set Y � X has a two-element subset Z � Y that is not a subset
of any Ai.

Weak value-restriction. A pro�le (A1; :::; An) is weakly value-restricted if every
(non-singleton) irreducible set Y � X has a two-element subset Z � Y that is not a
subset of any Ai.

Informally, value-restriction re�ects a particular kind of agreement: for every min-
imal inconsistent (or irreducible in the weak case) subset of the agenda, there exists a
particular conjunction of two propositions in this subset that no individual endorses.

23A strict linear order is an irre�exive, transitive and connected binary relation.
24The quali�cation �non-singleton�in this de�nition and the next is unnecessary if X contains only

contingent propositions, since this rules out singleton inconsistent sets.
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Like our previous domain-restriction conditions, the two new conditions are each su¢ -
cient for consistent majority outcomes (the weaker condition in the important special
case of individual completeness).

Proposition 7 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is value-restricted, the majority outcome is consistent;
(b) if (A1; :::; An) is weakly value-restricted and each Ai is complete, the majority

outcome is consistent.

Proof. Let (A1; :::; An) consist of consistent judgment sets.

(a) Suppose (A1; :::; An) is value-restricted, but the majority outcome, A, is incon-
sistent. Then A has a minimal inconsistent subset Y . Obviously, Y is non-singleton
(otherwise a majority would support a contradiction). So, by value-restriction, Y has
a two-element subset Z � Y that is not a subset of any Ai. However, since Z � A,
there is a majority for each of the two elements of Z. Since two majorities must
overlap, some Ai contains both of these elements, whence Z � Ai for some i 2 N , a
contradiction.

(b) Suppose (A1; :::; An) is weakly value-restricted and each Ai is complete. There
are two cases.

Case 1: n is odd. Then A is also complete (because there cannot be majority ties).
Suppose for a contradiction that the majority outcome, A, is inconsistent. Then A
has an irreducible subset Y by Proposition 2, and one can derive a contradiction
analogously to part (a).

Case 2: n is even. Let An+1 be any complete and consistent judgment set such
that (A1; :::; An+1) is still weakly value-restricted, now for group size n+1 (of course,
there is such an An+1: e.g., take An+1 = A1). Let A0 be the majority outcome on
(A1; :::; An+1). By Case 1, A0 is consistent. Check that the majority outcome on
(A1; :::; An) is a subset of A0; hence it is consistent too, as required. �

How general are our two value-restriction conditions? The following proposition,
proved in the appendix, answers this question.

Proposition 8 Restricted to pro�les of consistent judgment sets,
(a) each of our four conditions based on global orders implies value-restriction;
(b) each of our four conditions based on local orders, with respect to Y de�ned in

terms of minimal inconsistent sets, implies value-restriction;
(c) each of our four conditions based on local orders, with respect to Y de�ned in

terms of irreducible sets, implies weak value-restriction.

6.2 Applications to preference aggregation: triplewise
value-restriction

We now show that, when applied to the preference agenda, our two value-restriction
conditions surprisingly both collapse into Sen�s triplewise value-restriction. Let us
recapitulate Sen�s condition:

24



Triplewise value-restriction. (Sen [38]) A preference pro�le (�1; :::;�n) is triple-
wise value-restricted if, for every triple of distinct alternatives x; y; z 2 K, there is one
alternative, say x, that is either not ranked top by any individual (no i has x �i y and
x �i z), or not ranked middle by any individual (no i has y �i x �i z or z �i x �i y)
or not ranked bottom by any individual (no i has y �i x and z �i x).

An alternative, but equivalent de�nition of triplewise value-restriction requires
that, for each triple of alternatives, the individuals�preferences be either single-peaked
or single-caved or separable in a sense de�ned by Inada [17]. (See also Elsholtz and List
[18].) The following is the central result of this subsection, proved in the appendix.

Proposition 9 For any pro�le (A1; :::; An) of consistent and complete judgment sets
on the preference agenda, the following are equivalent:

(a) (A1; :::; An) is value-restricted,
(b) (A1; :::; An) is weakly value-restricted,
(c) the associated preference pro�le (�A1 ; :::;�An) is triplewise value-restricted.

7 Conclusion

We have introduced several domain-restriction conditions on pro�les of individual
judgment sets that are su¢ cient for consistent majority outcomes. Some of our con-
ditions are based on global orders of either the propositions or the individuals, others
on local orders of them, and yet others not on orders at all. We have justi�ed our
focus on majority voting by providing a new characterization result showing that,
for all minimally rich domains, if there is any consistent aggregation function at all
that satis�es certain democratic conditions, then majority voting is the unique such
function.

While all domain-restriction conditions discussed in this paper are su¢ cient for
consistent majority outcomes, it is useful to compare them with a necessary and
su¢ cient condition.

Majority-consistency. A pro�le (A1; :::; An) is majority-consistent if every mini-
mal inconsistent set Y � X contains a proposition not contained in a majority of the
Ais.25

If (and only if) this condition is met, no minimal inconsistent set of propositions
can be accepted under majority voting, and thus the majority outcome is consis-
tent. But there are some important di¤erences between majority-consistency and the
various conditions introduced earlier. First, unlike majority-consistency, the various
earlier conditions are easily interpretable: they embody particular types of agreement
within the group, for instance agreements on normative or cognitive dimensions under-
lying individual judgments. Secondly, the earlier conditions are structural (as opposed
to numerical) in the sense of depending only on whether or not certain patterns occur

25 It is easy to see that, when the majority outcome is complete, it is enough to quantify over all
irreducible (as opposed to all minimal inconsistent) sets Y � X.
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in each judgment set in a given pro�le, but not on how often those patterns occur
(Elsholtz and List [18]). By contrast, majority-consistency is a numerical condition.
Thirdly, as we show in a moment, each of our earlier conditions can be used to de�ne
product domains, whereas majority-consistency cannot.

A domain D of admissible pro�les of an aggregation function (say, majority voting)
is called a product domain if it can be expressed as

D = D1 �D2 � :::�Dn,

where, for each i 2 N , Di is the set of admissible judgment sets of individual i (typ-
ically, Di is the same for all i). A domain is called a non-product domain if it does
not admit such an expression, i.e., if the judgment set an individual can submit may
depend on the judgment sets submitted by others. For example, in preference aggrega-
tion, single-peakedness and single-cavedness relativized to an antecedently �xed order
of alternatives specify product domains, while single-peakedness and single-cavedness
simpliciter do not.

The distinction between product and non-product domains is important both the-
oretically and practically. It is theoretically important in game-theoretic analyses of
aggregation problems. If we want to interpret an aggregation problem as a game,
where the individuals�possible inputs �i.e., their preferences or judgments �are their
strategies, then the domain of admissible pro�les must be a Cartesian product of the
strategy sets across individuals. Standard de�nitions of strategy-proofness following
Gibbard and Satterthwaite employ precisely this representation, although they can be
modi�ed so as to accommodate non-product domains (Saporiti and Tohmé [36]; see
also Dietrich and List [8]). Practically, product domains matter when an aggregation
function represents a voting procedure in the ordinary sense. Here each voter must be
given a list of admissible choices �i.e., a set Di of admissible judgment sets (typically
the same across voters) � and cannot be told that certain choices are inadmissible
depending on the choices made by others.

The product domains induced by our various conditions are as follows:

� The product domain of single-plateaued/canyoned pro�les relative � (a �xed
order on X): each Di is the set of consistent judgment sets A � X that are
single-plateaued/canyoned relative to �. In the case of unidimensional ordered-
ness/alignment, the construction is slightly more elaborate.26

� The product domain of locally single-plateaued/canyoned pro�les relative to
(�Y )Y 2Y (a family of �xed orders �Y on the subagendas Y 2 Y): each Di is
the set of consistent judgment sets A � X that are single-plateaued/canyoned
on each Y 2 Y relative to �Y . Again, a more elaborate construction is possible
for local unidimensional orderedness/alignment.

� The product domain of value-restricted pro�les relative to (ZY )Y 2MI (a family
of �xed two-element subsets ZY � Y , with Y ranging over the setMI of minimal
inconsistent subsets of X): each Di is the set of consistent judgment sets A � X
that are not supersets of any ZY .27

26Let (A1; :::; An�) be any pro�le of consistent judgment sets satisfying unidimensional orderedness
or alignment (relative to some 
), where n� � 1 is any arbitrary group size (not necessarily identical to
n). If we de�ne each Di to be the set of all Ajs occurring in (A1; :::; An�), then D = D1�D2� :::�Dn

is a product domain of unidimensionally ordered or aligned pro�les of consistent judgment sets.
27 In the case of weak value restriction, Di can be de�ned analogously, with MI replaced by the
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It can be shown that any maximal product domain D with identical Dis that
guarantees consistent and complete majority judgments in D must be value-restricted
relative to some family (ZY )Y 2MI , as de�ned in the last bullet point.28 In this speci�c
sense, in the case of product domains, value-restriction constitutes the most general
domain restriction one can give to achieve consistent majority judgments. Unlike
value-restriction, the non-product domain condition of majority-consistency does not
induce a product domain, since it is a numerical condition, not a structural one.

In conclusion, Figures 3 and 4 summarize the logical relationships between all the
domain-restriction conditions discussed in this paper, in Figure 3 applied to pro�les

majority­consistency

value­restriction

single­plateauedness

single­canyonedness unidimensional orderedness

unidimensional alignment

local unidimensional alignment

local unidimensional orderedness

local single­canyonedness

local single­plateauedness

Figure 3: The logical relationships between the domain-restriction conditions for pro-
�les of consistent judgment sets

majority consistency

value­restriction

local unidimensional orderedness

local single­plateauedness local single­canyonedness

local unidimensional alignment

unidimensional orderedness

single­plateauedness single­canyonedness

unidimensional alignment

Figure 4: The logical relationships between the domain-restriction conditions for pro-
�les of consistent and complete judgment sets

(smaller) set of irreducible subsets of X.
28We show this result in follow-up work on domain restrictions that guarantee majority and super-

majority consistency.
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of consistent individual judgment sets and in Figure 4 applied to pro�les of consistent
and complete individual judgment sets. In the latter case, the logical relationships
between the conditions simplify to a linear order between four equivalence classes of
conditions.
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A Appendix: Additional proofs

Proof of Lemma 1. Consider any agenda (possibly containing tautologies), and let F
and D be as speci�ed. Consider any p 2 X and any (A1; :::; An); (A�1; :::; A

�
n) 2 D

in which the same set of individuals C � N accepts p. We must show that p 2
F (A1; :::; An) , p 2 F (A�1; :::; A�n). By consistency of F , if p is a contradiction, it
belongs to neither F (A1; :::; An) nor F (A�1; :::; A

�
n), hence p 2 F (A1; :::; An) , p 2

F (A�1; :::; A
�
n). Now suppose p is not a contradiction (but perhaps a tautology). The

pro�le (A01; :::; A
0
n) given by A

0
i = ? for all i 2 C and A0i = fpg for all i =2 C is inD (it is

bipolar). By acceptance/rejection neutrality, p 2 F (A1; :::; An) , p =2 F (A01; :::; A0n).
Further, by acceptance/rejection neutrality, p 2 F (A�1; :::; A�n) , p =2 F (A01; :::; A0n).
So p 2 F (A1; :::; An), p 2 F (A�1; :::; A�n), as required. �

Proof of Remark 1. We use the notation introduced in the proof of Proposi-
tion 1. Consider a pro�le (A1; :::; An) of consistent individual judgment sets, and let
(A1; :::; An) be single-canyoned, say relative to the order p1:::p2k. We consider any Ai
and show that Ai is single-plateaued relative to the new order pk+1:::p2kp1:::pk. By
assumption, (i) Ai = fp1; :::pjg [ fpj0 ; :::; p2kg for some 0 � j � j0 � 2k + 1. As Ai is
consistent, Ai contains no pair p;:p 2 X; so jAij � jXj=2 = k, whence (ii) j � k and
j0 � k+1. Using both (i) and (ii), one can check that Ai is an interval relative to the
new order pk+1:::p2kp1:::pk, as required. More precisely,

Ai =

8>><>>:
[pj0 ; pj ] if j 6= 0 and j0 6= 2k + 1,
[p1; pj ] if j 6= 0 and j0 = 2k + 1,
[pj0 ; p2k] if j = 0 and j0 6= 2k + 1,
? if j = 0 and j0 = 2k + 1. �
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Supplementary parts of the proof of Proposition 3. We use the notation from
the earlier proofs as well as the abbreviations SP (single-plateauedness), SC (single-
canyonedness), UO (unidimensional orderedness) and UA (unidimensional alignment).

UA =) SC. Let (A1; :::; An) be a pro�le of consistent judgment sets, and suppose
UA, for simplicity relative to the order (
) 1; 2; :::; nWe show SC relative to the order
(�) p1p2:::p2k that

- begins with the propositions p 2 X with Np = f1; :::; ng,
- followed by the propositions p 2 X with Np = f1; :::; n� 1g,
...

- followed by the propositions p 2 X with Np = f1g,
- followed by the propositions p 2 X with Np = ?,
- followed by the propositions p 2 X with Np = fng,
- followed by the propositions p 2 X with Np = fn� 1; ng,
...

- ending with the propositions p 2 X with Np = f2; :::; ng.

1 2 3 4 5

p1 X X X X X
p2 X X X X
p3 X
p4
p5 X
p6 X X X X

Table 5: Example of the order p1; :::; p2k for n = 5 individuals and 2k = 6 propositions;
a �Y�indicates acceptance of the row proposition by the column individual

This procedure to construct p1:::p2k is well-de�ned, since, by UA, each p 2 X is of
one of the forms considered in the procedure. In the example pro�le of Table 5, it is
obvious that (A1; :::; An) is SC relative to p1:::p2k: A1 = Xn[p4; p6], A2 = A3 = A4 =
Xn[p3; p5] and A4 = A5 = Xn[p2; p4].

For the general proof of SC, consider any Ah (1 � h � n) and let us show that
Ah is SC relative to �. It su¢ ces to prove that, for all p 2 X, either [p1; p] � Ah
or [p; p2k] � Ah. Consider any p 2 X. By UA, either Np = f1; :::; kg for some k, or
Np = fk; :::; ng for some k � 2. By construction of the order p1:::p2k, in the �rst case
[p1; p] � Ah and in the second case [p; p2k] � Ah, as required.

SP 6) SC. Consider an agenda X and a pro�le (A1; :::; An) consisting of pairwise
disjoint consistent judgment sets, at least three of which are non-empty. The pro�le
is SP, namely relative to an order starting with the propositions in A1; followed by
those in A2; ..., and ends with those in An. But the pro�le is not SC: if it were SC, say
relative to an order �, then each non-empty Ai would contain an extreme (i.e., left-
or right-most) proposition; so that, as at least three Ais are non-empty but there are
only two extreme propositions, the Ais would not be pairwise disjoint, a contradiction.

SC 6) UO. Consider an agenda X, group N and pro�le (A1; :::; An) such that
n = 4, A1 = fp; p0; q; q0g; A2 = fp; p0g, A3 = fq; q0g, A4 = fp; qg, where p; p0; q; q0 2 X
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are pairwise distinct. This pro�le is SC: consider an order � such that p < p0 < ::: <
q0 < q (where �:::�contains all remaining propositions). Suppose for a contradiction
UO holds, say relative to an order i1:::in. As Np0 = f1; 2g, individuals 1 and 2 are
neighbours (in i1:::in). As Nq0 = f1; 3g, 1 and 3 are neighbours. So 1 is �surrounded�
by 2 and 3, i.e., i1:::in contains the sublist 213 or 312; suppose it contains the sublist
213 (the proof continues analogously for the sublist 312). Also, as Np = f1; 2; 4g, 4
is a neighbour of 1 or of 2; since 4 cannot be a neighbour of 1 (which is surrounded
by 2 and 3), it is a neighbour of 2. So i1:::in contains the sublist 4213. Finally, as
Nq = f1; 3; 4g, 4 is a neighbour of 1 or 3, which is not the case since i1:::in contains
the sublist 4213.

SC 6) UA. This follows from SC 6) UO by UO ) UA.

SP 6) UO. This follows from SC 6) UO by SC ) SP.

SP 6) UA. This follows from SC 6) UA by SC ) SP.

UO 6) UA. Consider an agenda X, group N and pro�le (A1; :::; An) such that
n � 3 and the Ais are pairwise disjoint and singleton. As every Np is empty or
singleton, the pro�le is UO (relative to any order of N). It is not UA: if it were, say
relative to the order 
 of N , then each i 2 N would have to be extreme, i.e., smallest
or largest in 
 (as i is the only individual accepting the proposition in Ai), which is
not possible as there are n � 3 individuals but only two extreme positions.

UO 6) SP. Consider a group, agenda X and pro�le (A1; :::; An) with n = 3 and
A1 = fp; p1g, A2 = fp; p2g and A3 = fp; p3g, where p; p1; p2; p3 2 X are pairwise
distinct. This pro�le is UO, relative to any order of N . But it is not SP: if it were
SP, say relative to an order p1:::p2k of X, then in this order p would have to be a
neighbour of p1 (by A1 = fp; p1g), and one of p2 (by A2 = fp; p2g), and also one of p3
(by A3 = fp; p3g), a contradiction.

UO 6) SC. This follows from UO 6) SP by SC ) SP. �

Proof of Lemma 2. Let A � X be complete and inconsistent. Among all incon-
sistent subsets of A, let B be one of smallest size jBj. We show that B is irreducible.
Suppose for a contradiction that B is reducible to C � X. We will de�ne an incon-
sistent subset of A smaller than B, in contradiction to the choice of B. By jCj < jBj
and the choice of B, we have C 6� A. So there is a p 2 CnA. Since A is complete, we
have :p 2 A. As C is a reduction of B, there is a subset B� � B with jBnB�j � 2
and B� ` p. Now B� [ f:pg is an inconsistent subset of A smaller than B:

- B� [ f:pg is a subset of A by B� � B � A and :p 2 A;
- B� [ f:pg is inconsistent by B� ` p;
- jB� [ f:pgj � jB�j+ 1 = jBj � jBnB�j+ 1 � jBj � 2 + 1 < jBj. �

Proof of Proposition 6. Let (�1; :::;�n) be as speci�ed, and denote by (A1; :::; An)
the corresponding judgment pro�le, whose judgment sets Ai (= A�i) are complete
and consistent as each �i is also fully rational. For all i and all distinct x; y 2 K, x �i
y , y 6�i x; so that for (�1; :::;�n) intermediateness on triples is indeed equivalent
to order restriction on triples. Moreover, as each Ai is complete and consistent, for
(A1; :::; An) local unidimensional orderedness with respect to Y is indeed equivalent
to local unidimensional alignment with respect to Y (see corollary 1). So it remains
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to show that (�1; :::;�n) is intermediate on triples if and only if (A1; :::; An) is locally
unidimensionally ordered (with respect to Y).

To prove the latter, recall that the irreducible sets are, by Remark 5, the cycles of
length 1 or 2 or 3, i.e. the subagendas essentially identical to a subagenda of type

fxPxg� or fxPy; yPxg� (x 6= y) or fxPy; yPz; zPxg� (x; y; z distinct): (3)

So, using that unidimensional orderedness on a subagenda is equivalent to unidimen-
sional orderedness on any essentially identical subagenda, (A1; :::; An) is locally uni-
dimensionally ordered if and only if it is unidimensionally ordered on any subagenda
of one of the three types in (3). Unidimensional orderedness holds trivially on sub-
agendas of the �rst type fxPxg�; and similarly for subagendas of type fxPy; yPxg�
(x 6= y): consider an order of N beginning with the individuals i with x �i y, and
followed by the individuals i with y �i x. So local unidimensional orderedness is
equivalent to unidimensional orderedness on each of the subagendas

fxPy; yPz; zPxg� (x; y; z 2 K distinct).

But this is equivalent to intermediateness of (�1; :::;�n), as one easily checks (using
that, for distinct x; y 2 K, :xPy 2 Ai , yPx 2 Ai for all Ai). �

The proof of Proposition 8 requires a lemma:

Lemma 3 Let S 6= ? be a set of subsets I � N that are each intervals relative to
some �xed linear order on N . If the elements of S are pairwise non-disjoint (i.e.,
I \ J 6= ? for all I; J 2 S), they are all non-disjoint (i.e., \I2SI 6= ?).

Proof. Let S be as de�ned in the lemma. Note that S must be �nite. So a proof
by induction on the size of S is possible. More precisely, we prove by induction that
\i2SI = [maxi2I min I;min I2S max I] 6= ?.

First let S have size 1, say S = fIg. The claim then holds, since \J2SJ = I =
[min I;max I], which is non-empty because it can be written as I \ I, a non-empty set
by pairwise non-disjointness.

Now suppose the claim holds for sets of a size k (� 1), and consider a set S of size
k+1, say S = S0 [fJg where S0 has size k. We have \I2SI = J \ (\I2S0I), where by
induction hypothesis, \I2S0I = [maxI2S0 min I;minI2S0 max I] 6= ?. So

\I2SI = J \ [max
I2S0

min I;min
I2S0

max I]:

This set obviously equals [maxI2S min I;minI2S max I]. To complete the proof, sup-
pose for a contradiction that this interval is empty. The intersection of two intervals
(here, of J and [maxI2S0 min I;minI2S0 max I]) can only be empty if the largest ele-
ment of one of the intervals is smaller than the smallest element of the other interval.
So either minI2S0 max I < minJ or max J < maxI2S0 min I. In the �rst case, there
is an I 2 S0 such that max I < minJ , so that I \ J = ?. In the second case, there
is an I 2 S0 with max J < min I, so that again I \ J = ?. So in any case pairwise
non-disjointness is violated, a contradiction. �
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Proof of Proposition 8. We prove part (a). Parts (b) and (c) follow analogously.
Consider a pro�le (A1; :::; An) of consistent judgment sets. By Remarks 1 and 2, it
su¢ ces to show that (i) single-plateauedness implies value-restriction and that (ii)
unidimensional orderedness implies value-restriction.

(i) Suppose (A1; :::; An) is single-plateaued, say relative to the order �. To show
value-restriction, consider any non-singleton minimal inconsistent set Y . We must
specify a two-element subset of Y not contained in any Ai. De�ne it as consisting
of the smallest element p and the largest element q of Y (relative to the order �).
As required, no Ai can contain both p and q: otherwise it would include the entire
interval from p to q (by single-plateauedness), hence include the inconsistent set Y , a
contradiction.

(ii) Suppose, for a contradiction, that (A1; :::; An) is unidimensionally ordered but
not value-restricted. Let Y be a non-singleton minimal inconsistent set for which
value-restriction is violated. Let S be the set ffi 2 N : p 2 Aig : p 2 Y g. By
unidimensional orderedness, S consists of intervals (relative to a structuring order 
).
Further, these intervals are pairwise non-disjoint: otherwise there would be p; q 2 Y
such that fi 2 N : p 2 Aig \ fi 2 N : q 2 Aig = ?, so that no Ai contains both p
and q, whence value-restriction would not be violated for Y . So, by Lemma 3, S has
a non-empty intersection. In other words, some Ai contains all p 2 Y . But then Ai is
inconsistent, a contradiction. �

Proof of Proposition 9. Let (A1; :::; An) be as speci�ed, and denote by (�1; :::;�n)
the corresponding preference pro�le. We �rst show that (b) is equivalent to (c), and
then that (a) is equivalent to (b).

(c) =) (b). First suppose (�1; :::;�n) is triplewise value-restricted. Consider
any non-singleton irreducible Y � XK . By Remark 5, Y is a cycle of length 2 or
3. If Y has length 2, hence is a binary inconsistent set, we can take Z = Y , and by
individual consistency no Ai includes Z. Now let Y be a 3-cycle, hence essentially
identical to a set of the form fxPy; yPz; zPxg for distinct x; y; y 2 K. By triplewise
value-restriction, some of x; y; z is in (�1; :::;�n) either never ranked between, or never
above, or never below, the two other alternatives. We go through all nine cases:

- if x is never ranked between y and z, no Ai is a superset of Z = fzPx; xPyg;
- if y is never ranked between x and z, no Ai is a superset of Z = fxPy; yPzg;
- if z is never ranked between x and y, no Ai is a superset of Z = fyPz; zPxg;
- if x is never ranked above y and z, no Ai is a superset of Z = fxPy; yPzg;
- if y is never ranked above x and z, no Ai is a superset of Z = fyPz; zPxg;
- if z is never ranked above x and y, no Ai is a superset of Z = fzPx; xPyg;
- if x is never ranked below y and z, no Ai is a superset of Z = fyPz; zPxg;
- if y is never ranked below x and z, no Ai is a superset of Z = fzPx; xPyg;
- if z is never ranked below x and y, no Ai is a superset of Z = fxPy; yPzg.
(b) =) (c). Now let (A1; :::; An) be weakly value-restricted. To show that (�1

; :::;�n) is triplewise value-restricted, consider any distinct alternatives x; y; z 2 K. By
Remark 5, the sets Y = fxPy; yPz; zPxg and Y 0 = fzPy; yPx; xPzg are irreducible
and non-singleton. So, by weak value-restriction, Y has a two-element subset Z not
included in any Ai, and similarly Y 0 has a two-element subset Z 0 not included in any
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Ai. Assume Z = fxPy; yPzg (the proof is analogous for other binary subsets of Y ).
Since each Ai is neither a superset of Z nor one of Z 0, we can conclude the following:

- if Z 0 = fzPy; yPxg, then no Ai ranks y between x and z;
- if Z 0 = fyPx; xPzg, then no Ai ranks z below x and y;
- if Z 0 = fxPz; zPyg, then no Ai ranks x above y and z.
So, whatever Z 0 is, we have triplewise value-restriction.

(a) =) (b). Trivial, since irreducible sets are minimal inconsistent.

(b) =) (a). Suppose (A1; :::; An) is weakly value-restricted. To show value-
restriction, consider any non-singleton minimal inconsistent set Y � XK . By Remark
4, Y is a cycle of some length k, hence is essentially identical to �we may assume
identical to �a set of type

Y = fx1Px2; x2Px3; :::; xk�1Pxk; xkPx1g, with distinct x1; :::; xk 2 K

for some k � 2. We show by induction on the size k of Y that Y has a two-element
subset Z that is not included in any Ai.

First let k = 2 or k = 3. Then Y is by Remark 5 irreducible, hence has by weak
value restriction a two-element subset Z not included in any Ai.

Now suppose k � 4, and let the claim hold for sets of size less than k. Consider the
non-singleton irreducible sets Y 0 = fx1Px2; x2Px3; x3Px1g and
Y 00 = fx1Px3; x3Px4; :::; xk�1Pxk; xkPx1g. By induction hypothesis,

(*) Y 0 has a binary subset Z 0 not included in any Ai; and

(**) Y 00 has a binary subset Z 00 not included in any Ai.

We distinguish three cases.

Case 1: x3Px1 =2 Z 0. Then Z 0 � Y , and we may put Z = Z 0.
Case 2: x1Px3 =2 Z 00. Then Z 00 � Y , and we may put Z = Z 00.
Case 3: x3Px1 2 Z 0 and x1Px3 2 Z 00. Then Z 0 = fp; x3Px1g for some p 2

fx1Px2; x2Px3g, and Z 00 = fq; x1Px3g for some q 2 fx3Px4; :::; xk�1Pxk; xkPx1g.
De�ne Z = fp; qg. Obviously, Z is a two-element subset of Y . Further, no Ai includes
Z:

- if p 2 Ai, then x3Px1 =2 Ai (as Ai does not include Z 0), so x1Px3 2 Ai (as Ai is
complete and consistent), and so q =2 Ai (as Ai does not include Z 00);

- if q 2 Ai, then x1Px3 =2 Ai (as Ai does not include Z 00), so x3Px1 2 Ai (as Ai is
complete and consistent), and so p =2 Ai (as Ai does not include Z 0). �
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