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Abstract

In this paper, we identify a new and mathematically well-defined sense in which
the coherence of a set of hypotheses can be truth-conducive. Our focus is not, as
usually, on the probability but on the confirmation of a coherent set and its members.
We show that, if evidence confirms a hypothesis, confirmation is “transmitted” to
any hypotheses that are sufficiently coherent with the former hypothesis, according
to some appropriate probabilistic coherence measure such as Olsson’s or Fitelson’s
measure. Our findings have implications for scientific methodology, as they provide a
formal rationale for the method of indirect confirmation and the method of confirming
theories by confirming their parts.

1 Introduction

Many epistemologists find it intuitive that coherence is truth-conducive. However,
it has not yet been possible to turn this plausible intuition into an exact claim without
facing serious objections or counterexamples. For instance, if the truth-conduciveness
of coherence is understood as the claim that more coherent sets of statements (pro-
positions, beliefs, scientific hypotheses, etc.) are always more likely to be true than
less coherent ones, the thesis is obviously false. For, “a well-composed novel is usually
not true, and yet it may still be highly coherent — perhaps far more so than reality
in itself.” (Olsson 2002, 247). The problem of truth-conduciveness of coherence has
been investigated in a long, open and on-going debate, by, among others, BonJour
1985, Klein and Warfield 1994 and 1996, Merricks 1995, Cross 1999, Shogenji 1999
and 2001, Akiba 2000, Olsson 2001 and 2002, Bovens and Hartmann 2003 and 2004.
Since the thesis “more coherent sets have higher probability” is not true as such,
the general strategy in the literature has been to argue that the thesis becomes true
once restricted to sets satisfying suitable conditions. However, the nature and even
existence of such conditions is highly controversial.

This paper takes a different approach, by focusing not on the probability but on
the confirmation of coherent sets. This will lead to a sense in which coherence is
truth-conducive, a sense that is less ambitious than the claim “coherence increases
probability” but is mathematically well-defined.2 We define a property, to be called

1We wish to thank Claus Beisbart, Ludwig Fahrbach, Branden Fitelson, Stephan Hartmann and
Franz Huber for very inspiring discussions. We are also grateful to the Alexander von Humboldt
Foundation, the Federal Ministry of Education and Research, and the Program for the Investment
in the Future (ZIP) of the German Government, for supporting this research.

2We should mention that Bovens and Hartmann 2002 also identify a mathematically well-defined,
yet somewhat different and special sense of truth-conduciveness of coherence. They focus on inform-
ation sets, specifically on sets of hypotheses that have been confirmed by independent and equally



confirmation transmission, to the effect that, in short, if some evidence confirms
a given member of a sufficiently coherent set of hypotheses, then it also confirms
each other member. Our truth-conduciveness is thus a conditional one: coherence is
truth-conducive conditional on evidence confirming a member of the set. Our findings
establish a link between the Bayesian theories of confirmation and of coherence (for
Bayesian confirmation theory, see for instance Fitelson 2000, 2001).

Specifically, we define confirmation transmission as a property of the degree of
coherence of sets as given by some probabilistic coherence measure (as opposed to
some absolute, i.e. ungraded, notion of coherence). Among the different coherence
measures recently proposed in the literature, some but not all satisfy confirmation
transmission. In particular, we prove that Olsson’s measure satisfies a strong form of
confirmation transmission, Fitelson’s measure satisfies a weaker form of confirmation
transmission, and Shogenji’s measure violates even the weaker property. We show that
if a coherence measure satisfies different confirmation transmission properties, then
coherence becomes in well-defined ways truth-conducive and relevant for scientific
methodology. But we do not argue that our confirmation transmission properties are
in all circumstances essential requirements on a coherence measure, since a measure
may be used for a different purpose than confirmation transmission.

In Section 2, we introduce the formal framework and the notion of a coherence
measure; and we define the coherence measures referred to in this paper. In Section
3, we show that the coherence of a set of hypotheses (e.g. a theory) can be used to
ascertain the confirmation of the set by evidence: if some element of a set is confirmed
and the set is sufficiently coherent, then confirmation is ‘transmitted’ to the other
members of the set, and to their conjunction. In Section 4, we show that confirmation
transmission can be used to justify the method of indirect confirmation. Section 5
contains the conclusions of the paper.

2 Probabilistic measures of coherence

Intuitively, a set of statements is coherent if its members ‘hang together’ (C.
I. Lewis 1946). Moreover, coherence is generally thought to be a matter of degrees.
Recently, a number of probabilistic coherence measures have been proposed, which are
supposed to account for both of these intuitions. A coherence measure is a function
that assigns to each (finite non-empty) set of statements a real number, interpreted
as the (degree of) coherence of that set. The proposed measures contrast with each
other in that they induce significantly different coherence orderings.

More precisely, consider a standard formal language of propositional logic (with
at least the connectives ¬,∧,∨). Coherence measures are defined relative to a finitely
additive Kolmogorov probability function P on the language (usually interpreted as
reflecting the subjective probabilities of a real or idealised agent). For simplicity,
we assume that P is regular3, and we restrict attention to the coherence of sets of

(partially) reliable sources. They define a sophisticated partial cohernce ordering over information
sets, and show that one information set is at least as probable as another if it is at least as coherent
as the other and in addition (i) both sets have equal size, (ii) the different pieces of information come
from independent and equally reliable sources, and (iii) both sets had the same probability prior to
being reported by the sources (cf. p. 626).

3 I.e., P (H) > 0 for every consistent formula H. Our results do not depend on this assumption,
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consistent formulae. Specifically, a coherence measure is a function C that maps every
non-empty finite set S of individually consistent formulae to a number C(S) ∈ R.
Thus C : S → R, where S is the set of all non-empty finite sets S of consistent
formulae.

To exemplify our confirmation transmission properties, we focus on the coherence
measures proposed by, respectively, Shogenji 1999, Olsson 2002 and Fitelson 2004.

• Shogenji defines the coherence of a set S ∈ S as

CS(S) :=
P (∧H∈SH)
ΠH∈SP (H)

.

This measure ranges over the interval [0,∞). If S is inconsistent then CS(S) = 0
(minimal coherence). If S consists of probabilistically independent formulae, CS(S) =
1. Shogenji interprets S as simply “coherent” or “incoherent” if CS(S) > 1 or CS(S) <
1, respectively.

• Olsson defines the coherence of a set S ∈ S as

CO(S) :=
P (∧H∈SH)
P (∨H∈SH) .

This measure ranges over the interval [0, 1]. If S is inconsistent then CO(S) = 0
(minimal coherence), and if S consists of pairwise logically equivalent formulae then
CO(S) = 1 (maximal coherence).

• Fitelson defines the coherence of a set S ∈ S as the average degree to which
conjunctions of non-empty subsets S1 ⊆ S are supported by conjunctions of other
non-empty subsets S2 ⊆ S\S1. Specifically, he defines4

CF(S) :=
1

|R|
X

(S1,S2)∈R
F (∧H1∈S1H1,∧H2∈S2H2), (1)

whereR is the set of all pairs (S1, S2) of non-empty subsets S1, S2 ⊆ S with S1∩S2 = ∅
(there are exactly |R| = n(2n−1− 1) such pairs), and F is Kemeny and Oppenheim’s
1952 measure of factual support ; specifically

F (H,K) :=
P (K|H)− P (K|¬H)
P (K|H) + P (K|¬H) ,

interpreted as −1 if K ² ¬H, and as 1 if K ² H and K is not a contradiction.5 For
instance, if S = {H,H∗} (H 6= H∗) then R = {({H}, {H∗}), ({H∗}, {H})}, and so

CF(S) =
1

2
[F (H,H∗) + F (H∗,H)] .

Fitelson’s measure ranges over the interval [−1, 1]. If S consists of pairwise incon-
sistent formulae then CF(S) = −1 (minimal coherence). If S consists of pairwise
equivalent formulae then CF(S) = 1 (maximal coherence). If S consists of probabil-
istically independent formulae then CF(S) = 0.

which one may want to drop to allow for propositional background knowledge.
4 If |S| = 1 we have R = ∅, so that expression in (1) is undefined. In this case we suggest defining

CF ({H}) := 1, in accordance with Fitelson’s aim that sets of pairwise equivalent (consistent) formulae
should have maximal coherence.

5We use Fitelson’s revised definition of his coherence measure, presented by him at Bayesian
Epistemology conference (London School of Economics and Political Science, UK, 28 June 2004).
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3 Confirming theories by confirming their parts

It is well-know that the confirmation of individual members of a set of statements
does not entail confirmation of the entire set, i.e. of the conjunction of its members.
In particular, if a theory is interpreted as a set of (scientific) hypotheses,6 and the
different hypotheses are individually confirmed, it does not in general follow that the
theory as a whole is confirmed. Here, a formula E is said to (incrementally) confirm
a formula H if P (E) > 0 and P (H|E) > P (H).

It is even easy to construct cases, within or outside science, in which evidence
confirms each part of a theory yet disconfirms the theory. We give two examples.

First, assume Anne has two lovers, Peter and Sam, who don’t know of each other.
Yesterday there was a party, and suppose that a theory says that Peter and Sam both
were at this party. Now, we learn that Anne was at the party. This is evidence for
both parts of the theory: it increases the probability that Peter was at the party and
increases the probability that Sam was at the party. But it decreases the probability
of the entire theory, because Anne would never have gone to a party where both of
her lovers are present.

Second, consider a physical experiment that involves two sources. Most likely,
none of the sources emits a particle; but each source may, with a small probability,
emit either an electron or a positron. A physicist is interested in whether it is true
that both sources emit an electron; so, she wants to know whether the first source
emits an electron (H) and the second source emits an electron (H∗). She observes
two photons (E) indicating an annihilation. Annihilation is possible only if the two
sources do emit particles, but particles of opposite charges (one emits an electron,
the other a positron). Hence the observation E confirms H and confirms H∗, yet
disconfirms H ∧H∗.

In general, are there conditions on a set S under which it is justified to consider
S as confirmed by an evidence E that confirms a member of S? We show that
sufficiently high coherence of S is such a condition (not a necessary condition, of
course). But “sufficiently high” with respect to which coherence measure C? There
are many plausible ways to measure coherence, but not for all of them the claim
“sufficiently high coherence transmits confirmation” holds. Below, we prove, as an
example, that the claim does hold for a particularly elementary coherence measure:
Olsson’s measure (defined above).

Let us now define two properties, satisfied by some but not all coherence measures
C.

Confirmation Transmission (CT). For any formulae E,H such that E con-
firms H, there exists a (non-trivial7) coherence threshold c = cE,H ∈ R such that, for
any set S ∈ S for which H ∈ S and C(S) ≥ c, E confirms each member of S.

Confirmation Transmission to the Conjunction (CTC) For any formulae
6Sometimes, a theory is required to be closed under logical entailment (hence in particular infinite).

Our notion of a theory is that of a set of hypotheses or axioms (the deductive closer of which is a
theory in the above sense).

7By “non-trivial” we mean that c < supS∈S&S3H C(S). This supremum equals supS∈S C(S) (the
maximal coherence level) if C is CS or CO or CF (and, generally, if C assigns maximal coherence to
any set of pairwise equivalent formulae).
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E,H such that E confirms H, there exists a (non-trivial7) coherence threshold c =
cE,H ∈ R such that, for any set S ∈ S for which H ∈ S and C(S) ≥ c, E confirms
the conjunction ∧H∗∈SH∗.

In this section, (CTC) is the main focus. However, a useful step towards proving
that a coherence measure satisfies (CTC) is to show first that it satisfies (CT). The
reason is given by the following result:

Theorem 1 Every coherence measure C that satisfies (CT) and C(S∪{∧H∈SH}) ≥
C(S) for every S ∈ S also satisfies (CTC) (and each possible coherence threshold
cE,H in (CT) is a possible coherence threshold cE,H in (CTC)).

Proof. Assume C satisfies (CT) and the inequalities C(S ∪ {∧H∈SH}) ≥ C(S)
for every S ∈ S. Let E confirm H, and let cE,H be as given in (CT). To show
(CTC), consider any set S ∈ S such that H ∈ S and C(S) ≥ cE,H . By assumption,
C(S ∪ {∧H∈SH}) ≥ C(C), and so C(S ∪ {∧H∈SH}) ≥ cE,H . Hence, by (CT), E
confirms each member of S ∪ {∧H∈SH}, in particular ∧H∈SH. This proves (CTC). ¥

We now apply Theorem 1 to Olsson’s coherence measure CO. As shown in the
appendix, CO satisfies (CT). As CO also satisfies the inequalities in Theorem 1 (as
CO(S) = CO(S ∪ {∧H∈SH}) for each S ∈ S), it follows that CO satisfies (CTC):

Theorem 2 Olsson’s coherence measure CO satisfies (CT) and (CTC), with coher-
ence threshold in both cases given by cE,H = 1

1+P (E|H)−P (E) .

Note that the coherence threshold c = 1
1+P (E|H)−P (E) is the higher, the less de-

pendent E and H are in the sense that P (E|H)−P (E) is smaller. As expected, when
P (E|H)− P (E) tends to 0 (independence), c tends to 1 (maximal coherence).

To illustrate the importance of (CTC) for the confirmation of sets, suppose that
S ∈ S is the set of hypotheses of a theory (or of points of the charge in a law suit).
EachH ∈ S has been confirmed by some experiments (or witness reports). Should one
consider the whole theory (or charge) ∧H∗∈SH∗ as confirmed by each experiment (or
witness report)? This depends on how coherent the theory (or charge) is, as measured
by some coherence measure C satisfying (CT∗) (for instance, Olsson’s measure). More
precisely, each experiment (or witness report) E confirming a hypothesis H such that
C(S) ≥ cE,H also confirms the entire theory (or charge) ∧H∗∈SH∗; whereas each
experiment (witness report) E confirming a hypothesis H such that C(S) < cE,H
may or may not confirm the entire theory (or charge) ∧H∗∈SH∗.

In should be emphasised, however, that a high enough coherence of a set S is
sufficient but not necessary for transmission of confirmation from a member of S to
the conjunction of S.

4 A rationale for the method of indirect confirmation

While in the last section we focussed on the confirmation of sets of hypotheses, we
now turn to the confirmation a single (scientific) hypothesis via indirect confirmation.
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This is a second sense in which confirmation transmission is relevant to scientific
methodology.

It is common scientific practice to consider a hypothesis H∗ as confirmed by
evidence E if E confirms some other hypothesis H related to H∗. This is called the
method of indirect confirmation (e.g. Laudan and Leplin 1991, Hoefer and Rosenberg
1994). The method is used in cases where it is not immediately obvious that E
confirms H∗, but it is clear that E confirms H (for instance because E is a logical
consequence ofH, possibly together with auxiliaries). As explained below, the method
of indirect confirmation was for example used to argue thatmagnetic striping on ocean
floors confirms the climate change hypothesis. The method of indirect confirmation
was also proposed as a way to decide between empirically equivalent theories. Laudan
and Leplin 1991 and Hoefer and Rosenberg 1994 argue that two empirically equivalent
theories need not be empirically underdetermined, as one of them may have more
indirect support than the other.

But what exactly does it mean thatH andH∗ are “related”? Defining “related” in
logical terms (either by H ² H∗ or by H∗ ² H) is inappropriate, since E can confirm
H without confirming H∗.8 Let us therefore interpret “related” as “coherent”. This
allows us to provide a formal justification of the method of indirect confirmation: if
E confirms H and C is some coherence measure satisfying confirmation transmission
(CT) for which C({H,H∗}) is sufficiently high (specifically, at least cE,H), then E
confirms H∗.

Note that this argument appeals to (CT) only in the special case of the binary set
S = {H,H∗}.9 So, the argument remains true even if C does not satisfy (CT) but
only the following less demanding notion of confirmation transmission:

Weak Confirmation Transmission (CT∗). For any formulae E,H such that
E confirms H, there exists a (non-trivial10) coherence threshold c = cE,H ∈ R such
that, for any consistent formula H∗ for which C({H,H∗}) ≥ c, E confirms H∗.

As our formal account of the method of indirect confirmation requires not (CT)
but only (CT∗), it is open to more coherence measures, including Fitelson’s and
Olsson’s ones:11

8The logical interpretation of "related" given by Laudan and Leplin 1991 leads into the Hempelian
paradox of confirmation that everything confirms everything, as shown by Okasha 1997.

9A formal account of the following more general method of indirect confirmation would, however,
require C to satisfy (CT) (not just (CT∗)): if E confirms H, and H and H∗ both belong to some set
S of hypotheses with coherence C(S) ≥ cE,H , then E confirms H∗.
10By “non-trivial” we mean that c < supH∗ consistent C({H,H∗}). This supremum equals

supS∈S C(S) (the maximal coherence level) if C is CO or CF (or, more generally, if C assigns maximal
coherence to any set of pairwise equivalent formulae), but equals 1

P (H)
if C is CS (see the proof of

Theorem 4).
11To see why CF violates (CT) (if the language contains at least two atomic formulae), let E

confirm H but not confirm H∗, where H∧H∗ is consistent (such E,H,H∗ exist by assumption on the
language). Suppose for contradiction that there is a (non-trivial) threshold cE,H such that, for all sets
S ∈ S, if H ∈ S and C(S) ≥ cE,H then E confirms each member of S. Let H1, H

∗
1 ,H2,H

∗
2 ,H3,H

∗
3 , ...

be distinct formulae such that each Hi is equivalent to H and each H∗i is equivalent to H
∗. For each

n ∈ {1, 2, ...} consider the set Sn := {H,H∗, H1,H
∗
1 , ...,Hn, H

∗
n}. By definition of CF , CF (Sn) is the

average of all terms of the form F (∧K1∈S1K1,∧K2∈S2K2), where (S1, S2) ranges overMn, the set of
pairs of disjoint non-empty subsets of Sn. Note that ∧K1∈S1K1 is (depending on S1) equivalent either
to H, or to H∗, or to H ∧H∗; similarly, ∧K2∈S2K2 is equivalent either to H, or to H∗, or to H ∧H∗.
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Theorem 3 Fitelson’s and Olsson’s coherence measures both satisfy (CT∗), with
coherence threshold given by, respectively, cE,H = 1

1+P (E∧H)−P (E)P (H) and cE,H =
1

1+P (E|H)−P (E) .

(The proof is in the appendix.) Our earlier comments on the threshold for Olsson’s
measure apply similarly to the threshold of Fitelson’s measure: it is the larger, the
nearer E and H are to being independent (in the sense that P (E ∧H)− P (E)P (H)
is smaller), and it tends to 1 (maximal coherence) as P (E ∧H) − P (E)P (H) tends
to 0 (full independence).

Shogenji’s coherence measure CS, however, does not satisfy (CT∗), and hence CS
cannot be used to formalise the method of indirect confirmation.

Theorem 4 Shogenji’s coherence measure CS does not satisfy (CT∗) (provided that
the language has at least two distinct atomic formulae).

(The proof is in the appendix.)
Let us give a historical example of indirect confirmation. The so-called continental

drift theory (H) states, roughly, that the earth’s surface is composed by a number of
oceanic and continental plates that move in time as they float on top of the astheno-
sphere. The theory was not accepted until the 1960s, when it was strongly confirmed
by the systematic observation of magnetic striping on ocean floors (E). Briefly, on
both sides of mid-ocean ridges, wide stripes of magmatic rock with alternating polar-
ity were observed. It was already established by then that earth’s magnetic polarity
reversed at certain geologic times and that, as new magma wells up out of a rift, it
gets magnetised in the direction of earth’s polarity at that time. So, magnetic striping
was interpreted as providing a record of a spreading movement of the ocean floor over
time: a confirmation of the continental drift theory.

The theory of continental drift is coherent with the climate change hypothesis
(H∗) whereby the climate of continents has varied throughout geologic time. H∗

was a plausible but little confirmed hypothesis before the 1960s. The discovery of
magnetic striping was taken to confirm the climate change hypothesis. As argued in
Laudan and Leplin 1991, this was a case of indirect confirmation: E confirms H∗ as
H∗ is closely related with H which is confirmed by E.12 A formal explanation that
E indeed confirms H∗ would be that E confirms H and C({H,H∗}) ≥ cE,H for some
coherence measure C satisfying (CT∗) (for instance, Olsson’s or Fitelson’s but not
Shogenji’s measure).

One easily verifies that, as n increases, the proportion of pairs (S1, S2) inMn for which ∧K1∈S1K1

and ∧K2∈S2K2 are each equivalent to H ∧H∗ tends to 1. So the proportion of pairs (S1, S2) inMn

for which F (∧K1∈S1K1,∧K2∈S2K2) = 1 tends to 1, and hence CF (Sn)→ 1. Therefore, for sufficiently
large n, CF (Sn) ≥ cE,H , however close to 1 cE,H is. Yet E does not confirm H∗ ∈ Sn. However,
we conjecture that FO satisfies the following condition, which is stronger than (CT∗) but weaker
than (CT): for any fixed n ∈ {2, 3, ...} and any formulae E,H such that E confirms H, there exists
a (non-trivial) coherence threshold c = cE,H ∈ R such that, for any set S ∈ S of size n for which
H ∈ S and C(S) ≥ c, E confirms each member of S.
12 In fact, Laudan and Leplin provide a slightly different reconstruction of case.
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5 Conclusion

The literature about coherence is far from an agreement on how to measure the
coherence of a set (of statements, scientific hypotheses etc.). One of the reasons is
that role of coherence is controversial. Despite attempts to argue that the coherence
of a set can, under suitable conditions, imply that the set is probable, none of the
coherence measures in the literature reflects this claim in any straightforward and
general way. In this paper, we have shown that, in the different context of the
confirmation of hypotheses, coherence can be given a simple and mathematically well-
defined significance, which is reflected in some of the coherence measures proposed
so far, and probably in many other ones that have yet to be devised. Specifically,
we show that Olsson’s measure satisfies (CT) and (CTC), and Fitelson’s measure
satisfies (CT∗), whereas Shogenji’s measure violates all these conditions. Satisfaction
or violation of our conditions is not a reason to accept or reject a coherence measure
in general. Indeed, if the purpose is not confirmation transmission, one may prefer
Shogenji’s and Fitelson’s measures over Olsson’s measure on the grounds that they
always assign a higher coherence to a positively dependent set than to an independent
set (see Fitelson 2003).

The relevance of our confirmation transmission properties for scientific methodo-
logy is that they provide formal rationales for two standard procedures: the method
of confirming a theory by confirming its parts, and the method of indirect confirma-
tion. Indeed, if coherence is defined in accordance with (CTC), evidence confirming a
part of a sufficiently coherent theory also confirms the theory as a whole. Moreover,
if coherence is defined in accordance with (CT∗), evidence confirming a hypothesis
sufficiently coherent with another hypothesis also confirms the latter hypothesis.

6 Appendix: proof of the theorems

Proof of Theorem 2. We need only show the claim relating to (CT), as this claim
implies that relating to (CTC) by using Theorem 1.

Let E,H be formulae such that E confirms H, i.e. P (H|E)−P (H) > 0, and put
c := 1

1+P (E|H)−P (E) . Consider any set S ∈ S such that H ∈ S and CO(S) ≥ c. Take
any H∗ ∈ S\{H}, and let us show that E confirms H∗, i.e. that D∗ := P (H∗|E) −
P (H∗) > 0.

1. By the definition of CO, CO({H,H∗}) ≥ CO(S). So CO({H,H∗}) ≥ c, or

1

CO({H,H∗}) ≤
1

c
= 1 + P (E|H)− P (E). (2)

Consider the formula K defined as (H ∧ ¬H∗) ∨ (¬H ∧H∗). We have

1

CO({H,H∗}) =
P (H ∨H∗)
P (H ∧H∗)

=
P (H ∧H∗) + P (K)

P (H ∧H∗)

= 1 +
P (K)

P (H ∧H∗)
≥ 1 + P (K)

P (H)
.

By solving this for P (K), we have

P (K) ≤ P (H)

·
1

CO({H,H∗}) − 1
¸
.
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Now using the inequality (2), we obtain

P (K) ≤ P (H) [P (E|H)− P (E)] = P (E ∧H)− P (E)P (H). (3)

2. As indicated in Figure 1, we define

a := P (E ∧H ∧ ¬H∗), b := P (¬E ∧H ∧ ¬H∗),
a∗ := P (E ∧ ¬H ∧H∗), b∗ := P (¬E ∧ ¬H ∧H∗).

(a)

(b*)

(b)

(a*)

E

H

H*

Figure 1: The sets of worlds corresponding to E,H,H∗ (the probabilities of certain
regions are indicated in brackets)

With this notation in place, we can write

P (H∗) = P (H) + a∗ + b∗ − a− b,

P (H∗|E) =
P (H∗ ∧E)

P (E)
=

P (H ∧E) + a∗ − a

P (E)
= P (H|E) + a∗ − a

P (E)
.

By subtracting the expression for P (H∗) from that for P (H∗|E), we thus obtain

D∗ = P (H|E) + a∗ − a

P (E)
− [P (H) + a∗ + b∗ − a− b]

= P (H|E)− a/P (E)− [P (H) + b∗ − a− b] + a∗(1/P (E)− 1)
> P (H|E)− a/P (E)− [P (H) + b∗],

where the last inequality is strict because E is not a a tautology. To prove that
D∗ > 0 it is thus sufficient to show that the last expression is non-negative, i.e. that

P (H|E)− a/P (E) ≥ P (H) + b∗, or Q :=
P (H|E)− a/P (E)

P (H) + b∗
≥ 1.

To prove that Q ≥ 1, note first that

Q =
1

P (E)

P (E)P (H|E)− a

P (H) + b∗
=

1

P (E)

P (E ∧H)− a

P (H) + b∗
.

With K as defined above, we have

a ≤ (a+ a∗ + b+ b∗)− b∗ = P (K)− b∗,

and hence by (3) a ≤ P (E ∧H)− P (E)P (H)− b∗. So

Q ≥ 1

P (E)

P (E ∧H)− (P (E ∧H)− P (E)P (H)− b∗)
P (H) + b∗

=
1

P (E)

P (E)P (H) + b∗

P (H) + b∗
≥ 1

P (E)

P (E)P (H)

P (H)
= 1. ¥
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Proof of Theorem 3. Let E confirmH, and put c := 1
1+P (E∧H)−P (E)P (H) . Consider

any consistent formula H∗ such that CF({H,H∗}) ≥ c. We prove the following
inequality analogous to (3):

P (K) ≤ P (E ∧H)− P (E)P (H), (4)

where again K is the formula (H ∧ ¬H∗) ∨ (¬H ∧H∗). This inequality implies that
E confirms H∗, by an argument analogous to step 2 in the proof of Theorem 2.

Note that H∗ cannot be a tautology, since otherwise CF({H,H∗}) = 1/2 (by the
definition of CF and the fact that H is not a tautology), violating CF({H,H∗}) ≥ c.
So CF(H,H∗) is given by

CF({H,H∗}) =
1

2

·
P (H∗|H)− P (H∗|¬H)
P (H∗|H) + P (H∗|¬H) +

P (H|H∗)− P (H|¬H∗)
P (H|H∗) + P (H|¬H∗)

¸
≤ 1

2

·
1− P (H∗|¬H)
1 + P (H∗|¬H) +

1− P (H|¬H∗)
1 + P (H|¬H∗)

¸
.

Putting α := P (H∗|¬H) and β := P (H|¬H∗), we thus have

CF({H,H∗}) ≤ 1

2

·
1− α

1 + α
+
1− β

1 + β

¸
=
1

2

·
(1− α)(1 + β) + (1 + α)(1− β)

(1 + α)(1 + β)

¸
=

1

2

·
1− α+ β − αβ + 1 + α− β − αβ

1 + α+ β + αβ

¸
=

1

2

·
2− 2αβ

1 + α+ β + αβ

¸
=

1− αβ

1 + α+ β + αβ
≤ 1

1 + α+ β
. (5)

Since α = P (H∗∧¬H)
P (¬H) ≥ P (H∗ ∧ ¬H) and β = P (H∧¬H∗)

P (¬H∗) ≥ P (H ∧ ¬H∗), we have

α+ β ≥ P (H∗ ∧ ¬H) + P (H ∧ ¬H∗) = P (K).

So, by (5),

CF({H,H∗}) ≤ 1

1 + P (K)
.

As by assumption CF({H,H∗}) ≥ c, it follows that

1

1 + P (K)
≥ c =

1

1 + P (E ∧H)− P (E)P (H)
.

This implies (4), as desired. ¥

Proof of Theorem 4. For contradiction, assume that CS satisfies (CT∗). By
assumption, there exist two (distinct) atomic formulae A and B. Define E as A ∧B
and H as A. Then E confirms H. Let c be a coherence threshold as given in (CT∗).
By non-triviality (see footnote 7),

c < sup
H∗

CS({H,H∗}) = sup
H∗

P (H ∧H∗)
P (H)P (H∗)

=
1

P (H)
,

where the last equality holds because CS({H,H∗}) = P (H∧H∗)
P (H)P (H∗) , which is at most

1
P (H) , and exactly

1
P (H) in case H

∗ ² H (since then P (H ∧H∗) = P (H∗)). Let H∗

be A ∧ ¬B. By H∗ ² H, we have CS({H,H∗}) = 1
P (H) ≥ c. Yet E does not confirm

H∗, since H∗ is inconsistent with E. ¥
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