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1 Introduction

We consider the classical aggregation problem of opinion pooling: the probabil-
ity assignments of di¤erent individuals are to be merged into collective proba-
bility assignments. While opinion pooling has been explored in some depth in
the literature (by statisticians, economists, and philosophers), all contributions
so far assume that the set of relevant events (the "agenda") forms a �-algebra.
This assumption has a technical motivation: the standard rationality conditions
on probability assignments (in particular, �-additivity) refer to a �-algebra as
their domain. On the other hand, the disjunction (union) or conjunction (in-
tersection) of two relevant events need not be relevant in practice: it may well
be relevant whether it rains, and relevant whether we are happy, but irrelevant
whether the disjunction or conjunction of these two events holds. With irrele-
vance of events we either mean that the collective does not need a probability
for them, or that conditions standardly imposed on opinion pooling (such as
independence and zero-preservation) loose their normative appeal when applied
to these (arti�cial) events.

In this paper we explore opinion pooling without assuming that the agenda
of relevant events forms a �-algebra. We show that, for a broad class of agendas
(whose events may be much less interconnected than those of a �-algebra), any
opinion pooling operator with two properties must be linear, i.e. derive the
collective probability of each relevant event as a weighted linear average of the
individuals�probabilities of the event where the weights are event-independent.
For an even broader class of agendas, we obtain a weaker conclusion: the pooling
operator must be neutral, i.e. derive the collective probability of each relevant
event as some (possibly non-linear) function of the individuals�probabilities of
the event where the function is event-independent.

The latter neutrality result applies in particular to an agenda type that
is frequent in practice: agendas consisting of logically independent events, i.e.
decision problems of assigning probabilities to certain events, where any combi-
nation of truth values (�true�or �false�) of these events is consistent. This case
of logically independent events is frequent because between events of interest
(such as between rainfall and happiness) there often is no logical dependence
but only a probabilistic dependence (correlation). Agendas of logically inde-
pendent events can be viewed as diametrically opposed to agendas that form
a �-algebra. By focussing on �-algebras, the literature has in e¤ect excluded
many realistic applications.



For the classical case that the agenda is a �-algebra, linearity and neutrality
are among the most studied properties of pooling operators (in the case of
neutrality sometimes under other names such as strong label neutrality or strong
setwise function property). Linear pooling goes back to Stone (1961) (or even
to Laplace), and neutral pooling to McConway (1981) and Wagner (1982). The
�-algebra case has the interesting feature that every neutral pooling operator is
automatically linear, so that neutrality is in fact equivalent to linearity, if the
�-algebra contains more than four events (McConway 1981 and Wagner 1982;
see also Mongin�s 1995 linearity characterisation). This peculiarity does not
carry over to general agendas: some agendas allow for neutral yet non-linear
opinion pooling, as seen below.

The reader is referred to Genest and Zidek�s (1986) overview article for an
excellent review of classical results on opinion pooling.

2 Model

Consider a group of n � 2 individuals, labelled i = 1; :::; n. Let 
 be a non-
empty set of worlds (or states of a¤airs) and � a �-algebra of events A � 
.
For instance, � could be the power set of 
. We write Ac := 
nA for the
complement (negation) of any A � 
. An event A is contingent if it is neither
; nor 
. An event A entails another one B if A � B. A set of events Y is
consistent if \A2YA 6= ;; it is inconsistent if \A2YA = ;; and it entails an event
B if \A2YA � B.
The group has to �nd a "collective" (�-additive) probability measure P :

�! [0; 1], based on the "pro�le" (P1; :::; Pn) of individual probability measures
Pi : �! [0; 1]. Let P denote the set of probability measures P : �! [0; 1]. An
(opinion) pooling operator is simply a mapping F : Pn ! P; it assigns to each
pro�le (P1; :::; Pn) 2 Pn of (individual) beliefs a collective belief F (P1; :::; Pn),
which we hereafter often denote PP1;:::;Pn. For instance, PP1;:::;Pn could be given
by the arithmetic average 1

n
P1 + ::: +

1
n
Pn, a case of linear pooling (as de�ned

later). There are of course numerous other pooling operators, including geo-
metric averages (of a weighted or non-weighted kind), expert rules (in which
PP1;:::;Pn is Pi with a �xed or pro�le-dependent "expert" i), median rules etc.

Unlike in the literature, we assume that only certain events in � are relevant.
As discussed below, the relevant events can be interpreted in (at least) two
ways: either as the only events for which the group actually needs probabilities,
or as the only events for which conditions placed on the pooling operator F
(independence, zero-perservation, etc.) are normatively compelling. We call the
set of relevant events the agenda, to stress the connection to agendas in social
choice theory. Formally, an agenda is a non-empty set X � � such that A 2 X
implies Ac 2 X. So non-emptiness and closure under taking complements are
our only (plausible) constraints on the notion of relevance. Crucially, we allow
X to contain A and B without containing A[B (respectively A\B): it may be
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relevant whether it rains, and also whether we are happy, yet irrelevant whether
it rains or we are happy (respectively and we are happy).

We refer to the case X = � as the "classical" case, as then all events are
treated as relevant and the below conditions on aggregation reduce to standard
conditions.

Two interpretations of relevance, i.e. of the agenda X.

1. We may interpret X as the set of events for which collective probabilities
are ultimately needed; probabilities of events A =2 �nX are of no collective use.
If only the restriction P jX of the collective probability measure P : � ! [0; 1]
is needed, then in the view of the independence condition below the individuals
need only submit �indeed need only hold �probabilities of events in X. While
the individuals need not make up their mind on other events, they must however
ensure that the probabilities of events in X are consistent, i.e., can be extended
to a full probability measure on �. In practice, a pooling operator is thus a
mapping ~Pn ! ~P, where ~P is the set of functions ~P : X ! [0; 1] that are
extendible to a probability measure P : �! [0; 1].

2. Under a second interpretation, also probabilities of events outside X are
of collective interest (and must be submitted by people), but only for events
in X do conditions (such as independence) have normative force. So X is here
de�ned by the scope we wish to give to aggregation conditions. Probabilities of
arti�cial events like the conjunction A\B of A : "Global warming kills animal
species X" and B : "GDP growth will accelerate" might well be needed (say, for
political decision-making); but one will not want to vote in isolation on A \B,
i.e. to apply the independence condition to A \B. So this event A \B will be
in � but not in X.

3 Two conditions on opinion pooling and their
interpretation

All our characterisation results are based on two conditions: independence and
implication-preservation, as de�ned in a moment. In the classical case X =
�, independence precisely matches the standard independence condition (also
called weak setwise function property), and implication-preservation becomes
equivalent to the standard condition of zero-preservation.

Independence. For every relevant event A 2 X there exists a function
DA : [0; 1]

n ! [0; 1] (the "(local) decision rule" for A) such that PP1;:::;Pn(A) =
DA(P1(A); :::; Pn(A)) for all P1; :::; Pn 2 P.

Implication-preservation. For all relevant eventsA;B 2 X and all P1; :::; Pn 2
P, if Pi(AnB) = 0 for all individuals i then PP1;:::;Pn(AnB) = 0; i.e., if all indi-
viduals believe that A (probabilistically) implies B, so does the collective.
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The main normative defence of independence is the democratic idea that
the collective view on events/issues A 2 X should be determined by the in-
dividuals views on the issue.1 Such a defence is compelling only if X does
not contain "arti�cial" events (such as conjunctions of semantically unrelated
events). So a democratic defence becomes di¢ cult (perhaps impossible) in the
classical case that X = �. This might explain why a democratic defence of
independence has not (to our knowledge) been put forward in the literature
(though similar arguments for independence conditions are common in other
�elds of aggregation theory). Aside from a democratic defence, two more prag-
matic arguments for independence can also be given; these work also in the
classical case X = �. First, voting on each issue/event in isolation is easier
in practice. Second, independence prevents certain type of agenda manipula-
tion.2 An objection against independence in the classical case X = � is its
incompatibility with collectively preserving unanimous beliefs of probabilistic
independence (see Genest and Wagner 1984).3 Whether the objection applies
to our independence condition depends on the agenda at hand X. Finally, some
authors reject independence �in the classical case � = X and presumably also
in our general case �as they prefer to require external Bayesianity, whereby
aggregation should commute with the process of updating probabilities in the
light of new information.

The idea underlying implication-preservation is intuitive: if all individuals
believe that some relevant event implies another, e.g. that hail implies damage,
or that political instability implies famine, then this belief is taken over collec-
tively. In the classical case X = �, implication-preservation is equivalent to the
following standard condition (take B = ;):

Zero-preservation. For all A 2 X and all P1; :::; Pn 2 P, if Pi(A) = 0 for all
individuals i then PP1;:::;Pn(A) = 0.

In the general case implication-preservation implies zero-preservation (take
B = Ac) but not vice versa. Although restricted to implications between rel-
evant events, implication-preservation in a sense reaches beyond X: it is (by
AnB = A \ Bc and as X is closed under taking complements) equivalent to a
variant of zero-preservation extended to intersections of two events in X, hence

1More precisely, independence re�ects a local notion of democracy; under a more global
notion of democracy, the collective view on an issue A may also be in�uenced by people�s
views on other issues whose semantic content is suitably related to A.

2In the classical case X = �, McConway (1981) shows that independence (his "weak
setwise function property") is equivalent to the "marginalization property" whereby (in short)
aggregation should commute with the operation of reducing the �-algebra to some sub-�-
algebra �� � �. A similar result holds also for general agendas X. Thus independence
prevents agenda setters from in�uencing the collective probability of some events by adding
or removing other events in the agenda.

3Assuming the aggregation function is non-dictatorial, i.e. the collective does not always
adopts the probability function of a �xed individual.
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to certain irrelevant events as well (unless X is closed under such intersec-
tions). The following lemma summarises exactly how implication-preservation
strengthens zero-preservation (the simple proof uses that A 2 X ) Ac 2 X
and AnB = A \Bc = (Ac [B)c, for all A;B 2 �).

Lemma 1 (a) Zero-preservation is equivalent to the following condition:
Pi(A) = 1 8i) PP1;:::;Pn(A) = 1, for all A 2 X, P1; :::; Pn 2 P.

(b) Implication-preservation is equivalent to each of the following conditions:
Pi(A\B) = 0 8i) PP1;:::;Pn(A\B) = 0, for all A;B 2 X, P1; :::; Pn 2 P;
Pi(A[B) = 1 8i) PP1;:::;Pn(A[B) = 1, for all A;B 2 X, P1; :::; Pn 2 P.

(c) Implication-preservation implies zero-preservation, and is equivalent to it
if the agenda X is closed under taking the union of two events.

Note that an implication-preserving pooling operator need not preserve a
unanimously held zero probability of a union of two relevant events, or of an
intersection or union of more than two relevant events.

4 Characterisation of neutral pooling

Let us �rst generalise the standard notions of linear and neutral pooling from
the classical case X = � to the case of a general agenda X.

A pooling operator F is linear if there are "weights" w1; :::; wn � 0 with
sum 1 such that

PP1;:::;Pn(A) =
nX
i=1

wiPi(A) for all P1; :::; Pn 2 P and all relevant events A 2 X,

or in short PP1;:::;PnjX =
Xn

i=1
wiPijX for all P1; :::; Pn 2 P. In the classical

case X = �, this reduces to PP1;:::;Pn =
Xn

i=1
wiPi for all P1; :::; Pn 2 P, i.e. to

standard linearity.4

A pooling operator F is neutral if there is a "decision rule"D : [0; 1]n ! [0; 1]
such that

PP1;:::;Pn(A) = D(P1(A); :::; Pn(A)) for all relevant events A 2 X,

i.e. if F is independent with the same decision rule D = DA for all A 2 X. So
there is perfect symmetry in how di¤erent relevant events/issues are treated:
the collective belief on whether it will rain is obtained via the same decision rule

4Also, if the agendaX is such that every probability measure P 2 P is uniquely determined
by the probabilities of relevant events, our X-relativised linearity notion is equivalent to the
standard global linearity notion (because then PP1;:::;Pn jX =

Xn

i=1
wiPijX implies PP1;:::;Pn =Xn

i=1
wiPi, for all P1; :::; Pn 2 P).
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as the collective belief on whether we will be happy (assuming these events are
relevant). Again, in the classical case X = � our neutrality condition becomes
the studied one in the literature.

Linearity is obviously a special case of neutrality, where the decision rule D
moreover takes a linear form, i.e. is given by D(t1; :::; tn) =

Xn

i=1
witi for some

non-negative weights wi of sum 1.

In this section we ask for which agendas X pooling operators satisfying our
two conditions (implication-preservation and independence) must be neutral.
This question is interesting in its own right, but its answer will also help us
later when characterising linear (rather than just neutral) pooling.

We call the agenda X nested if it takes the form X = fA;Ac : A 2 X+g
for some set X+ (� X) that is linearly ordered by set-inclusion �, and non-
nested otherwise. For instance, binary agendas X = fA;Acg are of course
nested: take X+ := fAg. Also the agenda X = f(�1; t]; (t;1) : t 2 Rg
(a subset of the Borel-�-algebra � over the real line 
 = R) is nested: take
X+ := f(�1; t] : t 2 Rg, which is indeed linearly ordered by set-inclusion.
An important type of non-nested agendas consists in the agendas X whose

pairs A;Ac 2 X ("issues") are logically independent: X is non-nested if it takes
the form X = fAk; Ack : k 2 Kg with jKj � 2 such that \k2KA�k 6= ; for every
selection of events A�k 2 fAk; Ackg, k 2 K. As mentioned in the introduction,
such agendas are frequent in practice (and are somewhat opposed to �-algebras
with their highly interconnected events).

Nested agendas X are very special: all A;B 2 X are logically dependent (i.e.
one of A;Ac entails one of B;Bc), a trivial case. Nested agendas might therefore
also be called "pairwise connected" or "trivial". The following neutrality char-
acterisation applies to all non-nested agendas, hence to all non-trivial opinion
pooling situations.

Theorem 1 For a non-nested agenda X, an implication-preserving pooling op-
erator is independent if and only if it is neutral.

This characterisation of neutral pooling assumes a non-nested agenda. Is
this assumption tight or just "needed for our proof"? It is tight, at least in the
�nite case:

Theorem 2 For a nested agenda X, �nite and not f;;
g, there exists an
implication-preserving pooling operator that is independent but not neutral.

Although nested agendas X allow for non-neutral pooling, only a limited
kind of non-neutrality is possible: as will be clear from the proof, the decision
rule DA must still be the same for all A 2 X+, and the same for all A 2 XnX+

(with X+ as de�ned above). So full neutrality follows even in the nested case
once independence is strengthened by requiring that DA = DAc for all A 2 X
(or at least for some A 2 Xnf;;
g).
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5 Proof of the neutrality characterisation

We now prove Theorems 1 and 2. The following binary relation on the agenda
is used later to characterise nested agendas.

De�nition 1 For any relevant events A;B 2 X, write A � B if there exists
a �nite sequence of relevant events A1; :::; Ak 2 X with A1 = A and Ak =
B such that any neighbours Al; Al+1 are neither exclusive nor exhaustive (i.e.
Al \ Al+1 6= ; and Al [ Al+1 6= 
).

Lemma 2 Consider any agenda X.
(a) � de�nes an equivalence relation on Xnf;;
g (whose equivalence classes

we hereafter call �-equivalence classes).
(b) A � B , Ac � Bc for all relevant events A;B 2 X.
(c) A � B ) A � B for all relevant events A;B 2 Xnf;;
g.
(d) If X 6= f;;
g, there exists

� either a single �-equivalence class, namely Xnf;;
g,
� or exactly two �-equivalence classes, each one containing exactly one
member of each pair A;Ac 2 Xnf;;
g.

Proof. (a) Re�exivity, symmetry and transitivity onXnf;;
g are all obvious
(where we excluded ; and 
 to ensure re�exivity).
(b) It su¢ ces to show one direction of implication (as (Ac)c = A for all

A 2 X). Let A;B 2 X with A � B. Then there is a path A1; :::; Ak 2 X from
A to B such that any neighbours At; At+1 are not exclusive and not exhaustive.
It follows that Ac1; :::; A

c
k is a path from A

c to Bc where any neighbours Act ; A
c
t+1

are not exclusive (as Act \ Act+1 = (At [ At+1)c 6= 
c = ;) and not exhaustive
(as Act [ Act+1 = (At \ At+1)c 6= ;c = 
).
(c) Let A;B 2 Xnf;;
g. If A � B then A � B in virtue of a direct con-

nection, because A;B are neither exclusive (as A \B = A 6= ;) nor exhaustive
(as A [B = B 6= 
).
(d) Let X 6= f;;
g. Suppose the number of �-equivalence classes is not

one. As Xnf;;
g 6= ; this number is not zero. So it is at least two. We show
two claims:

Claim 1. There are exactly two �-equivalence classes.
Claim 2. Each class contains exactly one member of any pair A;Ac 2

Xnf;;
g.
Proof of Claim 1. For a contradiction, let A;B;C 2 Xnf;;
g be pairwise

not �-equivalent. By A 6� B, either A \ B = ; or A [ B = 
. Without loss of
generality we may assume the former case, because in the latter case we may
consider the complements Ac; Bc; Cc instead of A;B;C, using that Ac; Bc; Cc

are pairwise not �-equivalent by (b) with Ac \ Bc = (A [ B)c = 
c = ;. Now
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by A \ B = ; we have B � Ac, whence Ac � B by (c). By A 6� C there are
two cases:

- either A \ C = ;, which implies C � Ac, whence C � Ac by (c), so that
C � B (as Ac � B and � is transitive by (a)), a contradiction;
- or A[C = 
, which implies Ac � C, whence Ac � C by (c), so that again

the contradiction C � B, which completes the proof of Claim 1.

Proof of Claim 2. Suppose for a contradiction that Z is a �-equivalence
class containing the pair A;Ac. By assumption Z is not the only �-equivalence
class, and so there is a B 2 Xnf;;
g with B 6� A (hence B 6� Ac). Then
either A \ B = ; or A [ B = 
. In the �rst case, B � Ac, so that B � Ac

by (c), a contradiction. In the second case, Ac � B, so that Ac � B by (c), a
contradiction. �

The nested agendas are precisely the agendas with two�-equivalence classes:

Lemma 3 An agenda X 6= f;;
g is nested if and only if it has two �-
equivalence classes, and non-nested if and only if it has a single one.

Proof. Consider an agenda X 6= f;;
g. By Lemma 2(d), the two claims are
equivalent. So it su¢ ces to prove the �rst one. Note that X is nested if and
only if Xnf;;
g is, andX has two �-equivalence classes if and only if Xnf;;
g
does. So we may assume without loss of generality that ;;
 =2 X.
First suppose there are two �-equivalence classes. Let X+ be one of them.

By Lemma 2(d), X = fA;Ac : A 2 X+g. To complete the proof that X is
nested, we show thatX+ is linearly ordered by set-inclusion�. As � is of course
re�exive, transitive and anti-symmetric, what we have to show is connectedness.
So suppose A;B 2 X+, and let us show that A � B or B � A. Since A 6� Bc
(by Lemma 2(d)), either A \ Bc = ; or A [ Bc = 
. In the �rst case, A � B.
In the second case, B � A.
Conversely, let X be nested, i.e. of the form X = fA;Ac : A 2 X+g for some

set X+ � � that is linearly ordered by set-inclusion �. Consider any A 2 X+.
We show that A 6� Ac, which shows thatX has more than one, hence by Lemma
2(d) exactly two �-equivalence classes, as desired. For a contradiction suppose
A � Ac. Then there is a path A1; :::; Ak 2 X from A to Ac such that, for all
neighbours At; At+1, At \ At+1 6= ; and At [ At+1 6= 
. As each event C 2 X
is either in X+ or has complement in X+, and as A1 2 X+ and Ack 2 X+,
there are neighbours At; At+1 such that At; Act+1 2 X+. So, as X+ is linearly
ordered by �, either At � Act+1 or Act+1 � At. In the �rst case, At \ At+1 = ;,
a contradiction. In the second case, At [ At+1 = 
, also a contradiction. �

The above characterisation of nestedness in terms of �-equivalence classes
is important largely for the following reason.
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Lemma 4 An independent implication-preserving pooling operator is neutral
on each �-equivalence class.

With neutrality on a set Z we of course mean the analogue of neutrality
with the agenda X replaced by the set Z.

Proof. Let F be independent and implication-preserving. Let DA; A 2 X;
be the decision rules as given by independence. We show that DA = DB for
all A;B 2 X with A \ B 6= ; and A [ B 6= 
. This implies immediately that
DA = DB whenever A � B (by induction on the length k of a path from A to
B), completing the proof.

So suppose A;B 2 X with A \ B 6= ; and A [ B 6= 
. Consider any
x 2 [0; 1]n, and let us show that DA(x) = DB(x). As A\B 6= ; and Ac \Bc =
(A [B)c 6= ;, there exist probability measures P1; :::; Pn 2 P such that

Pi(A \B) = xi and Pi(Ac \Bc) = 1� xi, for all i = 1; :::; n.

We have Pi(AnB) = 0 for all i, so that by implication-preservation PP1;:::;Pn(AnB) =
0; and we have Pi(BnA) = 0 for all i, so that by implication-preservation
PP1;:::;Pn(BnA) = 0. So

PP1;:::;Pn(A) = PP1;:::;Pn(A \B) = PP1;:::;Pn(B).

Hence, using that PP1;:::;Pn(A) = DA(x) because Pi(A) = xi for all i, and that
PP1;:::;Pn(B) = DB(x) because Pi(B) = xi for all i, it follows that DA(x) =
DB(x), as desired. �

With these lemmas in place, we now turn to our neutrality characterisation.

Proof of Theorem 1. The claim follows by combining Lemmas 3 and 4. �

To prove Theorem 2, we �rst recall a simple fact of probability theory (in
which the word "�nite" is of course essential):

Lemma 5 Every probability measure on a �nite sub-�-algebra of � can be ex-
tended to a probability measure on �.

Proof. Let �� � � be a �nite sub-�-algebra of �, and P � : �� ! [0; 1]
a probability measure. Let A be the set of atoms of ��, i.e. of (�-)minimal
events in ��nf;g. Using that �� is �nite, it easily follows that A is a partition
of 
, and so that

X
A2A

P �(A) = 1. For each atom A 2 A, consider a world
!A 2 A, and the associated Dirac measure �!A : � ! [0; 1] (de�ned, for all
B 2 �, by �!A(B) = 1 if !A 2 B and �!A(B) = 0 if !A =2 B). Then

P :=
X
A2A

P �(A)�!A
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de�nes a probability measure on �, as it is by
X

A2A
P �(A) = 1 a convex

combination of the probability measures �!1 ; :::; �!k . Further, P extends P �

because for all B = �� we have

P (B) =
X

A2A:!A2B
P �(A) =

X
A2A:A�B

P �(A) = P �(B),

where the �rst equality holds by de�nition of P , and the last equality by ad-
ditivity of P � and the fact that fA 2 A : A � Bg forms a partition of B.
�

Proof of Theorem 2. Consider a �nite nested agenda X 6= f;;
g. We
construct a pooling operator (P1; :::; Pn) 7! PP1;:::;Pn with the relevant properties.
Without loss of generality, we suppose that ;;
 2 X, and that the �-algebra
generated by X is �, drawing on the following fact:

Claim: If the theorem holds when � is generated by X, it holds in general.

Indeed, suppose the theorem holds in the special case. Let �� (� �) be the
�-algebra generated by X, and P� the set of probability measures on ��. By
assumption, there exists a pooling operator F � : (P�)n ! P�; (P �1 ; :::; P �n) 7!
P �P �1 ;:::;P �n with the relevant properties. For all P

�
1 ; :::; P

�
n 2 P�, the collective

probability measure P �P �1 ;:::;P �n : �� ! [0; 1] can by Lemma 5 be extended
to one on �; call it P �P �1 ;:::;P �n j

�. Now de�ne a pooling operator F : Pn !
P ; (P1; :::; Pn) 7! PP1;:::;Pn by

PP1;:::;Pn := P
�
P1j�� ;:::;Pnj�� j

�

(i.e. the Pi�s are �rst restricted to ��, then pooled using F � into a probability
measure on ��, which is then extended to �). F inherits from F � all relevant
properties (independence, non-neutrality, and implication-preservation), essen-
tially because these properties refer only to probabilities of events that are in
�� (more precisely, that are in X or �in the case of implication-preservation �
that are di¤erences of events in X). This proves the claim.

As X is nested and �nite, we may write it as X = fA0; ::::; Ak; Ac1; :::; Ackg
with events ; = A0 ( A1 ( ::: ( Ak = 
.
Consider any neutral implication-preserving pooling operator (of course there

is one, for instance dictatorship by individual 1, given by (P1; :::; Pn) 7! P1),
and call its decision rule D : [0; 1]n ! [0; 1]. As X 6= f;;
g, there is a con-
tingent event A 2 X. As A is contingent, there are P1; :::; Pn 2 P that all
assign probability 1=2 to A (hence to Ac), so that the collective probabilities of
A and of Ac are each given by D(1=2; :::; 1=2). As these probabilities sum to 1,
it follows that

D(1=2; 1=2; :::; 1=2) = 1=2: (1)

We now transform this neutral pooling operator into a non-neutral one (that
is still independent and implication-preserving). To do so, we consider a func-
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tion T : [0; 1] ! [0; 1] such that (i) T (1=2) 6= 1=2, (ii) T (0) = 0 and T (1) = 1,
and (iii) T is strictly increasing (e.g. T (x) = x2 for all x 2 [0; 1]).
Now consider any P1; :::; Pn 2 P. We have to de�ne the collective probability

measure PP1;:::;Pn : �! [0; 1]. As the �-algebra � is generated by X, hence by
fAj : j = 0; :::; kg, the atoms of � (i.e. the �-minimal elements of �nf;g) are
the di¤erences AjnAj�1, j = 1; :::; k. We de�ne the measure PP1;:::;Pn : �! [0; 1]
by specifying its value on the atoms as follows:

PP1;:::;Pn(AjnAj�1) := T �D(P1(Aj); :::; Pn(Aj))� T �D(P1(Aj�1); :::; Pn(Aj�1))

for all j 2 f1; :::; kg. As each Aj (j 2 f0; :::; kg) is partitioned into the sets
AlnAl�1; l = 1; :::; j, its measure is given by

PP1;:::;Pn(Aj) =

jX
l=1

[T �D(P1(Al); :::; Pn(Al))� T �D(P1(Al�1); :::; Pn(Al�1))],

which (by cancelling out and using that A0 = ;, that D(0; :::; 0) = 0, and that
T (0) = 0) reduces to

PP1;:::;Pn(Aj) = T �D(P1(Aj); :::; Pn(Aj)) for all j = 0; :::; k: (2)

To see why PP1;:::;Pn is indeed a probability measure, note that each atom has
non-negative measure (using that T and D are increasing functions), and that
PP1;:::;Pn(
) = PP1;:::;Pn(Ak) = 1 (by (2) and since D(1; :::; 1) = 1 and T (1) = 1).

To complete the proof, we must show that the just de�ned pooling operator
(P1; :::; Pn) 7! PP1;:::;Pn is independent, implication-preserving, but not neutral.

Independence. Applied to any event of type Aj 2 X, independence holds
with decision rule DAj de�ned as T � D, by (2). Applied to any event of
type Acj 2 X, independence holds with decision rule method DAcj

de�ned by
(t1; :::; tn) 7! 1� T �D(1� t1; :::; 1� tn), because for all P1; :::; Pn 2 P we have

PP1;:::;Pn(A
c
j) = 1� PP1;:::;Pn(Aj) = 1� T �D(P1(Aj); :::; Pn(Aj))

= 1� T �D(1� P1(Acj); :::; 1� Pn(Acj)).

Non-neutrality. By independence, the decision on any A 2 X is made via a
decision ruleDA : [0; 1]

n ! [0; 1]. We show that the rulesDA are not all identical
�or, more precisely, cannot be chosen to be all identical. As X 6= f;;
g, there
is a pair Aj; Acj 2 X of contingent events. As is easily checked, the decision rule
of any contingent event is unique; so DAj and DAcj

must be de�ned as in our
independence proof above. We show that DAj 6= DAcj

. Using (1), we have

DAj(1=2; :::; 1=2) = T �D(1=2; :::; 1=2) = T (1=2),
DAcj

(1=2; :::; 1=2) = 1� T �D(1� 1=2; :::; 1� 1=2)
= 1� T �D(1=2; :::; 1=2) = 1� T (1=2).
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So, as T (1=2) 6= 1=2 (by assumption on T ),DAj(1=2; :::; 1=2) 6= DAcj
(1=2; :::; 1=2),

and hence DAj 6= DAcj
, as desired.

Implication-preservation. Consider any A;B 2 X and P1; :::; Pn 2 P such
that Pi(AnB) = 0 for all individuals i. As one easily checks, AnB takes the
form AmnAl for some m; l 2 f0; :::; kg with m � l. Hence

PP1;:::;Pn(AnB) = PP1;:::;Pn(Am)� PP1;:::;Pn(Al) (by Al � Am)
= T �D(P1(Am); :::; Pn(Am))� T �D(P1(Al); :::; Pn(Al)).

In the last expression, each individual i has Pi(Am) = Pi(Al), as Al � Am with
Pi(AmnAl) = P (AnB) = 0. So the expression equals zero, i.e. PP1;:::;Pn(AnB) =
0, as desired. �

6 Characterisation of linear pooling

While for non-nested agendas a pooling operator with our two properties must
be neutral, it need not be linear. We now identify exactly for which non-nested
agendas linearity (rather than just neutrality) follows.

A set of events Y � � is minimal inconsistent if if \A2YA = ; but
\A2Y 0A 6= ; for every proper subset Y 0 ( Y . For instance, the set of events f"it
rains", "if it rains we get wet", "we do not get wet"g is minimal inconsistent:
these three events are mutually inconsistent, but any two of them are mutually
consistent. The logical interrelations within the agenda X are perhaps best un-
derstood in terms of the minimal inconsistent sets Y � X. Trivial examples of
minimal inconsistent sets are those of type fA;Acg � X (with A 6= ;;
). Most
interesting agendas Y contain other minimal inconsistent sets Y with jY j � 3.
One might regard supY�X:Y is minimal inconsistent jY j as a measure of the complexity
of the (interconnections within the) agenda X at hand.

We call the agenda X non-simple if there is a minimal inconsistent set
Y � X containing more than two (but not uncountably many5) events, and
simple otherwise.

Theorem 3 For a non-simple agenda, an implication-preserving pooling oper-
ator is independent if and only if it is linear.

As in our earlier neutrality characterisation, the agenda assumption is tight
in the �nite case:

5The countability condition can often be dropped because all minimal inconsistent sets
Y � X are automatically countable or even �nite. This is so not only ifX is �nite or countably
in�nite, but also in the (frequent) case that the events in X represent sentences in a language:
then, provided the language belongs to a compact logic, all minimal inconsistent sets Y � X
are �nite (because any inconsistent set has a �nite inconsistent subset). By contrast, the
�-algebra � often contains events not representing a sentence, so that the (unnatural) agenda
X = � often has in�nite minimal inconsistent subsets.
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Theorem 4 For a simple agenda, �nite and not f;;
g, there exists an implication-
preserving pooling operator that is independent but not linear.

7 Proof of the linearity characterisation

We now prove Theorems 3 and 4, using above theorems and lemmas.

Proof of Theorem 3. Let X be non-simple, and F implication-preserving.
We write 0 and 1 for the n-tuples (0; :::; 0) and (1; :::; 1), respectively.

Obviously, if F is linear then F is independent.

Now suppose F is independent; we show linearity. By Theorem 1 and since
non-simple agendas are non-nested, F is neutral, say with decision rule D :
[0; 1]n ! [0; 1] for all events A 2 X.
1. In this part of the proof we derive some properties of D.

Claim 1. D(x) +D(1� x) = 1 for all x 2 [0; 1]n.
To show this, note that as X is non-simple it contains an event A for which

A 6= ;;
. For each x 2 [0; 1]n there are by A 6= ;;
 probability functions
P1; :::; Pn 2 P such that (P1(A); :::; Pn(A)) = x, and hence (P1(Ac); :::; Pn(Ac)) =
1� x; which implies that

D(x) +D(1� x) = PP1;:::;Pn(A) + PP1;:::;Pn(Ac) = 1;

as desired.

Claim 2. D(0) = 0 and D(1) = 1.

Indeed, since the pooling operator is implication-preserving and hence zero-
preserving, D(0) = 0, so that by Claim 1 D(1) = 1�D(0) = 1.
Claim 3. If

D(x) +D(y) +D(z) = 1 for all x; y; z 2 [0; 1]n with x+ y + z = 1; (3)

then F is linear.

To show this, suppose (3). Then, for all x; y 2 [0; 1]n with x+ y 2 [0; 1]n,

1 = D(x) +D(y) +D(1� x� y) = D(x) +D(y) + 1�D(x+ y),

where the �rst equality follows from (3) and the second from Claim 1. So

D(x+ y) = D(x) +D(y) for all x; y 2 [0; 1]n with x+ y 2 [0; 1]n: (4)

For any i 2 f1; :::; ng, consider the functionDi : [0; 1]! [0; 1] de�ned byDi(t) =
D(0; :::; 0; t; 0; :::; 0), where the "t" occurs at position i in "(0; :::; 0; t; 0; :::; 0)".
By (4), Di satis�es Di(s+ t) = Di(s) +Di(t) for all s; t � 0 with s+ t � 1. As
one easily checks, Di can be extended to a function �Di : [0;1) ! [0;1) such
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that �Di(s+ t) = �Di(s)+ �Di(t) for all s; t � 0, i.e. such that �Di satis�es the non-
negative version of Cauchy�s functional equation; whence there exists a wi � 0
such that �Di(t) = wit for all t � 0 by a well-known theorem (see Aczél 1966,
Theorem 1). Now for all x 2 [0; 1]n, we have D(x) =

Xn

i=1
Di(xi) (by repeated

application of (4)), and so (by Di(xi) = �Di(xi) = wixi) D(x) =
Xn

i=1
wixi.

Applying the latter to x = 1 yields D(1) =
Xn

i=1
wi, hence

Xn

i=1
wi = 1 by

Claim 2. So F is a linear pooling operator, as desired.

2. In this second (longer) part of the proof we ultimately show that (3)
holds, which by Claim 3 completes the proof. So consider any x; y; z 2 [0; 1]n
with sum 1. As X is non-simple, there is a countable minimal inconsistent set
Y � X with jY j � 3. So there are pairwise distinct A;B;C 2 Y . De�ne

A� := Ac\

0@ \
D2Y nfAg

D

1A ; B� := Bc\
0@ \
D2Y nfBg

D

1A , C� := Cc\
0@ \
D2Y nfCg

D

1A .
As � is closed under countable intersections, A�; B�; C� 2 �. For all i, as
xi + yi + zi = 1 and as A�; B�; C� are pairwise disjoint non-empty members of
�, there exists a Pi 2 P with

Pi(A
�) = xi; Pi(B

�) = yi; Pi(C
�) = zi.

By construction,

Pi(A
� [B� [ C�) = xi + yi + zi = 1 for all i: (5)

For the so-de�ned pro�le (P1; :::; Pn), we consider the collective probability func-
tion P := PP1;:::;Pn. We now derive �ve properties of P (Claims 4-8), which then
allow us to show that D(x) +D(y) +D(z) = 1 (Claim 9), as desired.

Claim 4. P (\D2Y nfA;B;CgD) = 1.
For all D 2 Y nfA;B;Cg we have D � A� [ B� [ C�, so that by (5) we

have P1(D) = ::: = Pn(D) = 1, and hence P (D) = 1 by Lemma 1. This implies
Claim 4 because the intersection of countably many events of probability one
has probability one.

Claim 5. P (Ac [Bc [ Cc) = 1.
As A \ B \ C is disjoint from the event \D2Y nfA;B;CgD, which by Claim 4

has P -probability one, we have P (A\B\C) = 0. This implies Claim 5 because
Ac [Bc [ Cc is the complement of A \B \ C.
Claim 6. P ((Ac \Bc) [ (Ac \ Cc) [ (Bc \ Cc)) = 0.
As Ac \ Bc is disjoint with each of A�; B�; C�, it is disjoint with the event

A� [ B� [ C� to which each individual i assigns probability one by (5). So
Pi(A

c\Bc) = 0 for all i. Hence P (Ac\Bc) = 0 by Lemma 1(b). For analogous
reasons, P (Ac \ Cc) = 0 and P (Bc \ Cc) = 0. Now Claim 6 follows since the
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union of �nitely (or countably) many events of probability zero has probability
zero.

Claim 7. P ((Ac \B \ C) [ (A \Bc \ C) [ (A \B \ Cc)) = 1
By Claims 5 and 6, there is a P -probability of one that at least one of

Ac; Bc; Cc holds, but a P -probability of zero that at least two of Ac; Bc; Cc

hold. So with P -probability of one exactly one of Ac; Bc; Cc holds. This is
precisely what Claim 7 states.

Claim 8. P (A�) + P (B�) + P (C�) = P (A� [B� [ C�) = 1.
The �rst equality follows from the pairwise disjointness of the eventsA�; B�; C�

and the additivity of P . Regarding the second equality, note that A� [B� [C�
is the intersection of the events \D2Y nfA;B;CgD and (Ac \ B \ C) [ (A \ Bc \
C) [ (A \ B \ Cc), each of which has P -probability of one by Claims 4 and 7.
So P (A� [B� [ C�) = 1, as desired.
Claim 9. D(x) +D(y) +D(z) = 1 (which completes the proof by Claim 3).

As P (A� [ B� [ C�) = 1 by Claim 8, and as the intersection of Ac with
A� [B� [ C� is A�, we have

P (Ac) = P (A�): (6)

By Ac 2 X we moreover have

P (Ac) = D(P1(A
c); :::; Pn(A

c)) = D(P1(A
�); :::; Pn(A

�)) = D(x).

This and (6) imply that P (A�) = D(x). By similar arguments, P (B�) = D(y)
and P (C�) = D(z). So Claim 9 follows from Claim 8. �

Proof of Theorem 4. Let the agenda X (� �) be simple, �nite, and not
f;;
g. We construct a non-linear pooling operator that is independent (in fact,
neutral) and implication-preserving. We may assume without loss of generality
that the �-algebra generated by X is �, because the "Claim" in the proof of
Theorem 2 (proved using Lemma 5) holds analogously here as well.

As an ingredient to the construction, we use an arbitrary linear implication-
preserving pooling operator (P1; :::; Pn) 7! P linP1;:::;Pn(e.g. that de�ned by (P1; :::; Pn) 7!
P1), and denote by Dlin its decision rule for all events A 2 X. The pooling oper-
ator (P1; :::; Pn) 7! PP1;:::;Pn to be constructed will have, for every event A 2 X,
the decision rule D : [0; 1]n ! [0; 1] given by

D(t1; :::; tn) :=

8<:
0 if Dlin(t1; :::; tn) < 1=2
1/2 if Dlin(t1; :::; tn) = 1=2
1 if Dlin(t1; :::; tn) > 1=2.

(7)

Consider any P1; :::; Pn 2 P. We have to de�ne PP1;:::;Pn. We write collective
probabilities under the linear operator simply as

p(A) := P linP1;:::;Pn(A) for all A 2 �,
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and we de�ne

X�1=2 : = fA 2 X : p(A) � 1=2g
X>1=2 : = fA 2 X : p(A) > 1=2g
X=1=2 : = fA 2 X : p(A) = 1=2g.

(Although p(A) and the sets X�1=2; X>1=2; X=1=2 depend on P1; :::; Pn, our no-
tation suppresses P1; :::; Pn for simplicity.)

To de�ne PP1;:::;Pn, we �rst need to prove two claims (using thatX is simple).

Claim 1. X=1=2 can be partitioned into two (possibly empty) sets X1
=1=2 and

X2
=1=2 such that (i) each X

j
=1=2 satis�es p(A \ B) for all A;B 2 X

j
=1=2 and (ii)

each Xj
=1=2 [ X>1=2 is consistent (whence X

j
=1=2 contains exactly one member

of every pair A;Ac 2 X=1=2).

To show this, note �rst that X=1=2 has of course a subset Y such that
p(A \ B) > 0 for all A;B 2 Y (e.g. Y = ;). Among all such subsets Y �
X=1=2, let X1

=1=2 a maximal one (with respect to set-inclusion), and let X
2
=1=2 :=

X=1=2nX1
=1=2. By de�nition, X

1
=1=2 and X

2
=1=2 form a partition of X=1=2. We

show that (i) and (ii) hold.

(i). Property (i) holds by de�nition for X1
=1=2, and holds for X

2
=1=2 too by

the following argument. Let A;B 2 X2
=1=2 and suppose for a contradiction

that p(A \ B) = 0. By de�nition of X2
=1=2, there are A

0; B0 2 X1
=1=2 such that

p(A \ A0) = 0 and p(B \ B0) = 0. In particular, p(A \ C) = p(B \ C) = 0
for C := A0 \B0. Since the intersection of any two of the sets A;B;C has zero
p-probability, we have

p(A) + p(B) + p(C) = p(A [B [ C) � 1,

as p is a probability measure. This is a contradiction, since p(A) = p(B) = 1=2
and p(C) = p(A0 \B0) > 0 (the latter as (i) holds for X1

=1=2).

(ii). Suppose for a contradiction that some Xj
=1=2 [ X>1=2 is inconsistent.

Then (as X and hence Xj
=1=2 [X>1=2 is �nite) there is a minimal inconsistent

subset Y � Xj
=1=2 [X>1=2. As X is moreover simple, jY j � 2, say Y = fA;Bg.

As A \B = ; and p is a probability measure, we have

p(A) + p(B) = p(A [B) � 1.

So, as p(A); p(B) � 1=2, it must be that p(A) = p(B) = 1=2, i.e. that A;B 2
Xj
=1=2. Hence, by (i), p(A \B) > 0, a contradiction since A \B = ;.
Claim 2. \C2X1

=1=2
[X>1=2C and \C2X2

=1=2
[X>1=2C are atoms of the �-algebra

�, i.e. (�-)minimal elements of �nf;g (they are the same atoms if and only if
X=1=2 = ;, i.e. if and only if X1

=1=2 = X
2
=1=2 = ;).

To show this, �rst write X as X = fC0j ; C1j : j = 1; :::; Jg, where J = jXj=2
and where each pair C0j ; C

1
j consists of an event and its complement. We may

16



write � as the set of all unions of intersections of the form Ck11 \ ::: \ CkJJ , i.e.
as

� = f[(k1;:::;kJ )2K(Ck11 \ ::: \ C
kJ
J ) : K � f0; 1gJg: (8)

Recalling that � is the �-algebra generated by X, the inclusion "�" in (8)
is obvious, and the inclusion "�" holds because the right hand side of (8)
includes X (as any Ckj 2 X can be written as the union of all intersections
Ck11 \ :::\CkJJ for which kj = k) and is a �-algebra (as it is closed under taking
unions and complements: just take the unions respectively complements of he
corresponding sets K � f0; 1gJ).
From (8) and the pairwise disjointness of the intersections of the form Ck11 \

:::\CkJJ , it is clear that every consistent such intersection is an atom of �. Now
\C2Xj

=1=2
[X>1=2C is (for j 2 f0; 1g) precisely such a consistent intersections.

Indeed, \C2Xj
=1=2

[X>1=2C is consistent by Claim 1, and contains a member of

each pair A;Ac in X, if p(A) = p(Ac) = 1=2 by Claim 1 and if p(A) 6= p(Ac)
since there then is a B 2 fA;Acg with p(B) > 1=2, i.e. with B 2 X>1=2 �
Xj
=1=2 [X>1=2. This proves Claim 2.

We are now in a position to de�ne the function PP1;:::;Pn on �. Since
\C2X1

=1=2
[X>1=2C and \C2X2

=1=2
[X>1=2C are non-empty by Claim 1, there exist

worlds !1 2 \C2X1
=1=2

[X>1=2C and !
2 2 \C2X2

=1=2
[X>1=2C, where we assume that

!1 = !2 if X=1=2 = ;, i.e. if \C2X1
=1=2

[X>1=2C = \C2X2
=1=2

[X>1=2C = \C2X>1=2C.
(Our notation for worlds again suppresses P1; :::; Pn.) Let �!1 and �!2 be the
corresponding Dirac measures on �, given for all A 2 � by �!j(A) = 1 if !j 2 A
and �!j(A) = 0 if !j =2 A. We de�ne

PP1;:::;Pn :=
1

2
�!1 +

1

2
�!2,

where !1; !2 of course depend on P1; :::; Pn. (So PP1;:::;Pn(A) is either 1 or 1/2
or 0, depending on whether A 2 � contains both, exactly one, or none of !1
and !2; further, PP1;:::;Pn = �! if !

1 = !2 = !, i.e. if X=1=2 = ;.)
As PP1;:::;Pn is a convex combination of probability measures, PP1;:::;Pn is

indeed a probability measure. The proof is completed by showing that the so-
de�ned pooling operator (P1; :::; Pn) 7! PP1;:::;Pn has the desired properties, as
shown in the next two claims.

Independence. We show that the pooling operator is neutral (hence indepen-
dent) with the decision ruleD given in (7). To do so, consider any P1; :::; Pn 2 P
and any A 2 X, and write (t1; :::; tn) := (P1(A); :::; Pn(A)). We have to show
that PP1;:::;Pn(A) = D(t1; :::; tn). To do this, we consider three cases, and use p;
X>1=2; X

1
=1=2; X

2
=1=2; !

1; !2 as de�ned above.

Case 1 : p(A) = Dlin(t1; :::; tn) < 1=2. Then D(t1; :::; tn) = 0. So we must
prove that PP1;:::;Pn(A) = 0, i.e. that A contains neither !1 nor !2. Assume
for a contradiction that !1 2 A (the proof is analogous if we instead assume
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!2 2 A). Then A includes the set \C2X1
=1=2

[X>1=2C, as this set contains !
1

and is (by Claim 2) an atom of �. So Ac \ [\C2X1
=1=2

[X>1=2C] = ;. Hence the
set fAcg [X1

=1=2 [X>1=2 is inconsistent, so has a minimal inconsistent subset
Y . Since X is simple, jY j � 2. Y does not contain ;, as Ac is non-empty
(by p(Ac) = 1� p(A) > 1=2) and as all B 2 X1

=1=2 [X>1=2 are non-empty (by
p(B) � 1=2). So jY j = 2. Moreover, Y is not a subset ofX1

=1=2[X>1=2, since this
set is consistent by Claim 1. Hence Y = fAc; Bg for some B 2 X1

=1=2 [X>1=2.
As Ac \ B = ; and as p(Ac) = 1 � p(A) > 1=2 and p(B) � 1=2, we have
p(Ac [B) = p(Ac) + p(B) > 1=2 + 1=2 = 1, a contradiction.
Case 2 : p(A) = Dlin(t1; :::; tn) > 1=2. Then D(t1; :::; tn) = 1. Hence we

must prove that PP1;:::;Pn(A) = 1, or equivalently that PP1;:::;Pn(A
c) = 0. The

latter follows from Case 1 as applied to Ac, since p(Ac) = 1� p(A) < 1=2.
Case 3 : p(A) = Dlin(t1; :::; tn) = 1=2. Then D(t1; :::; tn) = 1=2. So we must

prove that PP1;:::;Pn(A) = 1=2, i.e. that A contains exactly one of !1 and !2.
As p(A) = 1=2, exactly one of X1

=1=2 and X
2
=1=2 contains A and the other one

contains Ac, by Claim 1. Say A 2 X1
=1=2 and A

c 2 X2
=1=2 (the proof is analogous

if instead A 2 X2
=1=2 and A

c 2 X1
=1=2). So A � \C2X1

=1=2
[X>1=2C, and hence

!1 2 A. On the other hand, !2 =2 A, because A is disjoint with Ac, hence with
its subset \C2X2

=1=2
[X>1=2C, which contains !

2..

Non-linearity. As X 6= f;;
g, there is a contingent event A 2 X, hence
a probability measure P 2 P with t := P (A) =2 f0; 1=2; 1g. Now assume all
individuals submit this P . If the pooling operator were linear, the collective
probability of A would again be t (=2 f0; 1=2; 1g), a contradiction since the
collective probability is given by D(t; :::; t) (2 f0; 1=2; 1g), as just shown.
Implication-preservation. We assume that A;B 2 X and P1; :::; Pn 2 P such

that Pi(A[B) = 1 for all i, and show that PP1;:::;Pn(A[B) = 1, which by Lemma
1 establishes implication-preservation. For all i we have Pi(A)+Pi(B) � Pi(A[
B) = 1, and hence P (Ai) � 1 � Pi(B) = Pi(Bc). So, as Dlin : [0; 1]n ! [0; 1]
takes a linear form with non-negative coe¢ cients and hence is weakly increasing
in every component,

Dlin(P1(A); :::; Pn(A)) � Dlin(1� P1(B); :::; Pn(B))
= 1�Dlin(P1(B); :::; Pn(B)).

Hence, with p as de�ned earlier, p(A) � 1 � p(B), i.e. p(A) + p(B) � 1. We
distinguish three cases:

Case 1 : p(A) > 1=2. Then, by the independence proof above, PP1;:::;Pn(A) =
1. So PP1;:::;Pn(A [B) = 1, as desired.
Case 2 : p(B) > 1=2. Then, by the independence proof above, PP1;:::;Pn(B) =

1. So again PP1;:::;Pn(A [B) = 1, as desired.
Case 3 : p(A); p(B) � 1=2. Then, as p(A) + p(B) � 1, we have p(A) =

p(B) = 1=2. Let X>1=2; X
1
=1=2; X

2
=1=2; !

1; !2 be as de�ned above. Then A;B 2

18



X1
=1=2 [X2

=1=2. It cannot be that A and B are both in X
1
=1=2: otherwise A

c and
Bc are both in X2

=1=2 by Claim 2, whence p(Ac \ Bc) > 0 (again by Claim 2),
a contradiction since

p(Ac \Bc) = p((A [B)c) = 1� p(A [B) = 1� 1 = 0.

Analogously, it cannot be that A and B are both in X2
=1=2. So one of A and B

is in X1
=1=2 and the other one in X

2
=1=2; say A 2 X1

=1=2 and B 2 X2
=1=2 (the proof

is analogous otherwise). So A � \C2X1
=1=2

[X>1=2C and B � \C2X2
=1=2

[X>1=2C,

and hence !1 2 A and !2 2 B. So A [ B contains both !1 and !2, whence
PP1;:::;Pn(A [B) = 1, as desired. �
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A Results without assuming implication-preservation

How far do we get if we replace implication-preservation by the weaker condition
of zero-preservation? For particular agendas, we still obtain neutrality of the
pooling operator, but not linearity; this is now shown. Our two theorems suggest
that without invoking implication-preservation it is hard to defend linearity but
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still possible to defend neutrality �provided the relevant events are (at least)
indirectly connected, in a sense to be de�ned now.

A relevant event A 2 X conditionally entails another one B 2 X (written
A `� B) if fAg [ Y entails B (i.e. \C2fAg[YC � B) for some countable
set Y � X that is consistent with A (i.e. \C2fAg[YC 6= ;) and with Bc
(i.e. \C2fBcg[YC 6= ;). The agenda X is pathconnected if for any two events
A;B 2 Xnf;;
g there exist events A1; :::; Ak 2 X (k � 1) such that A =
A1 `� A2 `� ::: `� Ak = B. In other words, any two contingent events in the
agenda can be connected by a path of conditional entailments.6 For instance,
X := fA;Ac : A � R is a bounded intervalg is a pathconnected agenda (a subset
of the Borel-�-algebra � over 
 = R).7 One easily shows that pathconnected
agendas are non-simple; but many non-simple agendas are not pathconnected.

We now give a characterisation of neutral pooling based on requiring zero-
preservation rather than implication-prerservation.

Theorem 5 For a pathconnected agenda X, a zero-preserving pooling operator
is independent if and only if it is neutral.

In this theorem, independence leads to neutrality. Does it even lead to
linearity? The answer is negative, as the next theorem shows.

Theorem 6 For some pathconnected agenda X (in some �-algebra � over some
set of worlds 
) there exists a zero-preserving pooling operator that is neutral
but not linear.

The following lemma is central for proving Theorem 5.

Lemma 6 For any independent and zero-preserving pooling operator, A `� B
implies DA � DB for all relevant events A;B 2 X (where DA and DB are
decision rules for A and B, respectively).

Proof. Let F;A;B;DA; DB be as speci�ed, and assume A `� B, say in virtue
of the set Y � X. Let x = (x1; :::; xn) 2 [0; 1]n. We show that DA(x) � DB(x).
As \C2fAg[YC has empty intersection with Bc (by the conditional entailment),
it equals its intersection with B; in particular, \C2fA;Bg[YC 6= ;. Similarly, as
\C2fBcg[YC has empty intersection with A, it equals its intersection with Ac; in
particular, \C2fAc;Bcg[YC 6= ;. Hence there are worlds ! 2 \C2fA;Bg[YC and

6Pathconnecdness is closely related (not identical) to the total blockedness condition used
in a di¤erent context by Nehring and Puppe (2002).

7For example, a path of conditional entailments between the intervals [0; 1] and [2; 3] can
be constructed as follows: [0; 1] `� [0; 3] (one may conditionalise on the empty set of events
Y = ;, i.e. the entailment is unconditional), and [0; 3] `� [2; 3] (one may conditionalise on
Y = f[2; 4]g.
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!0 2 \C2fAc;Bcg[YC. For each individual i, consider the probability measure
Pi : �! [0; 1] de�ned by

Pi := xi�! + (1� xi)�!0,

where �!; �!0 : � ! [0; 1] denote the Dirac-measures in ! and !0, respectively.
As each Pi satis�es Pi(A) = Pi(B) = xi, we have

PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A)) = DA(x),

PP1;:::;Pn(B) = DB(P1(B); :::; Pn(B)) = DB(x).

Further, for each Pi and each C 2 Y we have Pi(C) = 1, so that PP1;:::;Pn(C) = 1
(by zero-preservation; see Lemma 1), and hence PP1;:::;Pn(\C2YC) = 1 since the
intersection of countably many events of probability one has again probability
one. So

PP1;:::;Pn(\C2fAg[YC) = PP1;:::;Pn(A) = DA(x),

PP1;:::;Pn(\C2fBg[YC) = PP1;:::;Pn(B) = DB(x).

Now PP1;:::;Pn(\C2fAg[YC) � PP1;:::;Pn(\C2fBg[YC) since \C2fAg[YC = \C2fA;Bg[Y �
\C2fBg[YC (for the equality, see an earlier argument). So DA(x) � DB(x), as
desired. �

Proof of Theorem 5. Let X be pathconnected and F zero-preserving. Ob-
viously, if F is neutral then it is independent. Now let F be independent.
If X = f;;
g, F is obviously neutral, as desired. Now let X 6= f;;
g and
write DA for the decision rule of any contingent event A 2 Xnf;;
g. As X
is pathconnected, repeated application of Lemma 6 yields DA � DB for all
A;B 2 Xnf;;
g, and hence DA = DB for all A;B 2 Xnf;;
g. De�ne D as
the common decision rule DA of all A 2 Xnf;;
g. We complete the neutrality
proof by showing that D also works as a decision rule for ; and 
. Consider
any P1; :::; Pn 2 P. By de�nition of probability measures,

P1(;) = ::: = Pn(;) = PP1;:::;Pn(;) = 0;
P1(
) = ::: = Pn(
) = PP1;:::;Pn(
) = 1.

So it su¢ ces to show that D(0; :::; 0) = 0 and D(1; :::; 1) = 1, which follows
from zero-preservation (see also Lemma 1). �

Proof of Theorem 6. Our counterexample uses the state space
 := f!1; !2; !3; !4g
(with pairwise distinct !k�s), the �-algebra � := fA : A � 
g (the power set of

), and the agenda X := fA � 
 : jAj = 2g (the set of binary events). As X
is negation-closed and non-empty, it is indeed an agenda.

1. In this part of the proof, we show that X is pathconnected. Consider any
events A;B 2 X. We construct a path from A to B, by distinguishing three
cases.
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Case 1 : A = B. Then the path is trivial, since A `� A (take Y = ;).
Case 2 : A and B have exactly one world in common. We may then write

A = f!A; !g and B = f!B; !g with !A; !B; ! pairwise distinct. We have
f!A; !g `� f!g (take Y = ff!; !0gg, where !0 is the element of 
nf!A; !B; !g)
and f!g `� f!B; !g (take Y = ;).
Case 3 : : A and B have no world in common. We may then write A =

f!A; !0Ag and B = f!B; !0Bg with !A; !0A; !B; !0B pairwise distinct. We have
f!A; !0Ag `� f!A; !Bg (take Y = ff!A; !0Bgg) and f!A; !Bg `� f!B; !0Bg (take
Y = ff!B; !0Agg).
2. In this part, we construct a pooling operator (P1; :::; Pn) 7! PP1;:::;Pn that

is zero-preserving, neutral, but not linear. As an ingredient to the construction,
consider �rst a linear pooling operator L : Pn ! P. We show that L can be
transformed into a non-linear pooling operator that is still neutral and zero-
preserving. We use an (arbitrary) �xed transformation T : [0; 1] ! [0; 1] such
that:

(i) T (1� x) = 1� T (x) for all x 2 [0; 1] (hence T (1=2) = 1=2);
(ii) T (0) = 0 (hence by (i) T (1) = 1);

(iii) T is strictly concave on [0; 1=2] (hence by (i) strictly convex on [1=2; 1]).

(Such a T indeed exists; e.g. T (x) = 4(x� 1=2)3 + 1=2 for all x 2 [0; 1].)
We prove that for every probability measure Q 2 P (thought of as the

outcome of applying the linear pooling operator L) there exist real numbers
pk = pQk , k = 1; 2; 3; 4 (thought of as the new probabilities of the states !k;
k = 1; 2; 3; 4, after transforming Q) such that:

(a) p1; p2; p3; p4 � 0 and p1 + p2 + p3 + p4 = 1;
(b) for all A 2 X,

X
k:!k2A

pk = T (Q(A)).

This completes the proof, because by (a) a pooling operator F : Pn ! P,
(P1; :::; Pn) 7! PP1;:::;Pn can be de�ned by letting

PP1;:::;Pn(A) :=
X
k:!k2A

p
L(P1;:::;Pn)
k for all A 2 �,

which by (b) satis�es

PP1;:::;Pn(A) = T (L(P1; :::; Pn)(A)) for all A 2 X,

implying that F is neutral (as L is neutral), zero-preserving (as L is zero-
preserving and T (0) = 0), and non-linear (as L is linear and T a non-linear
transformation).

Let Q 2 Pn. For any k 2 f1; 2; 3; 4g, put qk := Q(f!kg); and for any
k; l 2 f1; 2; 3; 4g; k < l; put qkl = Q(f!k; !lg).
In order for numbers p1; :::; p4 to satisfy (b), they must satisfy the system

pk + pl = T (qkl) for all k; l 2 f1; 2; 3; 4g with k < l.
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Given p1+ p2+ p3+ p4 = 1, three of these six equalities are redundant. Indeed,
suppose that k; l 2 f1; 2; 3; 4g, k < l, and de�ne k0; l0 2 f1; 2; 3; 4g, k0 < l0, by
fk0; l0g = f1; 2; 3; 4gnfk; lg. By pk+pl = 1�pk0�pl0 and T (qkl) = T (1� qk0l0) =
1� T (qk0l0), the equality pk + pl = T (qkl) is equivalent to pk0 + pl0 = T (qk

0l0). So
(b) reduces (given p1 + p2 + p3 + p4 = 1) to the system

p1 + p2 = T (q12), p1 + p3 = T (q13), p2 + p3 = T (q23).

We now solve this system of three linear equations in (p1; p2; p3) 2 R3. Write
tkl := T (qkl) for all k:l 2 f1; 2; 3; 4g, k < l.0@ 1 1 t12
1 1 t13
1 1 t23

1A!

0@ 1 1 t12
�1 1 t13 � t12

2 t23 + t13 � t12

1A!

0@ 1 1 t12
1 -1 t12 � t13
1 t23+t13�t12

2

1A .
So we have

p3 =
t23 + t13 � t12

2
,

p2 = t12 � t13 +
t23 + t13 � t12

2
=
t12 + t23 � t13

2
,

p1 = t12 �
t12 + t23 � t13

2
=
t12 + t13 � t23

2
,

p4 = 1� (p1 + p2 + p3) = 1�
t12 + t13 + t23

2
.

We have to show that the numbers p1; :::; p4 so-de�ned satisfy not only (b) and
p1+ :::+p4 = 1 but also the remaining condition in (a), i.e. non-negativity. We
do this by proving two claims.

Claim 1. p4 � 0, i.e. t12+t13+t232
� 1.

We have to prove that T (q12) + T (q13) + T (q23) � 2. Note that

q12 + q13 + q23 = q
1 + q2 + q1 + q3 + q2 + q3 = 2(q1 + q2 + q3) � 2.

We distinguish three cases.

Case 1 : all of q12; q13; q23 are all � 1=2. Then by (i)-(iii) T (q12) + T (q13) +
T (q23) � q12 + q13 + q23 � 2, as desired.
Case 2 : at least two of q12; q13; q23 are < 1=2. Then, again using (i)-(iii),

T (q12) + T (q13) + T (q23) < 1=2 + 1=2 + 1 = 2, as desired.

Case 3 : exactly one of q12; q13; q23 is < 1=2. Suppose q12 < 1=2 � q13 �
q23 (otherwise just switch the roles of q12; q13; q23). For all � � 0 such that
q13 � �; q23 + � 2 [1=2; 1], the convexity of T on [1=2; 1] implies that

T (q13) � 1

2
[T (q13 � �) + T (q23 + �)]

and T (q23) � 1

2
[T (q13 � �) + T (q23 + �)] ,
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so that (by adding these two inequalities)

T (q13) + T (q23) � T (q13 � �) + T (q23 + �).

This inequality may be applied to � = 1� q23, since

q13 � (1� q23) = (q13 + q23 + q12)� q12 � 1 � 2� q12 � 1 = 1� q12 2 [1=2; 1];

which gives us

T (q13) + T (q23) � T (q13 � (1 + q23)) + T (1):

On the right hand side of this inequality, we have T (1) = 1 and, by q13 � (1 +
q23) � 1�q12 and T�s increasingness, T (q13�(1+q23)) � T (1�q12) = 1�T (q12).
So we obtain T (q13)+T (q23) � 1+1�T (q12), i.e. T (q12)+T (q13)+T (q23) � 2,
as desired.

Claim 2. pk � 0 for all k = 1; 2; 3.
We only show that p1 � 0, as the proofs for p2 and p3 are analogous. We

have to prove that t13 + t23 � t12 � 0, i.e. that T (q13) + T (q23) � T (q12), or
equivalently that T (q1 + q3) + T (q2 + q3) � T (q1 + q2). As T is an increasing
function, it su¢ ces to establish T (q1) + T (q2) � T (q1+ q2). Again, we consider
three cases.

Case 1 : q1 + q2 � 1=2. Suppose q1 � q2 (otherwise the roles of q1 and q2

get swapped). For all � � 0 such that q1 � �; q2 + � 2 [0; 1=2], the concavity of
T on [0; 1=2] implies that

T (q1) � 1

2

�
T (q1 � �) + T (q2 + �)

�
and T (q2) � 1

2

�
T (q1 � �) + T (q2 + �)

�
,

so that (by adding these inequalities)

T (q1) + T (q2) � T (q1 � �) + T (q2 + �)

Applying this to � = q1 yields T (q1) + T (q2) � T (0) + T (q2 + q1) = T (q1 + q2),
as desired.

Case 2 : q1 + q2 > 1=2 but q1; q2 � 1=2. By (i)-(iii),

T (q1) + T (q2) � q1 + q2 � T (q1 + q2),

as desired.

Case 3 : q1 > 1=2 or q2 > 1=2. Suppose q2 > 1=2 (otherwise swap q1

and q2 in the proof). Then q1 < 1=2, as otherwise q1 + q2 > 1. De�ne y :=
1 � q1 � q2. As also y < 1=2, an argument analogous to that in case 1 yields
T (q1) + T (y) � T (q1 + y), i.e. T (q1) + T (1� q1 � q2) � T (1� q2). So, by (i),
T (q1) + 1� T (q1 + q2) � 1� T (q2), i.e. T (q1) + T (q2) � T (q1 + q2). �
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One might wonder why the pooling operator constructed in the proof of The-
orem 6 violates implication-preservation �which it must do since Theorem 3 tells
us that implication-preserving independent pooling operators must be linear (for
non-simple, hence in particular for pathconnected agendas). Let 
;�; X be as
in the proof, and consider a pro�le with complete unanimity: all individuals i
give !1 probability 0, each of !2; !3 probability 1/4, and hence !4 probability
1/2. As f!1g is the di¤erence of two events in X (e.g. f!1; !2gnf!2; !3g),
implication-preservation would require the collective probability of !1 to be 0
too. But the collective probability of !1 is (in the notation of the proof) given
by

p1 =
t12 + t13 � t23

2
=
T (q12) + T (q13)� T (q23)

2
,

where qkl is the collective probability of f!k; !lg under a linear pooling operator,
so that qkl equals the unanimous individual probability of f!k; !lg. So

p1 =
T (1=4) + T (1=4)� T (1=2)

2
= T (1=4)� T (1=2)

2
,

which is strictly positive as T is strictly concave on [0; 1=2] with T (0) = 0.
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