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Part two: the premise-based approach
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Abstract How can several individuals’ probability functions on a given σ -algebra
of events be aggregated into a collective probability function? Classic approaches
to this problem usually require ‘event-wise independence’: the collective probability
for each event should depend only on the individuals’ probabilities for that event. In
practice, however, some events may be ‘basic’ and others ‘derivative’, so that it makes
sense first to aggregate the probabilities for the former and then to let these constrain
the probabilities for the latter. We formalize this idea by introducing a ‘premise-
based’ approach to probabilistic opinion pooling, and show that, under a variety of
assumptions, it leads to linear or neutral opinion pooling on the ‘premises’.

1 Introduction

Suppose each individual member of some group (expert panel, court, jury etc.) assigns
probabilities to some events. How can these individual probability assignments be
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aggregated into a collective probability assignment? Classically, this problem has
been modelled as the aggregation of probability functions, which are defined on
some σ -algebra of events, a set of events that is closed under negation and count-
able disjunction (and thereby also under countable conjunction). Each individual
submits a probability function on the given σ -algebra, and these probability func-
tions are then aggregated into a single collective probability function. One of the
best-known solutions to this aggregation problem is linear pooling, where the collec-
tive probability function is a linear average of the individual probability functions.
Linear pooling has several salient properties. First, if all individuals unanimously
assign probability 1 (or probability 0) to some event, this probability assignment is
preserved collectively (‘consensus preservation’). Second, the collective probability
for each event depends only on individual probabilities for that event (‘event-wise
independence’). Third, all events are treated equally: the pattern of dependence
between individual and collective probability assignments is the same for all events
(‘neutrality’).

In many practical applications, however, not all events are equal. In particular, the
events in a σ -algebra may fall into two categories (whose boundaries may be drawn in
different ways). On the one hand, there are events that correspond to intuitively basic
propositions, such as ‘it will rain’, ‘it will be humid’, or ‘atmospheric CO2 causes
global warming’. On the other hand, there are events that are intuitively non-basic.
These can be viewed as combinations of basic events, for instance via disjunction
(union) of basic events, conjunction (intersection), or negation (complementation). It
is not obvious that when we aggregate probabilities, basic and non-basic events should
be treated alike.

For a start, we may conceptualize basic and non-basic events differently, in anal-
ogy to the distinction between atomic and composite propositions in logic (the latter
being logical combinations of the former). Second, the way we assign probabilities
to non-basic events is likely to differ from the way we assign probabilities to basic
events. When we assign a probability to a conjunction or disjunction, this typically
presupposes the assignment of probabilities to the underlying conjuncts or disjuncts.
For example, the obvious way to assign a probability to the event ‘rain or heat’ is
to ask what the probability of rain is, what the probability of heat is, and whether
the two are correlated.1 If this is right, the natural method of making probabilistic
judgments is to consider basic events first and to consider non-basic events next. Basic
events serve as ‘premises’: we first assign probabilities to them, and then let these
probability assignments constrain our probability assignments for other, non-basic
events.

In this paper, we propose an approach to probability aggregation that captures this
idea: the premise-based approach. Under this approach, the group first assigns collec-
tive probabilities to all basic events (the ‘premises’) by aggregating the individiduals’
probabilities for them; and then it assigns probabilities to all other events, constrained
by the probabilities of the basic events. If the basic events are ‘rain’ and ‘heat’, then, in
a first step, the collective probabilities for these two events are determined by aggregat-

1 The correlation might be due to causal effects between, or common causes of, rain and heat.
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ing the individual probabilities for them. In a second step, the collective probabilities
for all other events are assigned. For example, the collective probability of ‘rain and
heat’ might be defined as a suitable function of the collective probability of ‘rain’,
the collective probability of ‘heat’, and an estimated rain/heat-correlation coefficient,
which could be the result of aggregating the rain/heat-correlation coefficients encoded
in the individual probability functions.

This proposal can be expressed more precisely by a single axiom, which does not
require the (inessential) sequential implementation just sketched, but focuses on a
core informational restriction: the collective probability of any ‘premise’ (basic event)
should depend solely on the individual probabilities for this premise, not on indi-
vidual probabilities for other events. We call this axiom independence on premises.
Our axiomatic analysis of premise-based aggregation is inspired by binary judgment-
aggregation theory, where the premise-based approach has also been characterized by
a restricted independence axiom, for instance by Dietrich (2006), Mongin (2008), and
Dietrich and Mongin (2010). For less formal discussions of premise-based aggrega-
tion, see Kornhauser and Sager (1986), Pettit (2001), List and Pettit (2002), and List
(2006).

The way in which we have just motivated the premise-based approach and the
corresponding axiom is bound to prompt some questions. In particular, although the
distinction between ‘basic’ and ‘non-basic’ events is arguably not ad hoc, there is
no purely formal criterion for drawing that distinction.2 However, there is another,
less controversial motivation for the premise-based approach. Our central axiom—
independence on premises—privileges particular events, called the ‘premises’. We
have so far interpreted these in a very specific way, taking them to correspond to
basic events and to constitute the premises in an individual’s probability-assignment
process. But we can give up this interpretation and define a ‘premise’ simply as an
event for which it is desirable that the collective probability depend solely on the
event-specific individual probabilities. If ‘premises’ are defined like this, then our

2 One could construct basic events from non-basic events, using the operations of negation and disjunction.
Formally, while the basic events typically form a generating system of the σ -algebra, there exist many
alternative generating systems, and usually none of them is canonical in a technical sense. The task of
determining the ‘basic’ events therefore involves some interpretation and may be context-dependent and
open to disagreement. One might, however, employ a syntactic criterion which counts an event as ‘basic’ if,
in a suitable language (perhaps one deemed ‘natural’), it can be expressed by an atomic sentence (one that
is not a combination of other sentences using Boolean connectives). An event expressible by the sentence
‘it will rain or it will snow’ would then count as non-basic. This syntactic criterion relies on our choice of
language, which, though not a purely technical matter, is arguably not ad hoc. An n-place connective (e.g.,
the two-place connective ‘or’) is called Boolean or truth-functional if the truth-value of every sentence
constructed by applying this connective to n other sentences is determined by the truth values of the latter
sentences. For instance, ‘or’ is Boolean since ‘p or q’ is true if and only if ‘p’ is true or ‘q’ is true. Many
languages, especially ones that mimic natural language, contain non-Boolean connectives, for instance non-
material conditionals for which the truth-value of ‘if p then q’ is not always determined by the truth-values
of p and q. When the sentence ‘if p then q’ is not truth-functionally decomposable, an event represented by
it would count as ‘basic’ under the present syntactic criterion. The sentence ‘CO2 emissions cause global
warming’ can be viewed as the non-material (specifically, causal) conditional ‘if p then q’, hence would
describe a basic event. See Priest (2001) for an introduction to non-classical logic.
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axiom—independence on premises—is justified by definition (though of course we
can no longer offer any guidance as to which events should count as premises).3

We show that premise-based opinion pooling imposes significant restrictions on
how the collective probabilities of the premises can be determined. At the same time,
these restrictions are not undesirable; they do not lead to ‘undemocratic’ or ‘degener-
ate’ forms of opinion pooling. Specifically, given certain logical connections between
the premises, independence on premises, together with a unanimity-preservation
requirement, implies that the collective probability for each premise is a (possibly
weighted) linear average of the individual probabilities for that premise, where the
vector of weights across different individuals is the same for each premise. We present
several variants of this result, which differ in the nature of the unanimity-preservation
requirement and in the kinds of connections that are assumed to hold between premises.
In some variants, we do not obtain the ‘linearity’ conclusion, but only a weaker ‘neu-
trality’ conclusion: the collective probability for each premise must be a (possibly
non-linear) function of the individual probabilities for that premise,where this function
is the same for each premise. These results are structurally similar to, but interpretively
different from those in our companion paper (Dietrich and List 2017), to which we
shall refer as ‘Part I’. Furthermore, our results stand in contrast with existing results
on the premise-based approach in binary judgment aggregation. When judgments are
binary, independence on premises leads to dictatorial aggregation under analogous
conditions (see especially Dietrich and Mongin 2010).

Our results apply regardless of which events are deemed to serve as premises. In the
extremecase inwhichall events count as premises, the requirement of independence on
premises reduces to the familiar event-wise independence axiom (sometimes called the
strong setwise function property), and our results reduce to a classic characterization
of linear pooling (see Aczél and Wagner 1980; McConway 1981; see also Wagner
1982, 1985; Aczél et al. 1984; Genest 1984a; Mongin 1995; Chambers 2007).4

2 The framework

We consider a group of n ≥ 2 individuals, labelled i = 1, . . . , n, who have to assign
collective probabilities to some events.

The agenda: a σ -algebra of eventsWe consider a non-empty set� of possibleworlds
(or states). An event is a subset A of �; its complement (‘negation’) is denoted

3 The terminology ‘premise’ is still justified, though not in the sense of ‘premise of individual probability
assignment’ (since we no longer assume that premises are basic in the individuals’ formation of proba-
bilistic beliefs), but in the sense of ‘premise of collective probability assignment’ (because the collective
probabilities for these events are determined independently of the probabilities of other events and then
constrain other collective probabilities).
4 Historically, linear pooling goes back at least to Stone (1961). Linear pooling is by no means the only
plausibleway to aggregate subjective probabilities.Other approaches include geometric and,more generally,
externally Bayesian pooling (e.g., McConway 1978; Genest 1984b; Genest et al. 1986; Russell et al. 2015;
Dietrich 2016),multiplicative pooling (Dietrich 2010;Dietrich andList 2016), supra-Bayesian pooling (e.g.,
Morris 1974), and pooling of ordinal probabilities (Weymark 1997). For literature reviews, see Genest and
Zidek (1986), Clemen and Winkler (1999) and Dietrich and List (2016).
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Ac := �\A. The set of events to which probabilities are assigned is called the agenda.
We assume that it is a σ -algebra,� ⊆ 2�, i.e., a set of events that is closed under com-
plementation and countable union (and by implication also countable intersection).
The simplest non-trivial example of a σ -algebra is of the form � = {A, Ac,�, ∅},
where ∅ � A � �. Another example is the set 2� of all events; this is a com-
monly studied σ -algebra when � is finite or countably infinite. A third example is the
σ -algebra of Borel-measurable sets when � = R.

An example Let us give an example similar to the lead example in Part I, except that
we now take the agenda to be a σ -algebra. Let the set � of possible worlds be the set
of vectors {0, 1}3\{(1, 1, 0)} with the following interpretation. The first component of
each vector indicates whether atmospheric CO2 is above some threshold (1 = ‘yes’ and
0 = ‘no’), the second component indicates whether there is a mechanism to the effect
that if atmospheric CO2 is above that threshold, then Arctic summers are ice-free,
and the third component indicates whether Arctic summers are ice-free. The triple
(1, 1, 0) is excluded from � because it would represent an inconsistent combination
of characteristics. Now the agenda is � = 2�.

The opinions: probability functions Opinions are represented by probability functions
on �. Formally, a probability function on � is a function P : � → [0, 1] such that
P(�) = 1 and P is σ -additive (i.e., P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + · · · for
every sequence of pairwise disjoint events A1, A2, . . . ∈ �). We write P� to denote
the set of all probability functions on �.

Opinion pooling Given the agenda �, a combination of probability functions across
the individuals, (P1, . . . , Pn), is called a profile (of probability functions). An (opin-
ion) pooling function is a function F : Pn

� → P� , which assigns to each profile
(P1, . . . , Pn) a collective probability function P = F(P1, . . . , Pn), also denoted
PP1,...,Pn . An example of PP1,...,Pn is the arithmetic average 1

n P1 + · · · + 1
n Pn .

Some logical terminology We conclude this section with some further terminology.
Events distinct from ∅ and � are called contingent. A set S of events is consistent if
its intersection ∩A∈S A is non-empty, and inconsistent otherwise; S entails an event B
if the intersection of S is included in B (i.e., ∩A∈S A ⊆ B).

3 Axiomatic requirements on premise-based opinion pooling

Wenow introduce the axioms thatwe require a premise-based opinion pooling function
to satisfy.

3.1 Independence on premises

Before we introduce our new axiom of independence on premises, let us recall the
familiar requirement of (event-wise) independence. It requires that the collective
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probability for any event depend only on the individual probabilities for that event,
independently of the probabilities of other events.

Independence For each event A ∈ �, there exists a function DA : [0, 1]n → [0, 1]
(the local pooling criterion for A) such that, for all P1, . . . , Pn ∈ P� ,

PP1,...,Pn (A) = DA(P1(A), . . . , Pn(A)).

This requirement can be criticized—in the classical framework where the agenda
is a σ -algebra—for being normatively unattractive. Typically only some of the events
in the σ -algebra � correspond to intuitively basic propositions such as ‘the economy
will grow’ or ‘atmospheric CO2 causes global warming’. Other events in � are com-
binations of basic events, such as ‘the economy will grow or atmospheric CO2 causes
global warming’. The non-basic events can get enormously complicated: they can be
conjunctions of (finitely or countably infinitely many) basic events, or disjunctions, or
disjunctions of conjunctions, and so on. It seems natural to privilege the basic events
over the other, more ‘artificial’ events by replacing the independence requirement with
a restricted independence requirement that quantifies only over basic events. Indeed,
it seems implausible to apply independence to composite events such as ‘the economy
will grow or atmospheric CO2 causes global warming’, since this would prevent us
from using the probabilities of each of the constituent events in determining the overall
probability.

By restricting the independence requirement to basic events, we treat these as
premises in the collective probability-assignment process, first aggregating individual
probabilities for basic events and then letting the resulting collective probabilities con-
strain the collective probabilities of all other events. (The probabilities of the premises
constrain those other probabilities because the probability assignments in their entirety
must be probabilistically coherent.)

Formally, consider a sub-agenda of�, denoted X , which we interpret as containing
the basic events, called the premises. By a sub-agenda we mean a subset of � which
is non-empty and closed under complementation (i.e., it forms an ‘agenda’ in the
generalized sense discussed in Part I). We introduce the following axiom:

Independence on X (‘on premises’). For each A ∈ X , there exists a function DA :
[0, 1]n → [0, 1] (the local pooling criterion for A) such that, for all P1, . . . , Pn ∈ P� ,

PP1,...,Pn (A) = DA(P1(A), . . . , Pn(A)).

In the climate-change example of Sect. 2, the sub-agenda of premises might be
defined as X = {A1, Ac

1, A2, Ac
2, A3, Ac

3}, where A1 is the event that atmospheric
CO2 is above the critical threshold, A2 is the event that there is a mechanisms by
which CO2 concentrations above the threshold cause ice-free Arctic summers, and A3
is the event of ice-free Arctic summers. Conjunctions such as A1∩ A2 are not included
in the set X of premises here. As a result, independence on X allows the collective
probability for any such conjunction to depend not only on the experts’ probabilities

123



Probabilistic opinion pooling generalized. Part two. . .

for that conjunction, but also, for instance, on their probabilities for the underlying
conjuncts (together with auxiliary assumptions about correlations between them).5

We have explained why event-wise independence should not be required for non-
basic events. But why should we require it for basic events (premises)? We offer three
reasons:

• First, if we accept the idea that an individual’s probabilistic belief about a given
premise is not influenced by, but might influence, his or her beliefs about other
events, thenwemay regard those other beliefs as either by-products of, or unrelated
to, the individual’s belief about the premise in question. It then seems reasonable to
treat those other beliefs as irrelevant to the question of what collective probability
to assign to that premise. (More precisely, any beliefs about other events provide
no relevant additional information once the individual’s belief about the premise
is given.)

• Second, the premise-based approach can be motivated by appealing to the idea of
a ‘rational collective agent’ that forms its probabilistic beliefs by reasoning from
premises to conclusions. This kind of collective reasoning can be implemented
by first aggregating the probabilities for the premises and then letting these con-
strain the probabilities assigned to other events. In the case of binary judgment
aggregation, Pettit (2001) has described this process as the ‘collectivization of
reason’.

• Third, as mentioned in the introduction, one might simply define the premises as
the events for which it is desirable that the collective probabilities depend solely
on the event-specific individual probabilities. This would render the requirement
of independence on premises justified by definition.

3.2 Consensus preservation on premises

Informally, our second axiomatic requirement says that whenever there is unanimous
agreement among the individuals about the probability of certain events, this agreement
should be preserved collectively. We distinguish between different versions of this
requirement. The most familiar one is the following:

Consensus preservation For all A ∈ � and all P1, . . . , Pn ∈ P� , if, for all i , Pi (A) =
1, then PP1,...,Pn (A) = 1.6

A second, less demanding version of the requirement is restricted to events in the
sub-agenda X of premises.

Consensus preservation on X (‘on premises’)For all A ∈ X and all P1, . . . , Pn ∈ P� ,
if, for all i , Pi (A) = 1, then PP1,...,Pn (A) = 1.

5 These auxiliary assumptions might be given exogenously; or they might be determined endogenously
based on the experts’ probability functions (e.g., based on how dependent or independent the conjuncts are
according to these probability functions).
6 Equivalently, one can demand the preservation of any unanimously assigned probability 0.
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Restricting consensus preservation in this way may be plausible because a con-
sensus on any event outside X may be considered less compelling than a consensus
on a premise in X , for reasons similar to those for which we restricted event-wise
independence to premises. A consensus on a non-basic event could be ‘spurious’ in
the sense that there might not be any agreement on its basis (see Mongin 2005).7

We also consider a third version of consensus preservation, which is still restricted
to premises, but refers to conditional probabilities. It says that if all individuals assign
a conditional probability of 1 to some premise given another, then this should be
preserved collectively.8

Conditional consensus preservation on X (‘on premises’) For all A, B ∈ X and
all P1, . . . , Pn ∈ P� , if, for all i , Pi (A|B) = 1 (provided Pi (B) �= 0), then
PP1,...,Pn (A|B) = 1 (provided PP1,...,Pn (B) �= 0).

Conditional consensus preservation on X is equivalent to another requirement. This
says that if all individuals agree that some premise implies another with probabilistic
certainty (i.e., the probability of the first event occurring without the second is zero),
then that agreement should be preserved collectively.

Implication preservation on X (‘on premises’) For all events A, B ∈ X and all
P1, . . . , Pn ∈ P� , if, for all i , Pi (A\B) = 0, then PP1,...,Pn (A\B) = 0.

The equivalence between conditional consensus preservation on X and implica-
tion preservation on X follows from the fact that the clause ‘Pi (A|B) = 1 (provided
Pi (B) �= 0)’ is equivalent to ‘Pi (B\A) = 0’, and the clause ‘PP1,...,Pn (A|B) = 1
(provided PP1,...,Pn (B) �= 0)’ is equivalent to ‘PP1,...,Pn (B\A) = 0’. Thus the state-
ment of conditional consensus preservation on X can be reduced to that of implication
preservation on X (except that the roles of A and B are swapped).

This equivalence also illuminates the relationship between conditional consensus
preservation on X and consensus preservation on X , because the former, re-formulated
as implication preservation on X , clearly implies the latter. Simply note that, in the
statement of implication preservation on X , taking B = Ac yields P(A\B) = P(A),
so that a unanimous zero probability of any event A in X must be preserved, which is
equivalent to consensus preservation on X .

In fact, conditional consensus preservation on X , when re-formulated as implication
preservation on X , is also easily seen to be equivalent to a further unanimity-
preservation requirement, which refers to unanimous assignments of probability 1
to a union of two events in X (just note that A\B has probability 0 if and only if
Ac ∪ B has probability 1). This also shows that conditional consensus preservation on
X is logically weaker than consensus preservation in its original form (on all of �),
since it does not require preservation of unanimous assignments of probability 1 to

7 In Part I, wemake the oppositemove of extending consensus preservation to events outside the agenda, i.e.,
we extend it to events constructible from events in the agenda using conjunction (intersection), disjunction
(union), or negation (complementation). In the present paper, there is no point in extending consensus
preservation to other events, since there are no events outside the agenda constructible from events in it (as
a σ -algebra, the agenda is closed under the relevant operations).
8 We are indebted to Richard Bradley for suggesting this formulation of the requirement.
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intersections of two events in X , or unions or intersections of more than two events in
X .

The following proposition summarizes the logical relationships between the dif-
ferent consensus-preservation requirements (in part (a)) and adds another simple but
useful observation (in part (b)).

Proposition 1 (a) For any sub-agenda X of �, conditional consensus preservation
on X
• implies consensus preservation on X;
• is implied by (global) consensus preservation;
• is equivalent to implication preservation on X, and to each of the following
two requirements:

[∀i Pi (A ∪ B) = 1] ⇒ PP1,...,Pn (A ∪ B) = 1, for all A, B ∈ X, P1, . . . , Pn ∈ P�;
[∀i Pi (A ∩ B) = 0] ⇒ PP1,...,Pn (A ∩ B) = 0, for all A, B ∈ X, P1, . . . , Pn ∈ P�.

(b) For the maximal sub-agenda X = �, all of these requirements are equivalent.

4 A class of applications

So far, all our examples of opinion pooling problems have involved events represented
by propositions in natural language, such as ‘it will rain’. As argued in Part I, the
assumption that the agenda is a σ -algebra is often unnatural in such cases. But there
is a second class of applications, in which it is more natural to define the agenda as
a σ -algebra (�) and to restrict the independence requirement to some sub-agenda
X . Suppose we wish to estimate the distribution of a real-valued or vector-valued
variable, such as rainfall or the number of insurance claims in some period. Here,
the set of worlds � could be R, Z, N, or {0, 1, . . . ,m}, or it could be R

k , Z
k , N

k ,
or {0, 1, . . . ,m}k (for natural numbers m and k). In such cases, the focus on the σ -
algebra of events is more realistic. First, we may need a full probability distribution
on that σ -algebra. Second, individuals may be able to come up with such a probability
distribution, because, in practice, they can do the following:

• first choose some parametric class of probability functions (e.g., the class of
Gaussian distributions if � = R, Poisson distributions if � = N, or binomial
distributions if � = {0, 1, . . . ,m});

• then estimate the relevant parameter(s) of the distribution (e.g., the mean and
standard deviation in the case of a Gaussian distribution).

Because the agenda in this kind of application (e.g., the σ -algebra of Borel sets over
R, or the power set of N) contains very complicated events, it would be implausible to
require event-wise independent aggregation for all such events. For instance, suppose
� = R, and consider the event that a number’s distance to the nearest prime exceeds
37. It would seemartificial to determine the collective probability for that eventwithout
paying attention to the probabilities of other events. Here, the sub-agenda X on which
event-wise independence is plausible is likely to be much smaller than the full σ -
algebra �.
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Let us give a concrete example. Let � consist of the Borel-measurable subsets of
� = R. A natural sub-agenda of � is X = ∪ω∈R{(−∞, ω], (ω,∞)}. If we require
independence on X with a uniform decision criterion D = DA (A ∈ X ), where
D(t1, . . . , tn) = 1

n t1 +· · ·+ 1
n tn , we obtain a unique pooling function F : Pn

� → P� ,
because the collective probabilities for X uniquely extend to a probability function on
the entire σ -algebra �. Alternatively, one might require independence on the smaller
sub-agenda X = ∪ω∈{−1,+1}{(−∞, ω], (ω,∞)}, still with the same uniform decision
criterion D. This under-determines the pooling function F : Pn

� → P� , because
probability assignments for X do not uniquely extend to all of �. To fill this gap,
one might define the collective probability function as the unique normal distribution
which assigns the specified probabilities to (−∞,−1] and (−∞,+1], as determined
by the decision criterion D.9

Let us summarize how the present kinds of applications differ from the above-
mentioned applications involving events represented by natural-language propositions
such as ‘it will rain’ or ‘atmospheric CO2 causes global warming’:

1. � is a subset of R or of a higher-dimensional Euclidean space R
k , rather than a

set of ‘possible worlds’ specified by natural-language descriptions;
2. it is often natural to arrive at a probability function by choosing a parametric family

of such functions (such as the family ofGaussian distributions) and then specifying
the relevant parameter(s), while this approach would seem ad hoc in the other kind
of application;

3. in practice, we may be interested in a probability function on the entire σ -algebra
(e.g., in order to compute the mean of the distribution and other moments), rather
than just in the probabilities of specific events.

5 When is opinion pooling neutral on premises?

We now show that, if there are certain kinds of interconnections among the premises
in X , any pooling function satisfying independence on X and consensus preservation
in one of the senses introduced must be neutral on X . This means that the pattern of
dependence between individual and collective probability assignments is the same for
all premises. In the next section, we turn to the question of whether our axioms imply
linear pooling on premises, over and above neutrality.

Formally, a pooling function for agenda � is neutral on X (⊆ �) if there exists
some function D : [0, 1]n → [0, 1]—the local pooling criterion for events in X—
such that, for every profile (P1, . . . , Pn) ∈ Pn

� , the collective probability of any event
A in X is given by

PP1,...,Pn (A) = D(P1(A), . . . , Pn(A)).

If X = �, neutrality on X reduces to neutrality in the familiar global sense, briefly
mentioned in the introduction.

9 For those special profiles of individual probability functions for which the collective probabilities for
(−∞, −1] and (−∞, +1] coincide or one of them is zero or one, there is no such normal distribution. A
different, non-normal extension must then be used.
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Our first result uses the strongest consensus-preservation requirement we have
introduced, namely ‘global’ consensus preservation (on all of �). Here, we obtain
the neutrality conclusion as soon as the sub-agenda of premises satisfies a very mild
condition: it is ‘non-nested’. We call a sub-agenda X nested if it has the form X =
{A, Ac : A ∈ X+} for some set of events X+ which is linearly ordered by set-inclusion,
and non-nested otherwise. For instance, X = {A, Ac} is nested (take X+ := {A}),
as is X = {A, Ac, A ∩ B, (A ∩ B)c} (take X+ = {A, A ∩ B}). By contrast, X =
{A, Ac, B, Bc} is non-nested when the events A and B are logically independent.
Also, the above-mentioned sub-agenda X = {A1, Ac

1, A2, Ac
2, A3, Ac

3} in our climate-
change example is non-nested. Further examples are given in Part I.

Theorem 1 (a) For any non-nested (finite)10 sub-agenda X of the σ -algebra �,
every pooling function F : Pn

� → P� satisfying independence on X and (global)
consensus preservation is neutral on X.

(b) For any nested sub-agenda X of the σ -algebra � (where X is finite and distinct
from {∅,�}), there exists a pooling function F : Pn

� → P� satisfying inde-
pendence on X and (global) consensus preservation but violating neutrality on
X.

The possibilities arising for nested X are illustrated by variants of the two
pooling functions constructed in Sect. 4, where � is the Borel σ -algebra on
� = R and X is one of the nested sub-agendas ∪ω∈R{(−∞, ω], (ω,∞)} and
∪ω∈{−1,+1}{(−∞, ω], (ω,∞)}. To obtain pooling functions that are not neutral on
X , as described in part (b), we must avoid the use of a uniform decision criterion on all
elements of X .11 Theorem 1 continues to hold if we weaken consensus preservation
to conditional consensus preservation on premises, as shown next:

Theorem 2 (a) For any non-nested (finite) sub-agenda X of the σ-algebra �, every
pooling function F : Pn

� → P� satisfying independence on X and conditional
consensus preservation on X is neutral on X.

(b) For any nested sub-agenda Xof theσ -algebra� (where X is finite and not {∅,�}),
there exists a pooling function F : Pn

� → P� satisfying independence on X and
conditional consensus preservation on X but violating neutrality on X.

However, if we weaken the consensus-preservation requirement further—namely
to consensus preservation on X—then the neutrality conclusion follows only if the
events within the sub-agenda X exhibit stronger interconnections. Specifically, the set
X must be ‘path-connected’, as originally defined in binary judgment-aggregation
theory (often under the name ‘total blockedness’; see Nehring and Puppe 2010).
To define path-connectedness formally, we begin with a preliminary notion. Given

10 The finiteness assumption in Theorems 1(a), 1(b), 2(a), 2(b), 3(a), 4(a), 4(b), 5(a), and 6(a) could
be replaced by the assumption that the σ -algebra generated by X is � (rather than a sub-σ -algebra of �).
It might be that some of these finiteness assumptions (or their substitutes)—especially in Theorems 1(b),
2(b), and 4(b)—could be dropped.
11 For example, for every event of the form A = (−∞, ω], we might use the decision criterion defined
by DA(t1, . . . , tn) = ( 1n t1 + · · · + 1

n tn)2, and for every event of the form A = (ω, ∞), we might use the

decision criterion defined by DA(t1, . . . , tn) = 1 − ( 1n (1 − t1) + · · · + 1
n (1 − tn))2.

123



F. Dietrich, C. List

the sub-agenda X , we say that an event A ∈ X conditionally entails another event
B ∈ X—written A �∗ B—if there is a subset Y ⊆ X (possibly empty, but not
uncountably infinite) such that {A} ∪ Y entails B, where, for non-triviality, Y ∪ {A}
and Y ∪ {Bc} are each consistent. In our climate-change example with sub-agenda
X = {A1, Ac

1, A2, Ac
2, A3, Ac

3}, A1 conditionally entails A3 (take Y = {A2}), but
none of Ac

1, A
c
2, and A3 conditionally entails any event in X other than itself.

We call the sub-agenda X path-connected if any two events A, B ∈ X\{∅,�} can
be connected by a path of conditional entailments, i.e., there exist events A1, . . . , Ak ∈
X (k ≥ 1) such that A = A1 �∗ A2 �∗ · · · �∗ Ak = B, and non-path-connected
otherwise. For example, suppose X = {A, Ac, B, Bc,C,Cc}, where {A, B,C} is a
partition of � (and A, B,C �= ∅). Then X is path-connected. For instance, to see
that there is a path from A to B, note that A �∗ Cc (take Y = ∅) and Cc �∗ B
(take Y = {Ac}). Many sub-agendas are not path-connected, including all nested sub-
agendas X ( �= {∅,�}) and the sub-agenda X = {A1, Ac

1, A2, Ac
2, A3, Ac

3} in the
climate-change example.

Theorem 3 (a) For any path-connected (finite) sub-agenda X of the σ -algebra
�, every pooling function F : Pn

� → P� satisfying independence on X and
consensus preservation on X is neutral on X.

(b) For any non-path-connected (finite) sub-agenda X of the σ -algebra �, there
exists a pooling function F : Pn

� → P� satisfying independence on X and
consensus preservation on X but violating neutrality on X.

6 When is opinion pooling linear on premises?

Our next question is whether, and for which sub-agendas X , our requirements on
an opinion pooling function imply linearity on premises, over and above neutrality.
Formally, a pooling function for agenda � is called linear on X (⊆ �) if there exist
real-valued weights w1, . . . , wn ≥ 0 with w1 + · · · + wn = 1 such that, for every
profile (P1, . . . , Pn) ∈ Pn

� , the collective probability of any event A in X is given by

PP1,...,Pn (A) =
n∑

i=1

wi Pi (A).

If X = �, linearity on X reduces to linearity in the global sense, familiar from the
established literature.

As in the case of neutrality, whether our axioms imply linearity on a given
sub-agenda X depends on how the events in X are connected and which consensus-
preservation requirement we impose on the pooling function. Again, our first result
uses the strongest consensus-preservation requirement and applies to a very large class
of sub-agendas.

Theorem 4 (a) For any non-nested (finite) sub-agenda X of the σ -algebra � with
|X\{�, ∅}| > 4, every pooling function F : Pn

� → P� satisfying independence
on X and (global) consensus preservation is linear on X.
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(b) For any other sub-agenda X of the σ -algebra� (where X is finite and distinct from
{∅,�}), there exists a pooling function F : Pn

� → P� satisfying independence
on X and (global) consensus preservation but violating linearity on X.

If we weaken consensus preservation to conditional consensus preservation on X ,
the linearity conclusion still follows, but only if the sub-agenda X is ‘non-simple’—a
condition stronger than non-nestedness, but still weaker than path-connectedness.12

The notion of non-simplicity also comes from binary judgment-aggregation theory,
where the non-simple agendas are those that are susceptible to majority inconsis-
tencies, the judgment-aggregation analogues of Condorcet’s paradox (e.g., Nehring
and Puppe 2010; Dietrich and List 2007). Formally, a sub-agenda X is non-simple
if it has a minimal inconsistent subset Y ⊆ X of more than two (but not uncount-
ably many) events, and simple otherwise. (A set Y is minimal inconsistent if it is
inconsistent but all its proper subsets are consistent.) For example, the sub-agenda
X = {A1, Ac

1, A2, Ac
2, A3, Ac

3} in our climate-change example is non-simple, since
its three-element subset Y = {A1, A2, Ac

3} is minimal inconsistent. By contrast, a
sub-agenda of the form X = {A, Ac} is simple.

Theorem 5 (a) For any non-simple (finite) sub-agenda X of the σ -algebra �, every
pooling function F : Pn

� → P� satisfying independence on X and conditional
consensus preservation on X is linear on X.

(b) For any simple sub-agenda X of the σ -algebra � (where X is finite and distinct
from {∅,�}), there exists a pooling function F : Pn

� → P� satisfying indepen-
dence on X and conditional consensus preservation on X but violating linearity
on X.

Finally, if we impose only the weakest of our three consensus-preservation
requirements—consensus preservation on X—then the linearity conclusion follows
only if the sub-agenda X is path-connected and satisfies an additional condition. A suf-
ficient such condition is ‘partitionality’. A sub-agenda X is partitional if some subset
Y ⊆ X partitions� into at least three non-empty events (where Y is finite or countably
infinite), and non-partitional otherwise. As an illustration, recall our earlier example
of a sub-agenda given by X = {A, Ac, B, Bc,C,Cc}, where {A, B,C} partitions �

(with A, B,C �= ∅). This sub-agenda is both path-connected (as mentioned above)
and partitional.

Theorem 6 (a) For any path-connected and partitional (finite) sub-agenda X of the
σ -algebra �, every pooling function F : Pn

� → P� satisfying independence on
X and consensus preservation on X is linear on X.

(b) For any non-pathconnected (finite) sub-agenda X of the σ -algebra�, there exists
a pooling function F : Pn

� → P� satisfying independence on X and consensus
preservation on X but violating linearity on X.

It is clear from part (b) that path-connectedness of the premises is necessary for
the linearity conclusion to follow. The other condition, partitionality, is not necessary.
But it is not redundant:

12 To be precise, path-connectedness implies non-simplicity as long as X �= {∅, �}.
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Proposition 2 For some path-connected and non-partitional (finite) sub-agenda X of
the σ -algebra �, there exists a pooling function F : Pn

� → P� satisfying indepen-
dence on X (even neutrality on X) and consensus preservation on X but violating
linearity on X.13

7 Classic results as special cases

As should be evident, if we apply our results to the maximal sub-agenda X = �,
we obtain classic results (by Aczél and Wagner 1980; McConway 1981) as special
cases. To see why this is the case, note three things. First, when X = �, our various
conditions on the sub-agenda X all reduce to a single condition on the size of the
σ -algebra �.

Lemma 1 For the maximal sub-agenda X = � (where � �= {�, ∅}), the condi-
tions of non-nestedness, non-simplicity, path-connectedness, and partitionality are all
equivalent, and they all hold if and only if |�| > 4, i.e., if and only if � is not of the
form {A, Ac,�, ∅}.

Second, when X = �, independence, neutrality, and linearity on X reduce to
independence, neutrality, and linearity in the familiar ‘global’ sense, as already noted.
Third, our various consensus-preservation requirements all become equivalent, by
Proposition 1.

In consequence, our six theorems reduce to two classic results:14

• Theorems 1–3 reduce to the result that all pooling functions satisfying indepen-
dence and consensus preservation are neutral if |�| > 4, but not if |�| = 4;

• Theorems 4–6 reduce to the result that all pooling functions satisfying indepen-
dence and consensus preservation are linear if |�| > 4, but not if |�| = 4.

The case |�| < 4 is uninteresting because it means that � is the trivial σ -algebra
{�, ∅}. Let us slightly re-formulate these two results:

Corollary 1 For the σ -algebra �,

(a) if |�| > 4, every pooling function F : Pn
� → P� satisfying independence and

consensus preservation is linear (and by implication neutral);
(b) if |�| = 4, there exists a pooling function F : Pn

� → P� satisfying independence
and consensus preservation but violating neutrality (and thereby also violating
linearity).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

13 In this proposition, we assume that the agenda� is not very small, i.e., contains more than 23 = 8 events
(e.g., � = 2� with |�| > 3). Note that, as � is a σ -algebra, it has the size 2k for some k ∈ {1, 2, 3, . . .}
or is infinite.
14 We require no restriction to a finite �, as observed in footnote 10.
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Appendix A: Proofs

We now give all proofs. In Sect. A.1, we prove parts (a) of all our theorems by reduc-
ing them to results in Part I. In Sects. A.2, A.3, A.4, and A.5, we prove parts (b) of
Theorems 1, 3, 4, and 5. Parts (b) of Theorems 2 and 6 require no separate proofs:
Theorem 2(b) follows from Theorem 1(b) (since consensus preservation implies con-
ditional consensus preservation on X by Proposition 1) and Theorem 6(b) follows
from Theorem 3(b) (since non-neutrality on X implies non-linearity on X ). In Sect.
A.6, we prove Proposition 2.

A.1 Proof of part (a) of each theorem

We now prove Theorems 1(a) to 6(a). To do so, we first relate premise-based opinion
pooling to opinion pooling on a general agenda as introduced in Part I. We begin by
generalizing the present paper’s framework to agendas that need not be σ -algebras. In
general, an agenda is a non-empty set X of events (each ofwhich is of the form A ⊆ �),
where X is closed under complementation (i.e., A ∈ X ⇔ Ac ∈ X ). It contains the
events on which opinions are formed. Given an agenda X , an opinion function is a
function P : X → [0, 1] which is coherent, i.e., extendable to a probability function
on the σ -algebra σ(X) generated by X (i.e., the smallest σ -algebra which includes
X , constructible by closing X under countable unions and complements). Let PX

be the set of all opinion functions for agenda X . If X is a σ -algebra, PX consists
of all probability functions on X , in line with the notation used above. An opinion
pooling function for agenda X is a function Pn

X → PX which assigns to each profile
(P1, . . . , Pn) of individual opinion functions a collective opinion function, usually
denoted PP1,...,Pn . We call the pooling function linear and neutral, respectively, if it
is linear and neutral on X in line with the definition above.

Crucially, a pooling function for a σ -algebra � induces new pooling functions
for any sub-agendas X on which it is independent. Formally, a pooling function F :
Pn

� → P� for agenda � is said to induce the pooling function F ′ : Pn
X → PX for

(sub-)agenda X if F and F ′ generate the same collective opinions within X , i.e.,

F ′(P1|X , . . . , Pn|X ) = F(P1, . . . , Pn)|X for all P1, . . . , Pn ∈ P�

(and if, in addition, PX = {P|X : P ∈ P�}, where this addition holds automati-
cally whenever X is finite or σ(X) = �).15 Our axiomatic requirements on a pooling
function for agenda �—i.e., independence on a sub-agenda X and various consen-
sus requirements—should be compared with the following requirements on a pooling
function for the agenda X (introduced and discussed in Part I). The first two require-
ments are unrestricted versions of independence and consensus preservation:

15 In this case, each opinion function in PX is extendable not just to a probability function on σ(X), but
also to one on �. Probability theorists will be aware that the extendability of a probability function to a
larger σ -algebra cannot be taken for granted.
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Independence For each event A ∈ X , there exists a function DA : [0, 1]n → [0, 1]
(the local pooling criterion for A) such that PP1,...,Pn (A) = DA(P1(A), . . . , Pn(A))

for any P1, . . . , Pn ∈ PX .

Consensus preservation For all A ∈ X and P1, . . . , Pn ∈ PX , if Pi (A) = 1 for all
individuals i , then PP1,...,Pn (A) = 1.

Note the following criterion for the existence of induced pooling functions:

Lemma 2 (cf. Part I, Lemma 14) If a pooling function for a σ -algebra � is indepen-
dent on a sub-agenda X (where X is finite or σ(X) = �), then it induces a pooling
function for agenda X.

The next two axiomatic requirements are two different extensions of consensus
preservation, namely to either implicitly revealed or unrevealed beliefs. An individual
i’s explicitly revealed beliefs are given by the individual’s submitted opinion function
Pi . Her implicitly revealed beliefs are given by the probabilities of events in σ(X)\X
which are implied by her explicitly revealed beliefs, i.e., hold under every extension
of Pi to a probability function on σ(X). If, for instance, Pi assigns probability 1 to
A ∈ X , then the agent implicitly reveals certainty of all events B ⊇ A in σ(X)\X .
The following axiom extends consensus preservation to implicitly revealed beliefs:

Implicit consensus preservation For all A ∈ σ(X) and all P1, . . . , Pn ∈ PX , if
each Pi implies certainty of A (i.e., Pi (A) = 1 for every extension Pi of Pi to a
probability function on σ(X)), then so does PP1,...,Pn .

By contrast, individual i’s unrevealed beliefs are any probabilistic beliefs which
she privately holds relative to events in σ(X)\X and which cannot be inferred from
the submitted opinion function Pi because different extensions of Pi assign different
probabilities to the events in question. The following axiom requires the collective
opinion function to be compatible with any unanimously held certainty of an event—
including any unrevealed certainty, which is not implied by the submitted opinion
functions but is consistent with them. This ensures that no consensus (not even an
unrevealed consensus) is ever overruled.

Consensus compatibility For all A ∈ σ(X) and all P1, . . . , Pn ∈ PX , if each Pi
is consistent with certainty of A (i.e., Pi (A) = 1 for some extension Pi of Pi to a
probability function on σ(X)), then so is PP1,...,Pn .

A final requirement pertains to conditional beliefs. Note that, based on individual
i’s opinion function Pi , the conditional belief Pi (A|B) = Pi (A ∩ B)/Pi (B) of one
agenda event A given another B (where Pi (B) �= 0) may be undefined, since we may
have A ∩ B /∈ X so that Pi (A ∩ B) is undefined. Hence, if the agent happens to be
privately certain of A given B, then this conditional certainty may be unrevealed. Our
axiom of conditional consensus compatibility requires that any (possibly unrevealed)
unanimous conditional certainty should not be overruled. In fact, we require something
subtly stronger: any set of (possibly unrevealed) unanimous conditional certainties
should not be overruled (see Part I for details).
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Conditional consensus compatibility For all P1, . . . , Pn ∈ PX , and all finite sets S
of pairs (A, B) of events in X , if every opinion function Pi is consistent with certainty
of A given B for all (A, B) in S (i.e., some extension Pi of Pi to a probability function
on σ(X) satisfies Pi (A|B) = 1 for all pairs (A, B) ∈ S such that Pi (B) �= 0), then
so is the collective opinion function PP1,...,Pn .

The following lemma shows how properties of a pooling function for a σ -algebra
translate into corresponding properties of an induced pooling function for a sub-
agenda:

Lemma 3 (cf. Part I, Lemma12) Suppose pooling function F forσ -algebra� induces
pooling function F ′ for sub-agenda X (where X is finite or σ(X) = �). Then:

• F ′ is independent (respectively neutral, linear) if and only if F is independent
(respectively neutral, linear) on X,

• F ′ is consensus-preserving if and only if F is consensus-preserving on X,
• F ′ is consensus-compatible if F is consensus-preserving,
• F ′ is conditional-consensus-compatible if F is conditional-consensus-preserving
on X.

This lemma follows from a more general result:

Lemma 4 (cf. Part I, Lemma 13)Consider a σ -algebra� and a sub-agenda X (where
X is finite or σ(X) = �). Any pooling function for X is

(a) induced by some pooling function for agenda �,
(b) independent (respectively neutral, linear) if and only if every inducing pooling

function for agenda � is independent (respectively neutral, linear) on X, where
‘every’ can be replaced by ‘some’,

(c) consensus-preserving if and only if every inducing pooling function for agenda
� is consensus-preserving on X, where ‘every’ can be replaced by ‘some’,

(d) consensus-compatible if and only if some inducing pooling function for agenda
� is consensus-preserving,

(e) conditional-consensus-compatible if and only if some inducing pooling function
for agenda � is conditional-consensus-preserving on X

(where in (d) and (e) the ‘only if’ claim assumes that X is finite).

Proof of parts (a) of Theorems 1–6 Using the above translation machinery, one can
reduce Theorem 1(a) to Part I’s Theorem 1(a), Theorem 2(a) to Part I’s Theorem 2(a),
and so on until Theorem 6(a). Since the reduction is analogous for each theorem,
we only spell it out for Theorem 1. Let X be a non-nested finite sub-agenda of the
σ -algebra agenda �, and let F : Pn

� → P� be independent on X and (globally)
consensus preserving. By Lemma 2, F induces a pooling function F ′ for agenda X ,
which is independent and consensus-compatible by Lemma 3, hence neutral by Part
I’s Theorem 1(a). So F is neutral on X by Lemma 3. ��

A.2 Proof of Theorem 1(b)

We nowwrite 1 and 0 for the n-dimensional vectors (1, . . . , 1) and (0, . . . , 0), respec-
tively. We draw on a measure-theoretic fact:
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Lemma 5 (cf. Part I, Lemma 15) Every probability function on a finite sub-σ -algebra
of σ -algebra � can be extended to a probability function on �.

Proof of Theorem 1(b) Consider a finite nested sub-agenda X �= {∅,�} of the
σ -algebra agenda �. (As will become clear, finiteness could be replaced by the
assumption that σ(X) = �. Under this alternative assumption, the ‘Claim’ below
can be skipped, and the rest of the proof remains almost unaffected.) We construct a
pooling function (P1, . . . , Pn) �→ PP1,...,Pn for agenda � with all relevant properties.
Without loss of generality, let ∅,� ∈ X .

Claim. If Theorem 1(b) holds in the case that σ(X) = �, then it holds in general.
Let Theorem 1(b) hold in the special case. Let �′ := σ(X) (⊆ �). By assumption,

there is a pooling function F ′ : Pn
�′ → P�′ with all relevant properties. Let A be

the set of atoms of the (finite) σ -algebra �′. We define F : Pn
� → P� as follows.

Consider P1, . . . , Pn ∈ P� . Let P ′ := F ′(P1|�′ , . . . , Pn|�′). For all A ∈ A such
that P ′(A) �= 0, there is an individual i A such that PiA (A) �= 0, since otherwise
everyone assigns probability one to �\A while P ′(�\A) �= 1, violating consensus-
preservation. By Lemma 5, P ′ can be extended to a probability function P on �. As
is clear from that lemma’s proof (in Part I), we may assume without loss of generality
that16

P(·|A) = PiA (·|A) for each A ∈ A such that P(A) �= 0.

Now let F(P1, . . . , Pn) be this P . It remains to show that the pooling function F just
defined inherits all relevant properties from F ′. This is clear for independence on X and
non-neutrality on X . To show that F is (globally) consensus-preserving, consider B ∈
� and P1, . . . , Pn ∈ P� such that P1(B) = · · · = Pn(B) = 1. To show that P(B) =
1, where P := F(P1, . . . , Pn), note first that P(B) = ∑

A∈A:P(A) �=0 P(B|A)P(A).
Here (in the notation above) each P(B|A) equals PiA (B|A), which equals 1 as
PiA (B) = 1. So P(B) = ∑

A∈A:P(A) �=0 P(A) = 1. This proves the claim.
Now let σ(X) = �, drawing on the above ‘Claim’. As X is nested, we may express

it as X = {A, Ac : A ∈ X+} for some subset X+ ⊆ X which is linearly ordered and
contains both ∅ and �.

As an ingredient of our construction,we consider any pooling function for agenda�

which is neutral (at least) on X and consensus-preserving and whose pooling criterion
on X , denoted D : [0, 1]n → [0, 1], is at least weakly increasing in each argument.
(For instance, wemight use dictatorship by individual 1, given by (P1, . . . , Pn) �→ P1,
with pooling criterion given by D(t1, . . . , tn) = t1.) As X �= {∅,�}, there is some
A ∈ X\{�, ∅}. As A �= �, ∅, there are P1, . . . , Pn ∈ P� which all assign probability
1/2 to A (hence to Ac), so that the collective probabilities of A and of Ac are each
given by D(1/2, . . . , 1/2). As these probabilities sum to 1, it follows that

D(1/2, 1/2, . . . , 1/2) = 1/2. (1)

16 In that proof it suffices to choose the QAs appropriately, since each QA equals P(·|A), provided
P(A) �= 0.

123



Probabilistic opinion pooling generalized. Part two. . .

We now transform this pooling function, which is neutral on X , into a pooling function
(P1, . . . , Pn) �→ PP1,...,Pn which is non-neutral on X , but still independent on X and
consensus-preserving. To do so, we consider a function T : [0, 1] → [0, 1] such that
(i) T (1/2) �= 1/2, (ii) T (0) = 0 and T (1) = 1, (iii) T is at least weakly increasing,
and (iv) T is Lipschitz continuous, i.e., there is a K > 0 such that |T (x) − T (y)| ≤
K |x − y| for all x, y ∈ [0, 1]. (T could be defined by T (x) = min{2x, 1}.) Now
consider any P1, . . . , Pn ∈ P� . We have to define PP1,...,Pn . We write P for the result
of applying the neutral pooling function to (P1, . . . , Pn). To anticipate, our definition
will imply that

PP1,...,Pn (C) = T (P(C)) whenever C ∈ X+.

As a first step towards our definition, we define PP1,...,Pn on the subdomain

X̃ := {A ∩ B : A, B ∈ X} = {B\A : A, B ∈ X+ such that A ⊆ B}.

The restriction of PP1,...,Pn to X̃ , to be denoted g, is defined as follows. Each C ∈ X̃
is uniquely representable as C = B\A with A, B ∈ X+ and A ⊆ B (and A = B = ∅

if C = ∅), and we let

g(C) = T (P(B)) − T (P(A))

= T (D(P1(B), . . . , Pn(B))) − T (D(P1(A), . . . , Pn(A))).

It follows that

g(C) =
{
T (P(C)) = T (D(P1(C), . . . , Pn(C))) if C ∈ X+
1 − T (P(Cc)) = 1 − T (D(P1 (Cc) , . . . , Pn (Cc))) if C ∈ X\X+,

(2)
because, firstly, eachC ∈ X+ can bewritten asC\∅whereC, ∅ ∈ X+, and, secondly,
each C ∈ X\X+ can be written as �\Cc where �,Cc ∈ X+ and where T (P(�)) =
T (1) = 1.

Note that X̃ is a semi-ring on �, since (i) ∅ ∈ X̃ , (ii) C,C ′ ∈ X̃ ⇒ C ∩ C ′ ∈ X̃ ,
and (iii) for all C,C ′ ∈ X̃ , the difference C\C ′ is a union of finitely many—in fact,
at most two—events in X̃ . We next show that the function g on this semi-ring is σ -
additive. First, g is finitely additive, i.e., for all disjoint C1,C2 ∈ X̃ , if C1 ∪ C2 ∈ X̃ ,
then g(C1 ∪ C2) = g(C1) + g(C2), by definition of g and additivity of P . To show
σ -additivity, consider pairwise disjoint C1,C2, . . . ∈ X̃ such that ∪∞

m=1Cm ∈ X̃ . We
have to show that

δM := g(∪∞
m=1Cm) −

M∑

m=1

g(Cm) → 0 as M → ∞.

For all M ∈ {1, 2, . . .}, note that the difference
(∪∞

m=1Cm
) \ (∪M

m=1Cm
) =

∪∞
m=M+1Cm need not belong to X̃ , but can be partitioned into a finite set CM of
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events in X̃ (as ∪∞
m=1Cm belongs the the semi-ring X̃ ). So, CM ∪ {C1, . . . ,CM } parti-

tions ∪∞
m=1Cm . Careful inspection of g’s definition reveals that δM = ∑

C∈CM g(C).
So, as g(C) ≤ K P(C) for each C ∈ X̃ (by definition of g and property (iv)
of T ), δM ≤ K

∑
C∈CM P(C) = K P(∪∞

m=M+1Cm). As M → ∞ we have
P(∪∞

m=M+1Cm) → 0 (by σ -additivity of P), and so δM → 0, as required.
As g is non-negative, σ -additive, and also σ -finite (i.e., � is a union of countably

many events in X̃ of finite g-measure, which trivially holds as� ∈ X̃ ), Caratheodory’s
Extension Theorem tells us that g extends uniquely to a measure on σ(X̃) = σ(X) =
�. Let PP1,...,Pn be this extension. PP1,...,Pn is indeed a probability function since
PP1,...,Pn (�) = 1 as � ∈ X̃ and g(�) = T (1) = 1.

Finally, we must prove that the pooling function (P1, . . . , Pn) �→ PP1,...,Pn , as just
defined, is independent on X , (globally) consensus-preserving, and non-neutral on X .

Independence on X This holds because, for all P1, . . . , Pn ∈ P� , the function
PP1,...,Pn extends g, which satisfies (2). Note that the pooling criterion DC forC ∈ X+
is defined as T ◦ D, while the pooling criterion DC for C ∈ C\X+ is defined by
t �→ 1 − T ◦ D(1 − t).

Non-neutrality on X Here it suffices to show that, for some C ∈ X\{�, ∅}, the
pooling criteria DC and DCc differ. This follows from the following argument. First,
X\{�, ∅} �= ∅ as X �= {∅,�}. So we may pick C,Cc ∈ X\{�, ∅}; say, assume
C ∈ X+ andCc ∈ X\X+. So, as just shown, DC = T ◦D and DCc = 1−T ◦D(1−·).
Hence DC �= DCc , since DC (1/2, . . . , 1/2) �= DCc (1/2, . . . , 1/2), as is clear from
the fact that T (1/2) �= 1/2 and that

DAj (1/2, . . . , 1/2) = T ◦ D(1/2, . . . , 1/2) = T (1/2),

DAc
j
(1/2, . . . , 1/2) = 1 − T ◦ D(1 − 1/2, . . . , 1 − 1/2)

= 1 − T ◦ D(1/2, . . . , 1/2) = 1 − T (1/2).

Consensus preservation Let P1, . . . , Pn ∈ P� and A ∈ � such that P1(A) = · · · =
Pn(A) = 1. We show that PP1,...,Pn (A) = 1. Let P be the result of pooling P1, . . . , Pn
using the (at least on X ) neutral pooling function defined above. As that pooling
function is consensus-preserving, P(A) = 1. It suffices to show that PP1,...,Pn ≤ K P ,
as this implies that PP1,...,Pn (A

c) ≤ K P(Ac) = K (1−P(A)) = K (1−1) = 0, so that
PP1,...,Pn (A) = 1. Now, to show that PP1,...,Pn ≤ K P , note first that, by property (iv)
of T , g ≤ K P|X̃ , and so K P|X̃ −g ≥ 0. Since g and K P|X̃ , and hence also K P|X̃ −g,
are σ -additive, σ -finite and non-negative functions on the semi-ring X̃ , each of them
extends uniquely to a measure on σ(X̃) = � by Caratheodory’s Extension Theorem.
The first two extensions are PP1,...,Pn and K P , respectively. So the third one must be
K P − PP1,...,Pn . Hence K P − PP1,...,Pn ≥ 0, and thus PP1,...,Pn ≤ K P . ��

A.3 Proof of Theorem 3(b)

Let X be a non-path-connected and finite sub-agenda of the σ -algebra �. As in the
proof of Theorem 1(b), we begin by proving that we may assume without loss of
generality that σ(X) = �.

Claim 1 If Theorem 3(b) holds when σ(X) = �, then it holds in general.
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Assume Theorem 3(b) holds if σ(X) = � and let �′ := σ(X) (⊆ �). By assump-
tion, there exists F ′ : Pn

�′ → P�′ which, on X , is independent, consensus-preserving,
and non-neutral. Consider some F : Pn

� → P� which, for any P1, . . . , Pn ∈ P� ,
generates a probability function in P� extending F ′(P1|�′ , . . . , Pn |�′) (where such
an extension exists by Lemma 5 and finiteness of �′). The so-defined F inherits
all relevant properties from F ′: it is, on X , independent, consensus preserving, and
non-neutral. This proves the claim.

Now let σ(X) = �. Notationally, for any sub-σ -algebra �̄ ⊆ �, let A(�̄) be its
set of atoms (i.e., minimal elements of �̃\{∅}). We now define a pooling function for
agenda� and show that it has the desired properties. As an ingredient to the definition,
let D′ : [0, 1]n → [0, 1] and D′′ : [0, 1]n → [0, 1] be the local pooling criteria of two
distinct linear pooling functions; and let Ā ∈ X\{∅,�} be a (by assumption existing)
event such that not for all A ∈ X\{∅,�} there is Ā ��∗ A, where��∗ is the transitive
closure of �∗. Consider any (P1, . . . , Pn) ∈ Pn

� . To define PP1,...,Pn ∈ P� , we start
by defining probability functions on two sub-σ -algebras of�, denoted�′ and�′′ and
defined as the σ -algebras generated by the sets

X ′ := {A ∈ X : Ā ��∗ B for both B ∈ {A, Ac}},
X ′′ := {A ∈ X : Ā ��∗ B for no B ∈ {A, Ac}},

respectively. (X ′ and X ′′ might be empty, in which case �′ and �′′, respectively, are
{∅,�}.) Let P ′

P1,...,Pn
∈ P�′ and P ′′

P1,...,Pn
∈ P�′′ be defined by

P ′
P1,...,Pn (A) = D′(P1(A), . . . , Pn(A)) for all A ∈ �′,

P ′′
P1,...,Pn (A) = D′′(P1(A), . . . , Pn(A)) for all A ∈ �′′.

These two functions are indeed probability functions (on �′ and �′′, respectively), as
they are linear averages of of probability functions.

Claim 2 The σ -algebras �′ and �′′ are logically independent, that is: if A′ ∈ �′
and A′′ ∈ �′′ are non-empty, so is A′ ∩ A′′.

Suppose the contrary. Then, as each non-empty element of �′ includes an atom of
�′ and hence a non-empty intersection of events in X ′, and similarly for �′′, there are
consistent sets Y ′ ⊆ X ′ and Y ′′ ⊆ X ′′ such that Y ′ ∪ Y ′′ is inconsistent. Let Y be a
minimal inconsistent subset of Y ′ ∪ Y ′′. Then Y is not a subset of Y ′ or Y ′′, as Y ′ and
Y ′′ are consistent. So there are A ∈ Y ∩ X ′ and B ∈ Y ∩ X ′′. Note that A �∗ Bc, a
contradiction since A ∈ X ′ and Bc ∈ X ′′. This proves Claim 2.

We now extend P ′
P1,...,Pn

and P ′′
P1,...,Pn

to a probability function on the σ -algebra

�̃ := σ(�′∪�′′) = σ(X ′∪X ′′), in such away that the events in�′ are probabilistically
independent of those in�′′. By Claim 2, the atoms of �̃ are precisely the intersections
of an atom of �′ and one of �′′:A(�̃) = {A′ ∩ A′′ : A′ ∈ A(�′), A′′ ∈ A(�′′)}. Let
P̃P1,...,Pn be the unique measure on �̃ that behaves as follows on the atoms:

P̃P1,...,Pn (A
′ ∩ A′′) = P ′

P1,...,Pn (A
′)P ′′

P1,...,Pn (A
′′), (3)
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for all A′ ∈ A(�′), A′′ ∈ A(�′′). Now P̃P1,...,Pn is a probability function as

∑

A∈A(�̃)

P̃P1,...,Pn (A) =
∑

A′∈A(�′),A′′∈A(�′′)
P ′
P1,...,Pn (A

′)P ′′
P1,...,Pn (A

′′)

=
∑

A′∈A(�′)
P ′
P1,...,Pn (A

′)
∑

A′′∈A(�′′)
P ′′
P1,...,Pn (A

′′)

︸ ︷︷ ︸
=1

= 1.

Check that restricting P̃P1,...,Pn to �′ and �′′ yields P ′
P1,...,Pn

and P ′′
P1,...,Pn

, respec-
tively. So

P̃P1,...,Pn (A) =
{
D′(P1(A), . . . , Pn(A)) for all A ∈ �′
D′′(P1(A), . . . , Pn(A)) for all A ∈ �′′. (4)

Before we can extend P̃P1,...,Pn to the full σ -algebra �, we prove another claim. For
all A ∈ X such that Ā ��∗ A but not Ā ��∗ Ac, define

AP1,...,Pn :=
{
A if Pi (A) > 0 for some i
Ac if Pi (A) = 0 for all i.

Claim 3 For all atoms C of �̃ (= σ(X ′ ∪ X ′′)) with P̃P1,...,Pn (C) > 0, the event
C ∩ (∩A∈X : Ā��∗A and not Ā��∗Ac AP1,...,Pn

)
is an atom of �.

Let C be as specified, and write CP1,...,Pn for the event in question. As noted above,
C = A′ ∩ A′′ with A′ ∈ A(�′) and A′′ ∈ A(�′′). By P̃P1,...,Pn (C) > 0 and (3),
we have P̃ ′

P1,...,Pn
(A′) > 0 and P̃ ′′

P1,...,Pn
(A′′) > 0. Since A′ ∈ A(�′), we may write

A′ = ∩A∈Y ′ A for some set Y ′ ⊆ X ′ containing exactly one member of each pair
A, Ac ∈ X ′. Similarly, A′′ = ∩A∈Y ′′ A for some set Y ′′ ⊆ X ′′ containing exactly one
member of each pair A, Ac ∈ X ′′. Note also that ∩A∈X : Ā��∗A and not Ā��∗Ac AP1,...,Pn
can be written as ∩A∈YP1,...,Pn

A, where the set

YP1,...,Pn = {AP1,...,Pn : A ∈ X, Ā ��∗ A, not Ā ��∗ Ac}

consists of exactly one member of each pair A, Ac ∈ X\(X ′ ∪ X ′′). So CP1,...,Pn =
∩A∈Y ′∪Y ′′∪YP1,...,Pn

A, where the set Y ′ ∪Y ′′ ∪YP1,...,Pn consists of exactly one member
of each pair A, Ac ∈ X . So, since � = σ(X), CP1,...,Pn is an atom or is empty. Hence
it suffices to show that CP1,...,Pn �= ∅. Suppose the contrary. Then Y ′ ∪ Y ′′ ∪ YP1,...,Pn
is inconsistent, hence has a minimal inconsistent subset Y . We distinguish two cases
and derive a contradiction in each.

Case 1There is some B ∈ Y∩YP1,...,Pn with Ā ��∗ B. Consider some B ′ ∈ Y\{B}.
We have (i) not Ā ��∗ B ′ (otherwise by B ′ �∗ Bc we would have Ā ��∗ Bc, hence
B ∈ X ′, a contradiction as B ∈ YP1,...,Pn ). Further, (ii) Ā ��∗ (B ′)c (as Ā ��∗ B
and B �∗ (B ′)c). By (i) and (ii), letting A := (B ′)c, the event AP1,...,Pn (∈ {A, Ac})
is well-defined. Since YP1,...,Pn contains AP1,...,Pn (∈ {A, Ac}) and contains B ′ = Ac

but not (B ′)c = A, we must have AP1,...,Pn = Ac. So, for all i , Pi (A) = 0 and
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hence Pi (B ′) = 1. Note that this holds for all B ′ ∈ Y\{B}. So Pi (∩B′∈Y B ′) = Pi (B)

for all i . Hence, as Y is inconsistent, Pi (B) = 0 for all i . Thus BP1,...,Pn = Bc. So
Bc ∈ YP1,...,Pn , a contradiction as B ∈ YP1,...,Pn .

Case 2 There is no B ∈ Y ∩ YP1,...,Pn with Ā ��∗ B. Then all B ∈ Y ∩ YP1,...,Pn
take the form AP1,...,Pn = Ac, so that Pi (A) = 0 for all i , i.e., Pi (B) = 1 for all i . So,
(*) Pi (∩B∈Y B) = Pi (∩B∈Y\YP1,...,Pn

B) for all i . Now, either (i) Y ⊆ YP1,...,Pn ∪ Y ′,
or (ii) Y ⊆ YP1,...,Pn ∪ Y ′′, because otherwise there are A′ ∈ Y ′ and A′′ ∈ Y ′′, and
A′ �∗ (A′′)c, whence Ā ��∗ (A′′)c, a contradiction as (A′′)c ∈ X ′′. First suppose
case (i) holds. Then Y\YP1,...,Pn ⊆ Y ′, and so (*) implies that (**) Pi (∩B∈Y B) ≥
Pi (∩B∈Y ′ B) = Pi (A′) for all i . Since by assumption P̃P1,...,Pn (A

′) > 0, there is
(by (4)) at least one i with Pi (A′) > 0, hence by (**) with Pi (∩B∈Y B) > 0. So
∩B∈Y B �= ∅, i.e., Y is consistent, a contradiction. Similarly, in case (ii), one can show
that Y is consistent, a contradiction. This completes the proof of Claim 3.

Let PP1,...,Pn be the unique measure on � behaving as follows on any atom C of �.
If C takes the form as in Claim 3, i.e., B = C ∩ (∩A∈X : Ā��∗A and not Ā��∗Ac AP1,...,Pn

)

where C ∈ A(�̃) and P̃P1,...,Pn (C) > 0, then let PP1,...,Pn (B) := P̃P1,...,Pn (C).
Otherwise let PP1,...,Pn (B) := 0.

Claim 4 PP1,...,Pn extends P̃P1,...,Pn (in particular, is a probability function).
It suffices to show that PP1,...,Pn coincides with P̃P1,...,Pn on A(�̃). Consider any

C ∈ A(�̃). As � is a refinement of �̃,

PP1,...,Pn (C) =
∑

B∈A(�):B⊆C

PP1,...,Pn (B). (5)

There are two cases.
Case 1 P̃P1,...,Pn (C) = 0. Then, for all B ∈ A(�) with B ⊆ C , we have

PP1,...,Pn (B) = 0 (by definition of PP1,...,Pn ), and so by (5) we have PP1,...,Pn (C) =
0 = P̃P1,...,Pn (C), as desired.

Case 2 P̃P1,...,Pn (C) > 0. Then, among all atoms B ∈ A(�) with B ⊆ C , there
is by definition of PP1,...,Pn exactly one such that PP1,...,Pn (B) > 0 (namely B =
C ∩ (∩A∈X : Ā��∗A and not Ā��∗Ac AP1,...,Pn )), and PP1,...,Pn (B) = P̃P1,...,Pn (C). So by
(5) PP1,...,Pn (C) = P̃P1,...,Pn (C). This completes the proof of Claim 4.

Claim 5 For all A ∈ X such that Ā ��∗ A and not Ā ��∗ Ac, PP1,...,Pn (A) is 1 if,
for some individual i , Pi (A) > 0, and 0 otherwise.

By definition of PP1,...,Pn , all atoms of� with positive probability are subsets of the
event ∩A∈X : Ā��∗A and not Ā��∗Ac AP1,...,Pn . So this event has probability 1. Hence, for
all A ∈ X such that Ā ��∗ A and not Ā ��∗ Ac, we have PP1,...,Pn (AP1,...,Pn ) = 1,
and so

PP1,...,Pn (A) =
{
1 if AP1,...,Pn = A, i.e., if Pi (A) > 0 for some i
0 if AP1,...,Pn = Ac, i.e., if Pi (A) = 0 for all i.

This proves Claim 5.
By Claim 4, we have constructed a well-defined pooling function (P1, . . . , Pn) �→

PP1,...,Pn for agenda�. By (4) and Claims 4 and 5, we know its behaviour on the entire
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sub-agenda X : the pooling function is independent on X and the local pooling criteria
DA of events A ∈ X are given by

(i) the linear criterion D′ if A ∈ X ′,
(ii) the different linear criterion D′′ if A ∈ X ′′,
(iii) a non-linear criterion D̂ (taking the value 0 at 0 and the value 1 everywhere else)

if Ā ��∗ A but not Ā ��∗ Ac,
(iv) the different non-linear criterion 1 − D̂(1 − ·) if not Ā ��∗ A but Ā ��∗ Ac.

These pooling criteria also ensure unanimity preservation on X . To check non-
neutrality, it suffices to show that at least two of the four different types of events
(i)–(iv) do indeed occur. This is so because Ā is of type (i) or (iii) and because by
assumption there exists an A ∈ X such that not Ā ��∗ A, i.e., such that A has type
(ii) or (iv). ��

A.4 Proof of Theorem 4(b)

Consider any finite sub-agenda X �= {∅,�} (of the σ -algebra agenda �) which
is nested or satisfies |X\{∅,�}| ≤ 4. If X is nested, the claim follows from
Theorem 1(b), as non-neutrality on X implies non-linearity on X . Now assume
|X\{∅,�}| ≤ 4. We reduce the claim to Part I’s Theorem 4(b). By that result, there
is a pooling function F ′ for agenda X which is independent, consensus compatible,
and not linear. By Lemma 4, F ′ is induced by a pooling function for agenda � which
is independent on X , (globally) consensus-preserving, and not linear on X . ��

A.5 Proof of Theorem 5(b)

Consider a simple sub-agenda X of σ -algebra�, where X is finite and not {∅,�}. We
construct a pooling functionwhich, on X , is independent (in fact, neutral), conditional-
consensus-preserving, and non-linear. We may assume without loss of generality that
σ(X) = �, because the ‘Claim’ in the proof of Theorem 1(b) holds analogously here
as well.

As an ingredient of the construction, we use an arbitrary pooling function
(P1, . . . , Pn) �→ P lin

P1,...,Pn
which, at least on X , is linear and conditional-consensus-

preserving. The function could be simply given by (P1, . . . , Pn) �→ P1, which is even
globally linear and conditional-consensus-preserving. Let Dlin be its pooling criterion
for all events in X . To anticipate, the pooling function (P1, . . . , Pn) �→ PP1,...,Pn to
be constructed will have the pooling criterion D : [0, 1]n → [0, 1] for each event in
X , where

D(t1, . . . , tn) :=
⎧
⎨

⎩

0 if Dlin(t1, . . . , tn) < 1/2,
1/2 if Dlin(t1, . . . , tn) = 1/2,
1 if Dlin(t1, . . . , tn) > 1/2.

(6)

Consider any P1, . . . , Pn ∈ P� . We must define PP1,...,Pn . We use the following
notation (which suppresses the parameters P1, . . . , Pn):
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p(A) := P lin
P1,...,Pn (A) for all A ∈ �,

X≥1/2 := {A ∈ X : p(A) ≥ 1/2},
X>1/2 := {A ∈ X : p(A) > 1/2},
X=1/2 := {A ∈ X : p(A) = 1/2}.

Notice that for all A ∈ X we have A ∈ X>1/2 ⇒ Ac /∈ X>1/2 and A ∈ X=1/2 ⇔
Ac ∈ X=1/2. We now prove two claims (which use X ’s simplicity).

Claim 1 X=1/2 can be partitioned into two (possibly empty) sets X1=1/2 and X2=1/2

such that (i) each X j
=1/2 satisfies p(A ∩ B) > 0 for all A, B ∈ X j

=1/2 and (ii) each

X j
=1/2∪ X>1/2 is consistent (whence X

j
=1/2 contains exactly one member of each pair

A, Ac ∈ X=1/2).
To show this, note first that X=1/2 has a subset Y such that p(A ∩ B) > 0 for all

A, B ∈ Y (e.g., Y = ∅). Among all such subsets Y ⊆ X=1/2, let X1=1/2 a maximal

one, and let X2=1/2 := X=1/2\X1=1/2. By definition, X
1=1/2 and X2=1/2 form a partition

of X=1/2. We show that (i) and (ii) hold.

(i) Property (i) holds for X1=1/2 by definition, and for X2=1/2 by the following argu-

ment. Let A, B ∈ X2=1/2 and for a contradiction let p(A ∩ B) = 0. By the

maximality property of X1=1/2, there are A′, B ′ ∈ X1=1/2 such that p(A ∩ A′) = 0
and p(B ∩ B ′) = 0. Thus, p(A ∩ C) = p(B ∩ C) = 0 where C := A′ ∩ B ′.
Since the intersection of any two of the sets A, B,C has zero p-probability, we
must have p(A) + p(B) + p(C) = p(A ∪ B ∪ C) ≤ 1, a contradiction because
p(A) = p(B) = 1/2 and p(C) = p(A′ ∩ B ′) > 0 (the latter because X1=1/2
satisfies (i)).

(ii) For a contradiction, let some X j
=1/2 ∪ X>1/2 be inconsistent. Then (since X and

hence X j
=1/2∪X>1/2 are finite) there is aminimal inconsistent subsetY ⊆ X j

=1/2∪
X>1/2. Since X is simple, we have |Y | ≤ 2, say Y = {A, B}. Since A∩B = ∅, we
have p(A)+ p(B) = p(A∪ B) ≤ 1. And since p(A), p(B) ≥ 1/2, it follows that
p(A) = p(B) = 1/2, i.e., A, B ∈ X j

=1/2. Hence, by (i), we have p(A ∩ B) > 0,
a contradiction as A ∩ B = ∅.

Claim 2 ∩C∈X1=1/2∪X>1/2
C and ∩C∈X2=1/2∪X>1/2

C are atoms of the σ -algebra�, i.e.,

(⊆-)minimal elements of �\{∅} (they are the same atoms if and only if X=1/2 = ∅,
i.e., if and only if X1=1/2 = X2=1/2 = ∅).

To show this, first write X as {C0
j ,C

1
j : j = 1, . . . , J }, where J = |X | /2 and each

pair C0
j ,C

1
j consists of an event and its complement. We may write � as

� = {∪(k1,...,kJ )∈K (Ck1
1 ∩ · · · ∩ CkJ

J ) : K ⊆ {0, 1}J }. (7)

Recall that � is the σ -algebra generated by X . The inclusion ‘⊇’ in (7) is obvious,
and the inclusion ‘⊆’ holds because the right side of (7) includes X (since anyCk

j ∈ X

can be written as the union of all Ck1
1 ∩· · ·∩CkJ

J for which k j = k) and is a σ -algebra
(check closedness under taking unions and complements).
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From (7) and the pairwise disjointness of the intersections of the form Ck1
1 ∩

· · · ∩ CkJ
J , it is clear that every consistent such intersection is an atom of �. Now

∩
C∈X j

=1/2∪X>1/2
C is (for j ∈ {0, 1}) precisely such a consistent intersection. Indeed,

∩
C∈X j

=1/2∪X>1/2
C is consistent by Claim 1, and contains a member of each pair A, Ac

in X . The latter holds by Claim 1 if p(A) = p(Ac) (= 1/2), and otherwise because
there is a B ∈ {A, Ac} with p(B) > 1/2, i.e., with B ∈ X>1/2 ⊆ X j

=1/2 ∪ X>1/2.
This proves Claim 2.

We can now define PP1,...,Pn . By Claim 1, we may pick ω1 ∈ ∩C∈X1=1/2∪X>1/2
C

and ω2 ∈ ∩C∈X2=1/2∪X>1/2
C , where we assume that ω1 = ω2 if X=1/2 = ∅, i.e.,

if ∩C∈X1=1/2∪X>1/2
C = ∩C∈X2=1/2∪X>1/2

C = ∩C∈X>1/2C . Let δω1 and δω2 be, respec-

tively, the Dirac measures on � at ω1 and ω2, given for all A ∈ � by δω j (A) = 1 if
ω j ∈ A and δω j (A) = 0 if ω j /∈ A. Let

PP1,...,Pn := 1

2
δω1 + 1

2
δω2 ,

where ω1 and ω2 depend on P1, . . . , Pn via X1=1/2, X
2=1/2, X>1/2. So PP1,...,Pn (A) is

1 or 1/2 or 0 depending on whether A (∈ �) contains both, exactly one, or none of ω1

and ω2; and PP1,...,Pn = δω if ω1 = ω2 = ω, i.e., if X=1/2 = ∅. We finally show that
the so-defined pooling function (P1, . . . , Pn) �→ PP1,...,Pn has all desired properties.

Independence on X We in fact show something stronger, i.e., neutrality on X with
pooling criterion D given in (6). Let P1, . . . , Pn ∈ P� , A ∈ X and (t1, . . . , tn) :=
(P1(A), . . . , Pn(A)).Weprove that PP1,...,Pn (A) = D(t1, . . . , tn) by considering three
cases and using the above notation p, X>1/2, X1=1/2, X

2=1/2, ω
1, ω2.

Case 1 p(A) = Dlin(t1, . . . , tn) < 1/2. Here D(t1, . . . , tn) = 0. So we must
prove that PP1,...,Pn (A) = 0, i.e., that ω1, ω2 /∈ A. Assume for a contradiction that
ω1 ∈ A (the proof is analogous if we instead assume ω2 ∈ A). Then A includes
∩C∈X1=1/2∪X>1/2

C , as this set contains ω1 and is by Claim 2 an atom of �. So Ac ∩
[∩C∈X1=1/2∪X>1/2

C] = ∅. Hence the set {Ac} ∪ X1=1/2 ∪ X>1/2 is inconsistent, so

has a minimal inconsistent subset Y . As X is simple, |Y | ≤ 2. Now ∅ /∈ Y as
Ac �= ∅ (by p(Ac) = 1 − p(A) > 1/2) and as all B ∈ X1=1/2 ∪ X>1/2 are non-

empty (by p(B) ≥ 1/2). So |Y | = 2. Further, Y is not a subset of X1=1/2 ∪ X>1/2,

as this set is consistent by Claim 1. So Y = {Ac, B} for some B ∈ X1=1/2 ∪ X>1/2.
As Ac ∩ B = ∅ and as p(Ac) = 1 − p(A) > 1/2 and p(B) ≥ 1/2, we have
p(Ac ∪ B) = p(Ac) + p(B) > 1/2 + 1/2 = 1, a contradiction.

Case 2 p(A) = Dlin(t1, . . . , tn) > 1/2. Then D(t1, . . . , tn) = 1. Hence we must
prove that PP1,...,Pn (A) = 1, i.e., that PP1,...,Pn (A

c) = 0. The latter follows from case
1 as applied to Ac, since p(Ac) = 1 − p(A) < 1/2.

Case 3 p(A) = Dlin(t1, . . . , tn) = 1/2. Then D(t1, . . . , tn) = 1/2. So we must
prove that PP1,...,Pn (A) = 1/2, i.e., that A contains exactly one of ω1 and ω2. As
p(A) = 1/2, exactly one of X1=1/2 and X2=1/2 contains A and the other one contains

Ac, by Claim 1. Say A ∈ X1=1/2 and Ac ∈ X2=1/2 (the proof is analogous if instead
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A ∈ X2=1/2 and Ac ∈ X1=1/2). So A ⊇ ∩C∈X1=1/2∪X>1/2
C , whence ω1 ∈ A. Further,

ω2 /∈ A because A is disjoint from Ac, hence from its subset ∩C∈X2=1/2∪X>1/2
C which

contains ω2.
Non-linearity on X Pooling cannot be linear, since otherwise for any fixed A ∈

X\{�, ∅} ( �= ∅) the collective probabilities PP1,...,Pn (A) could take any given values
t ∈ [0, 1] (for instance by letting P1(A) = · · · = Pn(A) = t), a contradiction, since
by definition PP1,...,Pn (A) ∈ {0, 1/2, 1}.

Conditional-consensus-preservation on X Let A, B ∈ X and P1, . . . , Pn ∈ P�

such that Pi (A ∪ B) = 1 for all i . We show that PP1,...,Pn (A ∪ B) = 1, which
establishes conditional-consensus-preservation on X by Proposition 1(a). For all i ,
Pi (A) + Pi (B) ≥ Pi (A ∪ B) = 1, and hence Pi (A) ≥ 1 − Pi (B) = Pi (Bc). So, as
Dlin : [0, 1]n → [0, 1] takes a linear form with non-negative coefficients and hence
is weakly increasing in every component,

Dlin(P1(A), . . . , Pn(A)) ≥ Dlin (
P1

(
Bc) , . . . , Pn

(
Bc))

= D(1) − Dlin (P1(B), . . . , Pn(B))

= 1 − Dlin (P1(B), . . . , Pn(B)).

So, with p as defined earlier, p(A) ≥ 1− p(B), i.e., p(A)+ p(B) ≥ 1.We distinguish
between three cases.

Case 1 p(A) > 1/2. Then, by the above proof of independence on X ,
PP1,...,Pn (A) = 1. So PP1,...,Pn (A ∪ B) = 1, as desired.

Case 2 p(B) > 1/2. Then, again by the above proof of independence on X ,
PP1,...,Pn (B) = 1. Hence, PP1,...,Pn (A ∪ B) = 1, as desired.

Case 3 p(A), p(B) ≤ 1/2. Then, as p(A) + p(B) ≥ 1, we have p(A) = p(B) =
1/2. Let X>1/2, X1=1/2, X

2=1/2, ω
1, ω2 be as defined above. Note that A, B ∈ X1=1/2∪

X2=1/2. It cannot be that A and B are both in X1=1/2: otherwise Ac and Bc are both in

X2=1/2 by Claim 1, whence p(Ac ∩ Bc) > 0 (again by Claim 1), a contradiction since

p
(
Ac ∩ Bc) = p

(
(A ∪ B)c

) = 1 − p(A ∪ B) = 1 − 1 = 0

(where p(A ∪ B) = 1 because p(A ∪ B) = P lin
P1,...,Pn

(A ∪ B) and Pi (A ∪ B) = 1

for all i). Analogously, it cannot be that A and B are both in X2=1/2. So one of A and

B is in X1=1/2 and the other one in X2=1/2; say A ∈ X1=1/2 and B ∈ X2=1/2 (the proof
is analogous otherwise). So A ⊇ ∩C∈X1=1/2∪X>1/2

C and B ⊇ ∩C∈X2=1/2∪X>1/2
C , and

hence ω1 ∈ A and ω2 ∈ B. Thus ω1, ω2 ∈ A ∪ B, whence PP1,...,Pn (A ∪ B) = 1. ��

A.6 Proof of Proposition 2

Consider the σ -algebra agenda �, and let |�| > 23 = 8, i.e., |�| ≥ 24 = 16.
Then � includes a partition of � into four non-empty events. Let X be the sub-
agenda consisting of any union of two of these four events. In the proof of Part I’s
Proposition 2 we construct a pooling function for this agenda X which is neutral,
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consensus-preserving, and non-linear.17 By Lemma 4, this pooling function is induced
by a pooling function for agenda � which, on X , is neutral, consensus-preserving,
and non-linear. ��
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