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Abstract

A probability aggregation rule assigns to each profile of probability functions across

a group of individuals (representing their individual probability assignments to some

propositions) a collective probability function (representing the group’s probability

assignment). The rule is “non-manipulable” if no group member can manipulate

the collective probability for any proposition in the direction of his or her own

probability by misrepresenting his or her probability function (“strategic voting”).

We show that, except in trivial cases, no probability aggregation rule satisfying two

mild conditions (non-dictatorship and consensus preservation) is non-manipulable.

1 Introduction

It is widely recognized that probability aggregation – aggregating a profile of probability

functions across a group of individuals into a single probability function for the group

as a whole – is immune to some of the well-known social-choice-theoretic pathologies

that bedevil both the aggregation of preferences and the aggregation of “true/false”

judgments. When preferences are aggregated across a group of voters, legislators etc.,

the majority preferences can be cyclical – with majorities preferring A to B, B to C,

and yet C to A – even when all individual preferences are free from such cycles (e.g.,

one of three individuals might prefer A to B to C, a second B to C to A, and a third C

to A to B). And when “true/false” judgments are aggregated, say, in an expert panel,

multi-member court, or committee, the majority judgments can be logically inconsistent

even if all individual judgments are consistent, as illustrated in Table 1(a) (List and

Pettit 2004). By contrast, when probabilities are aggregated, we can arrive at coherent

collective probability assignments by averaging the individual probability assignments
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(for reviews, see Genest and Zidek 1986 and Dietrich and List 2016). To illustrate, if we

reinterpret the judgments in Table 1(a) as probability assignments (where “true” and

“false” correspond to probabilities 1 and 0, respectively), we arrive at a probabilistically

coherent average assignment, as shown in Table 1(b).

Table 1: A simple example

(a) Binary case (b) Probabilistic case

p q p ^ q p q p ^ q

Individual 1 True True True Individual 1 1 1 1

Individual 2 True False False Individual 2 1 0 0

Individual 3 False True False Individual 3 0 1 0

Majority True True False Majority 2
3

2
3

1
3

Similarly, in preference or judgment aggregation, some plausible conditions (e.g.,

“unanimous views must never be overruled”, “aggregation must be done in a pairwise

or propositionwise manner”) can only be satisfied by “dictatorial” aggregation rules,

where one individual always determines the collective outcome – a result known as

Arrow’s theorem (1951/1963) for preference aggregation, a version of which also holds

for the aggregation of “true/false” judgments (Dietrich and List 2007a, Dokow and

Holzman 2010). By contrast, when probabilities are aggregated, the analogous conditions

characterize the class of linear averaging rules, which seem democratic and well-behaved

(Aczél and Wagner 1980, McConway 1981). In short, some of the notorious aggregation-

theoretic pathologies do not occur when the aggreganda are probabilities rather than

than “true/false” judgments or preference orderings. Probability aggregation, perhaps

because of its greater informational richness, admits possibilities where the aggregation

of those other aggreganda runs into impossibilities (see Dietrich and List 2017a).

In this paper, we show that, unfortunately, this happy observation does not carry

over to the quest for aggregation rules that are immune to strategic voting. In the

context of preference aggregation, the celebrated Gibbard-Satterthwaite theorem shows

that, when there are more than two options, virtually all non-dictatorial aggregation

rules violate “strategy-proofness”: voters sometimes have incentives to misrepresent

their preferences, so as to achieve an outcome they prefer by the lights of their true

preferences (Gibbard 1973, Satterthwaite 1975). In the context of “true/false” judg-

ment aggregation, something similar holds: under mild conditions, all non-dictatorial

aggregation rules are manipulable by strategic voting (Dietrich and List 2007b). We will

prove that non-manipulable probability aggregation is also essentially impossible, unless
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probabilities are assigned only to a single proposition and its negation.

Although there is much work on probability aggregation and much work on strate-

gic voting in electoral contexts, there is little work on strategic voting in the context

of probability aggregation (for a notable exception, see Laraki and Varloot 2022). The

existing work tends to proceed by applying the established framework of the Gibbard-

Satterthwaite theorem to the case of probability aggregation. In the framework of Gib-

bard and Satterthwaite, individuals (voters) each have a preference ordering over a set of

options (candidates), and those preference orderings are aggregated into a winning out-

come. For instance, voters each rank candidates A, B, and C in an order of preference,

and the aggregation rule selects one candidate as the winner. The Gibbard-Satterthwaite

theorem states that “strategy-proofness” is essentially unattainable unless one fixed in-

dividual is made a “dictator”. The application of this result to probability aggregation

takes the set of options (“candidates”) to be the set of all possible probability functions on

a given algebra of propositions, and assumes that probability aggregation, in e↵ect, takes

the form of preference aggregation over those “options”. The Gibbard-Satterthwaite

theorem now implies that voters will sometimes be incentivized to misrepresent their

preferences over the possible probability functions, just as in ordinary elections they are

sometimes incentivized to misrepresent their preferences over the electoral candidates.1

In this paper, we will proceed di↵erently, taking inspiration from the theory of judg-

ment aggregation rather than preference aggregation. Instead of going via the detour of

the original Gibbard-Satterthwaite theorem and introducing preference orderings over

probability functions, we will define “non-manipulability” directly, as the requirement

that there be no opportunities for individuals to manipulate the collective probability

assignments by misrepresenting their own probability assignments, in a way that is in-

spired by a similar definition of non-manipulability in binary (“true/false”) judgment

aggregation (Dietrich and List 2007b). The resulting analysis is simpler than one that

introduces preferences over probability functions, while still diagnosing how probability

aggregation is vulnerable to strategic manipulation.

1
In a variant of the Gibbard-Satterthwaite framework, to which the theorem still applies, voters have

full preference orderings over all the options but vote only for a single option. Laraki and Varloot (2022)

employ that variant, which allows them to assume that individuals have full preference orderings over all

possible probability functions while voting only for a single (most preferred) probability function. Laraki

and Varloot, drawing on Freeman et al. (2021), also investigate how strategy-proof probability aggre-

gation might become possible when the domain of admissible preference orderings is suitably restricted,

such as to “single-peaked” ones (cf. Moulin 1980).
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2 Definitions

We consider a set N = {1, 2, ..., n} of two or more individuals (experts, jurors, policy-

makers, committee members, or simply epistemic peers, ...) who each assign probabilities

to some propositions, and we are looking for a probability aggregation rule: a method

of aggregating these n individual probability assignments into a corresponding collective

probability assignment.

Formally, a proposition (often also called event) is a subset of an underlying non-

empty set ⌦ of possible worlds. Thus a proposition is identified with the set of those

worlds in which the proposition is true. The empty set is called the contradictory propo-

sition. The set ⌦ is called the tautological proposition. Any other proposition is called

contingent. The conjunction p ^ q of any propositions p, q is given by their intersection

p\ q, the disjunction p_ q by their union p[ q, and the negation ¬p of any proposition

p is given by its set-theoretic complement ⌦\p. An algebra is a set of propositions that

is closed under these three operations (in fact, closure under both negation and either

conjunction or disjunction su�ces for closure under all three). Following the standard

approach in the theory of probability aggregation, we assume that the set of propositions

to which probabilities are assigned – the “agenda” – is an algebra; call it X. We call this

algebra non-trivial if it contains more than one contingent proposition-negation pair.2

For each individual i 2 N , let Pri denote individual i’s probability function on

X, technically a function from X into the interval [0, 1] satisfying the constraints of

probabilistic coherence.3 For each p 2 X, Pri(p) represents the (subjective) probability,

credence, or degree of belief that individual i assigns to p. Let P denote the set of all

possible probability functions on X. An n-tuple hPr1, ..., P rni of probability functions

across the individuals in N is called a profile.

A probability aggregation rule is a function F : Pn ! P, which assigns to each pro-

file hPr1, ..., P rni of individual probability functions a “collective” probability function

Pr. A key aim of the theory of probability aggregation is to identify reasonable proba-

bility aggregation rules, which could plausibly be used in expert panels, policy-making

committees, and other contexts of peer disagreement.

Our focus here is on the attainment of “non-manipulability”: probability aggregation

should not be vulnerable to the strategic misrepresentation of individual probability

2
Any algebra that is not of the forms {;,⌦} or {;,⌦, p,¬p} is non-trivial.

3
Formally, a probability function on X is a function Pr : X ! [0, 1] such that Pr(⌦) = 1 and

Pr(p_ q) = Pr(p)+Pr(q) whenever p and q have empty intersection. On a more demanding definition,

the finite additivity condition is replaced by a countable additivity condition. Our main result holds in

both cases.
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assignments (“strategic voting”). Let us first define what it means for an individual to

manipulate the collective probability for some proposition p. We say that individual i

can manipulate the collective probability for p at the profile hPr1, ..., P rni if

(i) i disagrees with the probability that would be collectively assigned to p if i were to

submit to the aggregation rule his or her sincere probability function Pri, and

(ii) i can move the collective probability for p in the direction of his or her own prob-

ability for p by submitting a di↵erent (“strategically misrepresented”) probability

function Pr0i, while all others’ probability functions are held fixed.

In such a situation, individual i has the opportunity to manipulate the group’s probabil-

ity for p in the direction of his or her own probability assignment, by pretending to hold

the probability function Pr0i rather than Pri. Formally, i can manipulate the collective

probability for p at the profile hPr1, ..., P rni if

(i) Pr(p) 6= Pri(p), and

(ii) there exists a probability function Pr0i such that

Pr0(p)

8
<

:
< Pr(p) if Pri(p) < Pr(p),

> Pr(p) if Pri(p) > Pr(p),

where Pr = F (Pr1, ..., P rn) and Pr0 = F (Pr1, ..., P r0i, ..., P rn).

Now “non-manipulability” is simply the following requirement on a probability ag-

gregation rule F :

Non-manipulability: No individual i 2 N can manipulate the collective probability

for any proposition p 2 X at any profile hPr1, ..., P rni 2 Pn.

This condition is a direct generalization of the condition of non-manipulability in

binary (“true/false”) judgment aggregation (Dietrich and List 2007b). There, we called

an aggregation rule non-manipulable if no individual can manipulate the collective judg-

ment on any proposition at any profile of judgments, and we said that individual i can

manipulate the collective judgment on proposition p at a given profile of judgments if

(i) i disagrees with the judgment that would be collectively made on p if i were to

submit to the aggregation rule his or her sincere set of judgments, and

(ii) i can bring about a collective judgment on p that matches his or her sincere judgment

on p by submitting a di↵erent (“strategically misrepresented”) set of judgments,

while all others’ sets of judgments are held fixed.
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It is easy to see that, if we restrict the range of every probability function – individ-

ual and collective – to the extremal values 0 and 1 (thereby mimicking the case of

“true/false” judgments), our probability-theoretic non-manipulability condition reduces

to its judgment-theoretic counterpart. In the 0/1 case, “moving the collective probabil-

ity for p in the direction of one’s own probability for p” simply means “turning what was

previously a mismatch between one’s own judgment on p and the collective judgment

into a match”.

Although the present non-manipulability condition, like its counterpart in judgment

aggregation, is inspired by the classic condition of strategy-proofness in social choice

theory (Gibbard 1973, Satterthwaite 1975), there is a subtle interpretational di↵erence.

Strategy-proofness, as defined by Gibbard and Satterthwaite, is the absence of incentives

to manipulate the outcome by voting strategically, where those incentives are defined

relative to the voters’ preferences. An aggregation rule is strategy-proof if it never gives

any voters an incentive to misrepresent their preference orderings, so as to achieve an

outcome they prefer by the lights of their true preference orderings. By contrast, non-

manipulability, as defined here, is the absence of opportunities to manipulate the outcome

by voting strategically, where an opportunity to manipulate occurs whenever someone

can move the collective probability or judgment for any proposition in the direction

of his or her own probability or judgment by misrepresenting his or her probability

function or judgment set. This definition does not refer to any preferences at all. The

focus on opportunities (rather than incentives) to manipulate is well-justified by the

informational nature of the probability aggregation framework (or similarly by the nature

of the judgment aggregation framework). Incentives can be analyzed only relative to

certain assumptions about the individuals’ preferences over various outcomes. Unlike the

framework of preference aggregation, however, the frameworks of judgment or probability

aggregation do not include any preferences. If one wanted to analyze incentives to

manipulate, one would first have to enrich those frameworks, by explicitly introducing

preferences over probability functions or over judgment sets, as discussed by Dietrich and

List (2007b) in judgment aggregation (for related results, see Nehring and Puppe 2002)

and by Laraki and Varloot (2022) in probability aggregation. By contrast, our present

definition of non-manipulability applies to the probability-aggregation framework in its

original form, without requiring the additional introduction of preferences.

In what follows, we will show that, under two very mild conditions on the aggregation

rule, non-manipulable probability aggregation is impossible.
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3 Main result

We introduce two minimal and uncontroversial conditions on any probability aggregation

rule:

Consensus preservation: When all individuals have the same probability function,

this becomes the collective probability function. Formally, for every unanimous profile

hPr, ..., P ri 2 Pn, F (Pr, ..., P r) = Pr.

Non-dictatorship: There exists no individual whose probability function always be-

comes the collective one. Formally, there is no i 2 N such that, for every profile

hPr1, ..., P rni 2 Pn, F (Pr1, ..., P rn) = Pri.

Surprisingly, an impossibility result holds:

Theorem 1: For any non-trivial algebra X, there exists no probability aggregation rule

F : Pn ! P satisfying non-manipulability, consensus-preservation, and non-dictatorship.

In other words, any probability aggregation rule will satisfy at most two of these three

conditions, but never all three. We state a proof in the next section.

To illustrate that any two of the three conditions can indeed be satisfied, we give three

examples. First, consider a dictatorial aggregation rule, where, for every hPr1, ..., P rni 2
Pn, F (Pr1, ..., P rn) = Pri for some antecedently fixed individual i 2 N (the “dictator”).

This is non-manipulable (insofar as neither the dictator nor anyone else can manipulate

the outcome by misrepresenting their probability function) and consensus-preserving

(insofar as any consensus will be shared by the dictator too), but it obviously vio-

lates non-dictatorship. Secondly, consider an imposed aggregation rule, where, for every

hPr1, ..., P rni 2 Pn, F (Pr1, ..., P rn) = Pr for some antecedently fixed probability func-

tion Pr. This is also non-manipulable (insofar as no individual can a↵ect the outcome

at all) and non-dictatorial (since there is no dictator), but not consensus-preserving. In-

deed, it is completely unresponsive to the individual probability functions that are being

fed into it and always produces the same fixed outcome. Finally, consider linear aver-

aging, where, for every hPr1, ..., P rni 2 Pn, F (Pr1, ..., P rn) =
1
n(Pr1 + ...+ Prn). This

is clearly consensus-preserving and non-dictatorial, and it looks more reasonable than

a dictatorial or imposed aggregation rule, but it can be manipulated. Any individual

whose probability for some proposition p is higher (or lower) than the anticipated col-

lective probability can manipulate the collective probability in his or her own direction

by overstating (or understating) his or her probability for p, assuming it is not already

maximal (or minimal). We now summarize the proof of our theorem.
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4 Proof

Our proof proceeds via a series of lemmas. We first establish that non-manipulability

implies the following two conditions:

Propositionwise independence: The collective probability for any proposition p de-

pends only on the individual probabilities for p, not on individual probabilities for other

propositions. Formally, for any profiles hPr1, ..., P rni , hPr01, ..., P r0ni 2 Pn and any

proposition p 2 X, if, Pri(p) = Pr0i(p) for all i 2 N , then Pr(p) = Pr0(p), where

Pr = F (Pr1, ..., P rn) and Pr0 = F (Pr01, ..., P r0n).

Reinforcement monotonicity: The collective probability for any proposition does

not change if an additional individual comes to accept that collective probability. For-

mally, for any individual i 2 N , proposition p 2 X, profile hPr1, ..., P rni 2 Pn, and

alternative individual probability function Pr0i, if Pri(p) 6= Pr(p) and Pr0i(p) = Pr(p),

then Pr0(p) = Pr(p) where Pr = F (Pr1, ..., P rn) and Pr0 = F (Pr1, ..., P r0i, ..., P rn).

In the Appendix, we prove:

Lemma 1: Non-manipulability implies propositionwise independence.

Lemma 2: Non-manipulability implies reinforcement monotonicity.

We further observe that, in the presence of propositionwise independence, consensus

preservation implies:

Zero-preservation: For any profile hPr1, ..., P rni 2 Pn and any proposition p 2 X, if

Pri(p) = 0 for all i 2 N , then Pr(p) = 0 where Pr = F (Pr1, ..., P rn).

Lemma 3: Consensus preservation and propositionwise independence jointly imply

zero-preservation.

By lemmas 1 and 3, a probability aggregation rule that satisfies our theorem’s three

conditions will also satisfy propositionwise independence and zero-preservation. We can

now make use of a classic characterization theorem.

Lemma 4 (Aczél and Wagner 1980, McConway 1981): For any non-trivial al-

gebra, a probability aggregation rule F : Pn ! P satisfies propositionwise indepen-

dence and zero-preservation if and only if it is a linear pooling rule, i.e., there exist

weights w1, w2, ..., wn � 0 with w1 + w2 + ... + wn = 1 such that, for every profile

hPr1, ..., P rni 2 Pn,

Pr = w1Pr1 + w2Pr2 + ...+ wnPrn,

where Pr = F (Pr1, ..., P rn).
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Combining all four lemmas yields the following:

Intermediate conclusion: For any non-trivial algebra, a probability aggregation rule

satisfies non-manipulability and consensus preservation only if it is a linear pooling rule

satisfying reinforcement monotonicity.

We finally observe that no non-dictatorial linear pooling rule satisfies reinforcement

monotonicity; i.e., the only way to satisfy reinforcement monotonicity under linear pool-

ing is to give one individual a weight of 1 and to give all others a weight of 0.

Lemma 5: A linear pooling rule satisfies reinforcement monotonicity only if it is dic-

tatorial.

Theorem 1 now follows inmediately. This completes our proof.

5 Is this result surprising?

One might wonder whether we should be surprised by the present impossibility result.

The answer is yes and no. On the one hand, the result is surprising because the central

impossibility result for binary judgment aggregation – the analogue of Arrow’s theorem

– does not carry over to probability aggregation. So, one might have expected that the

impossibility of non-manipulable judgment agregation – the analogue of the Gibbard-

Satterthwaite theorem – also fails to carry over to probability aggregation. This ex-

pectation would not have been unreasonable, since, in standard social choice theory,

Arrow’s theorem and the Gibbard-Satterthwaite theorem are known to be intimately

connected. On the other hand, our present impossibility result may look less surprising

once we recognize that it perfectly corresponds to a matching impossibility result on

non-manipulable binary judgment aggregation. Let us now explain this in more detail.

Let J be the set of all probability functions on the algebra X that take only the

extremal probability values 0 and 1. The set J is a very restricted subset of P. We can

think of a restricted probability aggregation rule F : J n ! J as representing a binary

(“true/false”) judgment aggregation rule.4 The following is a version of what we have

elsewhere called “Arrow’s theorem in judgment aggregation” (Dietrich and List 2007a,

Dokow and Holzman 2010; relatedly, see Nehring and Puppe 2010):

Impossibility of propositionwise independent judgment aggregation: For any

non-trivial algebra, every aggregation rule F : J n ! J (a “binary judgment aggregation

rule”) satisfying consensus preservation and propositionwise independence is dictatorial.

4
Whenever we refer to an aggregation rule F : J n ! J and apply our conditions to it, we re-interpret

these as referring only to probability functions in J rather than P, i.e., essentially to binary judgments.
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This is an impossibility result insofar as dictatorial aggregation rules are unattrac-

tive.5 By contrast, a version of the seminal theorem of Aczél and Wagner (1980) and

McConway (1981), stated as lemma 4 above, is the following possibility result:

Possibility of propositionwise independent probability aggregation: For any

non-trivial algebra, every aggregation rule F : Pn!P (a “probability aggregation rule”)

satisfying consensus preservation and propositionwise independence is a linear pooling rule.

So, the move from the binary to the probabilistic format turns an impossibility

result into a possibility result. However, contrast this pair of results with the following

pair. The first result in this second pair is an impossibility theorem on non-manipulable

judgment aggregation, an analogue of the Gibbard-Satterthwaite theorem (Dietrich and

List 2007b); the second is our present theorem.

Impossibility of non-manipulable judgment aggregation: For any non-trivial

algebra, there exists no aggregation rule F : J n ! J (a “binary judgment aggregation

rule”) satisfying non-manipulability, consensus preservation, and non-dictatorship.6

Impossibility of non-manipulable probability aggregation: For any non-trivial

algebra, there exists no aggregation rule F : Pn ! P (a “probability aggregation rule”)

satisfying non-manipulability, consensus preservation, and non-dictatorship.

This suggests that the impossibility of non-manipulable judgment aggregation – the

analogue of the Gibbard-Satterthwaite theorem – is more persistent than the impossi-

bility of propositionwise independent judgment aggregation – the analogue of Arrow’s

theorem – which goes away when we move from the binary to the probabilistic format.

6 Escape routes

Are there any escape routes from the impossibility of non-manipulable probability ag-

gregation? The first thing to note is that, since our theorem’s other two conditions

on the aggregation rule – consensus preservation and non-dictatorship – are extremely

compelling and uncontroversial, dropping one of them does not seem very plausible.

Dictatorial aggregation rules are not just undemocratic, but they are also degenerate

5
The original theorem applies to a more general class of “agendas”. Specifically, the set X on which

judgments are made need not be an algebra, but could be any negation-closed set of propositions with

two combinatorial properties (“non-a�neness” and “path-connectedness”). It so happens that any non-

trivial algebra has those combinatorial properties.
6
Again, the original theorem in Dietrich and List (2007b) applies to a more general class of “agendas”;

X needs to be merely negation-closed and path-connected. Any non-trivial algebra has those properties.
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limiting cases of aggregation rules. And aggregation rules that violate consensus preser-

vation are equally unattractive. If all individuals agree on the assignment of probabilities

to all propositions in the given algebra, what reason could there be to overrule such a

consensus? Furthermore, the impossibility result would continue to hold if consensus

preservation were weakened to the following, even less demanding condition.

Uncertainty-free consensus preservation: When all individuals have the same

uncertainty-free probability function, this becomes the collective probability function.

Formally, for every unanimous and uncertainty-free profile hPr, ..., P ri 2 Pn (where Pr

assigns only the extremal values 0 and 1 to all propositions in X), F (Pr, ..., P r) = Pr.

This treats as “sacrosanct” only those cases of a consensus in which all individuals

are certain about all propositions in X. In such cases, it is even harder to image a reason

for overruling the consensus in question. Since uncertainty-free consensus preservation

still implies zero-preservation in the presence of propositionwise independence, the proof

of our theorem continues to go through if consensus preservation is weakened to it.

It seems, then, that the only way to allow for non-manipulable probability aggre-

gation is to restrict one’s consideration to cases where the algebra of propositions is

trivial, i.e., where it is of the form {;,⌦, p,¬p} for some contingent proposition p; we

can set aside the even more trivial case {;,⌦}. In such trivial cases, probabilities are

assigned at most to a single proposition-negation pair. A non-manipulable probabil-

ity aggregation rule that will work for such an algebra is the one that assigns to each

proposition the median probability assigned to it by the individuals in N (assuming the

number of individuals is odd). Even if the individuals were willing to misrepresent their

probability assigments to achieve the closest possible match between their individually

assigned probabilities and the collective ones, their best way to achieve this outcome

would be to reveal their own probabilities truthfully. Reporting a probability for p that

is lower than the sincerely held probability for p would only run the risk of shifting the

median probability below one’s own probability for p, and reporting a probability for p

that is too high would only run the risk of raising the median probability above one’s

own probability. Indeed, a median aggregation rule is a paradigmatic example of an

aggregation rule that is reinforcement-monotonic.

It is also illuminating to see why such a median rule is not available for a non-trivial

algebra. The reason is that if we assigned the median probability to every proposition p 2
X, the collective probability assignment could easily become probabilistically incoherent.

Trivial algebras are the only ones for which the median rule is a well-defined probability

aggregation rule, i.e., one that guarantees probabilistic coherence. But this excludes

collective probability assignments to complex issues, a severe limitation.
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Interestingly, however, we can find something that looks like a partial escape route

from our impossibility. Consider an algebra based on a set of worlds ⌦ that can be

“decomposed” into binary characteristics, such as whether global warming by 2050 will

exceed 1.5 °C compared to preindustrial levels, whether CO2 emissions will decrease by

at least 50% by 2030, and so on. For concreteness, suppose the algebra is the power set

of ⌦ = {0, 1}k for some k > 1. So, worlds are each represented by k-tuples of zeros and

ones, corresponding to k distinct characteristics that characterize any such world. We can

then identify k logically independent propositions p1, ..., pk, where, for each j, pj stands

for “the jth characteristic is 1” and ¬pj stands for “the jth characteristic is 0”. If we

are also willing to stipulate that the j characteristics are probabilistically independent,

we can assign collective probabilities to all propositions in the given algebra by taking

the collective probability for any proposition in {p1, ..., pk,¬p1, ...,¬pk} to be the median

individual probability for that proposition (assuming the number of individuals is odd)

and completing the rest of the collective probability function uniquely as required for

probabilistic coherence. This will be a form of “premise-based” probability aggregation

(as defined in Dietrich and List 2017b), where the propositions in {p1, ..., pk,¬p1, ...,¬pk}
serve as the “premises” (to which a median rule is applied) and all other propositions are

treated as “conclusions” (for which the collective probability is derived by implication,

relative to the constraints of probabilistic coherence, under the stipulation of probabilis-

tic independence across the k characteristics). While this aggregation rule is manipulable

(and it preserves consensus only for profiles in which the individuals themselves treat the

j characteristics as probabilistically independent), it does not permit manipulation of

the collective probabilities for any of the premise propositions. If we were willing to re-

lax non-manipulability to a form of non-manipulability that is restricted to the premises

alone (on the grounds that those are the most important propositions), then we would

be able to achieve this weakened form of non-manipulability.

The present partial escape route from our impossibility – recognizing that premise-

based aggregation can be non-manipulable on the premise propositions, though not non-

manipulable across the board – mirrors a parallel escape route from the impossibility of

non-manipulable binary judgment aggregation. There too, one can achieve a restricted

form of non-manipulability on the premises by using a premise-based aggregation rule.

Under such an aggregation rule, the group takes majority votes only one some logically

independent “premises”, such as propositions p and q in the example of Table 1(a), and

derives the collective judgments on all other propositions, such as p ^ q in our example,

by logical inference. Premise-based aggregation is non-manipulable on the premises, but

it is vulnerable to manipulation on other propositions.
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7 Concluding remarks

As soon as probabilities are assigned to more than one proposition and its negation,

non-manipulability is essentially impossible to achieve in probability aggregation: for

any non-trivial algebra of propositions, any probability aggregation rule can satisfy at

most two of (1) non-manipulability, (2) consensus preservation, and (3) non-dictatorship.

Since the latter two conditions are hard to give up, it seems that we must live with the

manipulability of any probability aggregation rule that we use in practice.

One consolation may be that the existence of an opportunity for an individual to

manipulate does not automatically translate into an actual act of manipulation. The

individual in question must be able to identify that opportunity, which requires su�-

cient information about the probability functions of others and a su�cient computational

capacity to figure out how to manipulate e↵ectively. These two epistemic conditions – in-

formational and computational – are not always met in real-world conditions. Moreover,

the individual must be inclined and willing to manipulate – a motivational condition.

As has been noted in discussions of strategic voting within the theory of democracy,

misrepresenting one’s views comes at certain cognitive and possibly also reputational

costs, especially when voting is preceded by a period of group deliberation in which

the participants share their views with one another. Moreover, according to theories of

“expressive” rather than “instrumental” voting (Brennan and Lomasky 1993), truthful

voting can be entirely rational, since voters may care about their own vote as an end

in itself (for instance, as an expressive act) and not just as a means for changing the

election outcome. Here, opportunities for manipulation will not be seized; they will not

translate into acts of manipulation. One can therefore hope that, in real-world settings

of probability aggregation, opportunities for manipulation will not always be acted upon.
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Appendix: remaining proofs

This appendix contains the proofs of Lemmas 1 and 2, the two key results which (jointly

with the classic linearity result) imply our theorem via the argument presented in the

main text. We follow the formalism of the main text.

Proof of Lemma 1. Assume non-manipulability. To show propositionwise independence,

fix s 5 [ and (Su1> ===> Suq)> (Su01> ===> Su
0
q) 5 Pq such that Sul(s) = Su0l(s) for all l.

Writing Su = I (Su1> ===> Suq) and Su0 = I (Su01> ===> Su
0
q), we must show Su(s) = Su0(s).

We can assume without loss of generality that the two profiles di�er only at one individual,

since any profile in Pq can be transformed into any other one in q steps, by replacing first

individual 1’s probability function, then individual 2’s probability function, etc., where

any two consecutive profiles di�er only at one individual. Let l be the only individual such

that Sul 6= Su0l. Hence, (Su
0
1> ===> Su

0
q) = (Su1> ===> Su

0
l> ===> Suq). There are three cases:

Case 1: Su(s) ? Sul(s). Then Su0(s) � Su(s); otherwise l could manipulate the

collective probability for s at (Su1> ===> Suq) by submitting Su0l. As also Su(s) ? Sul(s),

we have Su0(s) ? Sul(s). Thus Su(s) � Su0(s); otherwise individual l could manipulate

the collective probability for s at (Su1> ===> Su0l> ===> Suq) by submitting Sul. Note that

Su0(s) � Su(s) and Su(s) � Su0(s). Thus Su(s) = Su0(s).

Case 2: Sul(s) ? Su(s). Again Su(s) = Su0(s), for reasons like in Case 1.

Case 3: Sul(s) = Su(s). Then also Su0l(s) = Su(s), as Sul(s) = Su0l(s). Thus

Su(s) = Su0(s); otherwise individual l could manipulate the collective probability for s

at (Su1> ===> Su0l> ===> Suq) by submitting Sul, in fact even to the extent of fully enforcing

his or her own genuine probability Su0l(s) = Su(s). ¥

Proof of Lemma 2. Assume non-manipulability. To show reinforcement monotonicity, fix

an individual l, proposition s 5 [, profile (Su1> ===> Suq) 5 Pq, and alternative probability

function Su0l 5 P. Writing Su = I (Su1> ===> Suq) and Su0 = I (Su1> ===> Su
0
l> ===> Suq), we

assume that Sul(s) 6= Su(s) and Su0l(s) = Su(s), and must show that Su0(s) = Su(s).

This holds because otherwise individual l could manipulate the collective probability for

s at profile (Su1> ===> Su0l> ===> Suq) by submitting Sul, which in fact fully enforces his or

her own probability Su0l(s) = Su(s). ¥
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