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Abstract We argue that non-epistemic values, including moral ones, play an

important role in the construction and choice of models in science and engineering.

Our main claim is that non-epistemic values are not only ‘‘secondary values’’ that

become important just in case epistemic values leave some issues open. Our point is,

on the contrary, that non-epistemic values are as important as epistemic ones when

engineers seek to develop the best model of a process or problem. The upshot is that

models are neither value-free, nor depend exclusively on epistemic values or use

non-epistemic values as tie-breakers.

Keywords Epistemic values � Non-epistemic values � Engineering models �
Value-judgments � Application of science

Introduction

In this article we argue that non-epistemic values, including moral ones, play an

important role in the construction and choice of models in science and engineering.

Our claim is not just a descriptive point about how scientists and engineers actually
reason as they develop and assess models. We argue that our claim extends also to

how scientists and engineers ought to reason. It goes without saying that this is a

controversial claim. Engineers and scientists typically argue that models should be
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entirely value-free or may at most rely on epistemic values such as simplicity,

elegance and fruitfulness.1

The role of values in science has been thoroughly debated in the scholarly

literature since the 1950’s. Rudner (1953) famously pointed out that inductive

claims about the justification of scientific hypotheses rely on epistemic value-

judgments, and a similar point was made somewhat later by Kuhn (1962, 1977).

Kuhn argued that epistemic values such as simplicity, scope, theoretical elegance

and fruitfulness influence choices between rival theories and models. Today it has

become widely accepted among philosophers of science that value-judgements

cannot be entirely eliminated from scientific reasoning.

McMullin (1982) deepened the discussion on values in science by explicitly

addressing the distinction between epistemic and non-epistemic values. According

to McMullin, ‘[a]n epistemic value is one we have reason to believe will, if pursued,

help toward the attainment of… knowledge’ (1982, p. 18) All other values are non-

epistemic ones. There are of course many ways in which non-epistemic values may

influence science as a whole. For instance, non-epistemic values influence the

choice of research projects, the way scientific knowledge is used in society (Dorato

2004), and the pragmatic limitations of research methods (Steel 2010, p. 26).

Nevertheless, according to a widely accepted view in contemporary philosophy of

science, there is little room for non-epistemic values in scientific reasoning, i.e., in

the basic construction and application of scientific theories and models. To put

things briefly, the standard view is that non-epistemic values are allowed to

influence scientific reasoning, ‘only if epistemic values do not completely determine

all aspects of scientific inference’ (Steel 2010, p. 26; see also Dorato 2004, p. 59, for

a similar claim).

We take it to be fairly uncontroversial that the philosophical discussion of

epistemic values in science could, and should, be extended to engineering. The

engineer faced with a choice between two or more alternative models also has to

take values into account.2 The aim of this article is not to defend any particular view

about how the engineering disciplines are, or should be, related to other disciplines;

nor do we seek to articulate any precise view about how to draw the line between

engineering and science. Our focus is on modelling, and especially on modelling in

the engineering sciences. In what follows we shall provide examples which show

that non-epistemic values play, and should play, a role in the development and

application of engineering models. Our main claim is that non-epistemic values are

not only ‘‘secondary values’’ that become important just in case epistemic values

leave some issues open. Our point is, on the contrary, that non-epistemic values are

as important as epistemic ones when engineers seek to develop the best model of a

process or problem. The upshot of all this is that models are neither value-free, nor

1 See e.g., Walker (2009).
2 Epistemic values relevant to engineering need not be exactly the same as the epistemic values in

traditional scientific disciplines. While some epistemic values, such as elegance and simplicity, are likely

to be relevant in both engineering and science, a value such as scope seems to be of much less importance

in engineering compared to physics or chemistry. Since engineers primarily seek to build artefacts that

work in a particular context, it is less important whether the solution the engineer comes up with also

works for solving similar problems in other contexts.
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depend exclusively on epistemic values or use non-epistemic values only as

tie-breakers. By bringing attention to the role of non-epistemic values we hope to

show that engineers have a non-trivial and morally relevant influence on the

construction and application of models.

What is an Epistemic Value?

Let us start by taking a closer look at the distinction between epistemic and

non-epistemic values. Although mentioned by Rudner and Kuhn, the more

extensive analysis offered by McMullin (1982) has been particularly influential in

recent years. McMullin claims that a value counts as an epistemic one, if and only

if it helps to ‘promote the truth-like character of science’, whereas all other values

are non-epistemic (1982, p. 18). However, just after he makes this claim, he adds

that, ‘[a]n epistemic value is one we have reason to believe will, if pursued,

help toward the attainment of… knowledge.’(1982, p. 18) A problem with making

both these claims is that the pursuit of truth can conflict with the attainment of

knowledge—promoting the truth will not always lead to the attainment of

knowledge.

The conflict between the two definitions suggested by McMullin persists even if

we think that truth is a necessary condition for knowledge. Consider, for instance, a

value such as simplicity. McMullin explicitly claims that this is an epistemic value

(1982, p. 16). We feel inclined to agree, but this triggers an inconsistency if we read

his definitions literally. In many situations, epistemic agents emphasising simplicity

will attain more knowledge than agents who pay no or little attention to simplicity.

This is because much knowledge gained through simplicity is acquired by giving up

some true but very complex beliefs. For instance, instead of trying to adopt a million

true but slightly different beliefs about equally many mechanisms that shape our

economic system, it might be more effective to single out a few hundred of the most

central ones and turn them into knowledge by increasing their warrant. Therefore,

although simplicity is a paradigmatic example of an epistemic value, it does not fit

well with the first definition suggested by McMullin (promoting the truth), but quite

well with the second (attainment of knowledge). We take the conclusion of this to

be that there is a genuine conflict between focusing on truth and focusing on

knowledge.

This point about the ambiguity in McMullin’s distinction between epistemic and

non-epistemic values has direct relevance for the engineering sciences. It seems

very likely that engineers often have true beliefs about how a complex technical

systems works. However, in some of those cases their true beliefs do not qualify as

knowledge, simply because they are not sufficiently warranted. For instance, an

engineer may truly believe that if he changes some parameter in his complex

technical system just a little bit, then that will trigger a big change elsewhere in the

system—but as long as he has no clue about why this is the case or whether there is

some reliable mechanism which guarantees that this will always happen, his true

belief does not qualify as knowledge because of its lack of warrant. So what is it that

matters then for the definition of epistemic values: truth or knowledge?
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Some scholars probably see the acquisition of true beliefs as the most important

goal of science, but the standard view among philosophers from Plato onwards is

that knowledge is what ultimately matters. (The locus classicus is ‘the road to

Larissa’ in Plato’s The Republic). That said, the acquisition of propositional

knowledge is not the sole epistemic goal of science. Consider, for instance, a Venn

diagram. By drawing a Venn diagram we do not gain any new knowledge, but

making such a diagram can still be an important epistemic goal simply because it

makes it easier to grasp a complex body of knowledge. We take this to show that the

epistemic goals of science can differ from context to context. Hence, a tentative

definition of an epistemic value could be to widen McMullin’s second suggestion a

bit:

Definition 1 An epistemic value is one for which one has reason to believe

that it will, if pursued, help toward the attainment of epistemic goals; all other

values are non-epistemic values.

Unfortunately, it is easy to see that Definition 1, if read literally, fails to give us

exactly what we want. The problem is that it now turns out to be an empirical

question whether a value, such as simplicity, is an epistemic or a non-epistemic

value. In some situations one may have reason to believe that simplicity will lead

us to the attainment of epistemic goals, but this is not always the case. Take

knowledge for example. Although many pieces of scientific knowledge are

surprisingly simple, it is certainly incorrect to think that all are. Sometimes

simplicity does not produce any knowledge at all. McMullin recognises this

problem in passing, but ultimately accepts this context sensitive analysis of

epistemic values. He writes:

When no sufficient case can be made for saying that the imposition for a

particular value on the process of theory choice is likely to improve the

epistemic status of the theory, …, this value is held to be non-epistemic in the

context in question. (McMullin 1982, p. 19)

In our view, McMullin’s context-dependent approach to epistemic values is

problematic. Arguably, which values count as epistemic should not depend on

contingent facts that vary from one context to another. The purpose of grouping

values as epistemic or non-epistemic is to distinguish those values that are, at a quite

general level, beneficial from an epistemic point of view from those that are not.

What counts as a (certain type of) value does not vary from one context to another.

Values do not behave like that.

We of course agree with McMullin that some epistemic values in some

contexts matter more than others. Scope is a much more important value in

physics than in, for instance, structural engineering. The same goes for a value

such as accuracy. In many contexts engineers prefer, and should prefer, the less

accurate Newtonian mechanics instead of the more accurate relativistic mechanics.

However, this point is perfectly consistent with our claim that the demarcation

line between what counts as an epistemic and a non-epistemic value does not vary

across different contexts.
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Now consider the following, revised definition:

Definition 2 An epistemic value is one which will, in each and every case, if

pursued, help toward the attainment of at least one of the epistemic goals of

science or engineering, whatever those goals are; all other values are non-

epistemic values.

As far as we can see, this way of drawing the distinction makes the biconditional

come out true. This is good news. However, a possible objection could be that we

have just replaced one obscure term by another: what are the epistemic goals of

science? In response to this objection, we would like to make two points. First, we

note that although it might be hard to determine what the goals of science or

engineering actually are, we all understand the meaning of that term quite well.

Second, we note that a few general points about epistemic goals seem to be

uncontroversial. For instance, the epistemic goals of a discipline are typically quite

general. Although knowledge could be a candidate for an epistemic goal of science,

it would be odd to claim that only knowledge about Newtonian mechanics or some

other particular theory is an epistemic goal. Moreover, in engineering general

‘‘know how’’ about how to solve certain types of problems might qualify as an

epistemic goal, but hardly ‘‘know how’’ about how to solve a particular design issue

(although solving such issues can of course be important for a number of reasons).3

Given such restricted notion of epistemic goals, our definition helps us to clarify

the distinction between epistemic and non-epistemic values, irrespective of whether

we are able to determine once and for all exactly what the epistemic goals of science

are. By adopting Definition 2 we attain the conceptual clarity we are looking for.

The Role of Non-Epistemic Values in Modelling

It is relatively easy to give examples of non-epistemic values that influence the

construction of models in science and engineering. The list of non-epistemic values

includes, for instance, safety, sustainability, equality, nonmaleficence, reliability,

economic prosperity and wellbeing. However, before we discuss these values we

would like to say a few words about the definition of a model.4

As we see it, models comprise at least propositions expressing scientific

representations and propositions expressing empirical assumptions. The represen-

tational propositions express relations between all sorts of entities. For example, the

model of the solar system includes representations of the planets and their relations

to each other. The empirical assumptions ascribe properties to representations; for

instance, many models of the solar system assume that planets are perfectly round. It

is plausible to assume that every model is designed with a specific goal in mind. The

goal of the model determines what kind of output the model should generate, e.g., a

3 We wish to thank one of the reviewers for helping us to clarify this point.
4 See Diekmann (2011), ‘‘Moral Mid-Level Principles in Modeling’’ (manuscript), for a more detailed

discussion of models.
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numerical value, or an evaluative judgment about a state, or a judgement about a

characteristic behaviour.

Now, in order to bring home our point about the importance of non-epistemic

values, we shall discuss four examples of models that have been constructed and

used by engineers and scientists. These examples show that several quite different

non-epistemic values influence the construction of models in science and

engineering.5

Example 1 Non-epistemic values influence the choice of represented properties.

Clausen and Cantwell (2007) describe the calculation of safety factors in

decision-making tools. Safety factors are parameters, determined by rules of thumb

that help to anticipate unforeseeable hazards. For illustrative purposes, Clausen and

Cantwell discuss the calculation of the reference dose (RfD) used by toxicologists in

risk assessments of chemicals. The non-epistemic, toxicological goal of the RfD is

to identify a dose of a toxic substance that is sufficiently unlikely to put humans at

risk. The RfD is calculated as follows:

RfD :¼ NOAEL

UA � UH � US � UD �M

where

(i) NOAEL, the ‘‘no observed adverse effect level’’, is the dose of the substance

that has been shown not to be harmful to animals (e.g., rats);

(ii) UA is the interspecies factor, which reflects uncertainty due to physiological

differences between humans and animals (a common value is 10);

(iii) UH is the intraspecies factor, which reflects uncertainty about differences

among humans (a common value is 10);

(iv) US is the chronicity factor, which is larger than 1 if the observations are short-

term while the RfD is used for long-term considerations (values are usually

less than 10);

(v) UD is the database factor, which is included if a database is incomplete or

insufficient (values vary between 1 and 100); and

(vi) M is the modifying factor, which is used for covering unforeseen consider-

ations (usually less than 10).

The formula for calculating the RfD highlights an important way in which non-

epistemic values can influence a model. Safety, which is a paradigmatic example of a

non-epistemic value, influences the choice of represented parameters. The NOAEL

and all the uncertainties about substances listed above are included in the model,

because they are deemed to be relevant for ensuring that the RfD guarantees safety in

various contexts. If safety had not been a concern, this choice of the effect level

(numerator) as well as the divisors would not have constituted an appropriate model.

Example 2 Non-epistemic values influence the thresholds used in models.

5 We try to balance between models from science and models from engineering. Some examples are on

the border between these two. Since a full-fledged distinction between engineering and science would not

contribute to our point, we leave it out and emphasize our main point.
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The Knowledgeable Service Robots for Aging (KSERA) project (Salerno et al.

2010) researches home care systems for the elderly, in which fall detectors play an

important role. Fall detectors are devices that are worn on the body and detect falls

by measuring rapid changes in the movements.

The device detects a fall by recording four successive phases, namely

(i) ‘‘weightlessness’’, (ii) ‘‘impact’’, (iii) ‘‘inactivity’’, and finally (iv) ‘‘difference

to initial status’’. Each fall detector contains a small weight, for example 1 g. In the

first phase, weightlessness is detected if the weight is measured to weigh less than

1 g. (This happens if the detector and weight fall together with the patient.) In the

second phase, the impact phase, the weight accelerates heavily when the detector

suddenly stops as the patient’s body hits the ground. In the third phase, inactivity is

recorded as the human body remains motionless on the ground for some time.

Finally, the fourth phase is recorded if a change in orientation of the body (from

standing to lying) is detected. If all four phases are recorded in this particular

sequence, then the detector sets off an alarm, alerting a healthcare provider that a

patient has fallen in his or her home and needs assistance.

The fall model used in the construction of the detector comprises at least one

non-epistemic value-judgment. In order to see this, note that the detector has to be

programmed to set off the alarm, only if the recorded data exceed certain thresholds.

What the appropriate level of these thresholds is, is by no means a purely epistemic

question. It is very reasonable to also take the patient’s wellbeing into account when

setting the thresholds. For instance, a very sensitive detector (i.e., a device that

produces a large number of false positives) would cause a lot of irritation for the

patient and perhaps even remain unused, which would affect the patient’s wellbeing

negatively in the long run. For analogous reasons, a device that is not sufficiently

sensitive (i.e., a device that produces a large number of false negatives) could fail to

detect a fall and could thus affect the patient’s wellbeing negatively. In some

situations, considerations of wellbeing of course have to be balanced against other,

purely epistemic considerations. Thus, wellbeing is a non-epistemic value that

sometimes influences the construction of models, such as fall models.

Example 3 Non-epistemic values counterbalance the influence of epistemic values.

Jenkins and McCauley (2006) discuss Geographical Information Systems (GIS)

used for supporting decision-makers in geo-engineering. The goal of a GIS is to

model the topography of a landscape, including water streams and height

differences of the ground. The landscape is represented as a data grid of cells

with different heights on an integer scale. Each cell is categorized as terrestrial (e.g.,

forests) or aquatic (rivers and lakes). In nearly all GIS models it is assumed that,

(i) water streams are fractal systems, and that (ii) single cells in the data grid that are

lower than the surrounding ones are data noise. (p. 278)

The assumption that water streams have fractal geometry, i.e., assumption (i), is

powerful but restrictive, because fractal geometries comprise repeated patterns on

different scales. Trees typically have a fractal geometry: if one cuts a big branch

from a naturally grown tree and compares it to the whole tree, then these two pieces

have pretty much the same structure. Moreover, if one breaks off one of the

sub-branches from the big branch, one will again discover that the tree, the big
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branch, and the sub-branch have roughly the same structure. The same holds true for

many natural objects such as plants, coasts, or rivers. By assuming fractal geometry

only a small number of data points are required for generating accurate

representations of artefacts exhibiting this pattern.

Assumption (ii), according to which single data cells that are lower than the

surrounding ones should be treated as noisy data, is included in GIS models because

most single data cells are due to rounding or sampling errors (p. 278). Rounding

errors occur because a GIS represents heights in integers, in contrast to the floating

points that are used for collecting the measurements. Sampling errors occur in

measurements of the actual terrain, if the height of the measured point does not

represent the surrounding height. For example, a hollow in the ground does not

represent the actual height of its surrounding.

Jenkins and McCauley correctly point out that assumptions (i) and (ii) are

problematic because they entail that wetlands are not accurately represented in GIS

models. Wetlands are parts of the water flow system with central ecological

functions, and ‘[t]hese wetlands … provide important ecological services such as

flood mitigation, groundwater recharge, nutrient processing, and habitat for unique

flora and fauna.’ (p. 278) Since wetlands do not fulfil the requirements of fractal

geometry, and since many wetlands are smaller than a single grid cell, assumptions

(i) and (ii) entail that wetlands are not accurately represented in GIS models.

This neglect of wetlands causes a value conflict. Briefly put, assumptions (i) and

(ii) are made with the intention to increase the predictive power and accuracy of the

model; both are epistemic values. Therefore, from a purely epistemic point of view

assumptions (i) and (ii) may very well be warranted. However, since it is widely

accepted that a non-epistemic value such as sustainability is relevant when

employing GIS models for landscape management (which requires that wetlands are

accurately represented), it becomes clear that the representation’s predictive power

and accuracy conflict with sustainability.

Example 4 Non-epistemic values influence the choice of models.

Fienberg (1994) discusses the choice between statistical models used in the US

decennial census. The US population is counted every 10 years and the results are

used to allocate, among other things, Congressional seats and federal funds. A major

problem in the decennial census is how to deal with ethnic minorities, which are less

likely to be counted than others. This gives rise to a serious undercount problem. The

problem is deeply rooted in social and socioeconomic problems, but needs to be

tackled with statistical methods. An unresolved undercount problem will typically

lead to economic benefits for a socially strong group of white middle class Americans.

In the decennial census in 1990 two rival statistical models were considered. The

Bureau of Census proposed a model that they argued would lead to statistical

improvements at the global data level. A group of independent statisticians

proposed alternative models designed to reduce the effect of the undercount

problem at the regional level. (p. 131) While the Bureau’s method was never

questioned, the statistical models developed by the independent statisticians went

through a radical development process in the period leading up to the 1990 census

and eventually became widely accepted among statisticians.
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A few years before the 1990 census, a decision was made not to use the model

developed by the independent statisticians. According to Fienberg, the actual reason

for not using the improved statistical methods had nothing to do with epistemic

considerations, but was entirely motivated by political and economic considerations,

such as profit. Fienberg furthermore argues that for reasons of equality the

independently developed model should had been employed instead. Let us suppose

that these claims are correct. Then, the upshot of this example is that sometimes,

such as in this particular census, the choice of model is directly affected by non-

epistemic, moral and political values.

Should Non-Epistemic Values be Excluded?

It is hardly surprising that non-epistemic values actually play a role in many models

used in science and engineering. As shown above, the problem that a model seeks to

address can seldom be resolved by taking only epistemic considerations into

account. However, it does not follow from this that non-epistemic values ought to

influence models. Many scientists and engineers believe that models are epistemic

tools for scientific inquiry, and that models and their output should therefore not be

influenced by non-epistemic values. We, however, reject this claim.

We believe, partly in line with what Rudner (1953) sketched in his classic article,

that when models are used for solving non-epistemic problems, then non-epistemic

values partly determine whether a model ought to be accepted or rejected. Our

argument is based on the premise that models are, and ought to be, developed with a

certain goal in mind. Sometimes the goal is purely epistemic, such as in certain

branches of physics and chemistry. However, there are also cases in which the goal of

the model is, at least partly, non-epistemic. For example, the fall detector discussed in

Example 2 seeks to increase the safety and wellbeing of elderly. The detector uses a

model of what should ‘‘count’’ as a fall. However, as explained in Example 2, a purely

epistemic approach to what should count as a fall is not what engineers look for, or

should be looking for, in this case. A number of non-epistemic value-judgements about

safety and wellbeing also matter. When constructing the fall model, engineers should

therefore not just focus on the epistemic description of the fall. This means that what

counts as a successful model partly depends on the fulfilment of non-epistemic goals.

Our general argument can be summarised as follows:

(i) Models are, and ought to be, developed with one or several goals in mind.

(ii) Sometimes one of the goals is, and ought to be, a non-epistemic goal.

(iii) The extent to which a non-epistemic goal is accurately reflected in a model

depends on the influence of non-epistemic values.

(iv) Some models are influenced, and ought to be influenced, by non-epistemic

values.6

6 Note that we are by no means trying to derive an ‘ought’ from an ‘is’ here. According to our argument,

it is not the mere fact that models are developed with a certain goal in mind that justifies the conclusion

that models sometimes ought to reflect non-epistemic values. The ‘ought’ in the conclusion of the

The Role of Non-Epistemic Values in Engineering Models 215

123



While we have already discussed the first two premises in the paragraph above,

the core of the argument lies in the third premise. In order to understand the role that

value influences play in the third premise, it is helpful to note that the relation

between the model and the modelled entity is asymmetric. Every model represents

or describes another entity, whereas the entity does not represent or describe the

model (cf. Suárez 2003, p. 232). This asymmetry is what lies behind the popular

slogan ‘all models are wrong’. In essence, there are always some aspects of the

entity that are not covered by the model.

When a modeller seeks to achieve his or her goals, the asymmetry described

above entails that it will always be possible to construct rival models, which seek to

solve the same problem in different ways. However, if one of the rival models does

not contribute to solving the goal, there is no reason to adopt it. Moreover, how well

each rival model performs depends on what is considered to be desirable or

undesirable in light of the goals of the model. Therefore, when there are choices to

be made between rival models, these choices will depend on value-judgments.7

In addition to selecting a model from a set of rival models, at least two further

types of value-judgments ought to affect the construction of models, viz. value-

judgments that determine choices about which properties of the modelled entity are

to be represented, and value-judgments that determine which assumptions are to be

made. The choice of the represented properties influences whether all issues are

respected that are relevant to the goal. For example, how safe the RfD actually is

hinges on the choice of the particular safety factors. The assumptions in a model can

ease the achievement of the goal, but they can also contradict or inflict with it. In the

GIS example, the assumptions inflict with the goal of promoting sustainability. Both

value-judgments are thus essential for attaining the goal of the model.

Turning away from value-judgments back to values, we concede that for purely

epistemic goals, scientists and engineers need not, and typically do not, take non-

epistemic values into account. However, in many cases at least one of the goals is

non-epistemic. For instance, the goal behind constructing models for fall detectors is

to increase wellbeing of elderly people (see Example 2). Whether the fall model is a

perfectly accurate representation of falls is thus not its major concern. As said

above, a good representation of falls is a mere means to the actual end of increased

wellbeing. Therefore, engineers who choose a model for constructing a fall detector

have to trade-off epistemic goals, such as fall-representation, against non-epistemic

goals, such as increased wellbeing. The value-judgments that are made when

developing and accepting the fall model will allow for such trade-off towards

increased wellbeing, only if also non-epistemic values, such as wellbeing, determine

these judgments. The same holds true for value-judgments in general. Only if

non-epistemic values influence what is desired, the non-epistemic aspects of

Footnote 6 continued

argument comes from the ‘ought’ in the premise, i.e., the claim that models ought to be developed partly

with non-epistemic goals in mind, including goals such as safety and wellbeing.
7 As a commentator pointed out, it is possible to see models as social constructs. Under this particular

condition, the role of non-epistemic values becomes even more apparent: The involved persons are

usually not just scientists or engineers, but also users. Therefore the desirabilty of a model always

depends also on user-related non-epistemic considerations and connected non-epistemic values.
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non-epistemic goals can be fully satisfied in a value-judgment. Hence, to which

extent the non-epistemic goals of the model are promoted by value-judgments

depends on non-epistemic values.

For this reason, non-epistemic values influence and ought to influence the

construction and choice of models. Given a non-epistemic goal, non-epistemic

values are needed for pursuing that goal. Since value-judgments are always involved

in the construction of a model, and value-judgments are needed for deciding which

model it is best to employ, non-epistemic values should determine which model is

chosen.8

Concluding Discussion

Many engineers and scientists believe that models should be entirely value-free, or

that models should at least contain no non-epistemic values. However, this

traditional approach fails to recognize that in the applied sciences, and in many

branches of engineering, the goals that we seek to achieve are not purely epistemic.

We have argued that in order to relate models to non-epistemic goals, models should
be partly determined by non-epistemic values. Moreover, non-epistemic values are

not just ‘‘secondary values’’ that become important once all the epistemic values

have been taken into account. Non-epistemic values can actually be in direct conflict

with epistemic values, as seen in the GIS case (Example 3). Thus, for non-epistemic

reasons, non-epistemic value-judgments should influence the construction of models

and the choice between rival models should partly depend on non-epistemic values.

We believe that the implications for modelling practice can be far-reaching. For

instance, we would like to encourage scientists and engineers to change their

perspective and focus more on a context sensitive approach. When developing a fall

model, for instance, the engineer should focus less on modelling the fall itself, but

rather try to find a model that optimizes wellbeing. Moreover, in future research on

the role on non-epistemic values in modelling it might be reasonable to apply

insights from the value-sensitive design approach discussed by e.g., van den Hoven

and Manders-Huits (2009); see also van de Poel (2009).

Finally, let us just mention that many rules of good practice or professional

norms are already implicitly based on non-epistemic values and conventions.

8 As an alternative view, one could state that all non-epistemic aspects can be formulated as

epistemically assessable terms. Such formulation would be prior to the actual model construction. Then,

epistemic values would be sufficient to develope and evaluate the performance of models. See e.g., the

RfD, Example 1: One would first define which doses are regarded as safe, which uncertainties to include,

and how big the safety factors should be chosen. Consequently, tracing an RfD would remain a solely

epistemic issue (namely measuring the NOAEL and calculating the RfD). Hence, so the reasoning goes,

one could seek to exclude non-epistemic values and argue that models ought to be free of non-epistemic

values.

However, such an alternative view distorts the concept of models. The strategy of the alternative view

is to simply redefine the notion of a model: All non-epistemic influences on models are excluded as parts

that are prior to models. The problem is, however, that this strategy neglects that definitions and

assumptions are a fundamental part of models. Without defining which entities are described or

represented and without assuming simplified properties of those entities, models could neither describe

nor represent. Indeed, they would not distinguish from formulae, algorithms, or calculations.
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Questioning and overcoming those conventions could help scientists and engineers

to be case-sensitive and to optimally address all involved non-epistemic issues.
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