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Abstract

According to what has become a standard history of quantum me-
chanics, von Neumann in 1932 succeeded in convincing the physics
community that he had proved that hidden variables were impos-
sible as a matter of principle. Subsequently, leading proponents of
the Copenhagen interpretation emphatically confirmed that von Neu-
mann’s proof showed the completeness of quantum mechanics. Then,
the story continues, Bell in 1966 finally exposed the proof as seriously
and obviously wrong—this rehabilitated hidden variables and made
serious foundational research possible. It is often added in recent ac-
counts that von Neumann’s error had been spotted almost immediately
by Grete Hermann, but that her discovery was of no effect due to the
dominant Copenhagen Zeitgeist.

We shall attempt to tell a more balanced story. Most importantly,
von Neumann did not claim to have shown the impossibility of hidden
variables tout court, but argued that hidden-variable theories must
possess a structure that deviates fundamentally from that of quan-
tum mechanics. Both Hermann and Bell appear to have missed this
point; moreover, both raised unjustified technical objections to the
proof. Von Neumann’s conclusion was basically that hidden-variables
schemes must violate the “quantum principle” that all physical quan-
tities are to be represented by operators in a Hilbert space. According
to this conclusion, hidden-variables schemes are possible in principle
but necessarily exhibit a certain kind of contextuality.

As we shall illustrate, early reactions to Bohm’s theory are in agree-
ment with this account. Leading physicists pointed out that Bohm’s
theory has the strange feature that particle properties do not generally
reveal themselves in measurements, in accordance with von Neumann’s
result. They did not conclude that the “impossible was done” and that
von Neumann had been shown wrong.



1 Introduction

Von Neumann’s book “Mathematische Grundlagen der Quantenmechanik”
(Mathematical Foundations of Quantum Mechanics)[24], published in 1932,
is widely acclaimed as a milestone in the history of quantum mechanics. It
is a pioneering work that, among other accomplishments, first introduced
Hilbert space techniques in the study of quantum theory, considered ther-
modynamic problems in terms of density matrices and what we now call
von Neumann entropy, and clearly formulated the measurement problem.
However, in addition to all well-deserved praise the book has also earned it-
self the reputation of containing a blunder that has been detrimental to the
conceptual development of 20" century physics, namely the infamous proof
that it is impossible to add “hidden variables” to the formalism of quantum
mechanics so that the theory becomes deterministic and more complete in
its description of physical properties. This proof is now generally considered
to be a flagrant fallacy; even such a patent one that it is mysterious how a
mathematical genius like von Neumann could commit it.

In 1996 a second reprint of the 1932 book appeared, to which the math-
ematical physicist Rudolph Haag contributed a preface [24].} In his preface
Haag notes: “one has characterized his (i.e. von Neumann’s) proof of the
impossibility of hidden variables as stupid (dumm)”. He immediately adds
apologetically: “one should not forget, however, that this occurred in the
context of significant original contributions by von Neumann, in this case
the insight that mixed states are described by density matrices, which do
not form a simplex”. This implicit acknowledgement of the foolishness of
von Neumann’s proof echoes countless similar comments in the literature
of the past five decades, starting with John Bell’s criticism [2] that “von
Neumann’s ‘very general and plausible postulates’ are absurd”. The repu-
tation of von Neumann’s proof has kept on declining since this first attack
by Bell. Along the way down, Bell [3] wrote in 1982: “But in 1952 I saw the
impossible (according to von Neumann) done. It was in papers by David
Bohm. But why then had Born not told me of this ‘pilot wave’? Why did
von Neumann not consider it?” And in 1988 Bell [4] heightened the story
by exclaiming: “Yet the von Neumann proof, when you actually come to
grips with it, falls apart in your hands!... It’s not just flawed, it’s silly... You
may quote me on that: The proof of von Neumann is not merely false, it is
foolish!”

'In this article I base myself on this second reprint of the German original, so references
to page numbers in the Grundlagen are to this edition. Translations from this book and
other sources are mine, unless otherwise indicated.



A further perspective on the matter was opened up by Jammer [16], who
in his 1974 book drew attention to a forgotten publication by the German
philosopher and physicist Grete Hermann. According to Jammer, in this
publication from 1935 Hermann had already identified the same weak spot
in von Neumann’s proof as Bell would uncover in 1966. Hermann’s work
was definitively saved from oblivion and incorporated into what now has
become a standard story by Mermin [17], who in 1993 wrote: “A few years
later Grete Hermann, 1935, pointed out a glaring deficiency in the argument,
but she seems to have been entirely ignored. Everybody continued to cite
the von Neumann proof. A third of a century passed before John Bell,
1966, rediscovered the fact that von Neumann’s no-hidden-variables proof
was based on an assumption that can only be described as silly—so silly, in
fact, that one is led to wonder whether the proof was ever studied by either
the students or those who appealed to it to rescue them from speculative
adventures”.

The picture that emerges from these quotations, and from many similar
passages that can be found in the literature, is quite suggestive. As Belin-
fante [1] put it: “The truth, however, happens to be that for decades nobody
spoke up against von Neumann’s arguments, and that his conclusions were
quoted by some as the gospel”. Seevinck [20] concludes in the same vein:
“eventually von Neumann’s proof became considered holy—it was received
as Biblical wisdom that one should not challenge”. The suggestion clearly
is that von Neumann’s result was rhetorically used by the ruling class of
Copenhagen physicists to ban the thought that quantum mechanics could
be incomplete, with the aim of securing the hegemony of the Copenhagen in-
terpretation. This might be called a program of indoctrination—which was
only undermined when Bell showed that the emperor wore no clothes and
publicly exposed the patent fact that von Neumann’s proof was incorrect.

Against this well-entrenched account, the present paper argues that the
actual history was considerably less simple. As we shall show, Bell, Mermin
and others very probably misunderstood and certainly misrepresented von
Neumann’s proof, which on inspection turns out to be valid and sensible—in
this assessment we elaborate on a recent paper by Jeffrey Bub [8]. More-
over, Bell and other commentators did not give a correct account of the
conclusion von Neumann drew from his proof: von Neumann never claimed
to have excluded all possible hidden variables, but only those that could fit
in a quantum kinematical framework. Further, we argue that Grete Her-
mann’s work, although interesting both historically and philosophically, did
not succeed in coming to grips with von Neumann’s proof either. Inter-
estingly, Hermann’s technical objections are in their details rather differ-



ent from Bell’s; though equally misdirected. Moreover, her argumentation
was not of the kind that can be expected to have caught the attention of
the physics community, and this will have been an important factor in the
poor reception of her work. Finally, we review some contemporary obser-
vations (from the nineteen fifties) on how von Neumann’s proof relates to
the hidden-variables theories of Bohm and de Broglie. As will become clear,
both major Copenhagenists and prominent hidden variables proponents un-
derstood what was actually proved by von Neumann. If anything, it appears
that a clear rhetorical use of von Neumann’s result was first of all made by
opponents of Copenhagen, who used the alleged obvious fallacy in the proof
to cast doubt on the scientific judgment of the Copenhagen circle (or clique),
thus discrediting the Copenhagen interpretation itself by implication.

2 The plan of von Neumann’s book: The Quan-
tum Paradigm

In the three-page Introduction to his 1932 book von Neumann unfolds his
general plan: he intends not to address specific quantum mechanical prob-
lems, but is going to focus on the general structure and interpretation of
the new theory, with particular attention to the role of probability. As he
announces, he will demonstrate how the statistical formulas of quantum
mechanics follow naturally from a small number of basic assumptions of a
qualitative nature, so that they are not so counterintuitive as may appear
at first sight. Further, he promises us to investigate in depth the issue of
whether the statistical character of the theory can be understood as a man-
ifestation of our lack of knowledge; in which case the existence of “hidden
variables” would explain the need for probability statements. Concerning
this, Von Neumann already now reveals his main conclusion [24, pp. 2-3]:
“It turns out however that this (i.e. the introduction of hidden variables)
will hardly be possible in a satisfactory way—more precisely, such an expla-
nation is incompatible with certain qualitative basic postulates of quantum
mechanics”.?

Von Neumann’s actual discussion of the hidden-variables question, lead-
ing to his (in)famous impossibility proof, only takes place in the fourth of
the book’s six chapters. In order to elucidate the status of the qualitative
axioms on which that discussion is based we shall first briefly go through the

Indessen zeigt es sich, daB dies kaum in befriedigender Weise gelingen kann, genauer:
eine solche Erklarung ist mit gewissen qualitativen Grundpostulaten der Quantenmechanik
unvereinbar.



book’s first three chapters. But it should be noted already now that in his
introductory remarks von Neumann does not declare that hidden variables
are flatly impossible, but only that their introduction would conflict with
what he considers basic general characteristics of quantum mechanics.

In chapter I of the Grundlagen, von Neumann reviews the history of
quantum mechanics leading up to matrix mechanics (Heisenberg, Born,
Jordan) on the one hand and wave mechanics (Schrodinger) on the other.
Though both theories ultimately yield the same physical predictions, they
start from very different principles and are also mathematically disparate.
In particular, in matrix mechanics one has to operate with discrete quan-
tities (components of matrices) whereas wave mechanics has the form of a
continuum theory, so that a one-to-one mapping between the two structures
is impossible. Still, their physical equivalence suggests that both theories
latch on to the same physical core.

The following similarity in the two approaches suggests a way of access
to this essential core: both matrix and wave mechanics start from the clas-
sical description of physical problems in which a Hamiltonian is given as a
function of coordinates ¢; and conjugated momenta p;. In matrix mechanics
these coordinates and momenta are replaced by matrices J; and P;, respec-
tively, subject to the canonical commutation relation P;Q; — Q;P; = %]l,
after which the task becomes to diagonalize the resulting Hamiltonian ma-
trix by finding its eigenvalues. In wave mechanics, on the other hand, one
transforms the classical Hamiltonian into an operator working on continuous
and differentiable functions 1 of the ¢; (i.e., functions in classical configura-
tion space) by replacing each occurrence in the Hamiltonian of p; by %%7
after which one solves the differential equation Hvy = A\y. In both cases
the solution of an eigenvalue problem is the central task, which suggests
the existence of a physically meaningful isomorphism between the quanti-
ties that occur in these respective eigenvalue problems. So one expects an
isomorphism that maps the matrix Hamiltonian to the Schrodinger differ-
ential operator (and vice versa), and the vectors in the matrix formalism to
the functions v in the Schrodinger theory.

Although the discrete index space of matrix mechanics and the con-
tinuous classical configuration space of wave mechanics cannot be heaped
together mathematically [24, p. 15|, this thus proves to be an artifact of
mathematical surplus structure: the only things that turn out to matter are
states (vectors and functions, respectively) and operators working on them.?

3.. die Raume Z und Q sind wirklich sehr verschieden, und jeder Versuch, sie in

Beziehung zu setzen mufl auf grole Schwierigkeiten stoflen. Das, worauf es uns in Wahrheit



Von Neumann draws the conclusion that wave mechanics and matrix me-
chanics are steppingstones to a pure quantum theory that is independent of
representational particularities and captures what is really physically signif-
icant. The corresponding mathematical structure is “the abstract Hilbert
space”, to which a detailed mathematical investigation is devoted in chapter
IT of the Grundlagen.

This chapter II is the longest in the book and has the form of an indepen-
dent mathematical treatise on the structure of Hilbert space. Notoriously,
von Neumann here insists on mathematical rigour and avoids “subterfuges”
like Dirac’s delta-function. Although this sometimes complicates the pre-
sentation and notation, it can be said that Chapter II pioneers the complete
formal machinery that has now become standard in quantum theory. In
particular, attention is paid to the operator calculus in Hilbert space and to
eigenvalue problems.

After the mathematical intermezzo of chapter II, chapter III (“The quan-
tum mechanical statistics”) returns to the physical meaning of the formal-
ism. In chapter I it had become clear that in the transition from classical
theory to quantum mechanics the coordinates ¢; and momenta p; had to
be replaced by either matrices or differential operators, and that these in
turn should be seen as particular representations of operators in an abstract
Hilbert space. As a consequence, the classical Hamiltonian (representing
the system’s energy), being a function of the coordinates and momenta,
was transformed into an operator as well. Von Neumann expands this into
a general lesson: it is characteristic of quantum mechanics that physical
quantities (i.e. quantities that can be measured on a physical system) are to
be represented one-to-one by operators in Hilbert space [24, sect. II1.1 and
especially sect. I11.5].4

Generalizing the proposals of Born and others concerning the physical
meaning of the formalism [24, III.1], von Neumann now derives the following
rule: if R is a physical quantity®, and R the corresponding operator, the

ankommt, ist gar nicht eine Beziehung von Z zu €2, sondern nur eine solche zwischen ihren
bzw. Funktionen: d.h. zwischen den Folgen zi, 2, ..., die die Funktionen in Z sind, und
den Wellenfunktionen ¢(qi...qx), die die Funktionen in €2 sind. Denn diese sind es allein,
die in die Fragestellungen der Quantenmechanik eingehen.

4These operators corresponding to physical quantities should be hypermaximal, i.e.
self-adjoint.

®Von Neumann systematically distinguishes between physical quantities and their rep-
resentation in the mathematical formalism. Physical quantities (like energy, momentum,
position) can be measured in the laboratory; they are denoted by bold-faced capitals like
R. Their formal counterparts (operators in quantum mechanics) are denoted by non-bold
capitals like R.



expectation value of R in the state ¢ is given by (R, ¢), i.e. the inner prod-
uct in Hilbert space between Ry and ¢.% This formula for the expectation
value of a physical quantity R can be given the equivalent form

Exp(R) = Tr(PyR),

in which P is the projection operator on the state ¢ and Tr represents
the trace (the result of taking the diagonal elements of an operator in the
matrix representation).

This formula can be generalized for the case in which there is uncertainty
about the quantum state [24, pp. 157-158]. If there are various possibilities
for the state, viz. 1, 2, ..., with associated probabilities wi, wo, ... quanti-
fying our lack of knowledge, we obtain for the expectation value of R the
expression ), w;(Ry;, ;). This can alternatively be written as

Exzp(R) = Tr(UR), (1)

with U = ), w; P,,). The operator U in this formula is Hermitian and non-
negative, with trace equal to 1. Since knowledge of U suffices to determine
the expectation values of all physical quantities in an ensemble, U (the
density operator) completely characterizes that ensemble. Equation 1 is the
central statistical formula of quantum mechanics.

Via Equation 1, and its alternate expressions, probabilities enter the
theory, and it is natural to wonder about the status and origin of these
probabilities. In particular, it should be made clear whether they play the
same role as probabilities in classical statistical mechanics, that is, whether
they quantify a lack of information about the micro-state. If so, this would
imply the existence of “hidden parameters” that would be needed in addition
to the quantum state to fix the actual physical state. Lack of knowledge of
these hidden parameters would then explain the appearance of statistical
arguments. As von Neumann observes, in classical physics the search for
explanations in terms of such hidden parameters (or “hidden variables”)
has had many successes and has led to considerable progress, for example
in the kinetic theory of gases [24, p. 109]. He continues:

Whether such an explanation by means of hidden variables is
also appropriate in the case of quantum mechanics is an often
asked question. The view that it will once be possible to answer

5In the wave mechanics form of the theory the Hilbert space state ¢ would correspond
to a wavefunction ¢(qi1...qx), in the matrix formulation it would be a vector (z1, z2, ..., z1)
on which the matrices operate.



it affirmatively has also now prominent representatives. Such an
affirmative answer, when justified, would make the present form
of the theory provisional, since in this case the ¢-description of
the states would be essentially incomplete.

We shall demonstrate later (IV.2) that an introduction of hidden
parameters is certainly not possible without changing the present
theory in essential respects.”

As in his earlier quoted statement (first paragraph of this section), von Neu-
mann here anticipates what he is going to prove in chapter IV: he announces
that the structure of a hidden-variables theory must differ in an essential way
from that of quantum mechanics. In the next section we shall see exactly
what will have to be different in such a new theory.

Before we move on to chapter IV, we should pay attention to von Neu-
mann’s discussion of physical quantities in chapter III. In classical physics,
measurable physical quantities were represented by functions on phase space;
since Hilbert space should be regarded the successor of classical phase space,
now physical quantities will have to correspond to operators in Hilbert space.
But Hilbert space operators do not always commute, and this leads to com-
plications when we try to apply the formulas for probabilities and expecta-
tion values to joint measurements of several quantities. Indeed, the formula
(R, p) would not yield sensible results if we tried to represent by R (i.e.
the physical quantity corresponding to the operator R) the simultaneous
measurement of quantities represented by non-commuting operators. Von
Neumann comments that this problem cannot be removed by some easy
modification of the theory; the representation of physical quantities by non-
commuting operators is a basic feature of the mathematical structure.® He
proceeds to investigate its physical interpretation and concludes that quan-
tities represented by commuting operators can be jointly measured, whereas
this is not possible for quantities corresponding to non-commuting operators.

An important corollary, emphasized by von Neumann, is that functions
of operators like R+ .S have a simple interpretation when R and S commute:
in this case R + S just represents the physical quantity R + S that can be

7Ob fiir die Quantenmechanik eine derartige Erklarung durch verborgene Parameter
in Frage kommt, ist eine viel erdrterte Frage. Die Ansicht, dafl sie einmal in bejahendem
Sinne zu beantworten sein wird, hat auch gegenwirtig hervorragende Vertreter. Sie wiirde,
wenn sie berechtigt ware, die heutige Form der Theorie zu einem Provisorium stempeln, da
dann die p-Beschreibung der Zustédnde wesentlich unvollstandig ware. Wir werden spéter
(IV.2) zeigen, dafBl eine Einfiihrung von verborgenen Parameter gewif nicht moglich ist,
ohne die gegenwartige Theorie wesentlich zu dndern.

8in der Struktur des mathematischen Werkzeugs der Theorie begriindet [24, p. 110]



determined by measuring R and S jointly and adding the individual results.
But in the case of non-commuting operators R and .S, this interpretation
is not possible. Although R + S will certainly represent some measurable
quantity of the quantum system, it is not at all clear what this quantity
will be.? If R and S cannot be measured at the same time, the value of the
quantity represented by R + S need not have any relation to the values of
R and/or those of S, and the measuring procedure associated with R + S
must be expected to be totally independent of those appropriate for R and
S separately.

In section III.5 of his book, “Projection operators as propositions”, von
Neumann further elaborates on his leitmotif that physical quantities are to
be represented by Hermitian operators in Hilbert space. He now shifts his
attention from quantities that are measured on a system to properties pos-
sessed by the system, and considers yes-no propositions about such proper-
ties. This leads him to the result that such yes-no propositions, and therefore
the physical properties of a quantum object, are represented by the network
of projection operators in Hilbert space. Consequently, a logical calculus of
propositions can be founded on the structure of the lattice of projection op-
erators in Hilbert space.!? Of course, the projection operators do not form
a commutative algebra, so that a non-classical “quantum logic” emerges
this way, something to be famously explored in more depth later by von
Neumann together with Birkhoff [6].

Summing up, the first three chapters of von Neumann’s book distill an
essential core out of the two different historical forms of the theory that
had developed in the nineteen twenties. This “quantum theory proper”
establishes a new kinematical standard for physics. It is characteristic of
quantum mechanics that states are represented by vectors in Hilbert space,
and physical quantities and properties by operators in that same space. This
new “quantum paradigm”, a quantum kinematics, will play an important
role in von Neumann’s project, in chapter IV, of deducing the statistical
features of quantum mechanics from first principles.

9..., daB es gar nicht klar ist, was fiir nicht gleichzeitig mefibare R, S unter aR + bS
verstanden werden soll [24, p. 131].

10WWie man sieht, ermoglicht die Beziehung zwischen den Eigenschaften eines physikalis-
chen Systems einerseits und den Projektionsoperatoren andererseits eine Art Logikkalkiil
mit diesem [24, p. 134].



3 The Impossibility Proof

In chapter IV, “Building up the theory deductively” (Deduktiver Aufbau der
Theorie), first section “Fundamental justification of the statistical theory”
(Prinzipielle Begriindung der statistischen Theorie), von Neumann sets him-
self the task of deriving the basic formula for expectation values, Equation
1, from a small number of general and qualitative assumptions that are inde-
pendent of the details of quantum mechanics. As he proudly announces, in
the process it will become possible to verify the whole statistical framework
of quantum mechanics, as laid out in chapter III.11

To set the stage, von Neumann asks us to forget everything about quan-
tum mechanics and to consider physical systems as experimentally defined
by measurable quantities [24, p. 158]. In the case of jointly measurable
quantities R, S, ... we can immediately include arbitrary functions of R and
S in the collection of physical quantities. Indeed, such functions f(R,S) can
simply be defined by applying the function f to the measurement results for
R and S (measured jointly).

However, von Neumann continues, one should be aware that the attempt
to similarly form f(R,S) for a single system is senseless in the case that R
and S are not jointly measurable: in this situation it is completely unclear
what the associated measuring procedure should be.!?

However, we need not restrict ourselves to the consideration of single
systems, but can also consider statistical collectives of systems. In such
collectives, we may measure R on one sub-collective, and S on another
sub-collective. This makes it possible to define a physical quantity like
R+ S, even if R and S are not jointly measurable, namely as a quantity
that satisfies the additivity condition on expectation values in the collective:
Exzp(R+S) = Exp(R) + Exp(S) [24, p. 164],[8].

Von Neumann emphasizes once again at this point that in the case of
failing co-measurability the quantity R+ S, if it could be measured directly,
must be assumed to be operationally independent of R and S. The definition
via expectation values defines R + S only indirectly, without giving any
indication whether, and if so how, a direct measuring procedure for it will
relate to the measuring procedures for R and S.'3

" This independent deduction of the statistical core of quantum mechanics can already
been found in [23]. However, in this older publication there is no emphasis on the hidden-
variables question.

12Man vergegenwirtige sich aber, daf8 es vollkommen unsinnig ist, f(R,S) bilden zu
wollen, wenn R, S nicht gleichzeitig mefibar sind: es gibt ja keinen Weg, die dazugehdrigen
MeBanordnung anzugeben [24, p. 158].

13Wenn R und S gleichzeitig mefibar sind, mufl R + S die gewdhnliche Summe sein.
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In a note (note 164) von Neumann illustrates the situation with the ex-
ample of the quantum operator that represents the energy of an electron in
a potential field: H = f(Q)+g(P). A measurement of H may be performed
via the determination of spectral frequencies, whereas the position Q and
the momentum P will be measured in completely different and unrelated
ways—moreover, the three quantities cannot be measured jointly. Still, we
have Exp(H) = Exzp{f(Q)} + Exp{g(P)}. It should be noted, however,
that although this illustration comes from quantum mechanics, von Neu-
mann’s above implicit definition of R 4+ S by means of statistical collectives
is independent of quantum mechanics and only makes use of operationally
defined notions.

The upshot of the above is that once we can operationally define phys-
ical quantities for a system, we can also consider sums of these quantities,
whether they are co-measurable or not. In the case of co-measurable quan-
tities the characterization of the sum quantity is trivial: we just add the
values of the quantities that we sum. In the case of quantities that cannot
be measured together we only define the sum implicitly: R + S is a cer-
tain quantity whose expectation values in an arbitrary statistical collective
equals the sum of the expectation values of R and S, respectively.

The argument leading to von Neumann’s main result is now relatively
straight-forward. As von Neumann states, we have seen in the earlier chap-
ters that the essential ingredient of the “quantum transition” is the rep-
resentation of physical quantities by Hermitian operators in Hilbert space,
keeping functional relations between the quantities intact. He therefore as-
sumes that if we are going to construct a quantum theory, we should make
each measurable physical quantity R correspond to an operator R. More-
over, f(R) will have to correspond to the operator f(R); and the quantity
R +S to the operator R+S. In the latter case R+ S stands for the implicitly
defined quantity introduced above if R and S are not jointly measurable.!4

Remarkably, these definitions and assumptions are strong enough to ob-
tain [24, pp. 167-168] the far-reaching conclusion that in any thus con-
structed theory the expectation value of an arbitrary physical quantity R,
in an arbitrary statistical ensemble of physical systems, can be written as
Exp(R) = Tr(UR). Here U is a non-negative unity-trace Hermitian oper-
ator that characterizes the ensemble (so U is independent of R). In other
words, von Neumann has demonstrated that any possible statistical collec-

Im allgemeinen ist es aber nur auf implizite Weise gekennzeichnet, und wir kénnen die
MefBvorschriften fiir R, S kaum zu einer solchen fiir R + S zusammensetzen [24, p. 164].

Von Neumann makes the further uncontroversial assumption that the expectation
value of any non-negative quantity must be non-negative.

11



tive can be characterized by a density operator U, and that all expectation
values possess the form of Equation 1. Importantly, he has not derived this
within quantum mechanics, but from general assumptions: I, that the op-
erationally defined physical quantities'® of any physical system correspond
one-to-one to to Hermitian operators in Hilbert space and, II, that this
correspondence respects addition relations.

From the general validity of the expression Fxp(R) = Tr(UR) it fol-
lows as a corollary that there are no completely dispersion-free ensembles
for quantum quantities: whatever choice we make for the operator U, it is
always possible to find operators R in Hilbert space such that the statistical
spread of R, calculated with U via the trace formula, does not vanish.'® This
excludes hidden variables: indeed, the very idea of the introduction of such
variables is to have the possibility of ensembles without statistical spreads,
namely ensembles in which the hidden parameters possess fixed values. If
such parameters existed, the spreads actually predicted by quantum me-
chanics would have to result from averaging over dispersion-free ensembles,
corresponding to sub-quantum dispersion-free states. But von Neumann’s
proof shows that, given his premises, there are no such finer-grained states.

Von Neumann himself summarizes the result of his no-hidden-variables
proof as follows [24, p. 171]:

“it is impossible that the same physical quantities, with the same
mutual relations, are present (i.e. that our premises I and II
hold), if in addition to the wave function yet other variables
(“hidden parameters”) exist.

It would not help if in addition to the familiar quantities that
are represented by operators in quantum mechanics new, still
undiscovered quantities existed: for already in the case of the
familiar quantities the quantum mechanical relations (i.e. I, IT)
must fail. It is therefore not, as is often assumed, a question of
interpretation of quantum mechanics—the system of quantum
mechanics would have to be objectively false in order that an-
other description of the elementary process than the statistical
one be possible.!”

15Partly implicitly defined!

1., Exp(R?) — {Exp(R)}? > 0.

17 . ja es ist sogar ausgeschlossen, daf dieselben physikalischen GréBen mit denselben
Verkniipfungen vorhanden sind (d.i. da§ I, IT gelten), wenn neben der Wellenfunktion
noch andere Bestimmungsstiicke (“verborgene Parameter”) existieren sollen. Es wiirde
nicht geniigen, wenn aufler den bekannten, in der Quantenmechanik durch Operatoren

12



Here, again, I and II refer to the assumptions that each physical quantity
corresponds to a Hermitian operator in Hilbert space, and that sums of such
quantities correspond to the sums of the corresponding operators, respec-
tively. In other words, the proof tells us that the hidden physical properties
added to the quantum description in a hidden variables completion of the
theory cannot correspond to Hermitian operators in Hilbert space in the
way the standard quantum quantities do. If we were to add finer-grained
values to the usual quantum quantities (represented by operators), these
values would consequently have to violate the functional relations between
the operators (in general, they could not accord with IT). For example, if we
assigned the hidden value r to the quantity represented by R in quantum
mechanics, the hidden value s to S, and the hidden value ¢t to R + S, it
would generally not be possible to have t = r + s.

Does von Neumann’s proof show that no hidden-variables theories can
exist at all? Clearly not.'® If one grants the possibility that quantum
mechanics may be superseded by a theory that can not be formulated in
Hilbert space, von Neumann’s theorem looses its cogency. Von Neumann
has the following to say about this possibility [24, p. 173]:

in the present state of our knowledge everything speaks against
this: for the only presently available formal theory that orders
and summarizes our experiences in a somewhat satisfactory way,
namely quantum mechanics, is in strict logical conflict with it.
However, it would be an exaggeration to claim that this is the
absolute end of causality: there are certainly gaps in quantum
mechanics in its present form, and it may even be that it is false,
although the latter is quite improbable in light of its astounding
achievements in understanding general problems and in mak-
ing specific calculations....one can never say of a theory that it
has been proved by experience... But even considering all these
words of caution we are allowed to say: at this moment there is

reprasentierten, physikalischen Gréflen noch weitere, bisher unentdeckte, existierten: denn
schon bei den erstgenannten, bekannten Gréflen miiiten die von der Quantenmechanik
angenommenen Verkniipfungen (d.i. I, IT) versagen. Es handelt sich also gar nicht, wie
vielfach angenommen wird, um eine Interpretationsfrage der Quantenmechanik, vielmehr
miifite dieselbe objektiv falsch sein, damit ein anderes Verhalten der Elementarprozesse
als das statistische moglich wird.

180ne should add that it is even difficult to make sense at all of the claim that sets of
empirical data could be impossible to accommodate by any deterministic model whatso-
ever. As Bertrand Russell already argued in a famous essay of 1913 [19], determinism all
by itself is empirically empty. The doctrine of determinism only obtains empirical bite if
one specifies in some detail what the deterministic theory should look like.
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no reason and no excuse to keep on talking about causality in
nature—for no experience supports its existence, as macroscopic
experience is unable to do so as a matter of principle, and the
only known theory that is compatible with our experiences con-

cerning elementary processes, quantum mechanics, contradicts
1 19
1t.

So von Neumann’s position is that quantum mechanics, given its history of
unexpected and astounding achievements, is so well supported that there
is no reason to doubt the validity of its core theoretical structure. And
from the acceptance of this Hilbert space structure it follows compellingly
that “causality” is impossible to implement, in the sense that dispersion-free
states cannot be accommodated.

Summing up, in his chapter IV von Neumann has proved that viable
hidden-variables theory cannot be Hilbert space theories; such theories must
violate the “quantum paradigm”. Therefore, hidden values of at least some
physical quantities will not obey the same relations as the corresponding
quantum observables: as already pointed out above, if two such quantum
observables add up to a third one, their hidden values will generally not add
up in the same way. Conversely, the physical quantities that were implicitly
defined by von Neumann will in a hidden-variables theory generally not
correspond to measurement results. To see this, note that the hidden value
of the quantity R 4+ S will be given by the sum of the values of R and S,
respectively, also when R and S do not commute. If we accept the empirical
adequacy of quantum mechanics on the statistical level, this sum value will
not be a measurement result (as measurement results are eigenvalues of
operators). So experimental outcomes will not reflect all the properties that
are actually present in the system, according to the hidden-variable theory:

"9Hier spricht aber beim heutigen Stande unserer Kenntnisse alles dagegen: denn die
einzige zur Zeit vorhandene formale Theorie, die unsere Erfahrungen in halbwegs be-
friedigender Weise ordnet und zusammenfafit, das ist die Quantenmechanik, steht mit
ihr in zwingendem logischen Widerspruch. Es wére freilich eine Ubertreibung, zu be-
haupten, daf} die Kausalitdt damit abgetan ist: die Quantenmechanik ist in ihrer heutigen
Form gewif liickenhaft, und es mag sogar sein, daf} sie falsch ist, wenngleich dies letztere
angesichts ihrer verbliiffenden Leistungsfahigkeit beim Verstdndnis allgemeiner und der
Berechnung spezieller Probleme recht unwahrscheinlich ist. ... kann man doch niemals
von einer Theorie sagen, sie sei durch die Erfahrung bewiesen... Aber bei Beachtung
aller dieser Kautelen diirfen wir doch sagen: es gibt gegenwirtig keinen Anlafl und keine
Entschuldigung dafiir, von der Kausalitdt in der Natur zu reden—denn keine Erfahrung
stiitzt ihr Vorhandensein, da die makroskopischen dazu prinzipiell ungeeignet sind, und
die einzige bekannte Theorie, die mit unseren Erfahrungen iiber die Elementarprozesse
vertraglich ist, die Quantenmechanik, widerspricht ihr.
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measurements will not completely represent the system as it is in itself. This
introduces an element of “measurement contextuality” in hidden-variables
theories.

4 Comparison with Bell’s criticism

In the Introduction of his 1966 paper “On the Problem of Hidden Variables
in Quantum Mechanics” [2] John Bell asserts that von Neumann’s hidden-
variables argument “leaves the real question untouched”. In section III of
the same paper Bell summarizes von Neumann’s argument, stating that von
Neumann’s essential assumption is the following: “Any real combination of
any two Hermitian operators represents an observable, and the same linear
combination of expectation values is the expectation value of the combina-
tion” [2, pp. 448-449]. Bell notes that in the case of dispersion-free states
the expectation value is equal to the fixed value of the physical quantity
in question, and if quantum mechanics is empirically adequate this value
should be an eigenvalue of the operator representing the quantity. But then
it can be seen immediately that the above assumption cannot be satisfied:
the eigenvalue of R+.5 is not equal to the eigenvalue of S plus the eigenvalue
of R if S and R do not commute—eigenvalues do not combine linearly. Von
Neumann’s essential assumption is therefore evidently incorrect. The expla-
nation of its failure is in fact only to be expected: “A measurement of a sum
of non-commuting observables cannot be made by combining trivially the
results of separate observations on the two terms—it requires a quite dis-
tinct experiment”. To bring this point home Bell gives the example of spin
measurements on a spin-1/2 particle in the z and y directions; a measure-
ment of o, + o, would in this case be a measurement in a third orientation,
which requires a completely different and independent experimental set-up.

Therefore, Bell concludes, von Neumann’s assumption is utterly inappro-
priate for dispersion-free states. Consequently, von Neumann’s proof fails
to demonstrate what von Neumann himself thought that it demonstrated,
which Bell quotes (from the English translation by Beyer [24]) as: “It is
therefore not, as is often assumed, a question of reinterpretation of quan-
tum mechanics—the present system of quantum mechanics would have to be
objectively false in order that another description of the elementary process
than the statistical one be possible”.?0 Bell interprets this as the statement

20As we shall discuss below, it is very important to place this statement in its proper
context. In fact, it is the last sentence of von Neumann’s conclusion, which we have quoted
in full in the previous section.
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that the predictions of quantum mechanics must be wrong if hidden vari-
ables exist, and objects that von Neumann has not proved this at all. As
he points out, it was not the objective measurable predictions of quantum
mechanics that ruled out hidden variables, but it was rather von Neumann’s
own “arbitrary assumption of a particular (and impossible) relation between
the results of incompatible measurements either of which might be made on
a given occasion but only one of which can in fact be made” [2, p. 449].

In his paper from 1982 [3] Bell presents his criticism of von Neumann in a
more compact form, as follows. He identifies the vital ingredient of the proof
as the assumption that for linearly combined operators the measurement
results are similarly linearly related. But this cannot possibly hold, for the
individual results are eigenvalues, and as an elementary mathematical fact
eigenvalues of linearly related operators are not linearly related themselves.
So von Neumann’s “very general and plausible postulate” is actually absurd
[3, p. 994].

As we have seen in the Introduction, in 1988 Bell characterizes the proof
as flawed and moreover silly [4].

Bell thus makes two claims: 1. von Neumann’s proof is flawed, and
2. the premises of the proof are inappropriate. Concerning 1, Bell clearly
does not mean that von Neumann made a mathematical error. Rather,
the claim is that von Neumann drew a wrong conclusion; he overstated the
significance of his proof. According to Bell, von Neumann thought that he
had proved that the empirical predictions of quantum mechanics must be
wrong if hidden variables exist—which cannot be right, as demonstrated,
for example, by Bohm’s theory. The evidence Bell adduces is von Neuman’s
final concluding statement (already quoted above): “the present system of
quantum mechanics would have to be objectively false in order that another
description of the elementary process than the statistical one be possible.”

But as already noted, this sentence is merely the final part of von Neu-
mann’s comment on the significance of his proof (the complete quotation is
in the previous section, see note 19 and its translation in the main text). Von
Neumann starts by saying that hidden variables will not be representable
in the same way as quantities in standard quantum mechanics: assump-
tions I and IT will have to be violated. Hidden variables can therefore not
correspond to operators in Hilbert space. It is in this sense that the sys-
tem of quantum mechanics would be objectively wrong if it were to prove
empirically unavoidable to introduce hidden variables: a hidden variables
theory must necessarily jettison the core theoretical structure of quantum
mechanics (see section 3).

We can therefore conclude that the first arrow of Bell’s criticism, that
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the proof is mistaken, is misdirected. Bell has misrepresented and almost
certainly misunderstood what von Neumann argued for (some more about
this in section 7).

Let us now turn to the second part of Bell’s criticism, where he ques-
tions von Neumann’s assumptions. Apparently, the idea here is that von
Neumann’s proof proves something, even if this is different from what von
Neumann assumed it proved: the proof demonstrates exactly what follows
from its premises. But, Bell argues, we do not need to be impressed by
this objective content, because these premises are irrelevant. This is illus-
trated by the already-mentioned argument about eigenvalues: for dispersion-
free states with hidden-variables values that equal the eigenvalues of non-
commuting observables it is utterly evident that von Neumann’s premises
cannot hold.

A notable aspect of this criticism is that it does not identify any formal
mistake. Indeed, as shown by von Neumann and discussed in section 3, his
assumptions exclude hidden-variable theories in which quantities R, S, and
R + S, represented in quantum mechanics by operators R, S and R + S,
possess expectation values (and therefore in the case of dispersion-free en-
sembles simply wvalues) related as r, s and r + s, respectively. Remember
that von Neumann was able to prove this quite generally, without assum-
ing anything detailed about quantum mechanics—in particular, he did not
assume that the hidden variables equal the eigenvalues of quantum oper-
ators. Now Bell objects, via an example, that if we want to construct a
hidden-variable theory in which the quantities represented by operators R,
S and R+ S possess hidden values equaling the respective eigenvalues, this
cannot always be done if we require that the value of R+ .5 must equal r+s.
But this is just one particular illustration of what von Neumann proves in
general.

To be fair, Bell’s example is not meant as a literal counterexample to von
Neumann’s assumptions, but rather as a rhetorical device showing their ir-
relevance: one should not seriously expect von Neumann’s premises to hold
for any viable hidden-variables scheme anyway. Indeed, so the argument
apparently goes, if one knows even only a bit about quantum mechanics,
it is obvious that hidden-variables theories satisfying von Neumann’s as-
sumptions cannot exist. So the right conclusion of the proof (instead of von
Neumann’s own erroneous interpretation of it—according to Bell, that is) is
trivial and does not add anything to what we already knew.

At the basis of this triviality argument is Bell’s quick summary of von
Neumann’s premises in the form: “Any real combination of any two Her-
mitian operators represents an observable, and the same linear combination
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of expectation values is the expectation value of the combination” [2, pp.
448-449]. But here Bell misses a vital part of von Neumann’s reasoning. As
we have seen in section 3, von Neumann starts his argument by discussing
physical quantities independently of quantum theory and independently of
their mathematical representation. He defines linear combinations of these
quantities such that their expectation values per definition satisfy the same
linear relations as the quantities themselves (cf. [8]). So for physical quanti-
ties the statement that expectation values preserve linear relations is not an
assumption, but an analytic truth. Now, differently from what Bell suggests
in his 1966 paper, von Neumann takes into account that quantities may fail
to be co-measurable and is aware that this casts doubt on the meaning of
sums of such quantities—as we have seen in section 3, he draws attention
to this complication repeatedly. This difficulty is precisely the reason why
he defines the sum of two non-jointly measurable quantities in an implicit
way, thus securing the additivity of their expectation values. So it is false
to claim that linear relations between physical quantities, as defined by von
Neumann, cannot hold generally also between their expectation values and
measurement values.

What von Neumann does assume (this is his real assumption) is that
in a quantum theory the thus-defined linearly related physical quantities
should be bijectively associated with linear operators in a Hilbert space.
From this assumption follows the standard quantum mechanical expression
for expectation values (equation 1) and the non-existence of dispersion-free
ensembles. But it also follows that if there are dispersion-free ensembles, in
some hidden-variables theory, not all physical quantities of the system—as
defined by von Neumann!—can correspond to operators in Hilbert space.
Because Bell overlooks von Neumann’s independent definition of physical
quantities, he misses this part of the argument.

For the case of Bell’s spin example this means that the von Neumann
physical quantity defined as s, + s,, i.e. the quantity that in a hidden-
variables scheme possesses the value that is simply the sum of the values of
s; and sy, cannot be represented by the operator o, +0,. The value of s, +s,
must remain hidden in measurements (assuming the empirical adequacy of
quantum mechanics, so that all measurement results are eigenvalues of spin
operators).

Because Bell misses von Neumann’s independent definition of linear com-
binations of physical quantities, he misconstrues the premises of von Neu-
mann’s proof. He incorrectly interprets them as a requirement imposed
on the expectation values of physical quantities that are defined via their
representation by operators in standard quantum mechanics. His trivial-
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ity objection boils down to the observation that it is easy to see that this
requirement cannot be imposed anyway. By contrast, there is nothing ob-
viously wrong or impossible when we follow von Neumann’s own reasoning.
If von Neumann’s premises are formulated as von Neumann himself stated
them, there is no triviality in his proof.

5 Grete Hermann’s criticism of von Neumann

In 1933, a year after the publication of von Neumann’s book, Grete Hermann
wrote a paper “Determinism and Quantum Mechanics” (“Determinismus
und Quantenmechanik”) [12].2! In this paper Hermann addresses the ques-
tion of whether quantum mechanics can be said to disprove determinism.
Her interest in this question comes from her sympathy for neo-Kantianism,
according to which the “law of causality” must be a priori valid if scien-
tific knowledge is to be possible. Accordingly, she sets out to show that
even if quantum mechanics were to prove completely right also in the fu-
ture, this still would not constitute a refutation of the law of causality. Not
surprisingly then, she takes exception to von Neumann’s argument that the
formalism of quantum mechanics contradicts a perfectly causal description
of natural processes and devotes a section of her paper to a critical discussion
of the 1932 proof.

In this section of “Determinism and Quantum Mechanics”, after men-
tioning von Neumann’s assumptions I and II, Hermann comes to the now
familiar point of the definition of sums of quantities that are not jointly
measurable and the calculation of their expectation values. She writes [9, p.
250]:

However, this definition (i.e. taking the ordinary sum) fails for
quantum mechanical quantities that have non-commuting oper-
ators, because these quantities are not ‘simultaneously measur-
able’ on one and the same physical state. The sum R+ S in this
case can be defined only indirectly as the quantity corresponding
to the sum R+.S of the operators belonging to R and S. As Neu-
mann shows in an instructive example, the eigenvalues of R+ S
in no way need to be the sums of those of R and S; this, how-
ever, would be necessary to ensure that the proof of condition
b (i.e. the ‘condition’ that linear combinations of quantities have

21The paper remained unknown and unpublished until very recently. Hermann sent a
copy to Dirac, in whose archive it was retrieved [9, Ch. 8]. An English translation has
now been published in [9, Ch. 14].
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expectation values that are the same linear combinations) for ex-
pectation value functions could be carried over from the classical
theory. Neumann thus needs another proof for quantum mechan-
ics. He finds it in the following consideration: in the formalism
of quantum mechanics, the expectation value of a quantity R in
the state [p] is given by the symbol (Ry, ¢), where R is the op-
erator belonging to R. Since ((R+ S)¢, ¢) = (Ry, @) + (S¢, ¢)
holds for this symbol, the expectation value of a sum is indeed
equal to the sum of the expectation values.

She then comments that the latter consideration is only convincing if
one already assumes that the quantum state is the only determining factor
in the calculation of expectation values; that is, that as yet to be discovered
new traits (i.e. hidden variables) can play no role. As she says: “Indeed,
for ensembles of physical systems agreeing with one another besides in the
wave function also in terms of such a newly discovered trait, it has not been
shown that the expectation value function has the form (R, ¢) [9, p. 251]”.
Hermann concludes:

Therefore, in terms of the predictability of measurement results
we have the following: as Neumann’s proof shows, a physicist
who only knows a given system by its Schrodinger function (i.e.
) is bound to limits conforming to the Heisenberg relations in
predicting measurement results. More is not proven.

Whoever wants to extract more from Neumann’s proof must al-
ready assume that (R, ¢) represents the average value for the
eigenvalue measurements of R for any ensemble whose elements,
besides with respect to ¢, agree with one another also with re-
spect to arbitrary further conditions. But that all these ensem-
bles have the same average values is an assumption justified nei-
ther by previous experience nor by the hitherto confirmed theory
of quantum mechanics. Without it, the proof of indeterminism
collapses.

Hermann thus accuses von Neumann of a petitio in his proof: she claims
that he assumes the irrelevance of hidden variables for expectation values,
in order to demonstrate that expectation values remain the same even if one
adds hidden variables.

At first sight, Hermann’s criticism may seem virtually identical to Bell’s
objection, as it also centres on the question of whether expectation values
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may be added in the case of sums of quantities that are not co-measurable.?
But on closer inspection there is a major difference. As discussed in section
4, Bell suggested that von Neumann had not realized that eigenvalues fail to
combine linearly and had therefore been seduced into accepting a postulate
(the additivity postulate for expectation values) that he would never have
taken seriously otherwise. By contrast, Hermann observes that von Neu-
mann himself shows, via an instructive example, that eigenvalues of R + S
in no way need to be sums of eigenvalues of R and §.23 In direct opposition
to Bell’s reasoning, Hermann contends that it was his very awareness of
this fact that made it clear to von Neumann that he needed a proof of the
additivity of expectation values for the case of quantities that are not simul-
taneously measurable. According to Hermann, for this proof von Neumann
resorted to the fact that in quantum mechanics additivity holds generally,
even in the case of non-commuting operators. This then leads to a petitio
principii, says Hermann: features that are unique to quantum mechanics
are picked out to argue that only quantum mechanics possesses them.
Hermann is certainly right when she observes that von Neumann did
not make the eigenvalues mistake imputed to him by Bell. But the rest
of her reconstruction of von Neumann’s argumentative strategy does not
find support in von Neumann’s text. As we have seen, von Neumann
defines R + S implicitly, in such a way that by definition it is true that
Exp(R+S) = Exp(R) + Exp(S). He gives this definition without invok-
ing the quantum mechanics formalism, and only later makes the “quantum
assumption” that all (already defined) physical quantities correspond in a
one-to-one fashion to operators in Hilbert space. So Hermann’s statement
(see the above quotation) that according to von Neumann R 4+ S “can be
defined only indirectly as the quantity corresponding to the sum R + S of
the operators belonging to R and S” is simply false; it betrays a misunder-
standing of how von Neumann sets up his argument. Indeed, there is no

22 Jammer comments [16, p. 274]: “It is remarkable that Hermann’s criticism touched
precisely on one of the weakest points in the proof, the additivity postulate.” Seevinck [20,
p. 122]: “Hermann concluded, as would Bell, that von Neumann ruled out the existence
of dispersion-free states by requiring without further justification the additivity rule also
at the level of hidden variables.” As we have seen, Mermin [17] contends that John Bell
rediscovered Grete Hermann’s objection.

Z3Wie Neumann an einem aufschlussreichen Beispiel zeigt, brauchen die Eigenwerte von
R + S sich keineswegs aus denen von R und S zusammensetzen zu lassen [12, p. 19].
The example referred to here must be the one of note 164 in the Grundlagen, in which
von Neumann comments that the total energy, which is the sum of kinetic and potential
energy, cannot be computed from these two components separately. In his 1927 paper
[23], which already contains the no-hidden-variables proof, there is a similar example.
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need at all for von Neumann to worry about a proof for the additivity of
the expectation values of physical quantities, since this is not an assumption
but something that follows analytically from his definitions.

That von Neumann felt that he needed a proof for the “additivity as-
sumption” and subsequently attempted to provide this proof in several steps
is therefore—strangely enough—a fabrication. Apparently, Hermann’s mis-
taken reconstruction of von Neumann’s argument is due to her overlooking
von Neumann'’s use of implicit definitions.?*

Hermann did not publish her 1933 manuscript, and her letter to Dirac
appears to have remained unanswered. There is some indirect evidence that
the manuscript was read by Bohr, von Weizsécker and Heisenberg, and that
they even thought of preparing a joint response—Heisenberg is reported as
reacting by saying “In substance, she is certainly wrong” [9, p. 127]. But
no direct evidence of any response is known. However, in 1935 Hermann
published a small treatise entitled The Natural-Philosophical Foundations
of Quantum Mechanics®*® [13] in which she took over most of her earlier
criticism of von Neumann’s proof—although there are also some interesting
differences, as we shall see.

In her 1935 treatise, as in her 1933 manuscript, Hermann reviews and
criticizes several quantum-based arguments for indeterminism. In her chap-
ter 7, about von Neumann, Hermann states [9, pp. 208-209]:

For the expectation value function Exp(R) thus defined by means
of an ensemble of physical systems, which assigns a number to
every physical quantity, Neumann assumes that Ezp(R + S) =
Ezp(R) + Exp(S). In words: the expectation value of a sum of
physical quantities is equal to the sum of the expectation values
of the two quantities. Neumann’s proof stands or falls with this
assumption.

For classical physics this assumption is trivial. So, too, it is for
those quantum mechanical features that do not mutually limit
each others measurability, thus between which there are no un-
certainty relations. Because for two such quantities, the value
of their sum is nothing other than the sum of the values that
each of them separately takes, from which follows immediately
the same relation for the mean values of these magnitudes. The

24Remarkably, it seems that commentators have without exception accepted Hermann’s
account as an accurate description of von Neumann’s argument; even though nothing can
be found in von Neumann’s text about the need for a proof of additivity.

25 Die naturphilosophischen Grundlagen der Quantenmechanik
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relation is, however, not self-evident for quantum mechanical
quantities between which uncertainty relations hold, and in fact
for the reason that the sum of two such quantities is not im-
mediately defined at all: since a sharp measurement of one of
them excludes that of the other, so that the two quantities can-
not simultaneously assume sharp values, the usual definition of
the sum of two quantities is not applicable. Only by the detour
over certain mathematical operators assigned to these quantities
does the formalism introduce the concept of a sum also for such
quantities. However, for the so-defined concept of the sum of two
quantities that are not simultaneously measurable, the formula
given above requires a proof. Neumann carries it out in two
steps: since each ensemble of physical systems can be decom-
posed into sub-ensembles whose elements agree with each other
in terms of their wave functions, then it follows, first, that the
theorem in question needs to be proved only for ensembles whose
elements satisfy the condition of equal wave functions. But for
these ensembles Neumann relies on the fact that, in the context
of the formalism, the rule ((R+S)p, ¢) = (Rp, )+ (S¢, ¢) holds
for the symbol (R, ¢), which represents a number and is inter-
preted as the expectation value of the quantity R in the state
. (Here R and S are the mathematical operators assigned to
the quantities R and S; ¢ specifies the wave function of the sys-
tems under consideration.) From this rule Neumann concludes
that for ensembles of systems with equal wave functions, and
therefore for all ensembles generally, the addition theorem for
expectation values holds also for quantities that are not simul-
taneously measurable.

There are the same inaccuracies here as in the 1933 manuscript: 1. the
additivity of the expectation values of physical quantities is represented as
a substantive assumption made by von Neumann, whereas it is in fact a
tautology; 2. it is suggested that von Neumann recognizes that he needs
a proof for this assumption and attempts to gives this proof in two steps
(being unaware that he is committing the fallacy of a petitio while doing
so). Unsurprisingly, Hermann’s verdict is the same as before, as already
indicated by the title of chapter 8 of her treatise, “The Circle in Neumann’s
Proof™.

However, compared to the 1933 text, Hermann’s 1935 recapitulation of
von Neumann’s argument stays closer to von Neuman’s original. In particu-
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lar, it is clear that in the just-given quotation Hermann recognizes that “von
Neumann’s additivity assumption” is not formulated in terms of operators,
but in terms of physical quantities—even if she fails to notice the role of im-
plicit definitions of such quantities. Related to this, in the above quotation
Hermann seems to be more sensitive to the general line of von Neumann’s
proof, in which the essential step is the hypothesis that in quantum theories
physical quantities should be represented by Hermitian operators. This is
confirmed by what she writes after concluding that the proof is circular [9,
p. 269]:

On the other hand, from the standpoint of Neumann’s calculus
one can argue against this, that it is an axiomatic requirement
that all physical quantities are uniquely associated with certain
Hermitian operators in a Hilbert space, and that through the
discovery of new features invalidating the present limits of pre-
dictability, this association would inevitably be broken.

This is exactly right! Von Neumann’s proof does not rule out hidden
variables in general, but shows that in hidden-variables theories the link
between physical quantities and operators must be broken. Von Neumann
concluded (as quoted in section 3), that this implies that there presently is
no reason to think that causality will be restored—the Hilbert space formal-
ism is very well supported. But there is always the possibility that future
data will necessitate drastic revisions. A mathematical proof that no more
complete theory than quantum mechanics will ever be possible cannot ex-
ist.?6 Now compare this with Hermann’s final conclusion of her chapter 8
[9, p. 270]:

By this consideration (i.e. the previous quote), however, the cru-
cial physical question of whether the progress of physical research
can attain more precise predictions than are possible today, can-
not be twisted into the impossibly equivalent mathematical ques-
tion of whether such a development would be representable solely
in terms of the quantum mechanical operator calculus. There
would need to be a compelling physical reason, that not only the
physical data known to date, but also all the results of research
still to be expected in the future are related to each other accord-
ing to the axioms of this formalism. But how should one find such
a reason? The fact that the formalism has so far proven itself,

26Gee also footnote 18.
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so that one is justified in seeing in it the appropriate mathemat-
ical description of known natural connections, does not mean
that the as yet undiscovered natural law connections should also
have the same mathematical structure.

This boils down to saying that the question of the adequacy of the Hilbert
space formalism for the representation of physical reality is a physical rather
than a mathematical issue. To attain certainty about this adequacy, also
for the future, one should already know the outcomes of all future experi-
ments. But this is impossible. So neither physics nor mathematics can rule
out the existence of hidden variables—future experience might make their
introduction unavoidable.

Remarkably, in their final assessments of the situation Hermann and
von Neumann substantially agree—even though Hermann is unaware of this.
Both think that hidden variables have only been excluded to the extent that
they could fit in the Hilbert space formalism, and that it is an empirical
question whether this means that they will never be needed. They differ
in the way they formulate this conclusion: von Neumann maintains that
given what we know about the remarkable history of quantum mechanics
and its astounding successes, and the logical conflict between the structure
of quantum mechanics and hidden variables, we have no good reasons to
believe in a return of causality. Hermann, by contrast, emphasizes that it
is impossible for physics, and even more so for mathematics, to prove that
such a return will never happen.

At this stage we might expect Grete Hermann to start a plea for hid-
den variables research. But her argument takes a different turn: she con-
tends that in spite of the possibility that future experiments will lead to a
restoration of determinism, there is no need to be dissatisfied with quantum
mechanics as it is, since it already fulfils all requirements imposed by the
law of causality. Therefore, even a neo-Kantian who considers causality as
a necessary precondition of scientific knowledge may rest content. Hermann
argues that in spite of the theory’s indeterminism, quantum mechanics is
causally complete because it specifies all factors that determine a measure-
ment outcome.

This conclusion hinges on the analysis Hermann gives of determinism
and causality. Of course, she acknowledges that quantum mechanics cannot
predict all results of measurements with certainty. But, she says, one should
distinguish between predictability and causal determination. Indeed, once a
measurement has taken place, she argues, one can tell a causal story about
how that result has come into being, even if no such causal account was
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available beforehand. The key is that measurements disturb the quantum
states of objects, so that quantities that did not have definite values before
the measurement may have acquired such definite values when the measure-
ment has ended. For example, an electron may be in a state without definite
position, so that we are not able to predict what the outcome of a position
measurement will be. But once a measurement has been performed, the
electron does possess a well-defined position?” and this makes it possible to
construct with hindsight a path that it has followed.?®

Hermann’s 1935 essay appeared in a relatively unknown philosophical
series of neo-Kantian signature (Abhandlungen der Friesschen Schule) and
this is probably the reason that in the same year she published a 4-page
summary of her argument in the well-known science journal Die Naturwis-
senschaften [14]. In this summary Hermann does not mention von Neumann
and his proof at all, but takes it for granted that one can never completely
rule out the existence of hidden parameters that in one way or another lift
the quantum indeterminism: “Whoever simply denies the possibility of such
parameters, comes into conflict with the principle that experience is open.” 2"
Therefore, she says, there can only be one conclusive ground to abandon as
fundamentally fruitless the search for causes of an observed event: that one
already knows these causes.>® As we have seen a moment ago, according to
Hermann this is exactly the situation that obtains in quantum mechanics.
Even if an event was not predictable by quantum theory, it is possible to
identify its necessary causes a posteriori. Hermann concludes that “it would
therefore be futile to look for new physical parameters that have escaped
discovery until now and that would be the causes of the event.”3!

To sum up, in her 1933 manuscript Grete Hermann criticizes von Neu-
mann for smuggling in the premise that only statistical collectives completely
characterized by quantum mechanics need to be considered and for essen-
tially proving on this basis that quantum mechanical predictions result. In

2In the ideal case that the electron has not been absorbed and not further disturbed.

281t seems probable that discussions with Heisenberg and other Copenhagen proponents
convinced Hermann of the philosophical irreproachability of quantum mechanics even for
a neo-Kantian; she refers to Bohr’s principle of correspondence as the main inspiration for
her solution of the causality problem.

2Wer die Moglichkeit solcher Merkmale slechthin leugnet, gerdt in Konflikt mit dem
Satz von der Unabgeschlossenheit der Erfahrung.

39Somit kann es nur einen einzigen hinreichenden Grund geben, das weitere Suchen nach
den Ursachen eines beobachteten Vorganges als grundsétzlich fruchtlos auf zu geben: den,
dafl man diese Ursachen bereits kennt.

3'Es wire also sinnlos, fiir ihn (i.e.: den Vorgang) in neuen, der Forschung bisher
entgangenen physikalischen Merkmalen die Ursache seines Eintretens suchen zu wollen.
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the treatise of 1935, Hermann’s criticism is slightly more sophisticated: she
reproaches von Neumann first of all for considering only physical quantities
that are defined by quantum mechanical operators. As we have argued, in
both cases the details of her criticism and the accusation of a petitio are mis-
taken. But Hermann is right in her conclusion, in the 1935 treatise, that von
Neumann has only disproved the existence of hidden variables that can fig-
ure in theories with the same Hilbert space structure as quantum mechanics.
This, however, is not different from what von Neumann himself claimed, even
though Hermann does not realize this. Hermann’s subsequent fervent philo-
sophical defence of the causal completeness of quantum mechanics, and her
appeal not to feel embarrassed by indeterminism and indefiniteness, bring
her position effectively even closer to von Neumann’s—that is, closer with
respect to the question of whether we should look for hidden-variables; not
with respect to Hermann’s neo-Kantian argumentation, of course.

6 Later developments: Von Neumann and Bohm

Prior to the publication of Bohm’s 1952 papers there seems to have been
little in-depth discussion among leading physicists about the possibilities
of hidden-variables theories [16, pp. 275-278]. If anything, we encounter
points of view that are similar to that of von Neumann. For example,
as Bacciagaluppi and Crull note [9, p. 139], Pauli pointed out in a letter
to Schrodinger of 9 July 1935, commenting on the EPR paper, that the
existence of dispersion-free states would lead to contradictions with quan-
tum mechanics if it is assumed that the usual functional relations hold;
Schrédinger included this point in his paper on entanglement. The promi-
nent philosopher of physics Hans Reichenbach declared in 1944 that although
there are no logical reasons for thinking that a return of determinism is im-
possible in principle, there is no empirical indication that such a return is
to be expected [16, p. 276]. The Russian physicist Blokhinzev wrote, almost
simultaneously with the appearance of Bohm’s papers, that von Neumann’s
proof should not be seen as excluding hidden variables in all generality, and
that a consistent hidden-variables theory will have to be cast in a form that
deviates from the Hilbert space formalism of quantum mechanics [16, p.
277].

In this pre-war and early post-war literature there is hardly any refer-
ence to Grete Hermann’s contributions, although it has been documented
that the Copenhagen circle knew her work, studied it, and was impressed by
Hermann’s wit [9]. However, in contradistinction to what is often suggested

27



in recent literature ([17, 20], [15, pp. 13-18] are only a few examples), this
lack of attention is not surprising and not in need of external explanation.
Indeed, Hermann published only two texts on our subject in the scholarly
literature: [13] and [14], respectively. The first appeared in a specialized
neo-Kantian philosophy series and for that reason alone cannot be expected
to have been widely read by physicists knowledgeable in quantum theory.
Moreover, in this essay Hermann’s conclusion with respect to the possibility
of hidden variables does not strike spectacular: hidden variables are claimed
to be possible in principle, but one has to go beyond the framework of quan-
tum mechanics to accommodate them. This is what von Neumann himself
had also concluded, and what seems the most reasonable position to adopt
anyway (see also note 18). But even if one is not aware of von Neumann’s
conclusion and believes that he has definitively ruled out hidden variables
on mathematical grounds, Hermann’s argument that there are compelling
philosophical reasons for not engaging in a search for hidden variables seems
only to support von Neumann. In this context, the rather brief critical re-
marks in the 1935 essay about the details of von Neumann’s proof may well
appear a minor technical quibble.

Probably more directly relevant is that Hermann’s second publication
[14], which had the aim of directing the attention of physicists to the more
extensive philosophical treatise, does not mention von Neumann and his
proof at all. It argues on philosophical grounds that there is no justification
for considering quantum mechanics as incomplete and that one does not
need to look for hidden variables—this hardly suggests an important novel
point of view. It will not have helped that the philosophical line of argu-
ment of the paper does not come across as robust and convincing: it seems
rather complacent to be content with causal links that can only be defined
with hindsight, in situations without any predictability. As the philosopher
Martin Strauss observed, in a rare contemporary reference to Hermann’s
work [22, p. 338], the causes that are identified in this post factum way
do not provide more information than the original quantum states, so that
Hermann’s scheme is “empty”.32 According to Jammer [16, pp. 209-210],
Heisenberg at first responded positively to Hermann’s ideas, but had already
changed his opinion in 1936.33 All in all, there is little reason to expect that
Hermann’s 1935 publications would have drawn much attention and would
have impacted significantly on the physics community.

32, so daB das Kriterium hier nur erfiillt ist, weil es in dieser Form leer ist.

33 Jammer himself diagnoses Hermann’s claim of retrodictive causality as being unwar-
ranted, since the post factum causes have no explanatory significance [16, p. 209].
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In 1952 David Bohm’s two celebrated papers came out. In a report on
his conversations with Bell, Jeremy Bernstein describes the effect of this
event on Bell as follows [5]:

But early in 1952 something happened that changed everything.
David Bohm published two papers which did just what von Neu-
mann had said was impossible. He created a hidden variable
theory which was at least in some part deterministic and which
reproduced all the results of the quantum theory. Something
must have been terribly wrong with von Neumann.

As can be expected, Bohm himself was interested in the relation of his
hidden-variables scheme to von Neumann’s argument as well. He writes
about von Neumann [7, p. 187]: “in his proof he has implicitly restricted
himself to an excessively narrow class of hidden parameters and in this way
has excluded from consideration precisely those types of hidden parame-
ters which have been proposed in this paper.” This characterization shows
that Bohm was aware that von Neumann had only ruled out quite specific
theoretical schemes. The qualification “excessively narrow” for the class of
hidden variables for which the proof holds is of course subjective—from von
Neumann’s point of view this class (the one respecting Hilbert space struc-
ture) was the only one meriting serious attention; but for Bohm this was
understandably different. Bohm made a serious study of von Neumann’s
proof and refers to it with page numbers. He gives the following more de-
tailed diagnosis [7, p. 187, see also note 9 on p. 167]:

For example, if we consider two noncommuting observables, p
and ¢, then Von Neumann shows that it would be inconsistent
with the usual rules of calculating quantum-mechanical probil-
ities to assume that there were in the observed system a set of
hidden parameters which simultaneously determined the results
of position and momentum “observables.” With this conclusion,
we are in agreement. However, in our suggested new interpre-
tation of the theory, the so-called “observables” are, as we have
seen in Sec. 5, not properties belonging to the observed sys-
tem alone, but instead potentialities whose precise development
depends just as much on the observing apparatus as on the ob-
served system.

The “observables” Bohm is here referring to are the experimental results
actually found in measurements. What Bohm says is in agreement with the
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conclusion of section 3, namely that in hidden-variables theories experimen-
tal outcomes necessarily fail to always reflect the properties actually present
in the system—this introduces an element of “measurement contextuality”
in these theories.

What about von Neumann’s own reaction to Bohm’s papers? Bohm re-
ported [21]: “It appears that von Neumann has agreed that my interpreta-
tion is logically consistent and leads to all results of the usual interpretation.
(This I am told by some people.) Also, he came to a talk of mine and did
not raise any objections.” And on another occasion [11, p. 47]: “von Neu-
mann thinks my work correct, and even elegant, but he expects difficulties
in extending it to spin.” There is no indication that von Neumann felt that
his earlier work had been refuted.

Bohm'’s articles rekindled the interest in hidden variables of Louis de
Broglie. As de Broglie stated, in the meeting of the French Academy of
Science of April 25th 1953 [10, p. 450]: “Eighteen months ago, a young
American physicist, David Bohm, has taken up (in a talented way I should
add) my old ideas that I left in the unfinished and not well-defendable form
of the pilot-wave.”3* De Broglie explains that additional suggestions by
Jean-Paul Vigier have since led him to a renewed investigation of his old
hidden-variables theory, which seems to be worth-while after all (in spite
of the objections at the 1927 Solvay conference). One of the things he has
recently studied is the relation with von Neumann’s theorem, and he has
reached the following conclusion [10, p. 468] : von Neumann assumes that
the probability distributions for physical quantities, found in experiments,
are defined by the states of the objects—but this is not so in his own (and
Bohm'’s) theory. Admittedly, in these theories the distributions of positions
as defined by the states do correspond to what one measures, but this is not
so for measurements of momentum. Von Neumann’s theorem is therefore
not applicable to hidden-variables theories of the Bohm-de Broglie sort.3>

Around 1952 both Bohm and de Broglie thus realized that von Neu-
mann’s theorem pertained to hidden-variables theories of a specific kind,
with a structure similar to that of quantum mechanics, in which the state
of the object defines all empirical distributions of measurement results. As
it turns out, it was exactly the way in which the Bohm theory was able to

341 y a dix-huit mois, un jeune physicien américain, M. David Bohm, a repris, d’ailleurs
avec talent, mes anciennes idées sous la forme tronquées et peu défendables de ’onde-
pilote.

35De Broglie confessed that he had not realized the limited domain of validity of the
theorem before and had overrated its generality—“le théoréme de M. von Neumann ne
me parait plus avoir la portée que je lui attribuais moi-méme dans ces derniéres années.”
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escape von Neumann’s argument, namely its introduction of contextuality,
that provoked criticism from the leading contemporary participants in foun-
dational debates. Indeed, although it is sometimes suggested that Bohm’s
theory was almost completely ignored, Einstein, Pauli and Heisenberg pub-
lished papers in which they explained their reasons for not being convinced
by Bohm’s proposal [18].

Einstein, following an earlier objection by Pauli, considered the case
of a particle in an energy eigenstate, inside a box [18, p. 10]. As is well
known, Bohm'’s theory says that the particle is at rest in the box; but when
the box is opened and the particle’s momentum measured, the usual non-
zero results are found. These experimental values are therefore artifacts
of the measurement, and the hidden reality of Bohm’s world is completely
different from what we empirically have access to. Pauli similarly pointed
out that position and momentum are not treated symmetrically in Bohm’s
theory. Although a position measurement reveals a particle’s actual position,
Pauli states that Bohm eludes the von Neumann no-hidden-variables proof
by conteztualizing momentum [18, p. 11]. Also Heisenberg objected to the
same feature: “for the measurements of position Bohm accepts the usual
interpretation, for the measurements of velocity or momentum he rejects it”
[18, p. 13].36

7 Conclusion

In the history as we have reviewed it here, there is no mistake nor foolishness
in von Neumann’s proof. It is true that one may object to von Neumann’s
“quantum assumption”, that all physical quantities should be theoretically
represented by Hermitian operators in a Hilbert space, on the grounds that
it is too strict. But von Neumann gives good inductive arguments for his
assumption and is aware of its hypothetical character; it is certainly not a
silly mistake to adopt a premise of this kind.

As we have also argued, Grete Hermann’s technical criticism of von Neu-
mann’s work was not justified. Nevertheless, her own 1935 assessment of
what really followed from von Neumann’s argument was not far from the
mark—but her conclusion here was not spectacular (and stayed close to
what von Neumann himself had claimed). Probably more importantly, her
final verdict that it was unnecessary to look for hidden variables anyway

36 As Myrvold subsequently shows, the impossibility to assign non-contextual values to
both position and momentum is not a peculiarity of the Bohm theory, but is a general
feature of hidden-variables theories.
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seemed to be in accordance with well-known points of view. In addition, Her-
mann’s purely philosophical arguments for this position, in her Die Natur-
wissenschaften paper, come across as rather unphysical and shaky and will
not have been able to excite many physicists. All in all, it is not surprising
that Hermann’s work did not cause a stir.

With the publication of Bohm’s 1952 papers the discussion became more
specific. Bohm himself analyzed in what respect his theory did not satisfy
von Neumann’s premises and was confirmed in his conclusions by de Broglie
and Einstein, but also by the Copenhagenists Pauli and Heisenberg. More-
over, Von Neumann himself saw no technical problems in Bohm’s proposal.
It is difficult to discern the contours of a concerted Copenhagen programme
of indoctrination in this part of the history.

Bell recounts [3] that he wondered about what von Neumann’s argument
had exactly proved when he saw Bohm’s hidden-variables papers. He adds
that he was unable to study the proof at the time, as no English translation
of von Neumann’s book was available, and that he therefore directed his
attention to other subjects—although convinced that something had to be
seriously wrong in von Neumann’s arguments. It seems plausible that when
he finally has a chance to read von Neumann’s book, quite some years later,
he looked for passages and sentences in which the expected error was clearly
present. This would explain, for example, his emphasis on the last sentence
of von Neumann’s conclusion and his omission of the rest (section 4). It could
also explain that he missed the precise structure of von Neumann’s proof,
in particular the role played in it by implicitly defined physical quantities.

What seems to be at least equally important is that Bell after 1966 made
no secret of his foundational agenda. He fiercely defended the idea of hidden
variables and made a firm stand against the Copenhagen hegemony. It goes
without saying that for this agenda the exposure of a blatant error by one of
the most prominent and revered (and in the meantime deceased) exponents
of the “powers that be”, an error allegedly used to justify the suppression
of minorities, is an extremely effective rhetorical weapon. Indeed, the very
prevalence of the standard story about how von Neumann’s proof was shown
up as a fake argument demonstrates this effectiveness.

It is possible that von Neumann’s theorem has been invoked by some
adherents of the Copenhagen interpretation as the final word against doubts
about indeterminism and completeness. These must have been cases of
ignorance, most likely mixed with a good dose of rhetoric. But the later
disqualification of the theorem as a foolish fallacy by anti-Copenhagenists
has certainly not been less ignorant and rhetorical.
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