Skip to main content
Log in

Beyond networks: mechanism and process in evo-devo

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Our ignorance of the laws of variation is profound.

Darwin (1859, 105).

The real goal of evo-devo is to explain evolution as the modification of developmental processes, not merely to demonstrate that evolution has proceeded by modifying development. Although genes are important aspects of the developmental processes, they are not the processes themselves.

Amundson (2005, 247).

Abstract

Explanation in terms of gene regulatory networks (GRNs) has become standard practice in evolutionary developmental biology (evo-devo). In this paper, we argue that GRNs fail to provide a robust, mechanistic, and dynamic understanding of the developmental processes underlying the genotype–phenotype map. Explanations based on GRNs are limited by three main problems: (1) the problem of genetic determinism, (2) the problem of correspondence between network structure and function, and (3) the problem of diachronicity, as in the unfolding of causal interactions over time. Overcoming these problems requires dynamic mechanistic explanations, which rely not only on mechanistic decomposition, but also on dynamic modeling to reconstitute the causal chain of events underlying the process of development. We illustrate the power and potential of this type of explanation with a number of biological case studies that integrate empirical investigations with mathematical modeling and analysis. We conclude with general considerations on the relation between mechanism and process in evo-devo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. It is worth noting that the initial formulation was much more modest, and the proposed research program was more precisely circumscribed: “Undoubtedly important regulatory processes occur at all levels of biological organization. We emphasize that this theory is restricted to processes of cell regulation at the level of genomic transcription” (Britten and Davidson 1969, 349).

  2. Independently, Weiss and Fullerton (2000) coined the term “phenogenetic drift” for the same evolutionary process (see also Weiss 2005). This type of phenomenon was first discussed (but not explicitly named) by Schmalhausen (1949).

  3. Probably the most iconic network graph in current evo-devo is the representation of the sea urchin endomesoderm specification network first presented (in parts) in Davidson et al. (2002). This graph is not purely static, given that developmental timing of activation of specific sub-circuits is noted. However, coarse-grained markers of developmental timing are far from capturing the dynamical behaviors of the activated GRNs. An always up-to-date, interactive version of this graph can be found at: http://grns.biotapestry.org/SpEndomes.

References

  • Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22

    Google Scholar 

  • Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84:5–11

    Article  Google Scholar 

  • Amundson R (2005) The changing role of the embryo in evolutionary thought: structure and synthesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Austin CJ (2016) The ontology of organisms: mechanistic modules or patterned processes? Biol Philos 31:639–662

    Article  Google Scholar 

  • Bateson W (1909) Mendel’s principles of heredity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bechtel W (2011) Mechanism and biological explanation. Philos Sci 78:533–557

    Article  Google Scholar 

  • Bechtel W (2012) Understanding endogenously active mechanisms: a scientific and philosophical challenge. Eur J Philos Sci 2:233–248

    Article  Google Scholar 

  • Bechtel W, Abrahamsen A (2005) Explanation: a mechanist alternative. Stud Hist Philos Biol Biomed Sci 36:421–441

    Article  Google Scholar 

  • Bechtel W, Abrahamsen A (2010) Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science. Stud Hist Philos Sci 41:321–333

    Article  Google Scholar 

  • Bonduriansky R, Day T (2018) Extended heredity: a new understanding of inheritance and evolution. Princeton University Press, Princeton

    Book  Google Scholar 

  • Brigandt I (2013) Systems biology and the integration of mechanistic explanation and mathematical explanation. Stud Hist Philos Biol Biomed Sci 44:477–492

    Article  Google Scholar 

  • Brigandt I (2015) Evolutionary developmental biology and the limits of philosophical accounts of mechanistic explanation. In: Braillard P-A, Malaterre C (eds) Explanation in biology. Springer, Dordrecht, pp 135–173

    Chapter  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    Article  Google Scholar 

  • Burns J (1970) The synthetic problem and the genotype-phenotype relation in cellular metabolism. In: Waddington CH (ed) Towards a theoretical biology, vol III. Edinburgh University Press, Edinburgh, pp 47–51

    Google Scholar 

  • Calcott B (2009) Lineage explanations: explaining how biological mechanisms change. Br J Philos Sci 60:51–78

    Article  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485

    Article  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  Google Scholar 

  • Cooke J (1998) A gene that resuscitates a theory—somitogenesis and a molecular oscillator. Trends Genet 14:85–88

    Article  Google Scholar 

  • Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476

    Article  Google Scholar 

  • Crombach A, Wotton KR, Jiménez-Guri E, Jaeger J (2016) Gap gene regulatory dynamics evolve along a genotype network. Mol Biol Evol 33:1293–1307

    Article  Google Scholar 

  • Dale KJ, Pourquié O (2000) A clock-work somite. BioEssays 22:72–83

    Article  Google Scholar 

  • Danchin E, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London. Re-published 2006, Dover Publications, New York

    Google Scholar 

  • Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920

    Article  Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  Google Scholar 

  • Dequéant M-L, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquié O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:1595–1598

    Article  Google Scholar 

  • DiFrisco J (2019) Developmental homology. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology: a reference guide. Springer, Cham

    Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evloution. Sinauer Associates, Sunderland

    Google Scholar 

  • Goodwin BC (1982) Development and evolution. J Theor Biol 97:43–55

    Article  Google Scholar 

  • Green S, Fagan M, Jaeger J (2015) Explanatory integration challenges in evolutionary systems biology. Biol Theory 10:18–35

    Article  Google Scholar 

  • Griesemer J (2000) Reproduction and the reduction of genetics. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution: historical and epistemological perspectives. Cambridge University Press, Cambridge, pp 240–285

    Chapter  Google Scholar 

  • Griesemer J (2006) Genetics from an evolutionary process perspective. In: Neumann-Held EM, Rehmann-Sutter C (eds) Genes in development: re-reading the molecular paradigm. Duke University Press, Durham, pp 199–237

    Google Scholar 

  • Haag ES, True JR (2018) Developmental system drift. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, Berlin

    Google Scholar 

  • Hall BK (1994) Homology: the hierarchical basis of comparative biology. Academic Press, San Diego

    Google Scholar 

  • Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67(12):3501–3511

    Article  Google Scholar 

  • Holland PWH (1999) The future of evolutionary developmental biology. Nature 402:C41–C44

    Article  Google Scholar 

  • Horder TJ (1989) Syllabus for an embryological synthesis. In: Wake DB, Roth G (eds) Complex organismal functions: integration and evolution in vertebrates. Wiley, Chichester, pp 315–348

    Google Scholar 

  • Hubaud A, Pourquié O (2014) Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15:709–720

    Article  Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34

    Article  Google Scholar 

  • Jacob F, Monod J (1959) Gènes de structure et gènes de régulation dans la biosynthèse des protéines. Comptes-rendus de l’Academie des Sciences de Paris 249:1282–1284

    Google Scholar 

  • Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68:243–274

    Article  Google Scholar 

  • Jaeger J (2018) Shift happens: the developmental and evolutionary dynamics of the gap gene system. Curr Opin Syst Biol 11:65–73

    Article  Google Scholar 

  • Jaeger J (2019) Dynamic structures in evo-devo: from morphogenetic fields to evolving organisms. In: Fusco G (ed) Perspectives on evolutionary and developmental biology: essays for Alessandro Minelli. Padova University Press, Padova, pp 335–355

    Google Scholar 

  • Jaeger J, Crombach A (2012) Life’s attractors: understanding developmental systems through reverse engineering and in silico evolution. In: Soyer O (ed) Evolutionary systems biology. Springer, Berlin, pp 93–120

    Chapter  Google Scholar 

  • Jaeger J, Monk N (2014) Bioattractors: dynamical systems theory and the evolution of regulatory processes. J Physiol 592:2267–2281

    Article  Google Scholar 

  • Jaeger J, Monk N (2019) Dynamical modularity of the genotype–phenotype map. In: Crombach A (ed) Evolutionary systems biology 2.0. Springer, Berlin (forthcoming)

    Google Scholar 

  • Jaeger J, Sharpe J (2014) On the concept of mechanism in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 56–78

    Chapter  Google Scholar 

  • Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004a) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371

    Article  Google Scholar 

  • Jaeger J, Blagov M, Kosman D, Kozlov KN, Manu Myasnikova E, Surkova S, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004b) Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167:1721–1737

    Article  Google Scholar 

  • Jaeger J, Irons D, Monk N (2012) The inheritance of process: a dynamical systems approach. J Exp Zool B Mol Dev Evol 318B:591–612

    Article  Google Scholar 

  • Jiménez A, Cotterell J, Munteanu A, Sharpe J (2017) A spectrum of modularity in multi-functional gene circuits. Mol Syst Biol 13:925

    Article  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  Google Scholar 

  • Krol AJ, Roellig D, Dequéant M-L, Tassy O, Glynn E, Hattem G, Mushegian A, Oates AC, Pourquié O (2011) Evolutionary plasticity of segmentation clock networks. Development 138:2783–2792

    Article  Google Scholar 

  • Kronholm I (2017) Adaptive evolution and epigenetics. In: Tollefsbol TO (ed) Handbook of epigenetics: the new molecular and medical genetics. Academic Press, London

    Google Scholar 

  • Manu Surkova S, Spirov AV, Gursky V, Janssens H, Kim A-R, Radulescu O, Vanario-Alonso CE, Sharp DH, Samsonova M, Reinitz J (2009) Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput Biol 5:e1000303

    Article  Google Scholar 

  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 103:1313–1318

    Article  Google Scholar 

  • Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25:395–403

    Article  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc B Biol Sci 278:2705–2713

    Article  Google Scholar 

  • Monod J, Jacob F (1961) General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  Google Scholar 

  • Morange M (2014) From genes to gene regulatory networks: the progressive historical construction of a genetic theory of development and evolution. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 174–182

    Chapter  Google Scholar 

  • Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The mechanism of Mendelian heredity. Henry Holt, New York

    Book  Google Scholar 

  • Nijhout HF (1990) Metaphors and the role of genes in development. BioEssays 12(9):441–446

    Article  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  Google Scholar 

  • Nüsslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1687

    Article  Google Scholar 

  • Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639

    Article  Google Scholar 

  • Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci USA 105:5955–5962

    Article  Google Scholar 

  • Orr HA (2000) Adaptation and the cost of complexity. Evolution 54(1):13–20

    Article  Google Scholar 

  • Oster G, Alberch P (1982) Evolution and bifurcation of developmental programs. Evolution 36:444–459

    Article  Google Scholar 

  • Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:639–648

    Article  Google Scholar 

  • Panovska-Griffiths J, Page KM, Briscoe J (2013) A gene regulatory motif that generates oscillatory or multiway switch outputs. J R Soc Interface 10:20120826

    Article  Google Scholar 

  • Peter IS, Davidson EH (2015) Genomic control process: development and evolution. Elsevier, Amsterdam

    Google Scholar 

  • Peter IS, Davidson EH (2017) Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci USA 114:5862–5869

    Article  Google Scholar 

  • Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as a blueprint’ metaphor. Philos Trans R Soc B 365:557–566

    Article  Google Scholar 

  • Riedl R (1978) Order in living organisms. Wiley, Chichester

    Google Scholar 

  • Schmalhausen II (1949) Factors of evolution. Blackiston Company, Philadelphia

    Google Scholar 

  • Scholl R, Pigliucci M (2014) The proximate-ultimate distinction and evolutionary developmental biology: causal irrelevance versus explanatory abstraction. Biol Philos 30(5):653–670

    Article  Google Scholar 

  • Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–2177

    Article  Google Scholar 

  • Thom R (1976) Structural stability and morphogenesis. W. A. Benjamin, Reading

    Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3(2):109–119

    Article  Google Scholar 

  • Verd B, Crombach A, Jaeger J (2017) Dynamic maternal gradients control timing and shift-rates for Drosophila gap gene expression. PLoS Comput Biol 13:e1005285

    Article  Google Scholar 

  • Verd B, Clark E, Wotton KR, Janssens H, Jiménez-Guri E, Crombach A, Jaeger J (2018) A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila. PLoS Biol 16:e2003174

    Article  Google Scholar 

  • Verd B, Monk NAM, Jaeger J (2019) Modularity, criticality, and evolvability of a developmental gene regulatory network. eLIFE 8:e42832

    Article  Google Scholar 

  • von Dassow G, Munro E (1999) Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. J Exp Zool Mol Dev Evol 285:307–325

    Article  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Macmillan, London

    Google Scholar 

  • Wagner A (2005) Robustness and evolvability in living systems. Princeton University Press, Princeton

    Google Scholar 

  • Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479

    Article  Google Scholar 

  • Wagner A (2008) Robustness and evolvability: a paradox resolved. Proc Roy Soc London Series B 275:91–100

    Article  Google Scholar 

  • Wagner A (2011) The origins of evolutionary innovations. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976

    Article  Google Scholar 

  • Wagner GP, Chiu C-H, Laubichler M (2000) Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. Am Zool 40:819–831

    Google Scholar 

  • Wallace B (1986) Can embryologists contribute to an understanding of evolutionary mechanisms? In: Bechtel W (ed) Integrating scientific disciplines. Martinus Nijhoff, Dordrecht, pp 149–163

    Chapter  Google Scholar 

  • Walsh DM (2015) Organisms, agency, and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Waters CK (2007) Causes that make a difference. J Philos 104(11):551–579

    Article  Google Scholar 

  • Webster G, Goodwin BC (1996) Form and transformation: generative and relational principles in biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Weiss KM (2005) The phenogenetic logic of life. Nat Rev Genet 6:36–45

    Article  Google Scholar 

  • Weiss KM, Fullerton SM (2000) Phenogenetic drift and the evolution of genotype-phenotype relationships. Theor Popul Biol 57:187–195

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wimsatt W (2007) Re-engineering philosophy for limited beings: piecewise approximations to reality. Harvard University Press, Cambridge

    Google Scholar 

  • Wotton KR, Jiménez-Guri E, Crombach A, Janssens H, Alcaine-Colet A, Lemke S, Schmidt-Ott U, Jaeger J (2015) Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. eLIFE 4:e04785

    Article  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and an editor of this journal for insightful comments. Thanks also to audiences at ISHPSSB 2019, the 2019 Venice Summer School in Evo-Devo, the 2019 Summer School in Philosophy of the Life Sciences at University of Rijeka, Institut Monod in Paris, and the EvoDevo Seminar Series in Cambridge for feedback and vigorous discussion. JD thanks the Research Foundation – Flanders (FWO) (Grant No. 12W1818N) and the Konrad Lorenz Institute for Evolution and Cognition Research for financial support.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiFrisco, J., Jaeger, J. Beyond networks: mechanism and process in evo-devo. Biol Philos 34, 54 (2019). https://doi.org/10.1007/s10539-019-9716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10539-019-9716-9

Keywords

Navigation