
F. DIGNUM 

J . - J .  CH. MEYER* 

R. J. WIER, INGA** 

Free Choice and 
Contextua l ly  P e r m i t t e d  
Act ions  

A b s t r a c t .  We present a solution to the paradox of fl'ee choice permission by introducing 
strong and weak permission in a deontic logic of action. It is shown how counterintuitive 
consequences of strong permission can be avoided by limiting the contexts in which an 
action can be performed. This is done by introducing the only operator, which allows 
us to say that only ~ is performed (and nothing else), and by introducing contextual 
interpretation of action terms. 

Key words: actions, dynamic logic, contexts. 

1. I n t r o d u c t i o n  

In the standard system of deontic logic [1, 27], it is a theorem that 

P(p) ~ P(p V q) 

which means that if p is permitted then p V q is also permitted. As a conse- 
quence, we have that 

P(Talk to the president) ~ P(Talk to the president V shoot the 
president), 

which is counterintuitive. In the literature, this is called the paradox of free 
choice permission. One way to resolve this paradox is to simply define two 
permission operators Pw and P~, denoting weak and strong permissibility, 
that satisfy 

Pw(P V q) = PwP V Pwq 
Ps(P V q) =__ PsP A Psq. 

This is done by e.g. Von Wright ([28, p. 22]). Although this avoids the 
paradox of free choice permission, it introduces another problem, for it now 
holds that Psp --~ Ps(p h q): 

PsP =- Ps((P A q) V (p A -~q)) -- Ps(P A q) A Ps(P A -~q). 

*This author gratefully acknowledges the hospitality of Link5ping University during 
revision of this paper. 

**This research of J.-J.Ch.Meyer and R.J.Wieringa is partially supported by ESPRIT 
BRWG project No.8319 'ModelAge'. 

Studia Logica 57: 193-220, 1996. 
�9 1996 Kluwer Academic Publishers. Printed in the Netherlands. 



194 F. Dign urn, J.- J. Ch.Meyer, R.J. Wieringa 

Kamp [14] proposes to introduce a "focus" operator F ,  that  keeps track of the 
disjuncts that  are permitted in disjunctive permission. Thus Kamp allows 
expressions like PK(FpV Fq) and PKF(pV q), where the permission operator 
PK resembles Von Wright's Ps. The former expression entails PKFp, the 
lat ter  does not. As Hilpinen [13] remarks, F can be regarded as an operator 
that  selects the class of possible ways that  are permit ted in order to establish 
the result given as its argument.  

Castafieda [6] argues that  the paradox of free choice permission, along 
with many other paradoxes of deontic logic, is due to the use of ordinary 
logical connectives inside the P operator. He proposes to distinguish prac- 
titions from assertions and to apply deontic operators to practitions rather  
than assertions. Interpreting this as a distinction between actions and states, 
McCarty [17], Khosla and Maibaum [15] and Meyer [20] independently pro- 
duced formalizations of deontic action logic, in which actions are distin- 
guished from states and deontic operators apply to actions, not states. The 
action logic used by these authors is some variant of dynamic logic [12, 16]. 
Meyer [19, 20] showed how this approach can avoid many of the paradoxes 
of standard deontic logic. However, the paradox of free choice permission 
still remains, except that it now has the form 

P(~)  ~ P(~  + 3), 

where a and/3 denote actions and + is a choice operator. It was suggested 
by Meyer and Wieringa [22, 26] that the paradox could be avoided by distin- 
guishing active from passive choice, denoted by | and +,  respectively. The 
action expression a +/3 means intuitively that  a or/3 occurs, but it is not 
stated which, whereas a | means that  an action occurs in which a choice 
between a and/3 is made. An action is said to be permit ted in this approach 
if there is a way of executing it which does not lead to a violation. (This is 
a kind of Anderson reduction, explained in more detail below.) Given this 
intuitive meaning, the validities 

P(,~) V P(/3) -- t'(,~ +/3) and 
P(~)  ^ P(/3) - F'(~ ~/3) 

are not counterintuitive. However, in this approach we also have the validity 

P(Shoot  a gun & Aim in the air) ) P(Shoot  a gun), 

where & is a synchronous execution operator, which says that  its two argu- 
ments  denote synchronously occurring actions. The reason is that  if there is 
a way of executing a jointly with/3 that  does not lead to a violation, then 
there is also a way of executing a that  does not lead to a violation. We will 



Free Choice... 195 

refer to this problem as the paradox of context-sensitive permission. It can 
even be shown that the following holds: 

P(a~fl) .~ P(((~&/~)+(a&~)), 

where ~ expresses the negation of an action expressed by 8. Roughly, this 
is any event in which fl does not occur; details on this follow later. 

In this paper, we propose a resolution of the paradox of free choice per- 
mission which avoids the paradox of context-sensitive permission. The idea 
is simply to return to Von Wright's idea mentioned at the beginning, and 
distinguish a strong and a weak permission operator Ps and P~. If a is 
weakly permitted, there is at least one way of doing it that does not lead to 
a violation. If it is strongly permitted, then no ways of doing it lead to a 
violation. Similar operators have been introduced by McCarty [17, 18] and 
Segerberg [23]. We will show that, by introducing contexts in which actions 
take place, the problem with strong permission mentioned at the beginning 
of this paper can be avoided. 

Before we give a new definition for permission we will, in the next section, 
first discuss the exact meaning of action expressions in our formalism. We 
will introduce a new operator on action expressions that will make it possible 
to specify that an action is performed in isolation. At the end of section 
2 we will show how the action expressions are incorporated into a logical 
language that can be used to describe deontic properties. In section 3, we 
will discuss the definition for the permission operator and show how the 
Free Choice Paradox can be resolved while avoiding some other problems. 
In section 4, we discuss a possible refinement of the theory based on the 
previous sections, by introducing contexts of actions. Finally, in section 5, 
we draw some conclusions and point out some topics for future research. 

2. I n t e r p r e t a t i o n  fo r  a c t i o n s  in logic 

2.1. I n t r o d u c t i o n  

In [20, 8, 9] the standard interpretation of an action expression was given in 
an open sense, i.e. if an action expression is used it means informally that 
the action denoted by that action expression occurs, possibly in combination 
with other actions. The reason for this is twofold. First it is more natural. 
Usually we do not have complete knowledge of the world. In that case it is 
easier to be able to specify the action of which one is certMn that it occurs, 
without having to say anything about other actions. The second reason 
is that it facilitates the definition of the parallel execution as well as the 



196 F. Dign um, J.-J. Ch.Meyer, R.J. Wieringa 

negation of an action, which is needed in this approach to model  obligation. 
See [8] for more explanation on this topic. 

We will keep this "standard" interpretation of an action expression, but 
we will add an operator  to indicate that  an action can only be performed in 
isolation. This operator  is (quite obviously) called the "only" operator.  The 
intuitive meaning of the action term only(a) is that  the action denoted by 
a is performed and no other action is performed. Actually, only(a) denotes 
how the action denoted by a is usually viewed in computer  science. 

We now first define the formal language(s) that  we shall use. First we 
give a definition of action expressions, which we shall typically denote a,  
possibly with subscripts. To this end we assume a set At of atomic action 
expressions that  are typically denoted by a, b, . . . .  Finally, we assume special 
action expressions a n y  and fail denoting "don't  care what happens" and 
"failure", respectively. 

Now we define: 

DEFINITION 1. The set OAct of action expressions not containing the oper- 
ator only is given as the smallest set closed under: 

(i) At U {any,  fail} C OAct 

(ii) al ,a2 E OAct --~ al + a2 E OAct 

(iii) a l , a 2  E OAct ~ ale:a2 E OAct 

(iv) a E OAct ~ ~ E OAct 

The set Act of action expressions is given as the smallest set closed under: 

(i) OAct O {only(a)la E Omct} C Act 

(ii) al ,a2 E Act ==~ al + a2 E Act 

(iii) a l , a  2 E Act ~ G'l~Sa 2 E Act 

(iv) a E Act ==~ -ff E Act 

We further  use the following terminology: atomic action expressions a E 
Act, as well as their negations a- (a E At) are called action literals. An 
action expression that  is the conjunction (using the &:-connective) of one or 
more action literals is called an action term. So, for example, a&;b___&:c, for 
a, b_, s E At, is an action term. 

NOTE: We build the set of action expressions in two steps in order to 
prevent  the nesting of the only operator.  

In the rest of this section we will give the semantics of action expressions 
from Act that  do not contain an occurrence of the only operator .  The 



Free Choice.. .  197 

semantics of only(a) will be treated in the next section on the basis of the 
semantics developed in this section. 

The semantics of action expressions is based on (sets of) so-called events. 
(In fact, we shall use even sets of sets of events, but we shall see this shortly.) 
The semantics tha t  we shall give here is a simplified version of the one used 
in [20]. The simplification is based on the fact that  we do not consider 
sequences of actions in this paper. The extension to sequences of actions 
can be easily made,  but  would obscure the points that  we try to make in 
this paper.  

Wi th  every atomic action expression a_ E Act, we associate an event 
a in a given class A of events, with typical elements a, b, c .... Events are 
the semantical  entities on which we shall base our interpretation of action 
expressions. They  have an intensional flavour: they denote what happens 
in the world in an abstract  way; only the event itself is recorded here, not 
yet  its result. This is usually called a uniform semantics in the l i terature on 
the semantics of concurrency (e.g. [5]). (Later on, we shall also introduce a 
more  extensional (or non-uniform) semantics in the sense of events as causing 
changes (or transitions) of states of the world.) We further assume a special 
event 5, which is not an element of A, called failure (comparable to deadlock 
in process algebra ([3]). The relation between an action expression a E Act 
and the associated event a E ,4 is more involved than just interpreting a as a. 
We shall interpret  atomic action expressions a_ E Act in a more sophisticated 
way, which we call "open": the meaning of an atonfic action expression 
a E Act  will be the event a E A corresponding with it, in combination with 
any other  subset of the events in .,4. Thus a expresses (is a representation 
of the fact)  tha t  the (performance/occurrence of) event a is guaranteed,  but  
also other  events may  happen/occur  simultaneously. The lat ter  implements 
the "open interpretat ion of an action expression" that  we mentioned above. 
Of course, this will introduce a lot of "nondeterminism' ,  since we have a 
great number  of ways to let "other events happen/occur  simultaneously". 
(Another  source of nondeterminism is the fact that  we have a choice operator  
for action expressions, so nondeterminism is already built into the language.) 

So, to define the semantics formally, we need the notion of a synchronicity 
set (or s-set for short). A synchronicity set will denote a set of events that  
occur simultaneously. They are the basic building blocks of the semantics. 
Moreover,  in order to t reat  the nondetermistic features of our language of 
actions (and the open interpretation) we shall consider sets of s-sets. 

DEFINITION 2. 1. The set {5} is a synchronicity set. 

2. Every non-empty finite subset of ,4 is an s-set. 

NOTATION: In concrete cases we write the sets with square brackets, in 



198 F. Dign urn, J.-J. Ch.Meyer, R.J. Wieringa 

order to distinguish them easily from other  sets tha t  we will use. So, the  
s-set consisting of 6 is writ ten as [6] and the s-set consisting of the events 

[ a ]  T h e p o w e r s e t o f n o n - e m p t y f i n i t e s u b s e t s o f A  a and b is writ ten as b " 

will be denoted by io+(A). 

The  above definition prevents the s imultaneous execution of the special 
event  5 with other  events,  because it is not in .A. This is necessary, because 
it is not possible to perform an event and at the same t ime have a deadlock. 

DEFINITION 3. The  domain T~ for our model  for action expressions f rom Act 
is the collection of sets of s-sets. I.e. 7?=p(p+(.A) U {[3]}). 

Because the language of action expressions contains a choice operator ,  
which introduces non-determinism,  we have to consider sets of s-sets as the  
semantics  of an action expression. Each of the s-sets in these sets s tands for a 
possible choice. As we s ta ted before, this non-determinism is also in t roduced  
by using the open specification of an action. 

NOTATION : We use T, T 1 , . . . ,  T / , . . .  to denote sets of s-sets. 

To give the denotat ion for all action expressions in Act we define the 
semantical  counterpar ts  of the syntactical  operators  +,  &: and negat ion.  
Before we give these definitions, we define a convenient  opera tor  on sets of 
s-sets: 

DEFINITION 4. Let T be a set of s-sets then 

T6 f T\{[5]} i f 3 S e T : S # [ 6 ]  
: [ {[5]} otherwise 

The  opera tor  T 6 is closely related to what  is called "failure removal" in 
[5]. The  idea is that  failure,is avoided when possible, i.e. when there is a 
non-failing alternative,  in [4], this is called angelic nondeterminism.  

Wi th  this function defined, we can now give the semantical  operators  on 
T). For the parallel operator  & we use a set-intersection ~, which is almost  
the same as the normal  set-intersection. 

DEFINITION 5. For T , T '  6 7:): 

T~T'={ TNT' ifTNT'#0 
{[6]) otherwise 

The  semantical  counterpa, rt of the choice operator  is defined as follows: 



Free Choice. . .  199 

DEFINITION 6. For T,T' E I): 

T "~T' : (T U T'/ 

The above definition states that  the choice between two sets of s-sets is the 
union of those two sets minus [6], unless the union does not contain anything 
else. 

The last definition defines the semantic counterpart  of the negation (non- 
performance)  of an action expression. 

DEFINITION 7. The definition of " ~ "  is given as follows: 

1. For an s-set S, 

s~ = [ ~+(A)\{s} if s # [6] 
[ p+(A) if S = [6] 

2. For a non-empty set T E 7) 

f~ r~ 
T ~ = s e t s  

The idea of these definitions is the following: For an s-set (S # [6]) the 
negation just yields the set-theoretic complement of {S} with respect to 
p+(.A). For the negation of a set of s-sets T we take the intersection of the 
sets(!) of the negations of all the s-sets contained in T. 

The semantics of action expressions in Act, apart  from only(a) ,  which is 
t rea ted  in the next section, are defined as follows: 

DEFINITION 8. The semantic function [[~ 6 Act ~ D is given by: 

[[a]]-- {S E p+(A)la E S} 
[[a, + as]] = [[al]] ~[[aJ] 
[[a,&a~]]  = [[a,]] ~[[a~]] 
[[~]] = [[a]] ~ 
[[fail]] = {[6]} 
[[any]] = p+  (A)  

The first clause of the above definition expresses that  the meaning of the 
action expression a is exactly as we have described informally before: it 
is the set of s-sets that  contain the event a, representing a choice between 
all (simultaneous) performances of sets of events which at least contain the 
event a, so tha t  the performance of a is guaranteed but also other events 
may  happen simultaneously. Here we recognize the open interpretat ion of 
action expressions as discussed earlier. The meaning of the action expression 



200 F.Dignum, J.-J.Ch.Meyer, R.J. Wieringa 

fail  is comparable to a deadlock. The only event that  can be performed is 5. 
The action expression a n y  is the complement of fail. It stands for a choice 
of any possible combination of events. 

Finally we define the equality of action expressions and some kind of 
implication between action expressions in terms of their semantics. 

DEFINITION 9. We define a l  = v  a2 iff [[a~]]= [[a2]]. 
We define a l  > a2 iff [[a,]]C [[a2]]. 

If a l  =z~ a2 then we say that  a l  and a2 are intensionally equivalent. 
If a l  > a~ then we say that  a l  intensionally involves a2. 

Defining the domain and the operators as we did, renders this into a 
boolean algebra, with fail as bot tom element. 

PROPOSITION l. 

1. (:D, +,  ~: ,- ,  fail) is a boolean algebra, 

2. l) satisfies the following property concerning the special actions: 

fail =v a n y  

PROOF. Clear by the proposition. [] 

2 .2 .  O n l y  

In the semantics for only(a) we require that  a be of a very strict format ,  
which we will call strict disjunctive normal form. The definition of this 
format  is given in two steps: 

DEFINITION 10. An action expression is in disjunctive normal  form if 

1. it is a finite disjunction (using the + operator)  of one or more action 
terms and it does not contain any occurrence of fail, or 

2. it consists of the action expression fail. 

DEFINITION 11. The action expression a is in strict disjunctive normM form 
if it is in disjunctive normal fbrm and for every subexpression of a of the 
form a l  + a2 the following hold: 

�9 neither [[al]] C [[~2]] nor [[a2]] _C [[al]]. 

�9 neither [[al]] -- {[~]} nor [[a2]] = {[~]}. 



Free Choice... 201 

NOTE: The only action expression which is in strict disjunctive normal form 
and that  contains an occurrence of a n y  is the action expression a n y  by itself! 

The semantics of the only operator  is only defined on action expressions that  
are in strict disjunctive normal form. The reason is the interaction between 
the choice operator  and the only operator.  Intuitively it is clear that  it makes 
more  sense to say "John only opens the window" than something like: "John 
only opens the window or closes the door". That  is, the only operator  works 
more natural ly  on atomic action expressions (and their conjunctions) than 
on disjunctions of action expressions. This is due to the fact that  the only 
opera tor  restricts the actions that  are taking place, while the choice operator  
does the reverse. This is reflected in the formalization of only(a+ b), which 
is informally defined to mean only(a) or only(b) or only(a&b) (see definition 
12). 

Fortunately,  in the following, we can use the property:  

THEOREM 1. For any action expression (~ there exists an action expression 
a* such that ~* is in strict disjunctive normal form and [[~]] = [[(~*]]. 

PROOF. Follows direct from the semantics and the definitions. �9 

E.g. [[a + (a&_b)]]= [[fi]]. The righthand-side stands for "any action that  
includes a ' .  Clearly, this includes the actions that  contain a and b. Therefore 
it is clear that  the equivalence above holds. 
In the following we use cr to denote the strict disjunctive normal form of ~. 
It should be noted that  there is no unique c~* for each a.  

Now, we define the semantics of the only operator in three steps: 

DEFINITION 12. 

1. Let a be an atomic action expression then 

- [[only(a)]] = {[a]} 

- = F A ]  

2. Let a and/3  be action terms then 

- [[only(a~=/3)]] = {SIS = 5'1 u S.2 and ,-~'1 e [[only(a)~ and $2 e 
~only(t3)]]} 

3. Let a be an action expression ill strict disjunctive normal form. 

- if a is an action literM or an action term then [[only(a)~ is defined 
as above. 



202 F.Dign urn, J.-2. Ch.Meyer, R.J. Wieringa 

- if a = a l  + a2 then [[only(a)~ = [[ onl y( al ) ]] U [[only(a2)]] U 
[[only((al~a~)*)]] 

- [[only(anY)l] = [[any]] 

N O T E :  In the definition above it is stated that  [[ onl y(-5) ]] = [[~] which means 
tha t  the only operator has no effect on negated action expressions. This is 
due to the fact that  these negated action expressions are already minimal 
in the following sense: It is not possible to leave out any synchronicity set 
from the semantics and still keep a meaningful definition of the negation. 

E X A M P L E :  Let the set of events A be {a, b} then 

[[only(a~b)]] : {SIS : $1 U S.2 and $1 in{[el} and $2 E ([b]}} = ( [  a 1 b } 
L A 

[ [on ly (a  + _~)]] = [[o~ly(~)]] u [[only(_b)]] u [ [on ly( (a~b) ) ] ]  = 

NOTATION: In the rest of this paper, whenever we write only(a), we assume 
tha t  a is in strict disjunctive normM tbrm. 

It is easy to see from the definition that  the only operator  does not 
distribute over the other operators. That  is: 

only( a~/3 ) #~ o~tly( ~ )~only(fl) 
only(a + ~) #~ o~ly(a) + only(Z) 
only(,) #~ o~,~ly(-~) 

This can be seen with the following very small example where we take the 
set of all events A to be {a, b}. 

[[only(a.~b)]]={[ a ] 
b } # 

{[(~]} = {[a]} ~{[b]} = [[only(a)&only(b)]] 

[[only(a+b_)]]={[a],[b],[ a ] 

{[~],  [~]} = {[a]}  ~{ [~ ] )  = [[o,~ly(a) u only(b)]]  
[[o,~ty(~)]] = [[~] = {[b]} # 

b } = { [ a ] } ~  = [[~ = [[only(~)]] 

Because the only operator does not dlstrlbute over any of the other  operators 
there are not many properties that  can be proven for this operator.  The only 
properties that  are important  to mention here are the following: 



Free Choice... 203 

PROPOSITION 2. [[only(o,*)]] C_ 

PltOOF. Easy by induction. �9 

This proper ty  means that  only(a*) does not lead to more possible states 
than a. 

PROPOSITION 3. Let a ~ v  /3 and let ~ and /3 both be action terms not 
containing any negative literal then 

= v  fail 

PROOF. Easy by induction. �9 

This proposition states that  only(a) and only(fl), in general, cannot be 
performed in combination. 

Wi th  the only operator  defined, in the next section we will discuss the 
logical language in which the action expressions are used. 

2 .3 .  A l o g i c  a b o u t  a c t i o n s  

We now proceed with the definition of a set of formulas with which we can 
describe the behaviour  of (interpreted) actiolls. This language is a variant 
of dynamic logic ([12]), and was first used for this purpose in [20]. 

We assume a fixed set Prop of atomic propositions, including a special 
element Violation, denoting (a s tate of) violation. The set Form of formulae 
is then the smallest set closed under: 

(1) Prop C_ Form 

(2) (~1, (fi2 E Forln ~ 41 A if)2 E Form 

(3) r E Form ~ -~r E Form 

(4) a E Act, (p E Form - -~  [c~]r E Form 

NOTE: Other  propositional connectives such as V and -~ are assumed to 
be int roduced as the usual abbreviations; moreover, < a > r is introduced 
as an abbreviat ion for -~[a]-,O. Furthermore, it is convenient to use the 
abbreviat ion fa l se  for r A ."r and t r u e  for --false. The informal meaning 
of [a le  is "doing a necessarily leads to a s tate where r obtains"; < a > r 
means that  doing a possibly leads to a s tate where 0 obtains. 

Moreover,  and very important ly  for the purpose of this paper,  deontic 
operators  are introduced.  If a is any action expression, then F ( a ) ,  O(a) 



204 F.Dign urn, J.-J. Ch.Meyer, R.J.  Wieringa 

and P(a)  are formulas with the senses: It is forbidden to perform the action 
named by a,  it is obliged to perform the action named by a and it is per- 
mit ted to perform the action named by a.  The formulas are in t roduced in 
the set Form as abbreviations as follows: 

�9 F ( a )  abbreviates [a]Viotation 

* O(a )  abbreviates F (~)  

�9 P ( a )  abbreviates - ,F(a)  

For an extensive account of the adequacy of these abbreviat ions we refer 
to [20, 19, 25]; here it suffices to note that  e.g. the claim that  it is forbidden 
to do the action denoted by c~ is equated with the dynamic logic expression 
[a]Violation, stating that  performing the action denoted by a leads to a 
violation s tate  (i.e., a s tate in which a violation obtains).  

Interpretat ion of fm'mulas in Form is given by means of the notion of a 
Kripke-model .ad = (E, rr, {R~Ic~ E Act}),  where Z is a set of states (worlds), 
rr is a t ruth assignment function to the atomic propositions relative to a 
state:  ~r is a function E ~ (Prop --+ {tt, f f } ) ,  where tt amd f f  denote 
t ru th  and falsehood, respectively. Thus, for p E Prop, 7r(a)(p) = tt means 
that  the atomic I)roposition p is true in state or. The accessibility relations 
R~ (a E Act) specify how actions can change states.  For this we need an 
extensional, s tate-based semantics of action expressions (~. 

As we have seen before, our basic semantic entities are events in A. So 
we start  with postulat ing what effects they have in terms of s ta te  trans- 
formations (we do this relative to a set E of states):  we have a function 
e f f z  : A -+ (E --+ E), such that e f f z ( a )  is a function from s ta tes  to states.  
(Thus we assume events to be deterministic. If one wants, this can be easily 
modified to nondeterministic events, but  for simplicity we will not do this 
here.) 

DEFINITION 13. An s-set A = [a,,...,a,~] C_ .,4 is called compatible (on E) 
w.r.t,  s ta te  (7 if 

( e f  f z (a l )  o ... o e f  fz(aT~))(a) = ( e f  f z (a i l )  o ... o e f  fr,(al,))((r) 

for all permutat ions  (il ,  .-., in) of (1, ..., n). (Here o denotes function compo- 
sition.) 

Now we define the effect of an s-set A = [as, ...,an] by: 

�9 e f f z (A) (cr )  = { (e fJ~(a l )  o ... o ef f~(a,~))(a)} if A is compatible on E 
w.r.t, o'~ 



Free Choice... 205 

�9 effE(A)(a) = ~}, otherwise 

The function eff~ is lifted further to sets of s-sets in the usual way: 

effE(T)(a)= ~ eff~(A)(a) 
AET 

for T C_ p+(A) and a E E. Moreover, we define effr.([5])(a) = ~, 
Now we are ready to give the extensional semantics of an action expression: 

DEFINITION 14. [[a]]E = A(r. effE([[a']])(a) 
(where A denotes the usual lambda or function abstraction). 

Finally we are able to define the accessibility relations R~ C_ E • E: 

DEFINITION 15. R~(~,  ~') r  ~ ' e  [["]]~(~) 

PROPOSITION 4. 

1. R ~ l + a ~ . =  R~ 1 U R~ 2 

2. R = ~  2 = R~ 1 N R~ 2 

3. R g  = R~ 

4. R a l + a  2 - R~--i-&~- ~ 

5. R l&a ~ - R~i'+~- 

PROOF. Follows directly from the definition of [[a]]~. �9 

Now we have properly defined our Kripke-models, we can give the se- 
mant ic  interpretat ion of formulas in Form: 

DEFINITION 16. Given A4 = (E, 7r, {R~]a E Act}) as above, and a E E, we 
define: 

�9 ( M , ~ ) I  = 

�9 ( M , ~ ) I  = 
�9 ( M , ~ ) I =  

�9 ( M , ~ ) I =  

p ~ ~ ~(~) (p)  = tt (for 7) e P*'ov) 

(~1 A ~)2 *', :" (M,  o') l :  (~1 and (M,  a) ]= r 

-1r .', :- not ( M ,  a ) l =  r 

[~]r ~ ~ W ' [ R ~ ( ~ ,  ~') ~ ( M ,  ~') t = r 

r is valid w.r.t,  model A// = (E, zr,{R~t~ e Act}), notation M ]= r 
if (.A4, a)  l= r for all a E S. 

r is valid, notat ion ]= r if r is valid w.r.t, all models .A// of the form 
considered above. 



206 F. Dign urn, J.-J. Ch.Meyer, R.J. Wieringa 

THEOREM 2. The following formulas and properties hold: 

1. [= r (all instances r of propositional tautologies) 

2. I= [c~](r --+ r  --~ ( [~]r  ---+ [0~]r 

3. l= r and I-- r ~ r ~ [ -  ~ 

4. I= r ~ I= [a]r 

5. l= [fail]r 

6. [= [al + a2]r ~ [a,]r A [a2]r 

7. h- ([~,]r v [~2]r -+ [~,*~2]r 

8. i = ( [ ~ ] r  v [ ~ ] r  ~ [ ~ r  

9. I= [ ~ ] r  ~ [~1]r A [<] r  

10. I = [a-]r ~+ [~]r 

11. I = r ( ~ ,  + ~ )  ~ r ( ~ , )  A r ( ~ )  

12. I = ( r ( ~ , )  v r ( ~ ) )  ~ F ( ~ , , ~ , ~ )  

~3. I = (0( ,~1) v 0 ( , ~ ) )  ~ 0( ,~,  + ~ )  
14.  ]=  O(oq&c~2) ~ O(cq) A O(a2) 

lS. [= P (a l  + a2)~-+ P(a, ,)V P(a2) 

16. I= P(cq&:oe2) ---+ (P(O~l) A P(a2)) 

PROOF. 1 - 4 follow directly from the fact that we have provided a 
Kripke-style modal semantics. 5 is immediate. 6 - 10 follow from Proposition 
4. 11 - 16 follow from the v~lidity of 1 - 10 (cf. [20]). [] 

3. P e r m i s s i o n  

We will now take a closer look at the definition of the deontic operators 
(especially permission) and discuss their relation with the Free Choice Para- 
dox. The definition of the deontic operators, as is standard for this kind of 
approach and as given in the previous section (cf. [20, 24, 26, 22]), is as 
follows: 

o ( ~ )=[~]V iolatio~ 
F( a)=[a]V iolation 
P ( ~ ) = ~ r ( ~ )  

= ~[ a ]V iolation 

We will only discuss the definition of the permission operator at this place. 
A discussion of the other operators (especially obligation) can be found at 
severM places in the literature [20, 26, 22, 24, 9]. 



Free Choice... 207 

The definition above states that  a is permit ted if there is a way to do a 
such that  it does not lead to a violation state (a s tate in which the special 

proposit ion Violation is true). Remember that  a denotes an action possibly 
performed in parallel with other events. So the specification of a contains 
an implicit choice about  the context in which a is performed. Of course, 
this definition is quite weak. An action is permit ted if there is a way to do 
it in a desirable way. This means that  an action might be permit ted,  even 
if there is only one way that  does not lead to a violation state (e.g. when 
a is done only together  with 3),  while all other ways lead to a violation. If 
we assume that  each action is initiated by some actor, then P ( a )  says that  
there is one way in which the actor can perform the action named a such 
that  it does not lead to a violation state,  ltowever, what we would like P(a) 
to mean is tha t  the actor is permit ted to choose how to perform a. In the 
current formalization of permission the actor does not have a free choice to 
perform the action named a.  We will thereibre introduce a second operator  
(P~), which formalizes the intuition that  the actor is free to choose any way 
of performing the action denoted by a.  
At this point  it should also be noted that the use of the only operator  to 
delimit the choice of how to perform the action within the context of a 
permission does NOT by itself resolve the paradox. It can easily be seen 
that  I= P(only(a)) --~ P(only(a + b)). 

In order to avoid the Free Choice paradox, we will adopt another defini- 
tion for permission (while retaining the definitions for obligation and prohi- 
bition),  which resembles the strong permission referred to in section 1. 

DEFINITION 17. 
Ps( a )=[a]-~ V iolation 
O( a ) =[-5]Violation 
F ( a )  =[a]Viola t ion 

Which means that  a is permit ted if a does never lead to a violation state.  

This definition solves the Free Choice Paradox, because of the following 
observation: 

V= + 9] ,  

and in part icular  

~: [a]~Violation ~ [(~ +/~]-~Violation 

Thus: 
V= + 



208 F. Dign urn, J.-J. Ch.Meyer, R.J. Wieringa 

In the same way the definition also solves the paradox of context-sensitive 
permission: 

V= 
and thus 

V= 
Although this definition of the permission operator solves the Free Choice 

Paradox it also raises three new issues. We will now discuss each of these 
three issues. 

3 .1 .  P e r m i s s i o n  t o  fail  

The new, strong definition for the permission operator implies that  fail is 
also permitted.  Actually Segerberg [23] defines a strong permission starting 
with the permission to fail as the central property. That  fail is permit ted 
with the new definition can easily be seen from the following: 

for all r :]= [faille 
[= [fail]-~ V iolation =~ 
l= P~ (fail) 

So it follows directly fi'om the definition that  fail is permit ted.  Although at 
first sight this might look a bit strange it does not pose any problems for 
the theory. The only consequence is that ,  at any moment ,  it is permit ted to 
terminate all activities (get into a deadlock). However, this does not mean 
that  it should be done and in tact it is also forbidden to do so. (This can be 
easily checked fi'om the definition.) 

3 .2 .  P e r m i s s i o n  fo r  c o n j u n c t i o n  

The second issue raised by the strong definition of the permission is the 
following proposition: 

PROPOSITION 5. I= , 

PROOF: Follows directly fi'om the fact that  I= [ale 
Theorem 2. 

[a&/3]r and 

So, if a is permitted,  it is (also) permitted in any combination with other 
actions. This leads to the following example: 

Ps(fire a gun) ...... ~ P~(fire a gun & aim at the president) 



Free Choice... 209 

Given our interpretation of Ps(a) as "no matter  how you perform a a per- 
mi t ted  state of the world results", this is natural. 

The implication follows fl'om the following line of reasoning: 

[[fire a gun ~ aim at the president~ C [[fire a gun]] 
re ( I=  [fire a gun]r > [fire a gun ~ aim at the president]C) =~ 
I= [fire a gun]-~Yiolation ) 

[fire a gun & aim at the president]-~Violation 
P , ( f i re  a gun) ) Ps(fire a gun ~ aim at the president) 

Given our strong interpretation of the pro'mission, using the prudential 
assumption of Grice [10, 11] about the maxims of communication, what we 
actually mean by: 

It is permit ted to fire a gun 

is more appropriately represented as: 

Ps(only(fire a gun)) 

This permission does still imply permissions like 

P,(only(f ire  a gun) ~= shoot the president 
P~(only(fire a gun & shoot the president)) or 
Ps(only(fire a gun) & only(shoot the president)) 

But the big difference is that  all these actions are equal to the action denoted 
by fail. That  this is indeed true can be easily seen from the semantics of 
the different action expressions. 

So, in generM, we do have: 

I = , 

but by choosing the appropriate logical interpretation for the action expres- 
sion s, we force a~f l  to be fail, thereby effectively blocking the performance 
of the combination of actions. 

More specifically we have: 

l= P,(only(ce)) , P,(only(oe)&only(/3)) 

but  only(a)&only(/5) =z~ fail if a and /3 are action terms that  contain no 
negation. 

Therefore, we can conclude that the problem that is seemingly created 
by the strong definition of the pernfission can be resolved by using an ap- 
propriate interpretation of the natural language sentences (using the only 
operator).  



210 F.Dignum, J.-J.Ch.Meyer, R.J. Wieringa 

3 .3 .  C o m p l e m e n t a r i t y  o f  p e r m i s s i o n  a n d  p r o h i b i t i o n  

The  third issue that  is raised by the definition is tha t  the s trong permission 
is no longer complementary  to the prohibition. I.e. Ps(a) ~ ~F(a). With  
the new definition for the strong permission there can be action expressions 
a such tha t  -~P~(a) A -~F(a). 

In fact,  this point  is an advantage of this s t rong definition of the per- 
mission. Usually, it is not the case that  every action is either pe rmi t t ed  or 
forbidden. Many actions are neither permi t ted  nor forbidden, a l though they 
might  be permi t ted  or forbidden in some combinat ion with other  actions. 

Of course, we do still have the following proposit ion:  

PROPOSITION 6. Let a ~v fail then: 

or equivalently 

PROOF: By definition. 

I = 

i = 

I.e. if something is permi t ted  then it is not forbidden, and if someth ing  is 
forbidden then it is not perini t ted.  

The  fact tha t  s trong permission and prohibit ion are not  complementa ry  
in our system also influences the following implication tha t  holds in all the 
deontic  systems tha t  are defined in terms of dynamic  logic as is done in [20]. 

[= O(a) A -~P(a) ~ F ( a n y )  

Which means that  if an action is obliged and at the same t ime not  pe rmi t t ed  
then  it is forbidden to do anything.  

In our system we do have tha t  

I = 0(,~) A F(a )  , F ( a n y )  

But  we leave open the possibility that  the action named  a is not  pe rmi t t ed  
in general (i.e. - 'Ps(a)) ,  but  is permi t ted  in specific combinat ions.  For 
instance,  it might  be permi t ted  to perform the action named  a&~& 7. By 
performing this combinat ion we fulfil the obligation while not doing any th ing  
forbidden. 

Note tha t  we do N O T  have: 

I = O(a)  ~ -~F(a)(= -~0(~)) 

So, there is no guarantee tha t  if the action named  a is obliged it is not  
forbidden. It is still possible to have contradictory obligations. 



Free Choice... 211 

3 .4 .  P r e l i m i n a r y  c o n c l u s i o n s  

Taking the above points into account, we can state that  the Free Choice 
Paradox is solved by using this strong definition of the permission. The 
appropriate use of the only operator in the translation from natural language 
to logic avoids the problems that  were raised with this definition. 

Although the combination of the only operator tbr action expressions 
and the strong definition for the pernlission resolves the problems with the 
Free Choice paradox, it also raises some new issues. 

The first point to be mentioned is that the only operator does not dis- 
tr ibute over any of the other connectors of actions, which limits its use. 
However, in practice, the only operator is mainly applied to action terms. 
Therefore, this restriction on the use of the only operator does not have very 
severe consequences. 

The second point is, in practice, maybe more serious. Ps(a) means that  
the action denoted by a is permitted, possibly in combination with other 
actions. It is not necessary to explicitly state all the combinations that  are 
allowed. Using Ps(only(a)) is much stricter in the sense that  it only allows 
the action denoted by a to be performed by itself. If it can be performed in 
combination with other actions, then this has to be explicitly stated, unless 
it can be performed in combination with any other action, in which case we 
can use Ps(a). 

The latter,  however, ~hnost never (if ever) occurs. It is Mmost always 
possible to find an action which should not be performed in combination 
with the permit ted one (e.g. take any forbidden action, like committ ing 
murder) .  

This also bears a resemblance with problems of knowledge representa- 
tion in artificial intelligence, like the so-called qualification problem, where 
one does not want to make explicit the numerous qualifications that  (may) 
influence an action's normal properties (like its being permit ted in this par- 
ticular case). On the other hand it is also almost always possible to find 
actions that  have no influence on the deontic status of the combined action. 
We would like to permit the combination of the permitted action with these 
actions, without explicitly having to mention all of them. 

To counter this problem we will propose another mechanism for the ac- 
tions, in the next section, which is less restrictive, but still keeps the prop- 
erties of the only operator with respect to the permission operator. 



212 F. Dign urn, d.-J. Ch.Meyer, R.J. Wieringa 

4. C o n t e x t s  

In this section, we will introduce contexts for actions. The effect of using 
contexts will be less strict than that  of using the only operator .  The intuitive 
idea is that  with an action expression a we specify a set of events C relative 
to which the semantics of the action expression is taken. In the s tandard  
case this set of events is the set A, the set of all possible events (in the 
system).  We will give a characterization of safe contexts,  which are contexts  
within which an action can be performed without changing its effects. 

We will now give the necessary definitions to introduce contextual  actions 
in the syntax and give a semantics for them. 

4 .1 .  C o n t e x t u a l  a c t i o n s  

We start  with a definition that is needed to facilitate the other  definitions. 

DEFINITION 18. If a E Act then at(a) is the set of events such that  the 
underlined version of that  event occurs in a.  

E.g. if a = a&(b + _c) then at(a) = {a, b, c}. 

Now we can introduce the set of contextual  action expressions Actc with 

elements ac as follows: 

DEFINITION 19. Let C C_ A. Actc is the minimal set satisfying: 

1. If a E Act and a t (a )  C C C_ A then ac E Actc. 

2. If a , /3  Actc then ~, c~&/3 and a +/3  are elements of Actc. 

The set C is cM]ed the context of the action. 
If the context C of an action denoted by a is .A then we write a as a shor thand 
for aA. 

To give the semantics of contextual action expressions we can use the 
same semantic operators  as were used for the normM action expressions, 
except for the negation, which becomes context-dependent .  

DEFINITION 20. The definition of ",~r is given as follows: 

1. For an s-set S, 

S~c = )" p+ (C) \{S}  if S # [6] 
[ p+(C) if S = [~] 

2. For a non-empty set T E T) 

V ~c  {s~ ls c T )  



Free Choice. . .  213 

The semantics of the contextual action expressions is now given in the fol- 
lowing definition. 

DEFINITION 21. The semantic function [[]] E Actc ~ 7) is given by: 

[[~]] = {S  ~ p+(C)la  ~ S}  

[[(~, + a~)c]] = [[(~,)c]] "~[[(~)c]] 
[[(a~)c, &(a~)r = [ [ (~)c ,  ]] ~[[(a~)c~]] 
[[(al&:O~2)C] ] ~--[[(O~I)C]] (il[[(O~2)C]] 
[[~C ]] = [[a]] ~ 
[[~-]] = [[~C]] ~ 

~only(a)C]] = [[only(a)A]] ~p+ (C) 
[ [ fa~] ]  = ([~]) 
[[anye] ] = p+(C) 

It can easily be seen that  these definitions are the same as before, except that  
the semantics are not taken relative to Jl but relative to a context C. This 
means tha t  ac is to be read as "the action denoted by a,  possibly performed 
together  with any set of actions from C". Of course, if the context C is equal 
to the set of all actions A, then the action expressions have the s tandard 
interpretat ion.  

The following proposition relates the notion of contexts with the only 

operator.  

PROPOSITION 7. Let ac E Actc be such that it does not contain any occur- 
rence of  the negation operator and C = at(a)  then 

ac =v  only(a)  

PROOF: Easy by induction. 

The above proposition can be read as "the action denoted by only(a)  is the 
action denoted by a done in the context of its own literals". 

In the above proposition we excluded action expressions that  contain 
negations. Tha t  the equality does not hold for these action expressions can 
be seen from the following simple example (where we assume that  A = 
{a, b}): 

[ [on ly (~ ) ] ]  = [[~]] = ( [b ] )  

while 
[[~]] = {[~]} 



214 F.Dignum, J.-J.Ch.Meyer, R.J. Wieringa 

The definitions for the extensional (state-transforming) semantics remMn 
the same as before but  are based on the new intensionM semantics. 

In the next section we will show how the contexts for actions can be 
related to the deontic operators.  

4 .2 .  S a f e  c o n t e x t s  

The intuitive meaning of a (deontically) safe context for a is tha t  the action 
denoted by a is performed possibly together with some other actions that  

have no influence on the effects of the action denoted by a.  

I.e. (open the window)c where C is a safe context might include in its se- 
mantics opening the window while at the same time watching television, but  
not opening the window and at the same time turning on the heater.  Before 
we give the definition of a safe context,  it should be noted that  contexts  
are given with respect to certMn properties of the world. For instance, in 
the example above we take into account the temperature ,  but  not the use 
of electricity. We will take this into account in the definition by introducing 
a propositional context that  indicates which aspects of the world are taken 
into account.  Because here we are interested in deontic aspects, we take at 

least the a tom Violation into account into our contexts.  More formally: 

DEFINITION 22. A propositional context 0 is a set of propositions. 
If �9 is a set of propositions containing ~Violation and Violation, then we 
call ~ a d e o n t i c  p r o p o s i t i o n a l  c o n t e x t .  

NOTE: propositional contexts are not consistent (by definition) and should 
thus not be considered as theories. They should be considered as reference 
sets possibly ranging over diiferent possible worlds. 

The formM definition of a (deontically) safe context can be given as 
follows: 

DEFINITION 23. Let 'I~ be a (deontic) propositionM context and let ac  
Actc then C is a ( d e o n t i c a l l y )  safe  context for c~ in • wit h respect to 
iff for all r E 

I= 

NOTE: only(a) stands tbr o'nly((~)A. 

If a is clear froln the (textual) context then we will jus t  say that  C is (de -  
o n t i c a l l y )  safe  for c~. 



Free Choice . . .  215 

PROPOSITION 8. I f  C is d e o n t i c a l l y  safe jbr a then 

I= ps(on y(.)) , 

PROOF: Follows direct from the definition. 

The following example shows how deontically safe contexts can be used. 

We assume that  chewing gum does not affect the deontic effect 
of firing a gun. However, aiming at the president does affect the 
deontic effect of firing a gun. Therefore "chewing gum" is mem- 
ber of a deontically safe context of "firing a gun" while "aiming 
at the president" is not. 

Therefore we have that:  
a I= P s ( o n l y ( f i r i n g  - a - gun))  --, 

P s ( f i r i n g  - a - g u n { f i r i n g _ a _ g u n  ' c h e w i n g - g u m } )  
but  

a V: P s ( o n l y ( f i r i n g  - a - gun))  --* 

P~( f i r i n g  - a - gun{]i?ing_a_g~, aiming-at-president}) 

The introduct ion of ((deontically) safe) contexts makes it possible to 
restrict  the interpretat ion of an action expression while still allowing the 
possibility to perform an action in combination with some other actions. 

PROPOSITION 9. Let a and /3 be action terms without negations and let 
a t (a)  U at(~3) C_ Ci i = 1,2 then ~c~&/3c2 # v  fail 

PRooF:  From the premisses it follows that the s-set at(a)  U at(~3) is an 
element from [[a61~/3c2]] and therefore ach ~/3c2 ~l) fail. �9 

The above proposition shows that  there are cases in which it is possible 
to perform a combination of actions in a certain context,  while this would 
not be possible if the only operator was applied on one or both of the action 
expressions. 
E.g. 

while 

[[a{a,b}'~b{a,b}]]={[ a ] b } 

= 

The following proposition can be easily proven: 



216 F. Dign urn, J.-J. Ch.Meyer, R.J. Wieringa 

PROPOSITION 10. Let C be a d e o n t i e a l l y  sa fe  context for a then 

I = A F(9)   e&5 =v  fail 

Which means that  if the action denoted by ac is strongly permit ted,  it is not 
possible to perform it in combination with an action that  is forbidden. Note 
that  the above implication holds trivially if no context for a is specified. The 
above proposition states that  even when the permission to perform the action 
den oted by a is weakened to a pernfission to perform the action denoted 
by a only in some (safe) context of other actions, the above implication still 
holds. 

The consequence is that  we do have the following (assuming tha t  it is 
forbidden to shoot the president and that  C is a deontically safe context):  

P~(chewing - g u m c )  ; chewing - gumc&shooting the president = v  fail  

A final point about safe contexts that  should be noted is that  if an 
event b is an element of a safe context for a_ it does not imply that  a is 
an element of a safe context for _b. I.e. performing the action denoted by 
the combination a&b might include the effects from performing the action 
denoted by only(a) while it does not include the effects of performing the 
action denoted by only(b). This happens, for instance, if the action denoted 
by a is permit ted in isolation and also in combination with the action denoted 
by b, but  the action denoted by b is forbidden in isolation. This can be seen 
more concretely in the following example: 

It is pernlit ted to close the door. It is also permit ted  to close 
the door and at the same time open the window. However, it is 
forbidden to open the window without at the same time closing 
the door. 

The above means that  open the window is part  of a safe context of close the 
door, but close the door is not part  of a safe context of open the window. 
This is due to the fact that  "closing the door" changes the effect of "opening 
the window". It is forbidden to open the window and not close the door, but  
permitted to do both together. 

5. C o n c l u s i o n s  

We star ted with the observation that  the Free Choice paradox has two forms, 
each of which is the dual of the other. The first form is P(a) --~ P(a  +/3) 
for action expres sions a and /3, and is called the paradox of free choice 



Free Choice... 217 

permission. The second form is P(a&fl) --+ P(a), and we called this the 
paradox of context-sensitive permission. 

We noted tha t  any solution of the Free Choice paradox based on the 
concept of choice won't  work for the paradox of context-sensitive permission. 
In this paper we showed that  both forms of the paradox can be eliminated 
if we take the context  in which an action is performed into account. 

In a survey of paradoxes in deontic logic, al-Hibri [2] rightly points out 
tha t  the inference 

+ 

omits something, viz. the admissibility of/3. If we add the information 
t ha t / 3  is not  permi t ted  then it follows that  there is actually no free choice 
between a and/3: 

A r v P(Z))  A 

However, the observation that  we can derive what we want if we put in more 
information at the beginning, does not block the faulty inference itself. Her 
observation does point the way to our solution, though, for it makes clear 
tha t  to make a choice, we must  have pernfission to perform the choice in any 
way we want.  

We have given a solution of the Free Choice Paradox by choosing a 
strong definition for the permission operator, that  does not give the actor 
the permiss ion to choose between ways to perform the action that  lead to 
a violation state  and ways that  do not lead to such a state. This definition 
of the permission operator  concurs with an intuitive idea that  a state of 
violation should always be avoided by giving apropriate deontic constraints. 
In the same way as a prohibition indicates that  perforlning a certain action 
always leads to a violation, the strong permission guarantees that  if the 
action is performed (in isolation) it will never lead to a violation. 

The combination of this operator with the only operator for actions 
avoids the problems that  were raised earlier against this definition, by elim- 
inating all possible contexts of the action. It was noted, however, that  the 
only operator  only has a limited use (for actions in strict disjunctive normal  
form) and excluding all contexts is usually too strict. 

The introduction of explicit contexts gives the opportunity to combine 
the strong definition of the permission operator with an "open" specifica- 
tion of action exp ressions. This "open" specification is limited to possible 
combinations with actions that  do not interfere with the specified action by 
defining sa fe  contexts. It is not very difficult to find a safe context for an 
action. (at(a) is a safe context for an action denoted by a.)  However, finding 
the  biggest safe context for an action is not that  simple. In practice, we are 



218 F. Dign u m, J.-J. Ch.Meyer, R.J. Wieringa 

only interested to see whether a particular event is par t  of a safe context  of 
an action or not. Therefore it is usually not necessary to explicitly construct  
the biggest safe context of an action. The idea is that  there are some default 
biggest safe contexts for each action. 

The proposed solution of the Free Choice Paradox shows a connection 
between free choice and the conte• of permission: An agent has 
a free choice between altenlatives if all ways of doing both  alternatives are 
permit ted,  i.e. if both alternatives can be done in all possible contexts.  

Acknowledgements: 

We would like to thank the working group Logic and Law for their input. 
We mention especiMly Hans Weigand for pointing out  a severe fallacy in a 
previous version of the paper. Also we are greatly indebted to the anonymous  
referees for their stimulating remarks. 

References 

[1] AQVlST, L., 1984, 'Deontic logic', In D. M. Gabbay and F. Giinthner, editors, 
Handbook of Philosophical Logic IL 605-714, Reidel. 

[2] AL-HIBRI, A., 1978, Deontic Logic: A Comprehensive Appraisal and a New Proposal. 
University Press of America. 

[3] BAETEN, J. C. M., and W. P. WEIJLAND, 1990, Process Algebra, Cambridge Uni- 
versity Press. 

[4] BRoY, M., 1986, 'A theory for nondeterminism, parallelism, communication and 
concurrency', Theoretical Computer Science 45, 1-62. 

[5] DE BARKER, J. W., J. N. KOK, J . - J .  CH. MEYER, E . - R .  OLDEROG, and J. I. 
ZUCKER, 1986, 'Contrasting themes in the semantics of imperative concurrency'. In 
J. W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Current Trends in 
Concurrency: Overviews and Tutorials, 51-121. LCNS 224 Springer, Berlin. 

[6] CASTANEDA, H. -N., 1981, 'The Paradoxes of Deontic Logic: The simplest solution 
to all of them in one fell swoop'. In R. ttilpinen, editor, New Studies in Deontic Logic, 
37-85, Reidel. 

[7] DIGNUM, F., 1989, A language for modelling knowledge bases. Ph.d. thesis, Vrije 
Universiteit, Amsterdam. 

[8] DIGNUM, F., and J. -J. (2ti. MEYER, 1990, 'Negations of transactions and their use 
in the specification of dynamic and deontic integrity constraints'. In M. Kwiatkowska, 
M.W. Shields, and R.M. Thomas, editors, Sernanticsfor Concurrency, Leicester 1990, 
61-80, Springer, Berlin. 



Free Choice... 219 

[9] DIGNUM, F., 1992, 'Using transactions in integrity constraints', Workshop on Applied 
Logic, Amsterdam. 

[10] GAMUT, L. T. F., 1991, Logic, Language and Meaning 1: Introduction to Logic, 
University of Chicago Press. L. T. F. Gamut is a pseudonym for J. F. A. K. van 
Benthem, J. Groenendijk, D. de Jongh, M. Stokhof, and H. Verkuyl. 

[11] GAMUT, L. T. F., 1991, Logic, Language and Meaning 2: Intensional Logic and 
Logical Grammar, University of Chicago Press. L. T. F. Gamut is a pseudonym for 
J. F. A. K. van Benthem, J. Groenendijk, D. de Jongh, M. Stokhof, and H. Verkuyl. 

[12] HAI~EL, D., 1979, First Order DyY, amic Logic, Springer. Lecture Notes in Computer 
Science 68. 

[13] HILPINEN, R., 1981, 'Conditionals in possible worlds'. In G. Flostad, editor, Contem- 
porary Philosophy, a New Survey 1~ 299-335. Reidel. 

[14] KAMP, H., 1973-1974, 'Free choice permission', Aristotelian Society Proceedings N. 
S. 74~ 57-74. 

[15] KHOSLA, S., and T. S. E. MAIBAUM, 1987, 'The prescription and description of state 
based systems'. In B. Banieqbal, H. Barl'inger, and A. Pnueli, editors, Temporal Logic 
in Specification, 243-294, Springer. Lecture Notes in Computer Science 398. 

[16] KOZEN, D., and J. TIURYN, 1990, 'Logics of programs'. In Jan van Leeuwen, editor, 
Handbook of Theoretical Computer Science, 789-840, Elsevier Science Publishers. 

[17] McCARTY, L. T., 1983, 'Permissions and obligations', Proceedings of the Eighth In- 
ternational Joint Conference on Artificial Intelligence, 287-294, Karlsruhe, W. Ger- 
many, Kaufmann. 

[18] MCCARTY, L. T., 1985, 'Permissions and obligations: An informal introduction'. In 
A.A. Martino and F.S. Natali, editors, Automated Analysis of Legal Texts, 307-337. 
North-Holland, 1986. Edited versions of selected papers from the Second International 
Conference on "Logic, Informatics, Law," Florence, Italy. 

[19] MEYER, J. -J. CH., 1987, 'A simple solution to the 'deepest' paradox in deontic 
logic', Logique et Analyse, Nouvelle Sdrie 30, 81-90. 

[20] MEYER, 3. -J. C~I., 1988, 'A different approach to deontic logic: Deontic logic viewed 
as a variant of dynamic logic', Notre Dame Journal of Formal Logic 29, 109-136. 

[21] MEYER, J. -J. CIt., 1989, 'Using Programming Concepts in Deontic Reasoning'. In 
R. Bartsch, J. van Benthem, and P. van Erode Boas, editors, Semantics and Contex- 
tual Expression, 117-145, Foris, Dordrecht. 

[22] MEYER, J. -J. CH., 1992, 'Free Choice Permissions and Ross's Paradox: Internal 
vs. External Nondeterminism'. In C. P. Dekker and M. Stockhof, editors, Proceedings 
8th. Amsterdam Collloquium, 367-380, University of Amsterdam. 

[23] SEGEKBERG, K., 1982, 'A deontic logic of action', Studia Logica 41, 269-282. 

[24] WlERINGA, R., J. -J. CH. MEYER, and H. WEIGAND, 1989, 'Specifying dynamic and 
deontic integrity constraints in knowledge bases', Data ~ Knowledge Engineering 4, 
157-189. 



220 F.Dignum, J.-J. Ch.Meyer, R.J. Wieringa 

[25] WIERINGA, R., H. WEIGAND, J. -J. CH. MEYER, and F. DIGNUM, 1991, 'The 
inheritance of dynamic and deontic integrity constraints', Annals of Mathematics 
and Artificial Intelligence 3, 393-428, Baltzer A. G. 

[26] WIERINGA, R. J., a.nd J. -J. CIt. MEYER, 1993, 'Actors, Actions and Initiative in 
Normative System Specification', Annals of Mathematics and Artificial Intelligence 
7~ 289-346. 

[27] YON WP~IGHT, G. H., 1951, 'Deontic logic', Mind 60, 1-15. 

[28] VON WRI~JtIT, G. H., 1968, 'An Essay in Deontic Logic and the General Theory of 
Action', Acta Philosophica Fewnica 21, North-Holland. 

F. DIGNUM 
EINDHOVEN UNIVERSITY OF TECHNOLOGY 

DEPT. OF MATH. & COMP. SCIENCE 

P.O.BoX 513, 5600 MB EINDIIOVEN 

THE NETHERLANDS 

dignum@win.tue.nl 

R. J. WIERINGA 
FREE UNIVERSITY OF AMSTERDAM 
FAC. OF MATH. ~: COMP. SCIENCE 
DE BOELELAAN 1081A 
1081 HV AMSTERDAM 
THE NETHERLANDS 
roelw@cs.vu.nl 

J . - J .  CH. MEYER 
UTRECHT UNIVERSITY 
DEPT. OF COMPUTER SCIENCE 
P.O.BOX 80085, 3508 TB UTRECHT 
THE NETHERLANDS 
jj@cs.ruu.nl 

Studia Logica 57, 1/2 (1996) 


