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Abstract

A nonstandard set theory *ZFC is proposed that axiomatizes the non-
standard embedding *. Besides the usual principles of nonstandard anal-
ysis, all axioms of ZFC except regularity are assumed. A strong form of
saturation is also postulated. *ZFC is a conservative extension of ZFC.

Introduction.

For practitioners, the most popular foundational approach to nonstandard meth-
ods is the so-called superstructure approach, introduced by A. Robinson and E.
Zakon in [RZ]. Roughly speaking, it consists of two superstructures V(X) and
V(Y), namely the standard model and the nonstandard model, and of a map-
ping * : V(X) — V(Y), namely the nonstandard embedding, which provides a
transfer principle for elementary properties. The k-saturation property is also
usually assumed, for a suitable cardinal x. ' Though well-suited for applica-
tions, such an approach reveals limitations from a foundational point of view.
Superstructures consist of sets of finite rank in the cumulative hierarchy, thus
modeling only a fragment of set theory, and different superstructures are needed
to treat different problems. Another criticism is that, in principle, nonstandard
methods are not concerned with superstructures. Also, it seems esthetically de-
sirable to include the nonstandard techniques within a unified axiomatic system.
Since the seventies, the search for a general framework for nonstandard meth-
ods led to the formulation of several axiomatic approaches. 2 Those studies
revealed serious foundational difficulties. Most notably, the core problem that
every nonstandard theory has to deal with is Hrbacek paradox [HR], namely the
inconsistency of the usual principles of nonstandard analysis and set theory, in
the presence of unlimited levels of saturation. In this paper we show that the
above paradox can be overcome because universes of full nonstandard set theory
can be constructed which have, in some precise sense, the “feel” of unlimited
saturation. The axiomatic theory *ZFC presented in this paper is an extension
of the traditional foundational framework of mathematics, namely ZFC, where

IFor an introduction to nonstandard analysis and the foundations of the superstructure
approach, we refer the reader to [HL] and [CK] §4.4, respectively.
2A survey of nonstandard set theories is given in [D3].



only the regularity axiom is dropped. Nonstandard arguments can be embed-
ded in *ZFC in a fashion that is consistent with the superstructure approach.
Thus, the superstructure practitioner willing to adopt *ZFC as an axiomatic
system, needs to change nothing with respect to his/her familiar definitions
and notation, and he/she can carry out all usual nonstandard proofs without
change. Other features of *ZFC are that all objects of ordinary mathematics
can be considered as standard sets, and that external sets are available with-
out restrictions, because all constructions of ordinary mathematics are allowed.
Moreover, a strong form of saturation is assumed which, in most cases occurring
in practice, is virtually equivalent to unlimited saturation. As for its strength
as a formal system, *ZFC is a conservative extension of ZFC. This is a straight
consequence of a more general result (Theorem 3.3) stating that every model
of ZFC is elementarily embedded into the wellfounded part of some model of
*ZFC. The theory *ZFC was first presented at the International Congress on
Nonstandard Analysis and its Applications, held in Edinburgh, August 1996. A
previous version appeared in [D2].

Throughout the paper, we will work in Zermelo-Fraenkel set theory with
choice, but we will not assume regularity except where explicitly noted. We
shall use freely standard facts and notation of set theory and model theory,
the default references being [Ku] and [CK], respectively. In a nonwellfounded
context, an ordinal is defined as a transitive set which well-ordered by €. A
cardinal is an initial ordinal. We informally use classes to denote extensions of
formulas in the style of [KU], and use boldface letters to denote them. A proper
class is a class which is not a set. V will denote the universal class of all sets;
WF the class of wellfounded sets; and ON the class of ordinals.

81. The theory *ZFC.

The theory *ZFC is formulated in the first-order language consisting of a symbol
€ for the membership relation and of a symbol * for the nonstandard embedding.
Its axioms are the following six groups of sentences.

1. ZFC~
All axioms of Zermelo-Fraenkel set theory with choice are assumed, with the
only exception of regularity. The separation and replacement schemata are also
assumed for formulas cointaining the * symbol.

Thus all arguments of ordinary mathematics can be formalized within *ZFC.
We remark that the axiom of regularity cannot be assumed if we want a (non-
trivial) nonstandard extension for each infinite set. For instance, as any non-
standard model of the natural number system is not wellordered, the nonstan-
dard extension *w of the Von Neumann natural numbers is necessarily non-
wellfounded. On the other hand, regularity is never used in the practice of
mathematics, with the only exception of some results in set theory and general



topology. 3
Definition. The class S of standard sets is the class WF of wellfounded sets.

In particular, elements of standard sets are standard sets and the collection
S of standard sets is a model of ZFC. In the “standard” set theory, every set
is wellfounded. Thus it seems appropriate to consider S as the universe of
“standard” mathematics. In the following, “x € S” will be a short-hand for the
e-formula that says: “z is a wellfounded set”, that is

Jt transitive s.t. x CtAVy et (y£D—Tzecyzny=10)

2. * gives a mapping with domain S.
{Va¥yvz [x(z,y) A x(@,2) = (y =z Az € S} A(Ya € S Ty« (2,1))

As x is not defined for all sets, we had to formally consider it as a binary
relation symbol. However, in the following we will abuse notation and directly
use * as a function. * The above axiom states that each object A of “standard”
mathematics, has its nonstandard extension *A. Exactly as in the superstruc-
ture approach, we give the

Definition. The class of internal sets is the collection I = {a : a € *b for some
b e S}. Asetx¢lIis called external.

The next axiom postulates a convenient property for internal sets which is
always assumed in the literature.

3. Iis a transitive class, i.e. elements of internal sets are internal.

VaVy (xeynyel) -z el

4. Transfer principle schema.

For every e-formula ¢(z1,...,,), the following is an axiom: °

vala"'van €S ws(alv'“aan) A 901(*0'1;"'3*0%)

3Typical examples of such results are theorems in set theory concerning the structure
of the universal class, namely the Mostowski collapse theorem, the Cumulative hierarchy
theorem and the €-induction theorem. Notice that in a nonwellfounded context, every result
which is essentially grounded on the axiom of regularity can be directly reformulated as a
property relative to the class of wellfounded sets. For instance, Mostowski theorem can be
restated as follows: “Any extensional wellfounded binary structure is isomorphic to a transitive
wellfounded set”, etc.

4Precisely, we shall write “y = *2” instead of “Vz * (x,2) — 2z = y”, and “y € *2” instead
of “Vz* (x,z) — y € 2”. When writing *z, we implicitly assume that z € S.

5Recall the notion of relativized formula. If C = {z : o(x)} is a class and ¢ is a formula, the
relativization € is the formula obtained from ¢ by replacing each quantifier Vo and 3z with
its restricted form Vz € C (i.e. Vzo(z) — ...) and 3z € C (i.e. Iz o(x) A ---), respectively.

9



In other words, a first-order property (in the language of set theory) holds
in the standard universe S about standard objects ai,...,a, if and only if
the same property holds in the internal universe I about the corresponding
nonstandard extensions *ay, ..., *a,. In a model-theoretic language, the transfer
principle postulates that the nonstandard extension map * : (S,€) — (I, €) is
an elementary embedding. We remark that the above transfer principle schema
can be equivalently reformulated as a single axiom. Precisely, by assuming 1
and 2, the following is proved: ©

e 3 and 4 hold if and only if all Godel’s operations are preserved under *. 7

We now turn to an axiom on the €-structure of the universal class. It is a
weakened form of regularity that can be retained in our nonwellfounded context.
Although it has relevance from a (nonstandard) set-theoretic point of view, we
remark that it has no effect on the practice of nonstandard analysis.

5. Weak Regularity.
Every set is wellfounded over the class of internal sets.

Ve£QIyexzaxznyCI

It is easily proved (by assuming the previous axioms) that weak regularity is
equivalent to the non-existence of €-descending chains a, > a1 > ... a, > ...
where all a,,’s are external sets.

A fundamental tool in nonstandard analysis is the following k-saturation
property, where k is a given cardinal.

“If a (nonempty) family of internal sets has cardinality less than Kk
and it is closed under intersections, then it has nonempty intersec-
tion”

0£FCI A |Fl<k ANVABEFO#AANBEeF) ] = NF#0

6. Saturation Schema.
If a cardinal k is defined by an e-formula in S, then the x-saturation property
holds. More formally, for every e-formula p(z) having exactly one free variable,
the following is assumed.

Vo,y €8 ¢°(z) A p®(y) — (z =y A “x is a cardinal”)]
\

Vi [<p5(/<;) — “k-saturation property”|

6See for instance [D4].
7A complete list of Gédel’s operations can be found in [JE] §11.



Though formally no constant symbol is allowed in the language of set theory,
nevertheless in practice certain cardinals are used as constants (e.g. 17, w, N3,
Beth,,, the first inaccessible cardinal, the 7th measurable cardinal, the least
cardinal such that a certain property fails, etc.) This can be done because
such cardinals are uniquely defined by a formula and it is possible to consider
them as “definable” constants, irrespective whether their existence is provable
or not. Roughly speaking, this means that every cardinal that can be explicitly
mentioned is “definable”. E.g. the following is an axiom of *ZFC: “If the first
inaccessible cardinal v exists, then the v-saturation property holds.”

82. Working in *ZFC.

The next result shows that, in typical situations occurring in practice, satura-
tion schema 6 provides the full strength of saturation, without restrictions on
cardinalities. Let ¢(x) be a given €-formula having exactly one free variable.

Theorem 2.1 (*ZFC)
Assume the following: “For every cardinal k, k-saturation = ¢°(z) for all
standard x of cardinality less that k7. Then p°(x) holds for all standard z.

Proof. By contradiction, assume that ¢ (z) fails for some standard z. Let v
be the least cardinality of a counter-example a. Notice that v is defined by an
€-formula in S. Hence, the v*-saturation property holds, and by the hypothesis
©°(z) holds for all standard = with |z| < v. A contradiction with =% (a). O

Suppose that for any k, we can prove that a certain standard property is
true for all standard sets with cardinality less than k, provided k-saturation
is assumed. Then, by the previous theorem, that property is actually proved
for all standard sets. A typical example that shows how theorem 2.1 can be
used in practice, is the following. Recall the nonstandard characterization of
compactness in topology.

(o) Assume k-saturation. If X is a (standard) topological Hausdorff
space with |X| < &, then X is compact if and only if for every
£ € *X, there is some = € X with & ~ *z. 8

Making use of (e), a nice and short nonstandard proof of Tychonoff theorem
is obtained. Precisely, the following is proved

For all families {X; : i € I'} of compact topological Hausdorff spaces
where | X;| < k for all i € I and |I| < k, the topological product
space | [, X; is compact.

By theorem 2.1, the above result actually proves Tychonoff theorem for all
standard topological spaces, without restrictions on cardinalities.

8We used notation £ ~ *z to mean that £ belongs to the monad of x, that is £ € *A for
each (standard) neighborhood A of z.



A consequence of the axiom of choice is that every set is in bijection with
some ordinal. In particular, the following holds.

Proposition 2.2 (*ZFC)
FEvery set is in bijection with some standard set.

As a consequence, one can apply the map * to any (possibly external) math-
ematical structure, simply by considering an isomorphic standard copy of it.
For example, if £ is a Loeb measure space, one can take a standard isomorphic
copy L' = L, consider its nonstandard extension *£’, and then apply the non-
standard methods to it. ® The next theorem gives some information about the
structure of the universe of *ZFC.

Theorem 2.3 (*ZFC)

(i) The fized points of x are precisely the hereditarily finite sets. That is, a =
o= aeV,. 10

(ii) The universal class of all sets is given by the union V = J,con Va("Va)-
(iti) For all standard sets A and for all ordinals «, Vo,(*A) NI C *V,(A). In
particular, for all ordinals o and 3, Vag(*Vo) NI C *Viyyp.

() For every ordinal o, there is a limit ultrapower V,'p|F and an isomorphism
To : Valp|F 2 (*V,,, €) such that the following diagram commutes: *!

VoeID|F

Proof. (i) < is easily proved by induction on the finite rank p(a) = min{k : a C
Vi}. Vice versa, it is enough to prove that for every standard B ¢ V,,, *B is
not wellfounded. To this end, transfer the property “vn € w 3z € B z ¢ V},”
and get “V¢€ € *w Jz € *B x ¢ V¢” (here we are considering the standard
mapping n — V,, for n € w and its nonstandard extension £ — V; for £ € *w).
Take an infinite { (i.e. € > n for all n € w) and by € *B with by ¢ Ve. Then
b1 € Ve_1 and there is an element by € by with by ¢ Ve_1. By iterating, we get
an €-descending chain *B > b1 2 b3 5 ...

(#i) The following property holds:

“For any set =, if * C |J,con Va(*Va), then x € V,(*V,,) for some o”

In fact, for each ¢ € z, let ae = Min{a : § € V,(*V,)}. By replacement, the
collection {c¢ : £ € z} is a set and we can consider its supremum A. Thus

9 Actually, with some limitation in the use of saturation. In fact, the cardinality of such a
set L' is larger than any e-definable cardinal.

10Recall the cumulative hierarchy over a given set X. Vo(X) = X; Vot1(X) = Va(X) U
P(Va(X)); Va(X) = Ua<ﬁ Vo (X) if B is limit. We simply write V, to mean Vi (0).

1 Limit ultrapowers are a generalization of the ultrapowers. Definition and basic results can
be found in [CK] §6.4. dn denotes the canonical diagonal embedding.



x C VA(*Vy), hence x € Vy;11(*Va11). Now, assume by contradiction that there
is a set a with a ¢ V,(*V,) for every a. By the above property a € |, Vo (*Va)
for all v, so there is an element a; € a with a; ¢ V,(*V,,) for all a. By iterating,
we obtain an €-descending chain of external elements a 3 a; 3 as > ... against
weak regularity.

(i4i) Proceeding by transfinite induction on «, the only nontrivial case is when
a = [+ 1is a successor. If & € Vgi1(*A) \ V3(*A) = P(V3(*A)) is internal,
then by transitivity of I and by the inductive hypothesis, £ C *V3(A). By
transferring the standard €-property, we get:

Veel[(Vyeaxye*Vz(A) —xe*Vsi1(4)]

In particular, £ € *V341(A4).

(iv) The restriction * : (V,,€) — (*V,, €) is a complete embedding, i.e. an ele-
mentary embedding with respect to the complete language containing one sym-
bol for each constant, function and relation over V,. This fact straightforwardly
follows from the transfer principle schema. Then apply Keisler’s characteriza-
tion theorem on limit ultrapowers (see [CK]| Theorem 6.4.10). O

Now, let o(x) be an €-*-formula.

Theorem 2.4 c-Induction over I (*ZFC)
Suppose that Vx € I o(x) and suppose that, for every set A, the following holds:
(Va € A o(a)) — o(A). Then Vxo(z).

Proof. By contradiction, assume —o(A) for some set A. Then there must be
some a1 € A with —o(ay). Notice that —o(a1) = a; ¢ I. Again, there must be
an element ay € a; with —o(a2) and ag ¢ 1. By iterating we get an €-descending
chain A > a; 2 as > ... of external elements, against weak regularity. a

Let W, = Vo (*V,) if « is a successor ordinal, and let W, = U5<a W if a
is limit. '? Then for any given €-+-sentence o, the following holds.

Theorem 2.5 Reflection Principle (*ZFC)
For every ordinal o, there is 3 > o with o « o"V5.

Proof. Recall that V = |J,con Wa. Since a < 3 = W, € W3 and W,, =
U <o Wp i « is limit, one can carry out within *ZFC the same proof of the
Reflection Principle as done within ZFC (see for instance [Ku] Ch.IV §7.). O

We now prove the fundamental.

Theorem 2.6 Standardization Property (*ZFC)
For every set A, the following collections are sets:
(1))°A={beS:*bc A} €8S; (1)) "A={a € A:a="b for some b € S}.

Proof. By theorem 2.3, ANI C V,(*V,) NI C *V,4, for some . By the
separation axiom, it is straighforwardly seen that the collection °A = {b €

12Notice that W, is a proper subset of Vi (*V,) for all limit a.



Vata @ b € A} is a set. Also (ii) directly follows from the separation axiom.
O

The standardization property states that the preimage of any set under the
function * is a set. This seems to be a very natural property to have, in that it
allows the use of the nonstandard embedding when defining sets. Although it
is trivially satisfied in the superstructure approach, we remark that in most of
the axiomatic approaches appeared in the literature, standardization is either
added as an axiom (e.g. Hrbacek’s NSy, Nelson’s IST, Fletcher’s SNST) or it is
false in its general form (e.g. Kawai’s NST). 13

The axiom of regularity implies the existence of a wellordered valued rank
function p : V. — ON where p(a) = sup{p(a’) +1 : a’ € a} if a # () and
p(0) = 0. Although nonwellfounded, the universe of *ZFC retains a “pseudo-
rank” function. Precisely, the following holds.

Theorem 2.7 (*ZFC)

There is a linearly ordered class A and a rank function R : V. — X\ that satisfies:
(i) R(z) = sup{R(2’) + 1: 2’ € 2} if 2 # 0 and R(P) = 0. 14

(ii) R(*a) = *p(a) for every a € S.

(iii) R(&) = & for all internal-ordinals £ € *ON = |J con "

Proof. It is a modification of arguments in the proof of the Representation
Theorem of [D1]. Thus we only give a sketch and refer the reader to that
paper for more details. The starting point is the familiar von Neumann rank
p S — ON defined on the class of wellfounded sets. By transfer we get a rank
function for internal sets R : I — *ON where R(z) = sup{R(z') +1: 2’ € x}
if © # 0 and R(0) = 0. Precisely, R is defined as the union |J, *po where
Pa : Vo — « is the restriction of p to the first « levels in the hierarchy. Now,
let the ordinal o be given. Take (A, <) to be the Dedekind order-completion
of the linearly ordered set (*«, €). Then replace every new element z € A, \ *«
with a copy ON, = {0, : § € ON} of the ordinals, and identify 0, with z.
For each a € WF(*V,) = Upcon Va(*Va), define Ry (a) = R(a) if a € *V,, and
R.(a) =sup{Ry(a’)+1:a € a} otherwise. Making use of (i) in theorem 2.3,
it is proved by transfinite induction that a € WF(*V,) NI = R,(a) = R(a).
Thus R, is compatible with R. Repeat this construction of A, and R, for all
ordinals a. Notice that, without loss of generality, we can assume Ag C A,
when 8 < a. Since {R, : @ € ON} is a family of pairwise compatible functions,
by taking the unions R = |J, Ro and X\ = |J, Aa, the universal rank function
R : V — ) is obtained. R satisfies (i) by definition of the R,’s. To prove
(i), notice that if a € V, for some «, then R(*a) = R(*a) = *po(*a) =
*[pala)] = *[p(a)]. As for (i), if £ € *a for some ordinal «, apply transfer to

13See [D3].

147t is implicitly assumed that A has a least element 0, that every £ € A has immediate
successor £ + 1 and that every collection of the form {R(z’) + 1 : ' € z} has a least upper
bound in .



the standard property “Va € a ps(x) = 2”7 and get *p,(€) = &£, hence R(§) = &.
O

83. Justifying *ZFC.
Denote by L. = {€,*} the language of *ZFC. In the following we will argue in
ZFC (including regularity).

Definition. An inner model U for the language L, is determined by a formula
u(x), which defines the universe U = {a : u(a)}; by a formula E(z,y) defining
the interpretation of the membership relation symbol; and by a formula ®(z, y)
defining the interpretation of the * symbol.

For convenience, we will abuse notation and write aEb instead of F(a,b)
and denote the inner model & = (U, E, ®) as a triplet. Notice that in general
U, E and ® are proper classes. The satisfaction relation is straightforwardly
defined by induction on the complexity of formulas. '® Starting from formulas
u(z,p), e(z,y,p),®(z,y,p), one can similarly consider the inner models U, =
(U,,E,, ®,) where p is a parameter. By functional correspondance we mean
a class which is a function, i.e. a class of ordered pairs © = {(x,y) : ¥(z,v)},
where 9(z,y) AN (z,y') >y =1 .

Definition. A functional correspondance © is an €-x-isomorphism between
the inner models U = (U, E, ®) and U’ = (U E', Q') if:

(i) © : U — U’ is a bijection;

(it) zEy < ©(2)E'O(y);

(i) @(z,y) < ©'(0(x), O(y))-

In case only (i) and (ii) are satisfied, we say that © is an €-isomorphism.

Notice that properties (i), (i¢) and (ii¢) above are formulas in the language
of set theory. If the inner models U = U’ are isomorphic, then the equivalence
“U = o0 & U = 0" holds for every L.-sentence o. 6 In the following, we
denote by *ZFC, the theory *ZFC without the axiom schema of saturation.
The next theorem is proved in the Appendix.

Theorem 3.1

There ezists an inner model with parameter U, = (Up, E,, ®,) and a formula
Ix,y,p) such that ZFC proves the following for every ultrafilter D:

(i) Up is a model of * ZFC,.

(i) ©p = {{z,y) : ¥(z,y, D)} is an €-isomorphism between the universe (V, €)
and WFY? | the wellfounded part of Up. 17

(iii) If D is countably incomplete kT -good, then Up | “©Op(kT)-saturation

15Precisely, for every a, b, we say that U = a € bif a,b € U and aEb; U = *(a,b) if a,b € U
and ®(a,b); U o AT U = o and U |= 7; etc. Notice that, for every formula o of L,
‘U= o(z1,...,2,)” is a formula in the language of set theory.

16For more on the notion of inner (or syntactical) model, we refer the reader to [Ho] Ch. 5.

7By definition, WFYD is the €-submodel of Up whose universe is the class {u € Up :
Up =“u is wellfounded” }.



property”. 18
As a direct consequence, we get

Theorem 3.2
For every model M = ZFC and for every M-cardinal k, there is a model N =
ZFC, such that WFY = M and N E “kT-saturation”.

PrROOF. Take D € M with M =“D is a k*-good countably incomplete ul-
trafilter”, and apply the previous theorem within M with D as a parameter.
From the outside, we get a model (Up)M = ZFC, and an €-isomorphism
(Op)M : M — (WFYP)M_ By identifying each m € M with (©p)M (m), it
is straightforwardly seen that (Up)M is the model N for which we are looking.
O

For any model M = ZFC™, denote by Card™ the set of its cardinals, and
by DefM the set of all M-definable cardinals. Precisely,

Card™ = {k € M : M |=“k is a cardinal”}

Def™ = {k € Card™ : M = Va (" F () < z = k) for some formula o(z) with
exactly one free variable}

The above sets are linearly ordered by €™, the M-interpretation of the
membership relation symbol. Notice that if M = WEFY is the wellfounded part
of a model N, then Card” = Card" and Def = Def". Recall the following
definition for models of set theory. M’ is an elementary end extension of M,
in symbols M =<, M', if M < M’ (i.e. M is an elementary submodel of M)
and for all a € M, M’ = b € a implies b € M. Now assume that M and M’
are models of ZFC™. If M < M’ then DefM = DefM/; and if M <. M’ then
(Card™, €M) is an initial segment of (Card™ ,€M’), as linearly ordered sets.
The next result shows that every model of ZFC can be extended to a model of
*ZFC. This gives a strong foundational justification to *ZF'C.

Theorem 3.3

Every model M = ZFC has an elementary end extension M' = WFY which
is the wellfounded part of some model N = *ZFC. Moreover, if Def™ is not
cofinal in Card™, then one can take M = M'.

Proor. If Def" is cofinal in Card, Card™ has countable cofinality and so,
by a classic result of H.J. Keisler and M. Morley [KM], there exists a proper
elementary end-extension M’ =, M. If Def™ is not cofinal in Card™, let M’ =
M. In both cases, it is possible to pick v € Card™’ such that M’ E“v > k” for

8 Definition and properties of good ultrafilters can be in found in [CK] §6.1. In particu-
lar, recall that ultrapowers modulo countably incomplete k-good ultrafilters are x-saturated
(provided the language has cardinality less than x) and that x*-good countably incomplete
ultrafilters exist for any infinite cardinal k.
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all k € Def”. Now apply the previous theorem by considering the M’-cardinal
v and get a model N | *ZFC,+ “vt-saturation”, where WEY = M =, M.
Notice that N satisfies the axiom schema of saturation. In fact, let kK € N be
a “definable” cardinal, that is x € Card and N =Vz € S (¢5(z) & = = k).
Then r € Def" = Def™’ = Def™ | hence N E“v > k" and N =“k-saturation”.
O

In particular, *ZFC is a conservative extension of ZFC.

Theorem 3.4
ZFC is faithfully interpretable in * ZFC by relativizing quantifiers to the class of
standard sets. That is, for every €-sentence o

ZFCF o < *ZFCF o°

Proor. If ZFC I/ o, then there is a model M = ZFC + —o. Apply the
previous theorem to find a model N = *ZFC with wWFEV . M. Notice that
M | -0 & N = (-o0)"F. Notice also that (-o)" ¥ is the same as —(c)°.
Thus N |= *ZFC + —(0)® and this proves *ZFC I/ ¢°. The reverse implication
is similar. If *ZFC I 0%, then there is a model N = *ZFC+—(c). In particular,
WFY & ZFC + -0, hence ZFC fo. O

APPENDIX (Proof of Theorem 3.1).

The following proof can be seen as the counterpart within ZFC of the construc-
tion of pseudo-superstructures given in [D1] in a nonwellfounded context. °
Here, binary structures will be considered instead of transitive classes, and a
“simulation” of the powerset operator will be used to construct a von Neumann
hierarchy over an ultrapower of the universe. Since we deal with “nonstandard”
membership relations over proper classes, some caution is needed in order to
give a correct formalization of our proof. However, since all arguments in-
volved should be in principle clear, we only give an outline of the construction
of Up. Let D be a given ultrafilter over a set I and let ~ denote the corre-
sponding equivalence relation on the class of functions with domain I, that is
f~ge{iel: f(i)=g(i)} € D. Use Scott’s trick to produce equivalence
classes [f] = {9 : ¢ ~ f and Vh with h ~ g, p(h) > p(g)} which are sets
rather than proper classes. Doing so, the universal D-ultrapower (VI ¢) can
be defined as the structure whose universe is the class of all equivalence classes
[f], and where the membership relation is defined the usual way: [fle[g] <
{i € I: f(i) € g(i)} € D. (Up to isomorphisms) VI, will be the class
of internal sets of our nonstandard model Up, and the diagonal embedding

19Precisely, the framework adopted in [D1] is Zermelo-Fraenkel-Boffa set theory ZFBC, a
variant of Zermelo-Fraenkel set theory where a well-ordering of the universe is available and a
strong anti-foundation principle, namely Boffa’s superuniversality [BO], is postulated instead
of regularity. ZFBC was first proposed for the foundations of nonstandard methods by D.
Ballard and K. Hrbacek in [BH].
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d : V — VI, will be the nonstandard embedding. We now have to accomo-
date external sets so to get the whole model. To this end, we consider the
von Neumann hierarchy. Precisely, start with Uy = (VI,¢), and let xqo be the
identity map on Uy. Proceeding by transfinite induction, assume that structures
Us = (Ug,ep) together with end extensions x g : Us — Ug have been defined
for all #/ < 8 < «a in such a way that compositions xg;3 © xgrgr = Xgg com-
mute for all 57 < ' < < a and xgg is the identity map on Ug. Recall that
an end extension x : (A, E) — (B, F) is a 1-1 €-homomorphism where images
pick no new elements, i.e. bFx(a) < b = x(da’) for some a’'Ea. If « = v +1
is a successor, define U,1; = {z : « C U, is a set} and let x, 41 : a —
{/ € U, : deja} € U,;y. The membership relation on U,y; is defined
as follows: ze,y12’ & x = X, ~+1(a) for some a € z/. As a consequence,
Xyy+1 ¢ Uy — Uypq in an end extension. The remaining end extensions are
then defined by composing xg,v+1 = X~,v+1 © X8,y for all § <. If o is limit,
the structure U, and the end extensions xg, for 8 < «, are defined as the
direct limit of the system {UB;X5/5}5/§5<Q. Finally, let {<UD7ED>;Xa}ozeON
be the direct limit of the whole family S = {Ua; Xpa}s<acon. 2° Notice
that, in a way, the direct system S “simulates” an increasing ON-sequence
of transitive classes. Since all xg, are end extensions, for any € Up, the
collection {z’ € Up : 2’Epz} of its Ep-elements is a set. Now, recall the
following well-known property. “Suppose T is a transitive class such that for
every set , x C T implies z € T. Then (T,€) | ZFC™”. Similarly, it is
proved that (Up,Ep) = ZFC™ as a consequence of the following fact. “If a
set © C Up, then there exists a € Up such that © = {a’ € Up : 2’Epa}”.
By definition, each U,, is obtained from U, by iterating o times a “simulation”
of the power set operator. As a consequence, a natural copy of V,, is enclosed
in U,, and an isomorphism ©p between the universal class V. = |J,con Va
and a subclass V' C Up is defined. It is then straightforwardly checked that
V' is the wellfounded part of (Up,Ep). The interpretation ®p of the non-
standard embedding is defined as the isomorphic copy of the diagonal embed-
ding d : V. — VI = Uy given by ® = ypodo @Bl. The inner models
Up = (Up,Ep,®p) and the e-isomorphisms Op : (V,€) — WFYP | satisfy
the desired properties. O
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