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The problems of reachable set estimation and state-feedback controller design are investigated for singularMarkovian jump systems
with bounded input disturbances. Based on the Lyapunov approach, several new sufficient conditions on state reachable set and
output reachable set are derived to ensure the existence of ellipsoids that bound the system states and output, respectively.Moreover,
a state-feedback controller is also designed based on the estimated reachable set. The derived sufficient conditions are expressed in
terms of linear matrix inequalities. The effectiveness of the proposed results is illustrated by numerical examples.

1. Introduction

The research on singular systems has attracted significant
attention in the past years due to the fact that singular systems
can better describe a larger class of physical systems such
as robotic systems, electric circuits, and mechanical systems.
When singular systems experience abrupt changes in their
structures, it is natural to model them as singular Markovian
jump systems [1, 2]. The analysis and synthesis of such class
of systems have gained considerable attention because of their
importance in applications (see, e.g., the literature [3–10] and
the references therein).

Reachable set is one of the important techniques for
parameter estimation or state estimation problems [11].
Reachable set for a dynamic system is the set containing all
the system states starting from the origin under bounded
input disturbances. However, the exact shape of reachable
sets of a dynamic system is very complex and hard to
obtain; for this reason a number of researchers began to turn
their attention to the reachable set estimation problem. The
common strategies for reachable set estimation are ellipsoidal
method [12] and polyhedron method [13]. The main idea
of these methods is to detect simple convex shapes like
ellipsoid or polyhedron, which contains all the system states.
Compared with polyhedron method, the primary advantage
of ellipsoidal method is that the ellipsoid structure is simple

and directly related to quadratic Lyapunov functions. As a
result, linear matrix inequalities (LMIs) techniques can be
used to determine bounding ellipsoids. In the framework of
bounding ellipsoid, the reachable set estimation problem for
linear time delay systems has received significant research
attention in recent years. In [14] sufficient conditions for the
existence of bounding ellipsoids containing the reachable set
of continuous-time linear systems with time-varying delays
were derived by using the Lyapunov-Razumikhin function.
In [15], by using Lyapunov-Krasovskii functionalmethod, the
author derived some less conservative conditions than those
in [14]. In [16] the reachable set of delayed systems with poly-
topic uncertainties was investigated by using the maximal
Lyapunov-Krasovskii functional approach, and some new
conditions bounding the set of reachable states are derived.
Interesting results on reachable set of delayed systems with
polytopic uncertainties can also be found in [17–20]. In
addition, some other strategies without using Lyapunov-
Krasovskii functional have been provided to estimate the
reachable set of continuous-time linear time-varying systems
[21] and nonlinear time delay systems [22, 23]. The authors
in [24] extended the ideas of reachable set estimation of
continuous-time systems to discrete-time systems, wherein
a fundamental result (Lemma 2.1 [24]) for the reachable
set estimation of discrete-time systems was proposed. The
authors in [25] improved the fundamental result obtained
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in [24] and provided a basic tool (Lemma 4 [25]) for the
reachable set estimation of discrete-time systems. On the
basis of the general ideas proposed in [25], the reachable
set estimation problem was also extended to some classes of
complicated systems, such as singular systems [26], Marko-
vian jump systems [27], switched linear systems [28], and
T-S fuzzy systems [29, 30]. For the reachable set estimation
of discrete-time systems, the other important contributions
can be found in [31, 32]. On the other hand, the problem
of controller design for specifications involved with the
reachable set of a control system is also a very important issue
[33]. The controller design problems concerning reachable
set were studied in [34] and [35] by using ellipsoidal method
and polyhedron method, respectively. Two issues were raised
in [34]: the first one is to design a controller such that the
reachable set of the closed-loop system is contained in an
ellipsoid, and the admissible ellipsoid should be as small
as possible; the second one is to design a controller such
that the reachable set of the closed-loop system is contained
in a given ellipsoid. By constructing suitable Lyapunov-
Krasovskii functional, LMI-based sufficient conditions for
the existence of controller guaranteeing the ellipsoid bounds
as small as possible have been derived for continuous-time
delay systems [34] and discrete-time periodic systems [36].
It is obvious that the LMI-based controller design is quite
simple and numerically tractable. However, it should be
pointed out that the reachable set estimation and synthesis
problems of singular Markovian jump systems are much
more difficult and challenging than that for nonsingular
Markovian jump systems since the ellipsoid containing the
reachable set is not directly related to quadratic Lyapunov
functions. To the best of the authors’ knowledge, no related
results have been established for reachable set estimation and
synthesis of singular Markovian jump systems, which has
motivated this paper.

In this paper, we consider the problems of reachable
set estimation and synthesis of singular Markovian jump
systems. By using the Lyapunov approach, the estimation
conditions on state reachable set and output reachable set are
derived, respectively. Moreover, the desired state-feedback
controller is designed based on the estimated reachable set.

Notation. Throughout this paper, R𝑛 denotes the 𝑛-
dimensional Euclidean space; 𝐴𝑇 represents the transpose
of 𝐴; Sym(𝑀) stands for 𝑀 + 𝑀𝑇; 𝑋 > 0 (<0) means 𝑋 is
a symmetric positive (negative) definite matrix; E{⋅} refers
to the expectation; 𝑋𝑙×𝑚 denotes the matrix composed of
elements of first 𝑙 rows and 𝑚 columns of matrix 𝑋; ‖ ⋅ ‖
refers to the Euclidean vector norm; the symbol “∗” in LMIs
denotes the symmetric term of the matrix; 𝐼 is the unit
matrix with appropriate dimensions.

2. Problem Formulation

Consider the following singular Markovian jump system:𝐸�̇� (𝑡) = 𝐴 (𝑟𝑡) 𝑥 (𝑡) + 𝐵 (𝑟𝑡) 𝑢 (𝑡) + 𝐷 (𝑟𝑡) 𝜔 (𝑡)
𝑦 (𝑡) = 𝐶 (𝑟𝑡) 𝑥 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input, 𝑦(𝑡) ∈ R𝑝 is the measured output, and 𝜔(𝑡) ∈ R𝑞 is the
exogenous disturbance which satisfies𝜔𝑇 (𝑡) 𝜔 (𝑡) ≤ 𝜔2. (2)𝐸,𝐴(𝑟𝑡),𝐵(𝑟𝑡),𝐶(𝑟𝑡), and𝐷(𝑟𝑡) are real constantmatriceswith
appropriate dimensions and rank(𝐸) = 𝑙 < 𝑛. {𝑟𝑡, 𝑡 ⩾ 0}
is a continuous-time Markovian process with transition rate
matrix Π = [𝜋𝑖𝑗] (𝑖 ∈ S = {1, 2, . . . , 𝑁}) and the evolution
of Markovian process is governed by the following transition
rate:

Pr {𝑟𝑡+Δ = 𝑗 | 𝑟𝑡 = 𝑖} = {{{
𝜋𝑖𝑗Δ + 𝑜 (Δ) , 𝑗 ̸= 𝑖1 + 𝜋𝑖𝑖Δ + 𝑜 (Δ) , 𝑗 = 𝑖, (3)

where Δ > 0 and limΔ→0(𝑜(Δ)/Δ) = 0; 𝜋𝑖𝑗 ⩾ 0 for 𝑖 ̸= 𝑗 is the
transition rate frommode 𝑖 to mode 𝑗 and 𝜋𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝜋𝑖𝑗.

For notational simplicity, in the sequel, for each possible𝑟𝑡 = 𝑖, 𝑖 ∈ S, matrices 𝐴(𝑟𝑡), 𝐵(𝑟𝑡), 𝐶(𝑟𝑡), and 𝐷(𝑟𝑡) will be
denoted by 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖, respectively. When 𝑢(𝑡) = 0,
the system 𝐸�̇�(𝑡) = 𝐴 𝑖𝑥(𝑡) + 𝐷𝑖𝜔(𝑡) is referred to as a free
system.

In this paper we are interested in determining ellipsoids
that contain, respectively, the state reachable set and output
reachable set. In the reachable set analysis, it is required
that systems should be asymptotically stable. When this
requirement is not met, we will further design a state-
feedback controller such that the reachable set of the closed-
loop system is contained in the smallest ellipsoid.

The state reachable set of the free system in (1) is defined
by

R𝑥 = {𝑥 (𝑡) ∈ R
𝑛 | 𝑥 (𝑡) , 𝑡

≥ 0, is a solution of (1) for 𝑥 (0) = 0} . (4)

An ellipsoid E(𝑋) bounding the reachable set can be always
represented as follows:

E (𝑋) = {𝑥 ∈ R
𝑛 | 𝑥𝑇𝑋𝑥 ≤ 1, 𝑋 > 0} . (5)

Particularly, when 𝑋 = 𝜅𝐼 for ∀𝜅 > 0, the ellipsoid E(𝑋) will
become a ball which is denoted byB(𝑋).

Since rank(𝐸) = 𝑙 < 𝑛, there exist two nonsingular
matrices 𝑀 and 𝑁 such that

𝑀𝐸𝑁 = [𝐼 00 0] ,
𝑀𝐴 𝑖𝑁 = [𝐴11𝑖 𝐴12𝑖𝐴21𝑖 𝐴22𝑖] ,

𝑀𝐷𝑖 = [𝐷1𝑖𝐷2𝑖] .
(6)

Let 𝑁−1𝑥(𝑡) = 𝑥(𝑡) = [𝑥𝑇1 (𝑡) 𝑥𝑇2 (𝑡)]𝑇. Then the free system
can be rewritten as the following differential-algebraic form:̇̃𝑥1 (𝑡) = 𝐴11𝑖𝑥1 (𝑡) + 𝐴12𝑖𝑥2 (𝑡) + 𝐷1𝑖𝜔 (𝑡) (7)

0 = 𝐴21𝑖𝑥1 (𝑡) + 𝐴22𝑖𝑥2 (𝑡) + 𝐷2𝑖𝜔 (𝑡) . (8)
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The following definition and lemma are also useful in
deriving the main results.

Definition 1 (see [2]). (I) The free system is said to be regular
if det(𝑠𝐸 − 𝐴 𝑖) is not identically zero for each 𝑖 ∈ S.

(II) The free system is said to be impulse-free if
deg(det(𝑠𝐸 − 𝐴 𝑖)) = rank(𝐸) for each 𝑖 ∈ S.

Lemma 2 (see [2]). For any matrices 𝑈 and 𝑉 ∈ R𝑛×𝑛 with𝑉 > 0, one has 𝑈𝑉−1𝑈𝑇 ≥ 𝑈 + 𝑈𝑇 − 𝑉.
Lemma 3 (see [12]). Let 𝑉(𝑥(𝑡)) be a Lyapunov function and𝑉(𝑥(0)) = 0. If

�̇� (𝑥 (𝑡)) + 𝛼𝑉 (𝑥 (𝑡)) − 𝛼𝜔2𝜔𝑇 (𝑡) 𝜔 (𝑡) ≤ 0, 𝛼 > 0, (9)

then 𝑉(𝑥(𝑡)) ≤ 1, ∀𝑡 ≥ 0.
3. Main Results

3.1. State Reachable Set Estimation. In this subsection, we will
focus our attention on determining a ball which contains the
state reachable set of the free system.

Theorem 4. If there exist nonsingular matrices𝑋𝑖 ∈ R𝑛×𝑛 and
a scalar 𝛼 > 0 such that the following LMIs hold for each 𝑖 ∈ S,

𝐸𝑇𝑋𝑖 = 𝑋𝑇𝑖 𝐸 ≥ 0, (10)

H = [[[[
Sym (𝐴𝑇𝑖𝑋𝑖) + 𝑁∑

𝑗=1

𝜋𝑖𝑗𝐸𝑇𝑋𝑗 + 𝛼𝐸𝑇𝑋𝑖 𝑋𝑇𝑖 𝐷𝑖
∗ − 𝛼𝜔2 𝐼

]]]]< 0,
(11)

then the state reachable set of free system starting from the
origin is mean-square bounded within the following set:

𝑁⋂
𝑖=1

E (𝑋𝑖) = 𝑁⋂
𝑖=1

{𝑥 ∈ R
𝑛 | 𝑥𝑇𝑋𝑖𝑥 ≤ 1} , (12)

where

𝑋𝑖 = 1𝑟2𝑖 𝑁−𝑇𝑁−1
𝑟𝑖 = 1√min𝑖∈S𝜆min (𝑋𝑖)

+ 󵄩󵄩󵄩󵄩󵄩𝐴−122𝑖󵄩󵄩󵄩󵄩󵄩( 󵄩󵄩󵄩󵄩𝐴21𝑖󵄩󵄩󵄩󵄩√min𝑖∈S𝜆min (𝑋𝑖) + 󵄩󵄩󵄩󵄩𝐷2𝑖󵄩󵄩󵄩󵄩 𝜔)
𝑋𝑖 = (𝑀−𝑇𝑋𝑖𝑁)

𝑙×𝑙
.

(13)

Proof. We first prove the regularity and nonimpulsiveness of
the free system. Let 𝑀−𝑇𝑋𝑖𝑁 = [𝑋11𝑖 𝑋12𝑖𝑋21𝑖 𝑋22𝑖

]. Then, by (10), we
obtain that 𝑋12𝑖 = 0. From (11), it is easy to show that

Sym (𝐴𝑇𝑖𝑋𝑖) + 𝑁∑
𝑗=1

𝜋𝑖𝑗𝐸𝑇𝑋𝑗 + 𝛼𝐸𝑇𝑋𝑖 < 0. (14)

Pre- and postmultiplying (14) by 𝑁𝑇 and 𝑁, respectively, we
get

[⋆ ⋆∗ 𝐴𝑇22𝑖𝑋22𝑖 + 𝑋𝑇22𝑖𝐴22𝑖] < 0, (15)

where ⋆ will be irrelevant to the results of the following
discussion; thus the real expressions of these two variables are
omitted. It follows from (15) that

𝐴𝑇22𝑖𝑋22𝑖 + 𝑋𝑇22𝑖𝐴22𝑖 < 0 (16)

which implies that 𝐴22𝑖 is nonsingular for each 𝑖 ∈ S.
Therefore, by Definition 1, we have that the free system is
regular and nonimpulsive.

Next, we will show the state reachable set of free system
is mean-square bounded within the set E(𝑋). Consider the
following Lyapunov function:

𝑉 (𝑥 (𝑡) , 𝑟𝑡) = 𝑥𝑇 (𝑡) 𝐸𝑇𝑋𝑖𝑥 (𝑡) . (17)

Let L be the weak infinitesimal generator of the random
process {𝑥(𝑡), 𝑟𝑡}. Calculating the difference of 𝑉(𝑥(𝑡), 𝑟𝑡)
along the trajectories of the free system, we get

L𝑉 (𝑥 (𝑡) , 𝑟𝑡) = �̇�𝑇 (𝑡) 𝐸𝑇𝑋𝑖𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝑋𝑇𝑖 𝐸�̇� (𝑡)
+ 𝑥𝑇 (𝑡) 𝑁∑

𝑗=1

𝜋𝑖𝑗𝐸𝑇𝑋𝑗𝑥 (𝑡) . (18)

Defining the augmented system variable as 𝜉(𝑡) =[𝑥𝑇(𝑡) 𝜔𝑇(𝑡)]𝑇 and using conditions (10) and (11), we
have

L𝑉 (𝑥 (𝑡) , 𝑟𝑡) + 𝛼𝑉 (𝑥 (𝑡) , 𝑟𝑡) − 𝛼𝜔2𝜔𝑇 (𝑡) 𝜔 (𝑡)
= 𝜉𝑇 (𝑡)H𝜉 (𝑡) < 0. (19)

Then we can deduce from Lemma 3 that E{𝑥𝑇(𝑡)𝐸𝑇𝑋𝑖𝑥(𝑡)} ≤1, which infers that

E {𝑥𝑇 (𝑡)𝑁𝑇𝐸𝑇𝑀𝑇𝑀−𝑇𝑋𝑖𝑁𝑥 (𝑡)} ≤ 1. (20)

Recalling that 𝑋12𝑖 = 0, it follows from (20) that

E {𝑥𝑇1 (𝑡) 𝑋𝑖𝑥1 (𝑡)} ≤ 1. (21)

From (21) we have min𝑖∈S𝜆min(𝑋𝑖)E{‖𝑥1(𝑡)‖2} ≤
E{𝑥𝑇1 (𝑡)𝑋𝑖𝑥1(𝑡)} ≤ 1, which implies that E{‖𝑥1(𝑡)‖} ≤1/√min𝑖∈S𝜆min(𝑋𝑖).
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Since 𝐴22𝑖 is nonsingular for each 𝑖 ∈ S, (8) can be
rewritten as

𝑥2 (𝑡) = −𝐴−122𝑖 (𝐴21𝑖𝑥1 (𝑡) + 𝐷2𝑖𝜔 (𝑡)) . (22)

Then we can deduce that

E {󵄩󵄩󵄩󵄩𝑥2 (𝑡)󵄩󵄩󵄩󵄩}
≤ 󵄩󵄩󵄩󵄩󵄩𝐴−122𝑖󵄩󵄩󵄩󵄩󵄩( 󵄩󵄩󵄩󵄩𝐴21𝑖󵄩󵄩󵄩󵄩√min𝑖∈S𝜆min (𝑋𝑖) + 󵄩󵄩󵄩󵄩𝐷2𝑖󵄩󵄩󵄩󵄩 𝜔) . (23)

It follows from the fact 𝑥(𝑡) = [𝑥𝑇1 (𝑡) 0]𝑇 + [0 𝑥𝑇2 (𝑡)]𝑇 that
E {‖𝑥 (𝑡)‖} ≤ E {󵄩󵄩󵄩󵄩𝑥1 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 (𝑡)󵄩󵄩󵄩󵄩} ≤ 𝑟𝑖, (24)

where 𝑟𝑖 = 1/√min𝑖∈S𝜆min(𝑋𝑖) +‖𝐴−122𝑖‖(‖𝐴21𝑖‖/√min𝑖∈S𝜆min(𝑋𝑖) + ‖𝐷2𝑖‖𝜔).
By (24), it can be seen that

1𝑟2𝑖 E {𝑥𝑇 (𝑡) 𝑥 (𝑡)} ≤ 1 (25)

which implies that the trajectories of (7)-(8) are mean-
square bounded within the set ⋂𝑁𝑖=1B((1/𝑟2𝑖 )𝐼). Moreover,
notice that 𝑥(𝑡) = 𝑁−1𝑥(𝑡), and (25) can be rewrit-
ten as (1/𝑟2𝑖 )E{𝑥𝑇(𝑡)(𝑁−𝑇𝑁−1)𝑥(𝑡)} ≤ 1. By denoting(1/𝑟2𝑖 )𝑁−𝑇𝑁−1 = 𝑋𝑖, the state reachable set of free system
is mean-square bounded within the set ⋂𝑁𝑖=1E(𝑋𝑖).

It should be noted that inequality (10) represents a
nonstrict LMI. This may lead to numerical problems since
equality constraints are usually not satisfied perfectly. Below,
we will develop a numerically tractable and nonconservative
LMI condition.

Theorem 5. If there exist symmetric positive definite matrices𝑃𝑖 ∈ R𝑛×𝑛, nonsingular matrices 𝑄𝑖, and a scalar 𝛼 > 0 such
that the following LMI holds for each 𝑖 ∈ S,

[[[[
Ψ𝑖 (𝑃𝑖𝐸 + 𝑅𝑇𝑄𝑖𝑆𝑇)𝑇𝐷𝑖
∗ − 𝛼𝜔2 𝐼

]]]]
< 0, (26)

then the state reachable set of free system is mean-square
bounded within the following set:

𝑁⋂
𝑖=1

E (�̂�𝑖) = 𝑁⋂
𝑖=1

{𝑥 ∈ R
𝑛 | 𝑥𝑇�̂�𝑖𝑥 ≤ 1} , (27)

where

Ψ𝑖 = Sym (𝐴𝑇𝑖 (𝑃𝑖𝐸 + 𝑅𝑇𝑄𝑖𝑆𝑇)) + 𝑁∑
𝑗=1

𝜋𝑖𝑗𝐸𝑇𝑃𝑗𝐸
+ 𝛼𝐸𝑇𝑃𝑖𝐸

�̂�𝑖 = 1̃𝑟2𝑖 𝑁−𝑇𝑁−1
𝑟𝑖 = 1√min𝑖∈S𝜆min (�̃�𝑖)

+ 󵄩󵄩󵄩󵄩󵄩𝐴−122𝑖󵄩󵄩󵄩󵄩󵄩( 󵄩󵄩󵄩󵄩𝐴21𝑖󵄩󵄩󵄩󵄩√min𝑖∈S𝜆min (�̃�𝑖) + 󵄩󵄩󵄩󵄩𝐷2𝑖󵄩󵄩󵄩󵄩 𝜔)
�̃�𝑖 = (𝑀−𝑇𝑃𝑖𝑀−1)𝑙×𝑙 ,

(28)

𝑅 ∈ R(𝑛−𝑙)×𝑛 is anymatrix with full row rank and satisfies𝑅𝐸 =0; 𝑆 ∈ R𝑛×(𝑛−𝑙) is anymatrix with full column rank and satisfies𝐸𝑆 = 0.
Proof. Let 𝑋𝑖 = 𝑃𝑖𝐸 + 𝑅𝑇𝑄𝑖𝑆𝑇 in (26); it is easy to obtain
(10) and (11). In this case, inequality (20) will be replaced
by E{𝑥𝑇(𝑡)𝑁𝑇𝐸𝑇𝑀𝑇𝑀−𝑇𝑃𝑖𝑀−1𝑀𝐸𝑁𝑥(𝑡)} ≤ 1, which infers
that E{𝑥𝑇1 (𝑡)�̃�𝑖𝑥1(𝑡)} ≤ 1 with �̃�𝑖 = (𝑀−𝑇𝑃𝑖𝑀−1)𝑙×𝑙. Then,
following the same lines as (22)–(25) in Theorem 4, we can
get E{𝑥𝑇(𝑡)�̂�𝑖𝑥(𝑡)} ≤ 1 for any 𝑖 ∈ S. Therefore, the state
reachable set of free system is mean-square bounded within
the set ⋂𝑁𝑖=1E(�̂�𝑖).
Remark 6. In order to make the ellipsoid E(�̂�𝑖) as small as
possible, we require trace(�̂�𝑖) → max. For this purpose,
we can add the additional requirement �̃�𝑖 > 𝜖𝐼 and then
maximize a positive scalar 𝜖, which is equivalent to the
following minimization problem:

min 𝜖
s.t. (26) ,

[−𝜖𝐼 𝐼𝐼 −�̃�𝑖] < 0,
(29)

where 𝜖 = 1/𝜖.
3.2. Output Reachable Set Estimation

Theorem 7. If there exist symmetric positive definite matrices𝑃𝑖 ∈ R𝑛×𝑛 and𝑌𝑖 ∈ R𝑛×𝑛, nonsingularmatrices𝑄𝑖, and a scalar𝛼 > 0 such that the following LMIs hold for each 𝑖 ∈ S,

[[[
Ψ𝑖 (𝑃𝑖𝐸 + 𝑅𝑇𝑄𝑖𝑆𝑇)𝑇𝐷𝑖∗ − 𝛼𝜔2 𝐼

]]] < 0 (30)



Complexity 5

𝐶𝑇𝑖 𝑌𝑖𝐶𝑖 ≤ �̂�𝑖, (31)

then the output reachable set of free system is mean-square
bounded within the following set:

𝑁⋂
𝑖=1

E (𝑌𝑖) = 𝑁⋂
𝑖=1

{𝑦 ∈ R
𝑝 | 𝑦𝑇𝑌𝑖𝑦 ≤ 1} , (32)

where Ψ𝑖, 𝑅, 𝑆, and �̂�𝑖 are defined in Theorem 5.

Proof. ByTheorem 5, LMI (30) ensures

E {𝑥𝑇 (𝑡) �̂�𝑖𝑥 (𝑡)} ≤ 1, ∀𝑖 ∈ S. (33)

With this and (31), we obtain that

E {𝑥𝑇 (𝑡) 𝐶𝑇𝑖 𝑌𝑖𝐶𝑖𝑥 (𝑡)} ≤ E {𝑥𝑇 (𝑡) �̂�𝑖𝑥 (𝑡)} ≤ 1. (34)

Due to the fact that 𝑦(𝑡) = 𝐶𝑖𝑥(𝑡), (34) can be rewritten as
E{𝑦𝑇(𝑡)𝑌𝑖𝑦(𝑡)} ≤ 1. Thus, the output reachable set of free sys-
tem is mean-square bounded within the set ⋂𝑁𝑖=1E(𝑌𝑖).
Remark 8. The output reachable set is also expected to be
as small as possible. To achieve this goal, we first solve LMI
(30) and get �̂�𝑖 satisfying trace(�̂�𝑖) → max, which can
be implemented by using (29). Then we add the additional
requirement 𝐶𝑇𝑖 𝑌𝑖𝐶𝑖 > 𝛿𝐼 and maximize a positive scalar 𝛿,
which is equivalent to the following minimization problem:

min 𝛿
s.t. (31) ,

[−𝛿𝐼 𝐼𝐼 −𝐶𝑇𝑖 𝑌𝑖𝐶𝑖] < 0,
(35)

where 𝛿 = 1/𝛿.
3.3. State-Feedback Controller Design. In this section, we turn
our attention to the state-feedback control problem. Our goal
here is to find a state-feedback controller, which not only
stabilizes the closed-loop system, but also makes the ellipsoid
bound on the reachable set of closed-loop system as small as
possible.

Now, consider the state-feedback controller 𝑢(𝑡) =𝐾𝑖𝑥(𝑡), where 𝐾𝑖 is a gain matrix to be determined later. By
using this controller, the closed-loop system can be obtained
as

𝐸�̇� (𝑡) = 𝐴 𝑖𝑥 (𝑡) + 𝐷𝑖𝜔 (𝑡)𝑦 (𝑡) = 𝐶𝑖𝑥 (𝑡) , (36)

where 𝐴 𝑖 = 𝐴 𝑖 + 𝐵𝑖𝐾𝑖.
Theorem 9. Consider singular Markov jump system (1). If
there exist nonsingular matrices 𝑃𝑖 ∈ R𝑛×𝑛, matrices 𝑆𝑖, and

scalars 𝛼 > 0, 𝛿𝑖 > 0 such that the following LMIs hold for each𝑖 ∈ S,

𝑃𝑇𝑖 𝐸𝑇 = 𝐸𝑃𝑖 ≥ 0 (37)

𝑃𝑇𝑖 𝐸𝑇 ≤ 𝛿𝑖𝐼 (38)

[[[[
Φ𝑖 𝐷𝑖 W𝑖∗ − 𝛼𝜔2 𝐼 0∗ ∗ −J𝑖

]]]]
< 0, (39)

then the reachable set of system (1) is mean-square bounded
within the set ⋂𝑁𝑖=1E(𝑃𝑖) = ⋂𝑁𝑖=1{𝑥 ∈ R𝑛 | 𝑥𝑇𝑃𝑖𝑥 ≤ 1}, and
the desired controller gain matrix is given by𝐾𝑖 = 𝑆𝑖𝑃−1𝑖 , where

Φ𝑖 = Sym (𝑃𝑇𝑖 𝐴𝑇𝑖 + 𝑆𝑇𝑖 𝐵𝑇𝑖 ) + (𝛼 + 𝜋𝑖𝑖) 𝑃𝑇𝑖 𝐸𝑇
W𝑖= [√𝜋𝑖1𝑃𝑇𝑖 ⋅ ⋅ ⋅ √𝜋𝑖(𝑖−1)𝑃𝑇𝑖 √𝜋𝑖(𝑖+1)𝑃𝑇𝑖 ⋅ ⋅ ⋅ √𝜋𝑖𝑁𝑃𝑇𝑖 ]
J𝑖 = diag (𝑃1 + 𝑃𝑇1 − 𝛿1𝐼, . . . , 𝑃𝑖−1 + 𝑃𝑇𝑖−1 − 𝛿𝑖−1𝐼, 𝑃𝑖+1

+ 𝑃𝑇𝑖+1 − 𝛿𝑖+1𝐼, . . . , 𝑃𝑁 + 𝑃𝑇𝑁 − 𝛿𝑁𝐼)
𝑃𝑖 = 1̂𝑟2𝑖 𝑁−𝑇𝑁−1
𝑟𝑖 = √max

𝑖∈S
𝜆max (�̌�𝑖) + 󵄩󵄩󵄩󵄩󵄩𝐴−122𝑖󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝐴21𝑖󵄩󵄩󵄩󵄩√max

𝑖∈S
𝜆max (�̌�𝑖)

+ 󵄩󵄩󵄩󵄩𝐷2𝑖󵄩󵄩󵄩󵄩 𝜔)
�̌�𝑖 = (𝑁−1𝑃𝑖𝑀𝑇)𝑙×𝑙 .

(40)

Proof. Denote 𝑋𝑖 = 𝑃−1𝑖 and 𝑆𝑖 = 𝐾𝑖𝑃𝑖 for each 𝑖 ∈ S.
Then, pre- and postmultiplying (39) by diag(𝑋𝑇𝑖 , 𝐼, 𝐼) and its
transpose, respectively, we obtain

[[[[
Φ̃𝑖 𝑋𝑇𝑖 𝐷𝑖 W̃𝑖∗ − 𝛼𝜔2 𝐼 0∗ ∗ −J𝑖

]]]]
< 0, (41)

where Φ̃𝑖 = Sym(𝐴𝑇𝑖𝑋𝑖) + (𝛼 + 𝜋𝑖𝑖)𝐸𝑇𝑋𝑖, W̃𝑖 =[√𝜋𝑖1𝐼 ⋅ ⋅ ⋅ √𝜋𝑖(𝑖−1)𝐼 √𝜋𝑖(𝑖+1)𝐼 ⋅ ⋅ ⋅ √𝜋𝑖𝑁𝐼].
Using Lemma 2, we have

𝛿−1𝑖 𝑃𝑗𝑃𝑇𝑗 ≥ 𝑃𝑗 + 𝑃𝑇𝑗 − 𝛿𝑖𝐼,𝑗 = 1, 2, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑁. (42)

From (41) and (42), it is easy to obtain that

[[[[
Φ̃𝑖 𝑋𝑇𝑖 𝐷𝑖 W̃𝑖∗ − 𝛼𝜔2 𝐼 0∗ ∗ −J̃𝑖

]]]]
< 0, (43)
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where J̃𝑖 = diag(𝛿−11 𝑃1𝑃𝑇1 , . . . , 𝛿−1𝑖−1𝑃𝑖−1𝑃𝑇𝑖−1, 𝛿−1𝑖+1𝑃𝑖+1𝑃𝑇𝑖+1, . . .,𝛿−1𝑁 𝑃𝑁𝑃𝑇𝑁).
By Schur complement, the previous matrix inequality

becomes

[[
Φ̂𝑖 𝑋𝑇𝑖 𝐷𝑖∗ − 𝛼𝜔2 𝐼]] < 0, (44)

where Φ̂𝑖 = Sym(𝐴𝑇𝑖𝑋𝑖) + (𝛼+𝜋𝑖𝑖)𝐸𝑇𝑋𝑖 +∑𝑁𝑗=1,𝑗 ̸=𝑖 𝛿𝑗𝜋𝑖𝑗𝑋𝑇𝑗𝑋𝑗.
Since 𝑗 ∈ S, (38) infers that 𝑃𝑇𝑗 𝐸𝑇 ≤ 𝛿𝑗𝐼. Pre- and

postmultiplying the previousmatrix inequality by𝑋𝑇𝑗 and𝑋𝑗,
respectively, we have 𝐸𝑇𝑋𝑗 ≤ 𝛿𝑗𝑋𝑇𝑗𝑋𝑗. This together with
(44) implies

[[
Φ𝑖 𝑋𝑇𝑖 𝐷𝑖∗ − 𝛼𝜔2 𝐼]] < 0, (45)

where Φ𝑖 = Sym(𝐴𝑇𝑖𝑋𝑖) + ∑𝑁𝑗=1 𝜋𝑖𝑗𝐸𝑇𝑋𝑗 + 𝛼𝐸𝑇𝑋𝑖.
Pre- and postmultiplying (37) by𝑋𝑇𝑖 and𝑋𝑖, respectively,

we obtain

𝐸𝑇𝑋𝑖 = 𝑋𝑇𝑖 𝐸 ≥ 0. (46)

From the above discussion, we show that if (37)–(39) hold,
then (45) and (46) hold.Thus, it follows fromTheorem 4 that
the closed-loop systemcan be stabilized by the designed state-
feedback controller.

Next, we show that the reachable set of the closed-
loop system (36) is mean-square bounded within the set⋂𝑁𝑖=1E(𝑃𝑖). From (45) and (46), it is easy to show that there
exists a Lyapunov function 𝑉(𝑥(𝑡), 𝑟𝑡) = 𝑥𝑇(𝑡)𝐸𝑇𝑋𝑖𝑥(𝑡)
such that L𝑉(𝑥(𝑡), 𝑟𝑡) + 𝛼𝑉(𝑥(𝑡), 𝑟𝑡) − (𝛼/𝜔2)𝜔𝑇(𝑡)𝜔(𝑡) <0, where L𝑉(𝑥(𝑡), 𝑟𝑡) denotes the difference of 𝑉(𝑥(𝑡), 𝑟𝑡)
along the trajectories of (36). It follows from Lemma 3 that
E{𝑥𝑇(𝑡)𝐸𝑇𝑋𝑖𝑥(𝑡)} ≤ 1, which implies

E {𝑥𝑇 (𝑡)𝑁𝑇𝐸𝑇𝑀𝑇𝑀−𝑇𝑋𝑖𝑁𝑥 (𝑡)} ≤ 1. (47)

Noting that 𝑋𝑖 = 𝑃−1𝑖 , then (47) can be rewritten as

E {𝑥𝑇 (𝑡)𝑁𝑇𝐸𝑇𝑀𝑇𝑀−𝑇𝑃−1𝑖 𝑁𝑥 (𝑡)} ≤ 1. (48)

Recalling that 𝑀−𝑇𝑃−1𝑖 𝑁 is a lower triangular matrix, (48)
infers that

E {𝑥𝑇1 (𝑡) �̌�−1𝑖 𝑥1 (𝑡)} ≤ 1, (49)

where �̌�−1𝑖 = (𝑀−𝑇𝑃−1𝑖 𝑁)𝑙×𝑙.
By (49), it can be seen that

min
𝑖∈S

𝜆min (�̌�−1𝑖 )E {󵄩󵄩󵄩󵄩𝑥1 (𝑡)󵄩󵄩󵄩󵄩2} ≤ E {𝑥𝑇1 (𝑡) �̌�−1𝑖 𝑥1 (𝑡)}
≤ 1. (50)

Using the fact that min𝑖∈S𝜆min(�̌�−1𝑖 ) = 1/max𝑖∈S𝜆max(�̌�𝑖), we
get

E {󵄩󵄩󵄩󵄩𝑥1 (𝑡)󵄩󵄩󵄩󵄩} ≤ √max
𝑖∈S

𝜆max (�̌�𝑖). (51)

This together with (24) yields

E {󵄩󵄩󵄩󵄩𝑥2 (𝑡)󵄩󵄩󵄩󵄩}
≤ 󵄩󵄩󵄩󵄩󵄩𝐴−122𝑖󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝐴21𝑖󵄩󵄩󵄩󵄩√max

𝑖∈S
𝜆max (�̌�𝑖) + 󵄩󵄩󵄩󵄩𝐷2𝑖󵄩󵄩󵄩󵄩 𝜔) . (52)

From (24), (51), and (52), we have that

E {‖𝑥 (𝑡)‖} ≤ 𝑟𝑖, (53)

where 𝑟𝑖 = √max𝑖∈S𝜆max(�̌�𝑖) +‖𝐴−122𝑖‖(‖𝐴21𝑖‖√max𝑖∈S𝜆max(�̌�𝑖) + ‖𝐷2𝑖‖𝜔). This implies
that (1/𝑟2𝑖 )E{𝑥𝑇(𝑡)𝑥(𝑡)} ≤ 1. Recalling that 𝑥(𝑡) = 𝑁−1𝑥(𝑡),
we have 1̂𝑟2𝑖 E {𝑥𝑇 (𝑡) (𝑁−𝑇𝑁−1) 𝑥 (𝑡)} ≤ 1. (54)

By denoting (1/𝑟2𝑖 )𝑁−𝑇𝑁−1 = 𝑃𝑖, the reachable set of closed-
loop system (36) is mean-square bounded within the set⋂𝑁𝑖=1E(𝑃𝑖).
Remark 10. In order to make the ellipsoid E(𝑃𝑖) as small
as possible, we shall carry out the following minimization
problem:

min 𝜖
s.t. (37) , (38) , (39) ,

�̌�𝑖 ≤ 𝜖𝐼.
(55)

4. Numerical Examples

In this section, two numerical simulation examples are given
to show the effectiveness of the main results derived above.

Example 11. Consider the free system in (1) with the following
parameters:

𝐸 = [1 00 0] ,
𝐴1 = [−0.8695 −1.5760−0.2389 1.8258 ] ,
𝐴2 = [−0.5043 0.1206−1.1634 −1.4435] ,
𝐷1 = 𝐷2 = [0.50.5] ,
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Figure 1: The switching between two modes.

𝐶1 = [1 00 1] ,
𝐶2 = [1 10 1] .

(56)

The switching between two modes is described by the
following transition rate matrix:

Π = [−3 36 −6] . (57)

In this example, we choose 𝑀 = 𝐼, 𝑁 = 𝐼. By solving
optimization problem (29) with the aid of fminsearch, the
minimal 𝜖 and the corresponding 𝛼 are 0.1312 and 1.7419,
respectively. Using the above parameter values, we can obtain�̂�1 = (1/𝑟21)𝐼 = 2.1414𝐼 and �̂�2 = (1/𝑟22)𝐼 = 0.9992𝐼 by solving
(26). Owing toTheorem 5, the state reachable setR𝑥 ismean-
square bounded within the setB(�̂�1) ∩ B(�̂�2) = B(�̂�1).

By applyingTheorem 7, we have the following results:

𝑌1 = [1.6561 00 1.6561] ,
𝑌2 = [ 0.9975 −0.9975−0.9975 1.9950 ] .

(58)

Therefore, the output reachable set of free system is mean-
square bounded within the setB(𝑌1) ∩ E(𝑌2).

For simulation we assume that 𝑥0 = [0.2 0.1303]𝑇
and the disturbance is chosen as 𝜔(𝑡) = sin(𝑡). A case for
stochastic variation with transition rate matrix Π is shown
in Figure 1. The state reachable set R𝑥 and the ball B(�̂�2)
are depicted in Figure 2. Figure 2 shows that the trajectory of

State reachable set
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Figure 2: The state reachable setR𝑥 and the bounding ballB(�̂�1).

Output reachable set
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Figure 3:The output reachable setR𝑦 and the bounding ellipsoids.

the system is mean-square bounded within the regionB(�̂�2).
The output reachable setR𝑦, the ballB(𝑌1), and the ellipsoid
E(𝑌2) are depicted in Figure 3. Figure 3 shows that the output
reachable setR𝑦 is mean-square bounded within the region
B(𝑌1) ∩ E(𝑌2).
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Example 12. Consider system (1) with the following parame-
ters:

𝐸 = [1 00 0] ,
𝐴1 = [0.25 1.970.44 2.31] ,
𝐴2 = [1.90 −1.721.87 0.64 ] ,
𝐵1 = [0.140.79] ,
𝐵2 = [ 0.34−0.50] ,
𝐷1 = [0.500.50] ,
𝐷2 = [0.700.70] .

(59)

The switching between two modes is described by the
following transition rate matrix:

Π = [−3 36 −6] . (60)

ByTheorem 9, we get the following results:𝛼 = 0.1997,𝛿1 = 22.1356,𝛿2 = 18.0362,
𝑃1 = [18.0211 03.8045 102.2184] ,
𝑃2 = [14.7029 0−8.6240 67.2193] .

(61)

Therefore, the gain matrices of state-feedback controller can
be obtained as 𝐾1 = [−12.7027 −5.3634] ,

𝐾2 = [−7.1957 4.6404] . (62)

The corresponding parameter values 𝑟21 and 𝑟22 are, respec-
tively, 27.7747 and 314.7993, which imply 𝑃1 = (1/𝑟21)𝐼 =0.0360𝐼 and 𝑃2 = (1/𝑟22)𝐼 = 0.0032𝐼. Applying this controller
makes the state reachable set of closed-loop system (36)
mean-square bounded within the regionB(𝑃1).

For the purpose of the simulation, we assume the initial
condition 𝑥0 = [0.3 0.9763]𝑇 and the disturbance is chosen
as 𝜔(𝑡) = sin(0.2𝑡). Figure 4 shows one possible switching
between two modes. Figure 5 depicts the state reachable set
of closed-loop system (36).
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Figure 4: The switching between two modes.

State reachable set
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Figure 5: The state reachable setR𝑥 and the bounding ballB(𝑃1).
5. Conclusions

This paper has dealt with the problems of reachable set
estimation and state-feedback controller design for singular
Markovian jump systems. New sufficient conditions for
the state reachable set estimation and output reachable set
estimation have been, respectively, derived in terms of linear
matrix inequalities. Based on the estimated reachable set, the
state-feedback controller has also been designed. Numerical
examples and simulation results have been provided to
demonstrate the effectiveness of the proposed methods.
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