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Complexity is the undeniable part of the natural systems providing them with unique and wonderful capabilities. Memristor is
known to be a fundamental block to generate complex behaviors. It also is reported to be able to emulate synaptic long-term
plasticity as well as short-term plasticity. Synaptic plasticity is one of the important foundations of learning and memory as the
high-order functional properties of the brain. In this study, it is shown that memristive neuronal network can represent plasticity
phenomena observed in biological cortical synapses. A network of neuronal units as a two-dimensional excitable tissue is designed
with 3-neuronHopfield neuronalmodel for the local dynamics of each unit.The results show that the lattice supports spatiotemporal
pattern formation without supervision. It is found that memristor-type coupling is more noticeable against resistor-type coupling,
while determining the excitable tissue switch over different complex behaviors.The stability of the resulting spatiotemporal patterns
against noise is studied as well. Finally, the bifurcation analysis is carried out for variation of memristor effect. Our study reveals
that the spatiotemporal electrical activity of the tissue concurs with the bifurcation analysis. It is shown that thememristor coupling
intensities, by which the system undergoes periodic behavior, prevent the tissue from holding wave propagation. Besides, the
chaotic behavior in bifurcation diagram corresponds to turbulent spatiotemporal behavior of the tissue. Moreover, we found that
the excitable media are very sensitive to noise impact when the neurons are set close to their bifurcation point, so that the respective
spatiotemporal pattern is not stable.

1. Introduction

The brain is composed of an extremely large number of
neurons [1], as the basic and also complex adaptive blocks of
the brain system [2, 3]. Neuronal information transference
is possible via propagation of the electrical and chemical
signals in neuronal network [4, 5]. Indeed, fluctuation of the
membrane potential of the neurons has a specific pattern in
both time domain and space domain within the information
processing [6]. These fluctuations actually bring a functional
coherence and interplay between different parts, so that the
related controlling behaviors are possible [7]. It is confirmed

that emergence of a particular spatiotemporal pattern is in
direct relationship with the intrinsic properties of the system
[6, 8, 9]. Metabolically, generation and transference of the
information and the related signals are costly [4, 10]. How-
ever, theway that the brain is wired hasmade it a nature-made
computer with high level of efficiency in computation and
cognition [4]. Although the human brain is not very quick at
handling complex calculations, it beats a traditional computer
system when it comes to energy efficiency [11]. Therefore,
many efforts have beenmade to build up a hardware structure
and a software design or even employ a mathematical model
to study the brain system [12, 13], regarding some functional
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properties or physical effects [14]. There can be considered
some factors responsible for energy efficiency of neuronal
network including mechanisms of action potential propaga-
tion, synaptic neurotransmitters, and other factors that are
studied in more detail in [4]. In this regard, it is interesting
to investigate the emerged spatiotemporal patterns accom-
panied by the complex dynamics [8]. The recent studies on
neural network and emulator circuit implementations [13–
15] have led to the fourth circuit element called memristor
[16] in addition to resistor, capacitor, and inductor [15, 17, 18].
Memristor (contraction of memory and resistor) is a two-
terminal circuit element with nonlinear characteristics and
high performance [19]. It has attracted much attention in
biological models, adaptive filters, or integrated circuits [20]
due to multistability phenomenon in coexisting attractors
with chaotic demonstrations [21]. For the application of
biological models, it can mimic how neurons in a network
change their behavior when they are activated. Actually, its
respond at each moment does not rely only on the signals it
is receiving at that exact moment but is influenced by its own
recent activity, too.

Many studies prove that biological behaviors are the out-
come of collective activities of the neurons in neural network
[22]. Indeed, the brain activities are not determined by each
individual neuron, separately, but the intrinsic coherence
coming from collective activities and patterns ofmaintenance
or destruction of the local synchronization between the
agents [23, 24]. As a result, it is not only about the components
and their fluctuation pattern, individually, but also about the
connections among them. In other words, neuronal infor-
mation is carried by evolutionary spatiotemporal patterns
indicating a powerful, efficient, and purposeful functional
connectivity. Besides, the connection strength determines
the specific spatial patterns in the network, as well [24].
Actually, what seems to have themost significant and delicate
influence over the ultimate performance of the system is
the interactions between the components, both quantitatively
and qualitatively. Thus, we need to know the spatiotempo-
ral distribution of the brain cells membrane potential and
the pattern of propagated waves in the two-dimensional
space focusing on the connections [8]. However, obviously,
association of a large number of unites within nonlinear
connections and interactions makes it so hard to grasp some
of the concepts and deal with the related topics. Therefore,
some simplifications with acceptable range of reductions are
needed [25]. Regardless of these reductions inwhat is actually
happening in the real neuronal network, this procedure can
help us understand the related complicated occurrence, to
some extent. In this study, the main idea is to notice the
neurons at the level of population and consider a group of
correlated neurons within more realistic interconnections
and communication tools.

The point at which neurons are able to communicate with
each other is called synapse [3], which bridges the neurons
in the neuronal network [26]. In fact, transmission of the
electrical signal in neuronal system can take place through
synapses. It is also found that learning and memory are the
two significant brain abilities attributed to synapses and their
functional properties [3]. From a perspective, learning and

memory are interrelated with each other. Memory is the
internal mental recorded information, while learning is the
ability of modifying the information stored in the memory
based on the new inputs. More precisely, it also can be said
that learning is the first step of memory since the sensory
system sends information to the brain. Synaptic plasticity is
postulated to be one of the important foundations of learning
and memory [27]. Furthermore, plasticity is reported to
be responsible for certain abilities like rapid response to
threat stimuli and localization of the sound source [28]. The
invention of memristor has made it possible to realize some
complex activities which were impeded by lack of an appro-
priate device to model synaptic plasticity. The focus of this
study is to demonstrate the capability of memristive neuronal
network to represent some complex behaviors and large-
scale plasticity which is also well described via experimental
observations in the prefrontal cortex [29], visual cortex [30],
and neocortex [31].

Real cortical tissue has a laminar structure [32]. Indeed,
neurons of cerebral cortex are arranged in characteristic
layers [3]. Primarily, presence or absence of neuronal cell
bodies specifies the layers of cerebral cortex. This laminar
structure of the cortex plays a significant role in organizing
the inputs and outputs of the brain [3]. In fact, different
inputs need to be processed in different ways while the
outputs arise from different cortical regions. Accordingly,
the laminar structure of cerebral cortex helps providing
required circumstances. Considering distribution of the cor-
tical electrical activities, related spatiotemporal patterns arise
from the interface between the levels of activities of neurons
in the surfaces. With given explanations, in this study, we
simplify the case to a two-dimensional network of neuronal
models, expressing an excitable cortical tissue to investigate
the resulting pattern of the wave propagation in the surface.

In order to study the factors affecting wave propaga-
tion, it is interesting to figure out what a memristor-type
synaptic connection exactly does, not only for one limited
agent but also for large number of neuronal units and how
much it affects the spatial distribution of the cell membrane
potential and leads to wave propagation via the complex
demonstrations. Actually, the answer of these questions may
also reflect the influence of memory and learning process in
a neuronal network through the emerged patterns. In other
words, we examine different plasticity levels for the synaptic
connections by means of different memristor contributions.
On the other hand, by noticing differential equation models,
which are used in this study, the initial states of the variables
of a system refer to the result of their past dynamics.
Therefore, we choose a different initial condition for a local
area of the network indicating the different input sensory
signals that have been applied to that specific area in the past.
After that, we investigate the effect ofmemristor-type synapse
against resistor-type synapse on the pattern formation in the
network. Plus, we also expand our computations to noise
considerations in some separated snapshots, because noise
plays an important role in dynamical response of oscillatory
systems.

The results show that different spatiotemporal patterns
take place in the excitable tissue without supervision. As is
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clear through the snapshots, the overall pattern is mostly
determined by memristor-type coupling. In accordance with
some reports on the role of synaptic plasticity in some impor-
tant high-order cortical activities, our results confirm that
synaptic plasticity makes the tissue capable of representing
different complex demonstrations. In fact, the increase and
decrease of the memristor effect greatly changes the ultimate
appearance of the tissue, which, in turn, actually resulted
from the pattern of electrical activity of each neuron interact-
ing with the neighbor neurons in the whole tissue. Moreover,
the resulting patterns are found to be robust against noise for
all the cases except for 𝑘 = 0.9, in which some concentric
circular patterns are formed in the two-dimensional space.
For further study, we sought to realize whether it is possible
to find a meaningful relationship between the qualitative
properties of the coupled neurons and the spatiotemporal
demonstrations from a two-dimensional lattice. Therefore,
the bifurcation analysis is carried out for different inten-
sities of memristor-type coupling. It is revealed that the
spatiotemporal electrical activity of the tissue concurs with
the bifurcation analysis. We show the memristor coupling
intensities by which the system undergoes periodic behavior
and prevents the tissue from holding wave propagation. In
addition, the chaotic-like behavior in bifurcation diagram
corresponds to turbulent spatiotemporal behavior of the
tissue. Moreover, it is found that the excitable media is very
sensitive to noise impact when the neurons are set close to
their bifurcation point, so that the respective spatiotemporal
pattern is not stable.

The rest of the paper is organized as follows.
In the next section, themathematicalmodel is introduced

with description of its variables and parameters. After that, in
the third section, our numerical method is explained and the
results are displayed.The computational analysis for variation
of 𝑘 and 𝐷 can be found in Section 3.1. Sections 3.2 and 3.3
include the noise and the bifurcation analysis, respectively.
Finally, the fourth section concludes our study.

2. Model and Description

There are a number of mathematical neural models capable
of representing complex dynamic behaviors. These models
introduced for a large number of neurons have properties
that benefit investigations on biological neuronal network.
Usually, in thesemodels, it is assumed that the presynaptic fir-
ing rate determines the synaptic input current [33]. Hopfield
neuralmodel is defined as a graded responsemodel [34].This
model has been successful in representing different dynami-
cal behaviors including chaotic behaviors [35, 36] having to
do with nonlinear demonstrations of the brain performance.

Neurons have a selective response to a compact range of
parameters. In our study, the idea is to provide a compact
range of connections and interactions in a neuronal network.
For this purpose, we designed a square array of neuronal
units with nearest neighbor connections. Each unit has a
topology with hyperbolic-type memristor-based connection.
A hyperbolic-type Hopfield neural network is considered for
each agent. In this 3-neuron Hopfield neural network, one
of the connection weights is defined as a memristive-type

weight.TheHopfield equation for the 𝑖-th neuron is described
as follows:

𝐶𝑖 𝑑𝑥𝑖𝑑𝑡 = −𝑥𝑖𝑅𝑖 +
𝑁

∑
𝑗=1

𝑤𝑖𝑗 tanh (𝑥𝑖) + 𝐼𝑖, (1)

where variable 𝑥 denotes the voltage across the capacitor 𝐶,
𝑅 stands for membrane resistance between the inside and
outside of the neuron, 𝐼 is an input bias current, tanh(𝑥𝑗)
is the neuron activation function for voltage input from the
𝑗-th neuron, and 𝑤𝑖𝑗 is synaptic weight that illustrates the
strength of connections between 𝑖-th and 𝑗-th neurons. In our
work, the proposedHopfield network is achieved by replacing
resistive connection with hyperbolic-type memristor, which
is discussed in detail in [35].The set of parameters are𝑁 = 3,
𝐶𝑖 = 1,𝑅𝑖 = 1 (𝑖 = (1 : 3)).Theweightmatrix is considered as

𝑊 = [[
[

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

]]
]
= [[
[

−1.4 1.2 −7
1.1 0 2.8
𝑘𝑤 −2 4

]]
]
, (2)

where 𝑤 is the synaptic weight connecting the first and
the third neurons with the proportion of 𝑘. The parameter
𝑘 is a constant indicating the strength of hyperbolic-type
memristor-type coupling.

The differential equations describing the desired mem-
ristor-type neuronal unit can be expressed as follows:

𝑥̇1 = −𝑥1 − 1.4 tanh (𝑥1) + 1.2 tanh (𝑥2) − 7 tanh (𝑥3)
𝑥̇2 = −𝑥2 + 1.1 tanh (𝑥1) + 2.8 tanh (𝑥3)
𝑥̇3 = −𝑥3 + 𝑘𝑤 tanh (𝑥1) − 2 tanh (𝑥2) + 4 tanh (𝑥3)
𝑥̇4 = −𝑥4 + tanh (𝑥1)
𝑤 = 𝑎 − 𝑏 tanh (𝑥4) .

(3)

After that, we develop the case to a large array network of neu-
ronal units within coupling intensities. Therefore, the equa-
tions for the square array network are represented as follows:

𝑥̇1𝑚𝑛 = −𝑥1𝑚𝑛 − 1.4 tanh (𝑥1𝑚𝑛) + 1.2 tanh (𝑥2𝑚𝑛) − 7
⋅ tanh (𝑥3𝑚𝑛) ,

𝑥̇2𝑚𝑛 = −𝑥2𝑚𝑛 + 1.1 tanh (𝑥1𝑚𝑛) + 2.8 tanh (𝑥3𝑚𝑛) ,
𝑥̇3𝑚𝑛 = −𝑥3𝑚𝑛 + 𝑘𝑤𝑚𝑛 tanh (𝑥1𝑚𝑛) − 2 tanh (𝑥2𝑚𝑛) + 4

⋅ tanh (𝑥3𝑚𝑛) + 𝐷
⋅ tanh (𝑥3𝑚−1𝑛 + 𝑥3𝑚+1𝑛 + 𝑥3𝑚𝑛−1 + 𝑥3𝑚𝑛+1 − 4𝑥3𝑚𝑛) ,

𝑥̇4𝑚𝑛 = −𝑥4𝑚𝑛 + tanh (𝑥1𝑚𝑛) ,
𝑤𝑚𝑛 = 𝑎 − 𝑏 tanh (𝑥4𝑚𝑛) ,

(4)

where the subscript𝑚𝑛 denotes the position of each neuronal
unit in the two-dimensional square array network. 𝐷 is the
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Figure 1: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0 and
𝐷 = 1 at (a) 𝑡 = 2 time units and (b) 𝑡 = 6 time units.

resistor-type coupling intensity. 𝑎 = 1 and 𝑏 = 0.01 are
constant. The reader will pay attention that the parameter 𝐷
denotes the resistor-type coupling strength in this studywhile
parameter 𝑘 shows the memristor-type coupling strength.

3. Numerical Results and Discussions

In our study, we design a square array network consisting of
150×150 neuronal units. Our numerical results are calculated
byRunge-Kutta 4th-ordermethodwith the time stepℎ = 0.01
under no flux boundary. The initial states of the network
except the small central area, which is observable in the
following images, are set as (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, 0.1, 0, 0).
In addition, the initial condition of the central local area is
(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, −0.1, 0, 0).
3.1. Computational Analysis for Variation of 𝑘 and 𝐷. Con-
sidering (2), there are two types of coupling between neurons
in the whole network, namely, the memristor-type coupling
and the resistor-type coupling. We pick different levels of
memristor-type coupling by adjusting parameter 𝑘, and then
we consider two levels of resistor-type coupling intensity by
adjusting parameter𝐷, in each case of 𝑘 adjustments.

It seems that neurons need to have an appropriate
level of memristor effect to be capable of responding to
the received stimulus in a desired pattern leading to wave
propagation. Otherwise, the generated circular wave (in the
central area of the network) will not be developed. Even
though a propagated wave can travel a further distance by
strengthening the resistive coupling intensity between the
agents (which is adjustable by parameter 𝐷), still the lack of
wave propagation remains and the ultimate general pattern
does not change. Moreover, the excitable media are able
to switch over different spatial behaviors by varying the
memristive coupling strength. Hence, from this point of view,
memristor-type coupling is more noticeable against resistor-
type coupling. To put it more clearly, the distribution of
membrane potential in the two-dimensional excitable media
is shown in colored levels. In some cases, the central local
area is maintained for a few seconds or continues to grow

under a particular pattern, while in others the continuity of
the central part is very short.

Firstly, Figure 1 shows the result in two snapshots when
there is no effect of memristor in the network (𝑘 = 0).
Moreover, the neuronal units are connected to each other
with the coupling intensity of𝐷 = 1. As it is observable, there
is no propagation in this case and the generated signals find
no path to travel the tissue. In fact, the generated wave front
dies right at the beginning of its existence. Besides, there is no
sign of propagation even when we choose a higher resistor-
type coupling intensity by 𝐷 = 5 under no memory effect
by 𝑘 = 0 (Figure 2). Here the only difference that can be
seen between the results in Figures 1 and 2 is in the increased
radius of the initiated wave front in Figure 2 in comparison
with Figure 1. In this case, the central concentrated energy
does not flow to the rest of the neurons and vanishes right at
the beginning of its existence.

For the next step, we provide the tissue a nonzeromemory
effect with 𝑘 = 0.5 under resistor coupling strength of 𝐷 = 1
and 𝐷 = 5 displayed in Figures 3 and 4, respectively. In this
case, the membrane potential of the central local area finds
permission to flow beyond the central part but not too far.
The propagated wave is shown in four snapshots for this case.
As it is observable, in this case, the wave front disappears not
right at the beginning but after a limited time before getting
toowide (see Figure 3).Moreover, increasing the resistor-type
coupling intensity from𝐷 = 1 to𝐷 = 5 only brings the time-
limited propagatedwave a greater radius anddoes not prevent
it from disappearing (see Figure 4).

After that, on the way of increasing memory properties,
leading to more synaptic plasticity, we set 𝑘 = 0.7 (Figures
5 and 6). Interestingly, this slight increase from 𝑘 = 0.5 to
𝑘 = 0.7 in the level of memory effects brings out significantly
different dynamics from the tissue. In fact, it makes the tissue
represent a very distinctive pattern for the distribution of
membrane potential in its two-dimensional space.The spatial
fluctuations become so turbulent and great number of very
small rotating seeds can be seen. These countless rotating
seeds result in such turbulent appearance as is clear through
the depicted snapshots in Figures 5 and 6. We investigate
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Figure 2:The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0 and
𝐷 = 5 at (a) 𝑡 = 2 time units and (b) 𝑡 = 6 time units.
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Figure 3: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.5
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 20 time units, (c) 𝑡 = 100 time units, and (d) 𝑡 = 200 time units.

this level of memory effects with two resistance coupling
intensities by𝐷 = 1 and𝐷 = 5 and the resulting snapshots are
displayed in Figures 5 and 6, respectively. As before, greater
amounts of parameter 𝐷 cause the radius of the turbulent
propagating wave increase, so that a more extensive area is
covered in the snapshots of the same moments.

Furthermore,we examine a slightly further increase in the
level of memory effects by applying 𝑘 = 0.8 in two modes
of 𝐷 = 1 and 𝐷 = 5. The resulting spatiotemporal patterns

are shown in Figures 7 and 8, respectively. As it is observ-
able, in this case, the regular symmetrical deformations are
surrounded by a growing circular wave front. As soon as the
circular wave front touches the boundaries, it starts getting
into some deformations, too. Eventually, the mixture of the
resulting deformations covers the entire tissue and makes it
represent a completely different appearance (Figure 7(d)).

Considering all the above, we set a higher level of
memristor-type coupling by𝐾 = 0.9, in order to see whether
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Figure 4: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.5
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 20 time units, (c) 𝑡 = 100 time units, and (d) 𝑡 = 200 time units.
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Figure 5: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.7
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 6: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.7
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 7: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.8
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 8: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.8
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.

the resulting turbulent pattern continues to grow by more
strengthening the memristor-type coupling in the network.
The results are represented for 𝐷 = 1 and 𝐷 = 5 in Figures 9
and 10, respectively.

As is visible in the displayed results in Figures 9 and 10, the
spatial pattern takes a completely different appearance when
we pick the strength of memristor-type coupling beyond
a certain threshold. Besides, there is no sign of any small
rotating seeds either. In this case, with this set of parameters,
the central local area does not vanish and there exist a set
of concentric circles. Unlike the previous cases, these arising
circular wave fronts keep their overall curvature during the
whole time span. Moreover, these circular wave fronts take a
larger radius and findmore expansion when the resistor-type
coupling is increased from 𝐷 = 1 to 𝐷 = 5 (Figure 10). As
a result, this level of memristor effect causes a recognizable
change in the resulting spatiotemporal behavior. Even though
more synaptic plasticity is provided in this case, the turbulent
spatial pattern changes into a circular discipline with no
deformation.

For further investigation, we put the memory influence
of the excitable tissue in a higher level by setting 𝑘 = 1
with 𝐷 = 1 and 𝐷 = 5 in Figures 11 and 12, respectively.
Interestingly, neither partial deformation nor circular pattern
is observable in this case. Besides, the ultimate wave front
stops to grow after reaching a certain length of the radius.

Moreover, by further increase of thememory level by 𝑘 = 1.5,
the propagated wave subsides and finally disappears. For this
level of 𝑘, the snapshots in Figures 13 and 14 show the results
for𝐷 = 1 and𝐷 = 5, respectively.
3.2. Noise Effect. In this part, we expand our computational
analysis to investigate stability of the emerged patterns under
the noise effect. For this purpose, the Gaussian white noise
𝜉(𝑡) is added to the initial conditions, which were defined in
the first paragraph of Section 3. The statistical properties of
Gaussian white noise are defined by [37]

⟨𝜉 (𝑡) 𝜉 (𝑡󸀠)⟩ = 2𝐺𝛿 (𝑡 − 𝑡󸀠) , (5)

where 𝐺 is noise intensity and 𝛿(∗) is Dirac-𝛿 function. Two
levels of noise intensities are applied to the whole tissue by
𝐺 = 0.01 and 𝐺 = 0.1.

The results show that the spatial pattern totality is not
influenced by the noise effect for 𝑘 = 0, 𝑘 = 0.5, 𝑘 = 0.7,
𝑘 = 0.8, 𝑘 = 1, and 𝑘 = 1.5, so that the ultimate spatial pattern
does not change significantly for these cases.These results are
depicted in Figures 15–18, 20 and 21. However, as illustrated
in Figure 19, in the case 𝑘 = 0.9, a remarkable change is
made in the network fluctuations pattern due to the noise
effects. It seems that this level of memristor-type coupling
makes the tissue sensitive to noise and makes it represent a
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Figure 9: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.9
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 10: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.9
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 11:The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1 and
𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 12: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1
and𝐷 =5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 13: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1.5
and𝐷 = 1 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 170 time units, and (d) 𝑡 = 300 time units.
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Figure 14: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1.5
and𝐷 = 5 at (a) 𝑡 = 2 time units, (b) 𝑡 = 75 time units, (c) 𝑡 = 135 time units, and (d) 𝑡 = 300 time units.
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Figure 15: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0
and𝐷 = 1 at 𝑡1 = 2 time units and 𝑡2 = 6 time units. ((a), (b)) 𝐺 = 0.01 and ((c), (d)) 𝐺 = 0.1.

different collective behavior. Noticing the results before noise
considerations, the coupling 𝑘 = 0.9 was the only case with
continuity of the central local area accompanied by sustained
circular patterns. Our examination shows that, in opposition
to the other memristor-type coupling levels, in this level the
spatial representation is not robust against noise. Therefore,
as is clear through the snapshots in Figure 19 the circular
wave fronts change into some symmetrical deformations by
increasing the noise intensity (see Figure 19(l)). In other
words, the results reveal that the contribution of memristive
effects denoting the synaptic plasticity determines the robust-
ness of the excitable media against noise.

3.3. Numerical Results of Bifurcation Analysis. Knowing that
the dynamic behavior of a system can be revealed from its
bifurcation analysis, in this subsection, the bifurcation anal-
ysis is carried out by setting different memristor-type cou-
plings for a system of two coupled neuronal units. In this way,
a qualitative analysis of the role of parameter 𝑘 is available.We
set𝐷 = 1. The numerical result can be found in Figure 22.

In Figure 22, it is shown that the system can switch over
completely different dynamical behaviors under variation
of memristor-type coupling. In accordance with the results

represented in Sections 3.1 and 3.2, the whole diagram
confirms that the system starts with periodic behavior, in
which no propagation took place and then goes through some
complicated behaviors, in which the two-dimensional lattice
demonstrated wave propagation withinmultiple tiny rotating
spiral seeds, and finally again it arrives at periodic dynamics,
in which no propagation occurred.

In this paper, it was reported in Section 3.1 that the
coupling intensity of 𝑘 = 0, 𝑘 = 0.5, 𝑘 = 1, and 𝑘 =
1.5 prevents the tissue from supporting wave propagation.
Corresponding to these results, Figure 22 shows that the
system undergoes periodic behavior by these mentioned
memristor coupling intensities. Further, the chaotic behavior
for 𝑘 = 0.7 and 𝑘 = 0.8 in Figure 22 concurs with the results
in Figures 5 and 7, respectively, in which a turbulent electrical
demonstration arose out of the respective memristor-type
coupling intensities. Besides, in the previous subsections, the
coupling intensity 𝑘 = 0.9 was reported to be the only case
significantly affected by the noise perturbation. In accordance
with that, here our bifurcation analysis explains instability
of the system in 𝑘 = 0.9. Actually, the stability of the
spatiotemporal pattern against noise is reduced when the
neurons are set very close to their bifurcation point, which
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Figure 16: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.5
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.

is 𝑘 = 0.9 (see Figure 23). At this point, the excitable media
is very sensitive to perturbation. Thus, the media undergoes
completely different dynamics in 𝑘 = 0.9 by the noise impact.

4. Conclusion

In this study, the synaptic plasticity by means of memristor
was investigated and the potential spatiotemporal patterns
were detected. We showed that the memristive neuronal
network is capable of representing plasticity phenomenon
observed in biological cortical synapses. Excitable media
were modeled by a network of 150 × 150 neuronal units
with nearest neighbor connections containing memristor-
type coupling. The 3-neuron Hopfield neuronal model was
defined for the local dynamics of each unit. The tissue
model was postulated to be capable of representing different
dynamic behaviors mostly determined by the memristive
properties. Our study showed that the level of memristive

effect plays a determinative role for the tissue to support wave
propagation and also switch over different complex spatial
demonstrations. In fact, the changes of dynamic law that gov-
ern the neurons within their connections were brought out
from increasing or decreasing the memristor-type coupling
strength. Although the resulting propagated waves could be
expanded by greater amounts of resistor-type coupling, the
total spatial pattern of the neurons did not change under
the variation of resistor-type coupling. Further, we expanded
our computations to investigate the stability of the resulting
complex patterns against noise. It was revealed that all the
spatial patterns were robust against noise impact except one
case, in which the primary circular patterns changed into
symmetrical deformations after the noise impact.

Finally, for further study, we sought to discover whether
it is possible to find a meaningful relationship between the
qualitative properties of the coupled neurons and the spa-
tiotemporal demonstrations from a two-dimensional lattice.
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Figure 17: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.7
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 18: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.8
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 19: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 0.9
and 𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, 𝑡4 = 300 time units, 𝑡5 = 450 time units, and 𝑡6 = 600 time units.
((a)–(f)) 𝐺 = 0.01 and ((g)–(i)) 𝐺 = 0.1.

Therefore, first the bifurcation analysis was carried out for
different intensities of memristor-type coupling to see the
possible mutual influence of the coupled neurons under
memristive effects, and then the results were compared to our
two-dimensional analysis. Our study revealed that the spa-
tiotemporal patterns of electrical activity of the tissue concur
with the bifurcation analysis. It was shown that thememristor
coupling intensities, by which the system undergoes periodic
behavior, prevent the tissue from holding wave propagation.
In addition, the chaotic-like behavior in bifurcation diagram
concurs with the turbulent spatiotemporal electrical activity
of the tissue. Moreover, we showed that the excitable media is
very sensitive to noise impact when the neurons are set close

to their bifurcation point, so that the spatiotemporal pattern
is not stable.
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Figure 20: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 21: The snapshots of spatial distribution of membrane potential with color scale for neurons in the square array network for 𝑘 = 1.5
and𝐷 = 1 at 𝑡1 = 2 time units, 𝑡2 = 75 time units, 𝑡3 = 170 time units, and 𝑡4 = 300 time units. ((a)–(d)) 𝐺 = 0.01 and ((e)–(h)) 𝐺 = 0.1.
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Figure 22: Bifurcation diagram of two coupled neurons for different
memristor-type coupling intensities (𝑘 = 0 to 𝑘 = 1.5), while 𝐷 = 1
and other parameters are at their nominal values.
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Figure 23: Bifurcation diagram of two coupled neurons for different
memristor-type coupling intensities (𝑘 = 0.84 to 𝑘 = 0.94), while
𝐷 = 1 and other parameters are at their nominal values.
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Electronics and Communications, vol. 73, pp. 16–22, 2017.

[12] H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua, “Neural
synaptic weighting with a pulse-based memristor circuit,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59,
no. 1, pp. 148–158, 2012.

[13] S. P. Adhikari, C. Yang, H. Kim, and L. O. Chua, “Memristor
bridge synapse-based neural network and its learning,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23,
no. 9, pp. 1426–1435, 2012.

[14] E. Tlelo-Cuautle, L.G. de la Fraga,V.-T. Pham,C.Volos, S. Jafari,
and A. D. J. Quintas-Valles, “Dynamics, FPGA realization and
application of a chaotic system with an infinite number of equi-
librium points,” Nonlinear Dynamics, vol. 89, no. 2, pp. 1129–
1139, 2017.

[15] V. T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, and X.Wang, “A
novel memristive neural network with hidden attractors and its
circuitry implementation,” Science China Technological Sciences,
vol. 59, no. 3, pp. 358–363, 2016.

[16] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
“The missing memristor found,” Nature, vol. 453, pp. 80–83,
2008.

[17] L. O. Chua, “Memristor—the missing circuit element,” IEEE
Transactions on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[18] L. O. Chua and S. M. Kang, “Memristive devices and systems,”
Proceedings of the IEEE, vol. 64, no. 2, pp. 209–223, 1976.
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[26] Y. Babacan, F. Kaçar, and K. Gürkan, “A spiking and bursting
neuron circuit based on memristor,” Neurocomputing, vol. 203,
pp. 86–91, 2016.

[27] J. G. Howland and Y. T. Wang, “Synaptic plasticity in learning
and memory: stress effects in the hippocampus,” Progress in
Brain Research, vol. 169, pp. 145–158, 2008.

[28] K. D. Cantley, R. C. Ivans, A. Subramaniam, and E. M. Vogel,
“Spatio-temporal pattern recognition in neural circuits with
memory-transistor-drivenmemristive synapses,” inProceedings
of the 2017 International Joint Conference on Neural Networks,
IJCNN 2017, pp. 4633–4640, USA, May 2017.

[29] T. Rinaldi, C. Perrodin, and H. Markram, “Hyper-connectivity
and hyper-plasticity in the medial prefrontal cortex in the
valproic acid animal model of autism,” Frontiers in Neural
Circuits, vol. 2, Article ID 4, 2008.

[30] J. A. Varela, K. Sen, J. Gibson, J. Fost, L. F. Abbott, and S. B.
Nelson, “A quantitative description of short-term plasticity at
excitatory synapses in layer 2/3 of rat primary visual cortex,”The
Journal of Neuroscience, vol. 17, no. 20, pp. 7926–7940, 1997.

[31] J.-V. Le Bé and H. Markram, “Spontaneous and evoked synaptic
rewiring in the neonatal neocortex,” Proceedings of the National
Acadamy of Sciences of the United States of America, vol. 103, no.
35, pp. 13214–13219, 2006.

[32] M. S. El Naschie and T. Kapitaniak, “Soliton chaos models for
mechanical and biological elastic chains,” Physics Letters A, vol.
147, no. 5-6, pp. 275–281, 1990.



20 Complexity

[33] S. Brezetskyi, D. Dudkowski, and T. Kapitaniak, “Rare and
hidden attractors in Van der Pol-Duffing oscillators,”The Euro-
pean Physical Journal Special Topics, vol. 224, no. 8, pp. 1459–
1467, 2015.

[34] J. J. Hopfield, “Neurons with graded response have collective
computational properties like those of two-state neurons,”
Proceedings of the National Acadamy of Sciences of the United
States of America, vol. 81, no. 10, pp. 3088–3092, 1984.

[35] B. Bao, H. Qian, Q. Xu, M. Chen, J. Wang, and Y. Yu, “Coexist-
ing behaviors of asymmetric attractors in hyperbolic-type
memristor based hopfield neural network,” Frontiers in Com-
putational Neuroscience, vol. 11, no. 81, pp. 1–14, 2017.

[36] B. Bao, H. Qian, J. Wang et al., “Numerical analyses and experi-
mental validations of coexisting multiple attractors in Hopfield
neural network,” Nonlinear Dynamics, vol. 90, no. 4, pp. 2359–
2369, 2017.

[37] Y. Wang and J. Ma, “Bursting behavior in degenerate optical
parametric oscillator under noise,”Optik—International Journal
for Light and Electron Optics, vol. 139, pp. 231–238, 2017.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

