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This paper is concerned with master-slave synchronization of 4D hyperchaotic Rabinovich systems. Compared with some existing
papers, this paper has two contributions. The first contribution is that the nonlinear terms of error systems remained which
inherit nonlinear features from master and slave 4D hyperchaotic Rabinovich systems, rather than discarding nonlinear features
of original hyperchaotic Rabinovich systems and eliminating those nonlinear terms to derive linear error systems as the control
methods in some existing papers. The second contribution is that the synchronization criteria of this paper are global rather
than local synchronization results in some existing papers. In addition, those synchronization criteria and control methods for
4D hyperchaotic Rabinovich systems are extended to investigate the synchronization of 3D chaotic Rabinovich systems. The
effectiveness of synchronization criteria is illustrated by three simulation examples.

1. Introduction
The classic hyperchaotic Rabinovich system was a system
of 3D differential equations which was used to describe the
plasma oscillation [1]. In [2], a 4D hyperchaotic Rabinovich
system was introduced, which has been seen in wide applica-
tions in plasma oscillation, security communication, image
encryption, and cell kinetics; see, for example, [2–4].

There exist various dynamical behaviors of 4D hyper-
chaotic Rabinovich systems. Synchronization is the typical
dynamical behavior of chaotic systems [1, 5–31]. Master-slave
synchronization of Rabinovich systems has been observed
and attracted many researches’ interests. In [32], some local
synchronization criteria were derived for 3D Rabinovich
systems by using linear feedback control and Routh-Hurwitz
criteria. In [4, 13, 32], some synchronization criteria were
derived for 3D or 4D Rabinovich systems by the control
which eliminated all the nonlinear terms of the error system.
However, the Rabinovich systems are nonlinear systems in
which the nonlinear terms play an important role in the
dynamical evolution of trajectories. The linear error systems

can be derived by the control method of eliminating nonlin-
ear terms in error systems. Thus, how to design controllers
to remain nonlinear terms in error systems and how to use
those controllers to derive global synchronization criteria are
the main motivations of this paper.

In this paper, a master-slave scheme for 4D hyperchaotic
Rabinovich systems is constructed. Some global master-slave
synchronization criteria for 4D hyperchaotic Rabinovich
systems are derived by using the designed controllers. The
nonlinear features of error systems remained. Those control
methods and synchronization criteria for 4D Rabinovich
systems can be used to derive synchronization criteria for 3D
Rabinovich systems.Three examples are used to illustrate the
effectiveness of our results.

2. Preliminaries
Consider the following 4D Rabinovich system as a master
system:

�̇�1 (𝑡) = −𝑎𝑥1 (𝑡) + ℎ𝑥2 (𝑡) + 𝑥2 (𝑡) 𝑥3 (𝑡) ,�̇�2 (𝑡) = ℎ𝑥1 (𝑡) − 𝑏𝑥2 (𝑡) − 𝑥1 (𝑡) 𝑥3 (𝑡) + 𝑥4 (𝑡) ,
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�̇�3 (𝑡) = −𝑑𝑥3 (𝑡) + 𝑥1 (𝑡) 𝑥2 (𝑡) ,
�̇�
4 (𝑡) = −𝑐𝑥2 (𝑡) ,
𝑥1 (0) = 𝑥10 ,
𝑥2 (0) = 𝑥20 ,
𝑥3 (0) = 𝑥30 ,
𝑥4 (0) = 𝑥40 ,

(1)

where (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡))𝑇 ∈ R4 is the state variable
and 𝑎, 𝑏, 𝑐, 𝑑, and ℎ are four positive constants. When ℎ =6.75, 𝑎 = 4, 𝑏 = 1, 𝑐 = 2, and 𝑑 = 1, a hyperchaotic attractor
can be observed [2].

Because the trajectories of a hyperchaotic system are
bounded [2], one can assume that there exists a positive
constant 𝑙 such that

󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑙, ∀𝑡 ≥ 0, (2)

where the bound 𝑙 can be derived by observing the trajectory𝑥2(𝑡) of 4D master system when Matlab is used to plot the
trajectory 𝑥2(𝑡) of master system.

One can construct the following slave scheme associated
with system (1):

̇𝑦1 (𝑡) = −𝑎𝑦1 (𝑡) + ℎ𝑦2 (𝑡) + 𝑦2 (𝑡) 𝑦3 (𝑡) + 𝑢1 (𝑡) ,
̇𝑦
2 (𝑡) = ℎ𝑦1 (𝑡) − 𝑏𝑦2 (𝑡) + 𝑦4 (𝑡) − 𝑦1 (𝑡) 𝑦3 (𝑡)

+ 𝑢2 (𝑡) ,
̇𝑦3 (𝑡) = −𝑑𝑦3 (𝑡) + 𝑦1 (𝑡) 𝑦2 (𝑡) + 𝑢3 (𝑡) ,
̇𝑦
4 (𝑡) = −𝑐𝑦2 (𝑡) + 𝑢4 (𝑡) ,
𝑦
1 (0) = 𝑦10 ,
𝑦2 (0) = 𝑦20 ,
𝑦3 (0) = 𝑦30 ,
𝑦4 (0) = 𝑦40 ,

(3)

where (𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡), 𝑦4(𝑡))𝑇 ∈ R4 is the state variable of
slave system and 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), and 𝑢4(𝑡) are the external
controls.

Let 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑦𝑖(𝑡) for 𝑖 = 1, 2, 3, 4. Then, one can
construct the following error system for schemes (1) and (3):

̇𝑒1 (𝑡) = −𝑎𝑒1 (𝑡) + ℎ𝑒2 (𝑡)
+ (𝑥2 (𝑡) 𝑥3 (𝑡) − 𝑦2 (𝑡) 𝑦3 (𝑡)) − 𝑢1 (𝑡) ,

̇𝑒
2 (𝑡) = ℎ𝑒1 (𝑡) − 𝑏𝑒2 (𝑡) + 𝑒4 (𝑡)

− (𝑥1 (𝑡) 𝑥3 (𝑡) − 𝑦1 (𝑡) 𝑦3 (𝑡)) − 𝑢2 (𝑡) ,

̇𝑒3 (𝑡) = −𝑑𝑒3 (𝑡) + (𝑥1 (𝑡) 𝑥2 (𝑡) − 𝑦1 (𝑡) 𝑦2 (𝑡))
− 𝑢
3 (𝑡) ,

̇𝑒
4 (𝑡) = −𝑐𝑒2 (𝑡) − 𝑢4 (𝑡) ,
𝑒1 (0) = 𝑥10 − 𝑦10 ,
𝑒2 (0) = 𝑥20 − 𝑦20 ,
𝑒3 (0) = 𝑥30 − 𝑦30 ,
𝑒4 (0) = 𝑥40 − 𝑦40 .

(4)

In this paper, we design 𝑢1(𝑡) = 𝑘1𝑒1(𝑡) + 𝑘4𝑦22(𝑡)𝑒1(𝑡),𝑢2(𝑡) = 𝑘2𝑒2(𝑡), 𝑢3(𝑡) = 𝑘3𝑒3(𝑡), and 𝑢4(𝑡) = 𝑘5𝑒4(𝑡). Then,
the error system described by (4) can be rewritten as

̇𝑒1 (𝑡) = − (𝑎 + 𝑘1 + 𝑘4𝑦22 (𝑡)) 𝑒1 (𝑡) + ℎ𝑒2 (𝑡)
+ (𝑥2 (𝑡) 𝑥3 (𝑡) − 𝑦2 (𝑡) 𝑦3 (𝑡)) ,

̇𝑒2 (𝑡) = ℎ𝑒1 (𝑡) − (𝑏 + 𝑘2) 𝑒2 (𝑡) + 𝑒4 (𝑡)
− (𝑥1 (𝑡) 𝑥3 (𝑡) − 𝑦1 (𝑡) 𝑦3 (𝑡)) ,

̇𝑒3 (𝑡) = − (𝑑 + 𝑘3) 𝑒3 (𝑡)
+ (𝑥1 (𝑡) 𝑥2 (𝑡) − 𝑦1 (𝑡) 𝑦2 (𝑡)) ,

̇𝑒
4 (𝑡) = −𝑐𝑒2 (𝑡) − 𝑘5𝑒4 (𝑡) ,
𝑒1 (0) = 𝑥10 − 𝑦10 ,
𝑒2 (0) = 𝑥20 − 𝑦20 ,
𝑒3 (0) = 𝑥30 − 𝑦30 ,
𝑒4 (0) = 𝑥40 − 𝑦40 .

(5)

The main purpose of this paper is to design 𝑘1, 𝑘2, 𝑘3, 𝑘4,
and 𝑘5 to guarantee the global stability of the error system
described by (5).

3. Main Results: Synchronization Criteria

3.1. Synchronization Criteria for 4D Hyperchaotic Rabinovich
Systems. Now, we give some synchronization results for two
4Dhyperchaotic Rabinovich systems described by (1) and (3).

Theorem 1. If 𝑘5 > 0 and 𝑘1, 𝑘2, 𝑘3, and 𝑘4 satisfy
𝑘4 > 1

4 (𝑑 + 𝑘3) ,

(𝑎 + 𝑘1) > 𝑙2
4 (𝑑 + 𝑘3) +

ℎ2
(𝑏 + 𝑘2) ,

𝑙2 < 4𝑑 + 𝑘3𝑘4 (𝑘4 − 1
4 (𝑑 + 𝑘3))(𝑎 + 𝑘1 −

ℎ2
𝑏 + 𝑘2) ,

(6)

then two 4D hyperchaotic Rabinovich systems described by (1)
and (3) achieve global synchronization.
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Proof. One can construct Lyapunov function

𝑉 (𝑡) = 𝑒21 (𝑡) + 𝑒22 (𝑡) + 𝑒23 (𝑡) + 𝑒24 (𝑡) /𝑐2 . (7)

Calculating the derivative of 𝑉(𝑡) along with (5) gives

�̇� (𝑡) = − (𝑎 + 𝑘1 + 𝑘4𝑦22 (𝑡)) 𝑒21 (𝑡) + 2ℎ𝑒1 (𝑡) 𝑒2 (𝑡)
− (𝑏 + 𝑘2) 𝑒22 (𝑡) − (𝑑 + 𝑘3) 𝑒23 (𝑡)
+ 2 (𝑥2 (𝑡) + 𝑦2 (𝑡)) 𝑒1 (𝑡) 𝑒3 (𝑡) − 𝑘4𝑐 𝑒24 (𝑡)

≤ −( ℎ
√𝑏 + 𝑘2 𝑒1 (𝑡) − √𝑏 + 𝑘2𝑒2 (𝑡))

2

+ ℎ2
𝑏 + 𝑘2 𝑒

2

1
(𝑡)

− (𝑥2 (𝑡) + 𝑦2 (𝑡)2√𝑑 + 𝑘3 𝑒1 (𝑡) − √𝑑 + 𝑘3𝑒3 (𝑡))
2

+ (𝑥2 (𝑡) + 𝑦2 (𝑡))
2

4 (𝑑 + 𝑘3) 𝑒2
1
(𝑡) − 𝑘5𝑐 𝑒24 (𝑡)

− (𝑎 + 𝑘1 + 𝑘4𝑦22 (𝑡)) 𝑒21 (𝑡) .

(8)

It is easy to see that

ℎ2
𝑏 + 𝑘2 +

(𝑥2 (𝑡) + 𝑦2 (𝑡))24 (𝑑 + 𝑘3) < 𝑎 + 𝑘1 + 𝑘4𝑦22 (𝑡) (9)

and 𝑒𝑖(𝑡) ̸= 0 for 𝑖 = 1, 2, 3, 4 can ensure �̇�(𝑡) < 0.
The inequality described by (9) can be rearranged as

𝐴𝑦2
2
(𝑡) + 𝐵𝑦2 (𝑡) + 𝐶 > 0 (10)

with

𝐴 = 𝑘4 − 1
4 (𝑑 + 𝑘3) ,

𝐵 = − 𝑥2 (𝑡)2 (𝑑 + 𝑘3) ,

𝐶 = − 𝑥2
2
(𝑡)

4 (𝑑 + 𝑘3) −
ℎ2

(𝑏 + 𝑘2) + (𝑎 + 𝑘1) .

(11)

Solving (10), one can have

𝐴 > 0,
𝐶 > 0,

𝐵2 − 4𝐴𝐶 < 0;
(12)

that is,

𝑘4 > 1
4 (𝑑 + 𝑘3) ,

(𝑎 + 𝑘1) > 𝑥2
2
(𝑡)

4 (𝑑 + 𝑘3) +
ℎ2

(𝑏 + 𝑘2) ,
𝑥2
2
(𝑡)
< 4𝑑 + 𝑘3𝑘4 (𝑘4 − 1

4 (𝑑 + 𝑘3))(𝑎 + 𝑘1 −
ℎ2

𝑏 + 𝑘2) .

(13)

Due to the bound 𝑙 of trajectory 𝑥2(𝑡) in (2), one can get

(𝑎 + 𝑘1) > 𝑙2
4 (𝑑 + 𝑘3) +

ℎ2
(𝑏 + 𝑘2) ,

𝑙2 < 4𝑑 + 𝑘3𝑘4 (𝑘4 − 1
4 (𝑑 + 𝑘3))(𝑎 + 𝑘1 −

ℎ2
𝑏 + 𝑘2) .

(14)

By virtue of LaSalle Invariant principle, one can derive
that the trajectories of (5) will be convergent to the largest
invariant set in 𝑑𝑉(𝑡)/𝑑𝑡 = 0 when 𝑡 → ∞. One can also
obtain that �̇�(𝑡) < 0 for all 𝑒

𝑖(𝑡) ̸= 0, 𝑖 = 1, 2, 3, 4, which
means the stability of the error system described by (5), that
is, the synchronization of two hyperchaotic systems described
by (1) and (3). This completes the proof.

Remark 2. In [32], some synchronization criteria were
derived for 3D Rabinovich systems by using linear feedback
control and Routh-Hurwitz criteria. But those results were
local, rather than global. The synchronization criterion in
Theorem 1 of this paper is global, which is one contribution
of this paper.

Remark 3. Rabinovich systems are nonlinear dynamical sys-
tems, in which nonlinear terms play an important role in
the evolution of trajectories. In [13], some synchronization
criteria were derived for 4D Rabinovich systems by the
control which eliminated all the nonlinear terms of the
error system. In [4, 32], some synchronization criteria were
obtained for 3D Rabinovich systems by using the sliding
mode controls which also eliminated the nonlinear terms of
the error system. Although the linear error systems can be
easily obtained after the nonlinear terms of error systems
were eliminated and synchronization criteria for linear error
systems can also be easily derived, the nonlinear features
in the original 4D hyperchaotic systems were discarded. It
should be pointed out that the synchronization criterion in
Theorem 1 of this paper is global and the nonlinear terms of
error systems remained which inherit the nonlinear features
from master and slave 4D hyperchaotic Rabinovich systems
by the control methods in this paper, which are the main
contributions of this paper.

If 𝑘1 = 0, one can have the following corollary.
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Corollary 4. If 𝑘5 > 0, 𝑘1 = 0, and 𝑘2, 𝑘3, 𝑘4 satisfy
𝑘4 > 1

4 (𝑑 + 𝑘3) ,

𝑎 > 𝑙2
4 (𝑑 + 𝑘3) +

ℎ2
(𝑏 + 𝑘2) ,

𝑙2 < 4𝑑 + 𝑘3𝑘4 (𝑘4 − 1
4 (𝑑 + 𝑘3))(𝑎 −

ℎ2
𝑏 + 𝑘2) ,

(15)

then two 4D hyperchaotic Rabinovich systems described by (1)
and (3) achieve global synchronization.

If 𝑘2 = 0, one can derive the following corollary.

Corollary 5. If 𝑘5 > 0, 𝑘2 = 0, and 𝑘1, 𝑘3, 𝑘4 satisfy
𝑘4 > 1

4 (𝑑 + 𝑘3) ,

(𝑎 + 𝑘1) > 𝑙2
4 (𝑑 + 𝑘3) +

ℎ2
𝑏 ,

𝑙2 < 4𝑑 + 𝑘3𝑘4 (𝑘4 − 1
4 (𝑑 + 𝑘3))(𝑎 + 𝑘1 −

ℎ2
𝑏 ) ,

(16)

then two 4D hyperchaotic Rabinovich systems described by (1)
and (3) achieve global synchronization.

If 𝑘3 = 0, one can obtain the following corollary.

Corollary 6. If 𝑘5 > 0, 𝑘3 = 0, and 𝑘1, 𝑘2, 𝑘4 satisfy
𝑘4 > 1

4𝑑 ,

(𝑎 + 𝑘1) > 𝑙2
4𝑑 +

ℎ2
𝑏 + 𝑘2 ,

𝑙2 < 4 𝑑𝑘4 (𝑘4 −
1
4𝑑)(𝑎 + 𝑘1 −

ℎ2
𝑏 + 𝑘2) ,

(17)

then two 4D hyperchaotic Rabinovich systems described by (1)
and (3) achieve global synchronization.

If 𝑘1 = 𝑘2 = 𝑘3 = 0, one can have the following corollary.

Corollary 7. If 𝑎 > 𝑙2/4𝑑 + ℎ2/𝑏, 𝑘5 > 0, 𝑘1 = 𝑘2 = 𝑘3 = 0,
and 𝑘4 satisfies

1
4𝑑 < 𝑘4,

𝑙2 < 4 𝑑𝑘4 (𝑘4 −
1
4𝑑)(𝑎 −

ℎ2
𝑏 ) ,

(18)

then two 4D hyperchaotic Rabinovich systems described by (1)
and (3) achieve global synchronization.

Remark 8. Corollary 7 is easier to be used thanTheorem 1 and
Corollaries 4, 5, and 6. But Corollary 7 is more conservative
than those results.

3.2. An Application to Synchronization of 3D Chaotic Rabi-
novich Systems. Consider the following 3D Rabinovich sys-
tem as a master system:

�̇�1 (𝑡) = −𝑎𝑥1 (𝑡) + ℎ𝑥2 (𝑡) + 𝑥2 (𝑡) 𝑥3 (𝑡) ,
�̇�2 (𝑡) = ℎ𝑥1 (𝑡) − 𝑏𝑥2 (𝑡) − 𝑥1 (𝑡) 𝑥3 (𝑡) ,
�̇�3 (𝑡) = −𝑑𝑥3 (𝑡) + 𝑥1 (𝑡) 𝑥2 (𝑡) ,
𝑥1 (0) = 𝑥10 ,
𝑥2 (0) = 𝑥20 ,
𝑥3 (0) = 𝑥30 ,

(19)

where (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))𝑇 ∈ R3 is the state variable and𝑎, 𝑏, 𝑑, ℎ are four positive constants. As the bound in (2), one
can assume that there exists a constant 𝑙 such that

󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑙, ∀𝑡 ≥ 0. (20)

One can construct the following slave scheme associated
with system (19):

̇𝑦1 (𝑡) = −𝑎𝑦1 (𝑡) + ℎ𝑦2 (𝑡) + 𝑦2 (𝑡) 𝑦3 (𝑡) + 𝑢1 (𝑡) ,
̇𝑦2 (𝑡) = ℎ𝑦1 (𝑡) − 𝑏𝑦2 (𝑡) − 𝑦1 (𝑡) 𝑦3 (𝑡) + 𝑢2 (𝑡) ,
̇𝑦3 (𝑡) = −𝑑𝑦3 (𝑡) + 𝑦1 (𝑡) 𝑦2 (𝑡) + 𝑢3 (𝑡) ,

𝑦1 (0) = 𝑦10 ,
𝑦2 (0) = 𝑦20 ,
𝑦3 (0) = 𝑦30 ,

(21)

where (𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡))𝑇 ∈ R3 is the state variable of slave
system and 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡) are the external controls.

Let 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑦𝑖(𝑡) for 𝑖 = 1, 2, 3. Then, one may
construct the following error system for schemes (19) and
(21):

̇𝑒1 (𝑡) = −𝑎𝑒1 (𝑡) + ℎ𝑒2 (𝑡)
+ (𝑥2 (𝑡) 𝑥3 (𝑡) − 𝑦2 (𝑡) 𝑦3 (𝑡)) − 𝑢1 (𝑡) ,

̇𝑒2 (𝑡) = ℎ𝑒1 (𝑡) − 𝑏𝑒2 (𝑡)
− (𝑥1 (𝑡) 𝑥3 (𝑡) − 𝑦1 (𝑡) 𝑦3 (𝑡)) − 𝑢2 (𝑡) ,

̇𝑒
3 (𝑡) = −𝑑𝑒3 (𝑡) + (𝑥1 (𝑡) 𝑥2 (𝑡) − 𝑦1 (𝑡) 𝑦2 (𝑡))

− 𝑢3 (𝑡) ,
𝑒1 (0) = 𝑥10 − 𝑦10 ,
𝑒2 (0) = 𝑥20 − 𝑦20 ,
𝑒3 (0) = 𝑥30 − 𝑦30 .

(22)
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In this paper, we choose 𝑢1(𝑡) = 𝑘1𝑒1(𝑡) + 𝑘4𝑦2(𝑡)2𝑒1(𝑡),𝑢2(𝑡) = 𝑘2𝑒2(𝑡), and𝑢3(𝑡) = 𝑘3𝑒3(𝑡).Thus, the 3D error system
described by (22) can be rewritten as

̇𝑒1 (𝑡) = − (𝑎 + 𝑘1 + 𝑘4) 𝑒1 (𝑡) + ℎ𝑒2 (𝑡)
+ (𝑥2 (𝑡) 𝑥3 (𝑡) − 𝑦2 (𝑡) 𝑦3 (𝑡)) ,

̇𝑒2 (𝑡) = ℎ𝑒1 (𝑡) − (𝑏 + 𝑘2) 𝑒2 (𝑡)
− (𝑥1 (𝑡) 𝑥3 (𝑡) − 𝑦1 (𝑡) 𝑦3 (𝑡)) ,

̇𝑒3 (𝑡) = − (𝑑 + 𝑘3) 𝑒3 (𝑡)
+ (𝑥1 (𝑡) 𝑥2 (𝑡) − 𝑦1 (𝑡) 𝑦2 (𝑡)) ,

𝑒
1 (0) = 𝑥10 − 𝑦10 ,
𝑒2 (0) = 𝑥20 − 𝑦20 ,
𝑒3 (0) = 𝑥30 − 𝑦30 .

(23)

Constructing the Lyapunov function

𝑉 (𝑡) = 𝑒21 (𝑡) + 𝑒22 (𝑡) + 𝑒23 (𝑡)2 (24)

and using the similar method in Theorem 1, one can have
the following synchronization for 3D chaotic Rabinovich
systems.

Theorem 9. If 𝑘1, 𝑘2, 𝑘3, 𝑘4 satisfy
𝑘4 > 1

4 (𝑑 + 𝑘3) ,

(𝑎 + 𝑘1) > 𝑙2
4 (𝑑 + 𝑘3) +

ℎ2
(𝑏 + 𝑘2) ,

𝑙2 < 4𝑑 + 𝑘3𝑘4 (𝑘4 − 1
4 (𝑑 + 𝑘3))(𝑎 + 𝑘1 −

ℎ2
𝑏 + 𝑘2) ,

(25)

then two 3D chaotic Rabinovich systems described by (19) and
(21) achieve global synchronization.

4. Three Illustrated Examples

Example 10. Consider the 4D hyperchaotic Rabinovich sys-
tem described by (1) with ℎ = 6.75, 𝑎 = 4, 𝑏 = 1, 𝑐 = 2,
and 𝑑 = 1. The initial condition is 𝑥1(0) = 0.1, 𝑥2(0) =0.1, 𝑥3(0) = 0, 𝑥4(0) = 0. Figures 1 and 2 demonstrate
attractors of (1), in which the bound of 𝑥2(𝑡) is 6.7, that is,|𝑥2(𝑡)| ≤ 6.7, ∀𝑡 ≥ 0.

Then, one can study slave Rabinovich system described
by (3). The initial condition is 𝑦1(0) = 0.1, 𝑦2(0) = 0.1,𝑦3(0) = −0.05, and 𝑦4(0) = 0.1. Defining 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)
for 𝑖 = 1, 2, 3, 4, one can derive error system (5), where the
initial condition is 𝑒1(0) = 𝑥1(𝑡) − 𝑦1(0) = 0, 𝑒2(0) =𝑥2(𝑡) − 𝑦2(0) = 0, 𝑒3(0) = 𝑥3(𝑡) − 𝑦3(0) = 0.05, and
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Figure 1: The attractor of (1) with ℎ = 6.75, 𝑎 = 4, 𝑏 = 1, 𝑐 = 2, and𝑑 = 1.
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Figure 2: The attractor of (1) with ℎ = 6.75, 𝑎 = 4, 𝑏 = 1, 𝑐 = 2, and𝑑 = 1.

𝑒4(0) = 𝑥4(𝑡) − 𝑦4(0) = −0.1. By using Theorem 1, one can
derive

𝑘4 > 1
4 (1 + 𝑘3) ,

(4 + 𝑘1) > 6.72
4 (1 + 𝑘3) +

6.752
(1 + 𝑘2) ,

6.72

< 41 + 𝑘3𝑘4 (𝑘4 − 1
4 (1 + 𝑘3))(4 + 𝑘1 −

6.752
1 + 𝑘2) .

(26)

If we choose 𝑘1 = 0.1, 𝑘2 = 21.78125, 𝑘3 = 4.61125, and 𝑘5 =1, then 𝑘4 > 0.9356. We choose 𝑘4 = 0.94. Figure 3 illustrates
the trajectories 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡), and 𝑒4(𝑡) for error system
(5), which can clearly demonstrate the synchronization of
hyperchaotic systems (1) and (3).
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Figure 3: The trajectories of (5) with 𝑘
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= 0.1, 𝑘
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= 21.78125, 𝑘

3
=4.61125, 𝑘

4
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5
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If 𝑘1 = 0 in (26), one can derive that

𝑘4 > 1
4 (1 + 𝑘3) ,

4 > 6.72
4 (1 + 𝑘3) +

6.752
(1 + 𝑘2) ,

6.72 < 41 + 𝑘3𝑘4 (𝑘4 − 1
4 (1 + 𝑘3))(4 −

6.752
1 + 𝑘2) .

(27)

After setting 𝑘2 = 14.1875, 𝑘3 = 21.445, and 𝑘5 = 1,
one can derive 𝑘4 > 1/44.89 by Corollary 4. We choose𝑘4 = 0.03. Figure 4 reveals the trajectories 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡),
and 𝑒4(𝑡) for error system (5), which can clearly illustrate the
synchronization of hyperchaotic systems (1) and (3).

If 𝑘2 = 0 in (26), one can obtain that

𝑘4 > 1
4 (1 + 𝑘3) ,

(4 + 𝑘1) > 6.72
4 (1 + 𝑘3) + 6.75

2,

6.72 < 41 + 𝑘3𝑘4 (𝑘4 − 1
4 (1 + 𝑘3)) (4 + 𝑘1 − 6.75

2) .

(28)

Setting 𝑘1 = 43, 𝑘3 = 10.2225, and 𝑘5 = 1, one can derive𝑘4 > 0.07 by Corollary 5. We choose 𝑘4 = 0.08. Figure 5 gives
the trajectories 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡), and 𝑒4(𝑡) for error system (5),
which can clearly reveal the synchronization of hyperchaotic
systems (1) and (3).
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Figure 4: The trajectories of (5) with 𝑘
1
= 0, 𝑘

2
= 14.1875, 𝑘

3
=21.445, 𝑘

4
= 0.03, and 𝑘

5
= 1.

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

5 10 150
Time t

e1(t) = x1(t) − y1(t)

e2(t) = x2(t) − y2(t)

e3(t) = x3(t) − y3(t)

e4(t) = x4(t) − y4(t)

Er
ro

r v
ar

ia
bl

es
e 1
(t
),
e 2
(t
),
e 3
(t
),
e 4
(t
)

Figure 5: The trajectories of (5) with 𝑘
1
= 43, 𝑘

2
= 0, 𝑘

3
= 10.2225,𝑘

4
= 0.08, and 𝑘

5
= 1.

If 𝑘3 = 0 in (26), one can have

𝑘4 > 14 ,
(4 + 𝑘1) > 6.7

2

4 + 6.752
(1 + 𝑘2) ,

6.72 < 4 1𝑘4 (𝑘4 −
1
4)(4 + 𝑘1 −

6.752
1 + 𝑘2) .

(29)
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Figure 6: The trajectories of (5) with 𝑘
1
= 19.2225, 𝑘

2
= 14.1875,𝑘

3
= 0, 𝑘

4
= 3.86, and 𝑘

5
= 1.

x
2 (t) x1(t

)

0.1

−0.05
−0.1

0
0.05

0.1
0.15

−0.05
−0.1

0
0.05

0

1

2

3

4

x
3
(t
)

×10−3

Figure 7: The trajectories of (19) with ℎ = 6.75, 𝑎 = 4.3, 𝑏 = 10.8,𝑐 = 2, and 𝑑 = 1.

Setting 𝑘1 = 19.2225, 𝑘2 = 14.1875, and 𝑘5 = 1, one can
derive 𝑘4 > 3.85 by Corollary 6. We choose 𝑘4 = 3.86.
Figure 6 gives the trajectories 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡), 𝑒4(𝑡) for error
system (5), which can clearly reveal the synchronization of
hyperchaotic systems (1) and (3).

Remark 11. It is easy to see that Corollary 7 fails to make any
conclusion because 4 < 6.72/4+6.752 when 𝑘1 = 𝑘2 = 𝑘3 = 0.
Example 12. Consider the 4D Rabinovich systems and the
error system described by (1), (3), and (5) with ℎ = 6.75,𝑎 = 4.3, 𝑏 = 10.8, 𝑐 = 2, and 𝑑 = 1, respectively, where
the initial conditions are the same as those in Example 10.
Figure 7 implies that |𝑥2(𝑡)| ≤ 0.1 for 𝑡 ≥ 0. FromCorollary 7,
one can have 𝑎 = 4.3 > 0.12/4 + 6.752/10.8 = 4.213,𝑘4 > 0.2581. We can choose 𝑘1 = 𝑘2 = 𝑘3 = 0, 𝑘4 = 0.26, and
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Figure 8: The trajectories of (5) with 𝑘
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Figure 9: The trajectories of (19) with ℎ = 6.75, 𝑎 = 4, 𝑏 = 1, and𝑑 = 1.

𝑘5 = 1. Figure 8 provides the trajectories 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡),
and 𝑒4(𝑡) for error system (5), which can clearly illustrate the
synchronization of Rabinovich systems (1) and (3).

Example 13. Consider the 3D hyperchaotic Rabinovich sys-
tems and the error system described by (19), (21), and (23)
with ℎ = 6.75, 𝑎 = 4, 𝑏 = 1, and 𝑑 = 1, respectively,
where the initial conditions are 𝑥1(0) = 0.1, 𝑥2(0) = 0.1,𝑥3(0) = 0, 𝑦1(0) = 0.1, 𝑦2(0) = 0.1, 𝑦3(0) = −0.05,𝑒1(0) = 𝑥1(𝑡) − 𝑦1(0) = 0, 𝑒2(0) = 𝑥2(𝑡) − 𝑦2(0) = 0, and𝑒3(0) = 𝑥3(𝑡)−𝑦3(0) = 0.05. Figure 9 implies that |𝑥2(𝑡)| ≤ 6.1
for 𝑡 ≥ 0.

Setting 𝑘1 = 14.1875 and 𝑘2 = 𝑘3 = 0, one can have 𝑘4 >0.26 by Theorem 9. We can choose 𝑘1 = 14.1875, 𝑘2 = 𝑘3 =0, and 𝑘4 = 0.3. Figure 10 gives the trajectories 𝑒1(𝑡), 𝑒2(𝑡),
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Figure 10: The trajectories of (23) with 𝑘
1
= 14.1875, 𝑘
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4
= 0.3.

and 𝑒3(𝑡) for error system (23), which can clearly illustrate the
synchronization of chaotic systems (19) and (21).

5. Conclusions and Future Works

We have derived some global synchronization criteria for
4D hyperchaotic Rabinovich systems. We have kept the
nonlinear terms of error systems. Those control methods
and synchronization criteria for 4D hyperchaotic Rabinovich
systems can be used to study the synchronization of 3D
chaotic Rabinovich systems. We have used three examples
to demonstrate the effectiveness our derived results. In this
paper, we only consider the state feedback control. Our future
research focus is to design the time-delayed controllers.
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