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Abstract

A definition of nonstandard universe which gets over the limitation
to the finite levels of the cumulative hierarchy is proposed. Though nec-
essarily nonwellfounded, nonstandard universes are arranged in strata
in the likeness of superstructures and allow a rank function taking
linearly ordered values. Nonstandard universes are also constructed
which model the whole ZFC theory without regularity and satisfy the
κ-saturation property.

Introduction.
The traditional superstructure approach to the nonstandard methods is the
one introduced by A. Robinson and E. Zakon in [RZ] and further developed in
[Z]. It is based on the well-known fact that virtually all ordinary mathematics
can be thought as embedded in set theory. Roughly speaking, it consists of a
mapping between ω-superstructures which provides a transfer for first order
properties. Since then, other interesting approaches have been worked up:
see [N], [Hr], [Ka], [Fl] and [BH]. This paper is an attempt to generalize
the superstructure approach by getting over the finite levels in the definition
of standard model. In fact while ω-superstructures are appropriate as a
framework for calculus and real analysis, a much wider kind of a universe
is needed in order to develop other mathematical theories, such as general
topology or set theory.

Until recently the regularity axiom has been routinely included among
the axioms of set theory. Thus, extending the notion of standard model
was prevented as a consequence of the following fact. If the standard model
satisfies the axiom of infinity, then the corresponding nonstandard universes
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are nonwellfounded. We point out that nonwellfounded sets are nowadays
frequently used in order to arrange new theories in a set-theoretic frame-
work. This is the case of foundational researches in mathematics, expecially
self-descriptive set theories, and of various branches of theoretical computer
science (see [Hi], [A] and [AR] for surveys on these subjects). All of these
new aspects of mathematical research, more and more demand a set theory
where a suitable anti-foundation axiom is adopted instead of regularity.

In their recent paper [BH], D. Ballard and K. Hrbacek take up this ap-
proach and construct nonstandard universes making use of Boffa’s axiom of
superuniversality. Their starting point is the notion of standard universe as
any transitive proper class where all the relativizations of axioms of ZFC set
theory hold, with the exception of regularity. In this paper we are concen-
trating on the wellfounded sets as standard sets, and construct nonstandard
universes which retain the main features of the superstructures. Though
nonwellfounded, our nonstandard universes are full and transitive classes
〈P,∈〉 provided with a rank function ψP (p) = Sup{ψP (p′) + 1 : p′ ∈ p}.
Range(ψP ) = λ is a linearly ordered class which includes an increasing co-
final sequence indexed by the ordinals. In close analogy to the cumulative
hierarchy, one can write P =

⋃
ξ∈λ Pξ where Pξ+1 = Pξ ∪ P(Pξ) for every

ξ ∈ λ. If the whole class WF of wellfounded sets is taken as standard uni-
verse, then the corresponding nonstandard universes model all ZFC without
regularity.

1 Nonstandard Embeddings

Throughout the paper we shall work in a nonwellfounded Zermelo-Fraenkel
set theory with the axiom of choice and, instead of the axiom of regularity,
a suitable anti-foundation principle. Precisely, the axioms of our set theory
are those of ZFC−:

EXT (Extensionality); Ø (Empty-set); PAIR (Pairing); SEP (Sep-
aration schema); UN (Union); PS (Power set); REP (Replacement
schema); INF (Infinity); AC (Choice)

and the following Boffa’s axiom SU of superuniversality :
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Suppose that the extensional structure 〈A′, ε′ 〉 is an end exten-
sion of 〈A, ε 〉. 1 Then every isomorphism π : 〈A, ε 〉 → 〈T,∈〉
onto a transitive T , can be extended to an isomorphism π′ :
〈A′, ε′ 〉 → 〈T ′,∈〉 onto a transitive T ′ ⊇ T .

SU states that a Mostowski transitive collapse is possible for every ex-
tensional binary structure, even if it is not wellfounded. Moreover, such an
isomorphism can be extended to a transitive collapse for any of its end ex-
tensions. A proof of the relative consistency of ZFC− + SU can be found in
[B]. The reader interested in anti-foundation axioms is suggested to consult
also [FH] and [A].

Further on in this paper, we shall mention the following modified version
EXT o of the axiom of extensionality:

∀x∀y [∃ t ∈ x ∧ ∀s(s ∈ x ↔ s ∈ y)] → x = y

In contrast to EXT, EXT o allows a (possibly empty) class of atoms.
We shall use freely standard facts and notations of set theory and model

theory from [J] and [CK], with the following particular conventions. Let A =
〈A, ε 〉 be a model for the language of set theory and A′ ⊆ A. For simplicity,
throughout the paper we shall write 〈A′, ε 〉 instead of 〈A′, ε ∩ (A′ × A′)〉 to
denote the submodel of A whose universe is A′. We informally use classes
in the style of [J]. Except where explicitly noted, roman capital letters A,
B, C, ... will denote sets, while boldfaced letters A, B, C, ... will denote
classes. ON will be the proper class of the ordinals and WF(X) =

⋃
α Vα(X)

will be the wellfounded universe over X. Recall the cumulative hierarchy:
Vo(X) = X; Vβ+1(X) = Vβ(X) ∪ P(Vβ(X)); Vγ(X) =

⋃
β<γ Vβ(X) if γ is

limit. The sets of the form Vα(X) are called α-superstructures . A class A is
transitive up to atoms if a ∈ A and a ∩A 6= Ø implies a ⊆ A. A class A is
full if a ∈ A ⇒ P(a) ⊆ A. The notation P(A) for power-sets is extended to
proper classes this way: P(A)

.
= {a ⊆ A : a is a set}.

The notion of standard model is usually grounded on a set X of individu-
als. For convenience, it is also assumed that such an X consists of urelements.

1We remind the reader that 〈A′, ε′ 〉 is an end extension of 〈A, ε 〉 if A′ ⊇ A, a ε b ⇔ a ε′ b
holds for all a, b ∈ A, and a ε′ b ∈ A ⇒ a ∈ A. In other words, no member of A gets a new
element in 〈A′, ε′ 〉. Observe that each 〈A, ε 〉 is trivially an end extension of the empty
structure.
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However, as pointed out by J. Schmid and J. Schmidt in [SS], in order to
apply nonstandard methods to various structures one should then claim that
the number of urelements available exceeds each fixed cardinality. We prefer
not to postulate the existence of a proper class of urelements (indeed the
existence of any) for the sole purpose of nonstandard methods. As all one
needs are elements which play the role of atoms, suitable sets will fit.

For any limit ordinal α, call X α-basal if X is the set of atoms relative
to 〈Vα(X),∈〉, i.e. if Ø /∈ X and x ∩ Vα(X) = Ø for each x ∈ X. Call X
basal if it is α-basal for every α. It is not difficult to obtain basal sets of any
given size µ.

Example. Consider X = {xj : j ∈ µ} where xj = {yj}, yj = {xj, yj}
and xj 6= yj′ for every j, j′ ∈ µ. Such X’s are easily obtained by straight
applications of the axiom SU .

A standard α-model S is any ∈-model of the form 〈Vα(X),∈〉 where X
is α-basal. We now need a map ϑ to provide the fundamental transfer prin-
ciple between the standard model and the nonstandard model. As shown
in [D], in those nonstandard universes which are elementary extensions, the
internal sets make up a core with a strong rigidity property and the exter-
nal collections form a mere frame which is completely useless for the sake
of nonstandard methods. In particular, fundamental collections of internal
sets such as the standard reals, the infinite reals, the monads, the galaxies
and so on, are not in the model (see (ii) in the next proposition). This
unpleasant fact suggests the opportunity of restricting the transfer princi-
ple to the bounded formulas. Recall that a formula σ is bounded if every
quantifier occurs in bounded form ∀x(x ∈ y → . . .) or ∃x(x ∈ y ∧ . . .).
Let M = 〈M, ε 〉 be a model of the language of set theory, with ε the M-
interpretation of the membership relation symbol. For each m ∈ M, the
collection mε

.
= {m′ ∈ M : m′ ε m} is assumed to be a set.

Definition We call the mapping ϑ : 〈Vα(X),∈〉 → 〈M, ε 〉 a nonstandard α-
embedding (α-NSE) when for every bounded formula σ and every a1, . . . , an ∈
Vα(X) the following transfer principle holds:

〈Vα(X),∈〉 |= σ(a1, . . . , an) ⇐⇒ M |= σ(ϑ(a1), . . . , ϑ(an))

If M is an ∈-model, the additional property ϑ(Ø) = Ø is also required. We
say M is a nonstandard α-universe (α-NSU) relative to ϑ.
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Notice that for every A ∈ Vα(X) \ X, a ∈ A iff ϑ(a) ε ϑ(A). Thus the
image set ϑ[A]

.
= {ϑ(a) : a ∈ A} ⊆ ϑ(A)ε

.
= {m ∈ M : mε ϑ(A)}. We shall

consider proper NSE’s only, that is embeddings where the above inclusion is
proper for every infinite set A.

It is well-known that every NSE ϑ preserves the basic set-theoretic no-
tions. E.g. for every A,B ∈ Vα(X) the following hold: A ⊆ B iff ϑ(A)ε ⊆
ϑ(B)ε; ϑ(A ∪B)ε = ϑ(A)ε ∪ ϑ(B)ε; ϑ(A ∩B)ε = ϑ(A)ε ∩ ϑ(B)ε; ϑ(A \B)ε =
ϑ(A)ε \ ϑ(B)ε. Moreover, every n-ary function f : An → B induces a
unique n-ary function fϑ : ϑ(A)n

ε → ϑ(B)ε such that 〈ϑ(a1), . . . , ϑ(an)〉 7→
ϑ(f(a1, . . . , an)). All these properties are proved by straight applications of
the transfer principle to suitable bounded formulas (see [Z] §1).

Definition An element b ∈ M is called ϑ-standard if b = ϑ(a) for some
a ∈ Vα(X); ϑ-internal if b ε ϑ(a) for some a ∈ Vα(X) and ϑ-external if not
internal.

The collection Iϑ =
⋃

β<α ϑ(Vβ(X))ε of all the ϑ-internal elements is ε-
transitive, i.e. b′ ε b ∈ Iϑ implies b′ ∈ Iϑ. As the validity of bounded formulas
is preserved under end extensions, the internal model 〈Iϑ, ε〉 ⊆ M is an α-
NSU as well. We now itemize the main features of the special case α = ω.

1. Every internal model is wellfounded, thus it can be isomorphically col-
lapsed onto an ∈-structure which is transitive up to atoms. 2

2. Up to isomorphisms, every internal model is the internal model of a
NSE ∗ : 〈Vω(X),∈〉 → 〈Vω(Y ),∈〉 between ω-superstructures. Thus,
without loss of generality, one needs only consider ω-superstructures as
ω-NSU’s.

3. ω-superstructures Vω(Y ) are transitive up to atoms and full.

4. ω-superstructures Vω(Y ) are wellfounded; in particular they are pro-
vided with rank functions

ρY (A) =

{
0 if A ∈ Y or A = Ø ;
Sup{ρY (a) + 1 : a ∈ A} otherwise.

2Here a slightly modified version of Mostowski’s theorem applies which takes into ac-
count atoms.
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Properties 1, 3 and 4 are known facts. A proof of property 2 can be
obtained as a consequence of 1. We claim that the substance of the four
properties above can be retained in our more general context α > ω, with
the only exception of wellfoundedness. The next proposition states two basic
facts about the internal sets.

Proposition 1.1
(i) The internal model 〈Iϑ, ε 〉 is wellfounded iff α = ω. In particular, NSE’s
ϑ : 〈Vα(X),∈〉 → 〈Vα(Y ),∈〉 between α-superstructures exist only when α =
ω.
(ii) Suppose the NSE ϑ : 〈Vα(X),∈〉 → 〈M, ε 〉 is an elementary embedding.
If Λ ∈ M is a bounded collection of internal sets, i.e. if Λε ⊆ ϑ(Vβ(X))ε for
some β < α, then Λ is internal.

Proof. (i) Vω(X) |= ∀ x′ ∈ x ∈ Vn(X) → x′ ∈ Vn−1(X) for every natural
number n ≥ 1 and by transfer one gets that Iϑ =

⋃
n<ω ϑ(Vn(X))ε is well-

founded. Vice versa, suppose α > ω. In analogy to a well-known fact about
the hypernaturals, ε-descending chains exist for every ξ ∈ ϑ(ω)ε \ ϑ[ω]. (ii)
Apply the transfer to Vα(X) |= ∀x x ⊆ Vβ(X) → x ∈ Vβ+1(X) (notice that
such a formula is not bounded). a

Wellfoundedness fails as soon as one goes beyond the finite levels of the
cumulative hierarchy. We point out that, while this fact was crucial in the tra-
ditional set-theoretic approach, it has no effect within our anti-foundational
framework. As for property (ii), it suggested our restricting the transfer
principle to bounded formulas. In fact suppose the transfer holds for every
formula. Then collections of internal sets which are routinely used in the
practice of nonstandard methods (e.g. the infinitesimal numbers, the infinite
natural numbers, the monads, the galaxies, etc.) would be unavailable in the
NSU’s.

Keisler’s limit ultrapower construction yields an algebraic characteriza-
tion for the internal models (basic results on limit ultrapowers can be found
in [CK] § 6.4). Let’s fix our notations and denote 〈Vα(X)I

D, ε〉 the ultra-
power of 〈Vα(X),∈〉 modulo the ultrafilter D over the set I. For every
filter F over I × I, the corresponding limit ultrapower 〈Vα(X)I

D|F , ε〉 ⊆
〈Vα(X)I

D, ε〉 is the submodel whose universe is made up by the D-equivalence
classes fD of those functions f : I → Vα(X) which are almost constant:
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{〈i, j〉 ∈ I × I : f(i) = f(j)} ∈ F . Notice that every ultrapower is
a limit ultrapower (take F = P(I × I) the trivial filter). We call fD

bounded if fD ∈ Vβ(X)I
D|F for some β < α and we call bounded limit

ultrapower the submodel 〈bVα(X)I
D|F, ε〉 ⊆ 〈Vα(X)I

D|F, ε〉 made up by
the bounded elements. Whenever confusion is unlikely, we shall identify
each (bounded limit) ultrapower with its universe. It is easily seen that
both the diagonal embedding d : Vα(X) → bVα(X)I

D|F and the inclusion

ı : bVα(X)I
D|F ↪→ Vα(X)I

D|F satisfy the transfer principle. The following
algebraic characterization for the internal models holds. A detailed proof can
be found in [D].

Theorem 1.2 The mapping ϑ : 〈Vα(X),∈〉 → M is a NSE if and only if
there exist

• an ultrafilter D over the set I

• a filter F over the set I × I

• an isomorphism π : 〈Iϑ, ε 〉 → bVα(X)I
D|F

such that the following diagram commutes:

Vα(X) Iϑ

bVα(X)I
D|F

ϑ

d π

-
¡

¡¡µ

@
@@I

Moreover, the restrictions πA
.
= πdϑ(A)ε : 〈ϑ(A)ε, ε 〉 → AI

D|F are isomor-
phisms for every A ∈ Vα(X).

This theorem is a straight generalization of a result proved by H.J. Keisler
for α = ω (see [Ke] §1.E∗ and [CK] §6.4). It is now clear that in spite of
nonwellfoundedness, the internal models retain an ε-stratified structure. The
next result will make this statement precise by showing that the internal
models admit a rank function taking linearly ordered values. Let Ord(x, Ø)
be the following bounded formula

(x = Ø ∨Ø ∈ x) ∧ “x is transitive” ∧ “x is linearly ordered by ∈ ”

It is easily seen that
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Vα(X) |= Ord(β, Ø) ⇐⇒ β < α is a von Neumann ordinal

Call hyperordinal any ξ ∈ M such that M |= Ord(ξ, ϑ(Ø)), and consider
OrdI the collection of all the internal hyperordinals. If π : 〈I, ε 〉 → bVα(X)I

D|F
is the same isomorphism as in the previous theorem, then it is straightfor-
wardly proved that the restriction

πI
.
= πdOrdI : 〈OrdI , ε 〉 −→ bαI

D|F .
=

⋃
β<α βI

D|F
is an isomorphism as well. The set bαI

D|F of the internal hyperordinals has
some nice properties.

• bαI
D|F is linearly ordered by the interpretation ε of the membership

relation symbol. For simplicity, we denote this ordering by <.

• Every ξ ∈ bαI
D|F admits immediate successor ξ + 1 where (ξ + 1)ε =

ξε ∪ {ξ}.
• Every nonempty internal collection of hyperordinals admits supremum.

As the diagonal embedding d : α → bαI
D|F preserves the bounded for-

mulas, all the above properties are straightforwardly proved by applying the
transfer principle. Notice that the ordered set 〈OrdI , ε 〉 ∼= 〈bαI

D|F ,<〉 is
neither wellordered nor order-complete. For instance, it is well-known that
the external set Ω

.
= {d(n) : n < ω} lacks supremum and its complement

lacks minimum in every nontrivial ultrapower αI
D with α ≥ ω.

Theorem 1.3 Let ϑ : 〈Vα(X),∈〉 → M be a NSE and let I, D and F be
the same as in the theorem 1.2. Then there exists a rank function ψI : Iϑ →
bαI

D|F for the internal submodel:

ψI(b) =

{
d(0) if b ε ϑ(X) or b = ϑ(Ø) ;
Sup{ψI(b′) + 1 : b′ ε b} otherwise.

Proof. For every β < α take the restriction ρβ
.
= ρXdVβ(X) : Vβ(X) →

β+1 of the rank function ρX : Vα(X) → α. ρβ ∈ Vα(X) and by applying the
transfer principle to suitable bounded formulas, one gets a function Rβ

.
=

(ρβ)ϑ : ϑ(Vβ(X))ε → ϑ(β + 1)ε such that

Rβ(b) =

{
ϑ(0) if b ε ϑ(X) or b = ϑ(Ø) ;
Sup{Rβ(b′) + 1 : b′ ε b} otherwise.
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Notice that every collection {Rβ(b′)+1 : b′ ε b} is internal. As Rγ = RβdVγ(X)
for every γ < β < α, one can define RI as the union RI

.
=

⋃
β<α Rβ. Since⋃

β<α ϑ(Vβ(X))ε = Iϑ and
⋃

β<α ϑ(β)ε = OrdI , it is easily seen that ψI
.
=

πI ◦RI satisfies the theses. a

2 The Pseudo-superstructures

Though an algebraic characterization for the internal submodels is given
by the Theorem 1.2, nevertheless a characterization for the full notion of
nonstandard universe still lacks. In the author’s opinion, a good notion of
NSU should not be restricted to the internal sets. In fact, in the practice
of nonstandard methods one continuously deals with external collections of
internal sets, collections of collections of internal sets etc. E.g., in applications
one uses such things as certain families of monads, or the σ-algebra generated
by the algebra of internal subsets of a given set and so on. On the other
hand, once all such subsets are added which are built up from the internal
sets, nothing else is required. 3 We claim that one can collapse the internal
submodel into a transitive structure and then proceed in this filling up-way
and obtain transitive classes which still are arranged in strata, in the likeness
of the superstructures.

The main feature of the superstructures is their wellordered ∈-stratification.
Precisely one can characterize the α-superstructures Vα(X) as those sets S
which satisfy the following:
(i) S is transitive up to atoms; (ii) S is provided with a rank function
ρS : S → α taking wellordered values 4

ρS(a) =

{
0 if a ∩ S = Ø ;
Sup{ρS(a′) + 1 : a′ ∈ a} otherwise.

(iii) (Bounded universal property) If the set A ⊆ S is rank-bounded (i.e. if
{ρS(a) : a ∈ A} ⊆ α is not cofinal) then A ∈ S. In particular S is full.

In order to formulate the Representation Theorem for α-NSU’s, a straight-
forward generalization of the above properties to a nonwellfounded context is

3This (minimal) assumption will be formalized by the notion of ”nonstandard universe
which is wellfounded over the internal elements” (see the Representation Theorem 2.2).

4We will always assume a rank function to be onto.
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needed. Precisely, classes where the wellordered ∈-stratification is weakened
to a linearly ordered ∈-stratification will be considered. We give in fact the
following

Definition A pseudo-superstructure (PSS) is a nonempty class P such that
(i) P is transitive up to atoms; (ii) P is provided with a rank function
ψP : P → λ taking linearly ordered values

ψP (p) =

{
0 if p ∩P = Ø ;
Sup{ψP (p′) + 1 : p′ ∈ p} otherwise.

(iii) (Bounded universal property) If A ⊆ P is a rank-bounded set (i.e. if
{ψP (a) : a ∈ A} ⊆ λ is not cofinal) then A ∈ P. In particular P is full.
We call P α-pseudo-superstructure (α-PSS) if λ includes a cofinal α-sequence.

In the definition above it is implicitly assumed that λ has minimum 0
and that every ξ ∈ λ has immediate successor ξ + 1. Moreover, though ψP

and λ may be proper classes, the collections {ψP (p′) + 1 : p′ ∈ p} are sets for
every p ∈ P. Notice that λ is upward complete in that every upper-bounded
Ξ ⊂ λ admits supremum (in fact, if Ξ does not have a largest element, pick
pξ ∈ P with ψP (pξ) = ξ for each ξ ∈ Ξ and let p = {pξ : ξ ∈ Ξ}. p is
rank-bounded and ψP (p) = Sup{ψP (pξ) + 1 : ξ ∈ Ξ} = SupΞ exists by the
bounded universal property). Notice also that for every X which is α-basal,
Vα(X) is trivially an α-PSS. On the other hand, the Representation Theorem
will show that PSS’s exist which are not superstructures.

Let’s first itemize the basic properties of PSS’s. For every ξ ∈ λ, denote
Pξ = {p ∈ P : ψP (p) ≤ ξ}. We point out that the Pξ’s are in general proper
classes. On the other hand, for convenience we suppose the collection of
atoms Po \ {Ø} to be a set.

Proposition 2.1 Let P be a PSS with the rank function ψP : P → λ. Then
the following hold:
(i) Pξ+1 = Pξ ∪ P(Pξ) for every ξ ∈ λ.
(ii) 〈P,∈〉 |= EXTo,Ø,PAIR, SEP,UN,PS,AC.
(iii) The next three properties are equivalent:
(a) λ is wellordered; (b) 〈P,∈〉 |= FOUND; (c) P = Vα(X) is an α-super-
structure with X α-basal or P = WF(X) with X basal.
Now suppose that λ is not wellordered. Then
(iv) ON ⊂ P. In particular 〈P,∈〉 |= INF.
(v) 〈P,∈〉 |= REP ⇔ P is not an α-PSS for any α.
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Proof. (i) Apply the definition of rank and the bounded universal property.
(ii) By the definition, the pseudo-superstructures P are nonempty, transitive
up to atoms and full. Thus 〈P,∈〉 |= EXT o, Ø, SEP,UN,AC . Moreover,
many usual set-theoretic notions are absolute, i.e. they mean the same thing
in P as in the universe. In particular, 〈P,∈〉 |= PAIR,PS iff P is closed
under the pairing and the power-set operators. Fix p ∈ P. As p′ ∈ p implies
ψP (p′) < ψP (p), every A ⊆ p is a rank-bounded set. Thus A ∈ P and
ψP (A) ≤ ψP (p) + 1. In particular, P(p) is a rank-bounded set as well and
P(p) ∈ P. Proceed similarly to prove p, p′ ∈ P ⇒ {p, p′} ∈ P.
(iii) (a) → (b) and (c) → (a) are trivial. (b) → (a) Let ξo > ξ1 . . . > ξn > . . .
be a descending chain in λ. Take po ∈ P with ψP (po) = ξo. Then ψP (p1) ≥ ξ1

for some p1 ∈ po (otherwise ψP (p) = Sup{ψP (p′) + 1 : p′ ∈ p} ≤ ξ1 < ξo,
a contradiction). By iterating, one gets a descending chain po 3 p1 3 . . . 3
pn 3 . . . where ψP (pn) ≥ ξn for every n. {pi : i ∈ ω} is rank-bounded, hence
in P. This shows /|= FOUND. (a) ∧ (b) → (c) Assume λ is wellordered and
define by transfinite induction the functional correspondance:

R(0) = Min λ ; R(α) = Sup{R(β) + 1 : β < α}.
Domain(R) is an initial segment of ON and Range(R) is an initial segment
of λ (proceed by transfinite induction on α and prove that ξ < R(α) → ξ ∈
Range(R)). The following property holds:

”Suppose A ∈ P. If ψP (A) /∈ Range(R) then ψP (a) /∈ Range(R)
for some a ∈ A”.

Otherwise, let ψP (a) = R(βa) for every a ∈ A and consider α = Sup{βa :
a ∈ A}. Notice that R(β) is defined for every β < α, in that β ≤ βa ∈
Domain(R) for some βa. Then ψP (A) = Sup{ψP (a) + 1 : a ∈ A} =
Sup{R(βa) + 1 : a ∈ A} = Sup{R(β) + 1 : β < α} = R(α). As a straight
consequence, one gets the equivalence 〈P,∈〉 |= FOUND ⇔ R is onto. Thus,
let us suppose that R is onto. By transfinite induction, it is straightfor-
wardly proved that Vβ(Po) = Pβ for every β ∈ Domain(R). In particular, if
X = Po \ {Ø} then P = Vα(X) or P = WF(X) according to Range(R) = α
or Range(R) = ON respectively.
(iv) Take ξo > ξ1 > . . . > ξn > . . . a descending chain in λ. We prove by
transfinite induction that every ordinal γ ∈ P and ψP (γ) < ξn for every
n. The case γ = 0 is trivial. If γ = δ + 1, then 〈P,∈〉 |= PAIR,UN and
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δ ∈ P imply that δ ∪ {δ} = γ ∈ P. Besides, if ψP (γ) ≥ ξn for some n, then
ξn+1 > ψP (δ) ⇒ ξn+1 ≥ ψP (δ) + 1 = ψP (γ) ≥ ξn, a contradiction. Now sup-
pose γ is limit. For every γ′ ∈ γ and every n, ψP (γ′) < ξn+1. As γ ⊂ P is a
rank-bounded set, γ ∈ P and ψP (γ) = Sup{ψP (γ′)+1 : γ′ ∈ γ} ≤ ξn+1 < ξn.
(v) ⇒ Let {ξβ : β ∈ α} ⊆ λ be any α-sequence. For each β ∈ α, take
G(β) ∈ P such that ψP (G(β)) = ξβ. By replacement, α ∈ P implies
p = {G(β) : β ∈ α} ∈ P. In particular, ξβ = ψP (G(β)) < ψP (p) for
every β ∈ α and {ξβ : β ∈ α} is not cofinal. ⇐ Take a set A ∈ P and let
G be a functional correspondance such that G(a) ∈ P when a ∈ A. Then
{G(a) : a ∈ A} ∈ P because it is a rank-bounded subset of P. a

Notice that property (i) is the counterpart of the usual inductive defini-
tion of superstructure. Thus, in close analogy to the cumulative hierarchy
one can write

P =
⋃

ξ∈λ Pξ where Pξ+1 = Pξ ∪ P(Pξ).

As the following theorem shows, the notion of PSS is well suited for
characterizing the α-NSU’s. Without loss of generality, in the following we
suppose X of the same form as in the example of Section 1 (recall that such
basal sets exist of any size).

Theorem 2.2 THE REPRESENTATION THEOREM
Let 〈Vα(X),∈〉 be a standard α-model and suppose that ϑ : 〈Vα(X),∈〉 →
〈M, ε 〉 is a nonstandard embedding. Then there exist

• an α-pseudo-superstructure 〈P,∈〉 with rank ψP : P → λ

• a nonstandard embedding ∗ : 〈Vα(X),∈〉 → 〈P,∈〉
• an isomorphism τ : 〈Iϑ, ε 〉 → 〈I∗,∈〉 between the internal submodels

relative to ϑ and ∗ respectively

such that

(i) P is wellfounded over the internal elements, i.e. no descending chain
b1 3 b2 3 . . . 3 bn 3 . . . exists in P where all the bn’s are external.
(ii) ∗X is the set of atoms relative to 〈P,∈〉.
(iii) ∗x = x for every x ∈ X
(iv) ψP (∗A) = ∗ρX(A) for every A ∈ Vα(X).

12



(v) {ψP (∗β) : β ∈ α} ⊆ λ is an increasing cofinal α-sequence.
(vi) the following diagram commutes:

Vα(X) Iϑ

I∗

ϑ

∗ τ τ̃

-
¡

¡
¡µ

@
@

@I

@
@

@I

↪→ M

↪→ P

ı

ı

Moreover, if 〈M, ε 〉 is wellfounded over the internal elements, τ can be ex-
tended in a natural way so as to get an isomorphic embedding τ̃ : M → P.

Proof. Take the ultrafilter D over the set I, the filter F over I × I and
the isomorphism π : 〈Iϑ, ε 〉 → bVα(X)I

D|F as given by the Thereom 1.2.
Recall that X = {xj : j ∈ µ} where xj = {yj}, yj = {xj, yj} and xj 6= yj′

for every j, j′ ∈ µ, and denote Y = {yj : j ∈ µ}. Let d be the diagonal
embedding of Vα(X ∪ Y ) into the bounded limit ultrapower bVα(X ∪ Y )I

D|F
and denote Λ = {d(z) : z ∈ X ∪ Y ∪ {Ø}}. As every z ∈ X ∪ Y is a
finite set, 〈bVα(X ∪Y )I

D|F, ε〉 is an end extension of 〈Λ, ε〉. Moreover, by the
transitivity of X ∪ Y and the elementary embedding property of d one gets
that the both structures are extensional. Thus the axiom SU can be applied
so as to get an isomorphism

σ : bVα(X ∪ Y )I
D|F → 〈S,∈〉

onto a transitive set S. As the mapping d(z) 7→ z yields an isomorphism
〈Λ, ε〉 ∼= 〈X ∪ Y ∪ {Ø},∈〉, σ can be taken is such a way that σ(d(z)) = z
for every z ∈ X ∪ Y ∪ {Ø}. We now eliminate everything which is grounded
over Y . Precisely, we consider the restriction τ = σdbVα(X)I

D|F which is an
isomorphism

τ : bVα(X)I
D|F → 〈T,∈〉

onto the set T = Range(τ) ⊂ S. Notice that T is transitive up to atoms.
Our goal is making an α-PSS out of T . Let ψT

.
= ψI ◦ π−1 ◦ τ−1 be the

rank function for T inherited from the internal model I 5 and denote Tβ
.
=

{t ∈ T : ψT (t) ≤ d(β)} for every β ∈ α. The peculiar ∈-structure of X
and Y is reflected in 〈(X ∪ Y )I

D|F, ε〉 and the following property holds: “if

5See the theorems 1.2 and 1.3.
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fD ∈ XI
D|F then fD

ε = {gD} and gD
ε = {fD, gD} for some gD ∈ Y I

D|F”.
Notice that To = {τ(fD) : fD ∈ XI

D|F} ∪ {Ø} and Y I
D|F ∩ XI

D|F = Ø.
Thus

• Every Ø 6= t ∈ To has the form t = {w}, where w = {t, w} /∈ To.

In order to get the bounded universal property, we fill up T with subsets.
Precisely we define

P =
⋃

β∈α

WF(Tβ)

If A ∈ P is ∈-minimal then trivially A ∈ To. Vice versa, suppose t = {w} ∈
To and t ∩ P 6= Ø. Then w = {t, w} ∈ P for some w /∈ To. This is a
contradiction because it is straightforwardly proved that w /∈ Tβ for every
β < α and that w /∈ Vγ(Tβ) for every γ. Thus the following holds:

• p ∈ P and p∩P = Ø ⇔ p ∈ To, i.e. 〈P,∈〉 has the same set of atoms
as 〈T,∈〉.

We claim that extending ψT to a rank function ψP for P is possible. To this
end, consider the order-completion λ′ of ζ = 〈bαI

D|F, ε〉 and replace every
new element x ∈ λ′ \ ζ with a copy ONx of the ordinals so as to get the
linearly ordered proper class λ ⊃ λ′ ⊃ ζ (we identify x with 0x). Notice that
{d(β) : β ∈ α} ⊂ λ is an increasing cofinal α-sequence. For every β ∈ α,
define ψβ : WF(Tβ) → λ as follows

ψβ(A) =

{
ψT (A) if A ∈ Tβ ;
Sup{ψβ(a) + 1 : a ∈ A} otherwise.

Denote λ(γ) .
= λ′∪{{0x, 1x, . . . , γx} : x ∈ λ′\ζ} the subset of λ where only the

initial segments of lenght γ are included of the various ONx’s. By transfinite
induction on γ one proves the following facts:

• A ∈ Vγ+1(Tβ) ⇒ ψβ(A) ∈ λ(γ)

• A ∈ Vγ(Tβ) ∩ T ⇒ ψβ(A) = ψT (A)

Thus ψβ is well-defined and ψβ(A) = ψT (A) whenever A ∈ WF(Tβ) ∩ T .
Given β < β′ < α, again proceeding by transfinite induction on γ, one also
proves that

14



• ψβ(A) = ψβ′(A) for every A ∈ Vγ(Tβ)

and the following is well-defined as well

ψP
.
=

⋃

β∈α

ψβ : P → λ

ψP is a rank for 〈P,∈〉. In fact p ∈ P is ∈-minimal iff p ∈ To iff ψP (p) = d(0).
If p ∈ P is not ∈-minimal, the property ψP (p) = Sup{ψ(p′) + 1 : p′ ∈ p}
straightforwardly follows from the definition of the ψβ’s. P satisfies the
bounded universal property (iii) in the definition of PSS. In fact, let A ⊆ P
be any set and define βa = Min{β ∈ α : a ∈ WF(Tβ)} and γa = Min{γ ∈
ON : a ∈ Vγ(Tβa)} for each a ∈ A. As A is rank-bounded, β = Sup{βa : a ∈
A} < α and so A ∈ Vγ+1(Tβ) ⊆ P where γ = Sup{γa : a ∈ A}. T and P
are transitive up to atoms, thus the bounded formulas are preserved by the
inclusion map ı : T ↪→ P and the composition

∗ = ı ◦ τ ◦ ϑ : 〈Vα(X),∈〉 −→ 〈P,∈〉
is a NSE. The internal submodel I∗ relative to ∗ is easily shown to be the
set T , thus τ is an isomorphism between the internal submodels 〈Iϑ, ε 〉 and
〈I∗,∈〉. As for the properties (i), (ii), (iii), (v) and (vi), they are all proved
by looking at the definitions of the sets and functions involved. Property (iv)
holds provided that one identifies ζ = 〈bαI

D|F, ε〉 ⊆ λ with its isomorphic
copy {τ(π−1(ξ)) : ξ ∈ λ} ⊆ P. 6 Now suppose that 〈M, ε 〉 is wellfounded
over Iϑ. Then it is easily shown by ε -induction that

τ̃(m) =

{
τ(m) if m ∈ Iϑ ;
{τ̃(m′) : m′ εm} otherwise.

is well-defined and provides an isomorphic embedding of M in P. a

The pseudo-superstructures succeed in meeting all the basic requirements
for a general notion of nonstandard α-universe. In fact, compare the following
properties with properties 1, 2, 3 and 4 itemized in the first section for ω-
NSU’s.

1. Every internal model can be isomorphically collapsed onto an ∈-structure
which is transitive up to atoms.

6π is the same as in the Theorem 1.2.
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2. Up to isomorphisms, every internal model is the internal model of a
pseudo-superstructure and every nonstandard universe which is well-
founded over the internal elements is a submodel of a pseudo-super-
structure.

3. Pseudo-superstructures are transitive up to atoms and full.

4. Pseudo-superstructures are linearly founded, in that they admit a rank
function taking linearly ordered values.

Consequently, without loss of generality one can only consider α-PSS’s as
α-NSU’s and propose the following

Definition A nonstandard α-universe relative to the standard α-model
〈Vα(X),∈〉 is any α-PSS 〈P, ψP 〉 equipped with a mapping ∗ : Vα(X) → P
in such a way that the following properties hold:
(i) ∗ satisfies the transfer principle for every bounded formula.
(ii) ∗X is the set of atoms relative to 〈P,∈〉.
(iii) ∗x = x for every x ∈ X.
(iv) ψP (∗A) = ∗ρX(A) for every A ∈ Vα(X).
(v) {ψP (∗β) : β ∈ α} ⊆ λ is an increasing cofinal α-sequence.
(vi) For every infinite set A ∈ Vα(X), {∗a : a ∈ A} 6= ∗A.
(vii) P is wellfounded over the internal elements.

3 Pseudo-superstructures for nonstandard set

theory

As shown by the previous theorem, the α-PSS’s characterize the notion of
nonstandard α-universe. The next result shows that the notion of PSS is well
suited also for the whole set theory, and allows all the useful properties com-
monly used in the practice of nonstandard methods. The proof is obtained
by combining our construction in the proof of the Representation Theorem
2.2. with arguments in [BH], where a global form of the axiom of choice is
assumed.

Theorem 3.1 Let µ, κ be given cardinals. Then there exists a nonstandard
embedding ∗ : S → P into a pseudo-superstructure P such that:
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(i) S = 〈WF(X),∈〉 |= ZFC o is the wellfounded universe over a set X of
atoms of power µ; 7

(ii) P satisfies the following strong fullness property: “A ⊆ P ⇒ A ∈ P for
every set A”;
(iii) 〈P,∈〉 |= ZFC−

o ;
(iv) ∗ : S → I is an elementary embedding into the internal model;
(v) ∗ satisfies the κ+-saturation property, i.e. if F is a family of internal
sets, |F| ≤ κ and

⋂Fo 6= Ø for every finite Fo ⊆ F , then
⋂F 6= Ø;

(vi) No descending chain b1 3 b2 3 . . . 3 bn 3 . . . exists in P where all the
bn’s are external.

Proof. Let X = {xj : j ∈ µ} be a basal set of cardinality µ where (as
usual) xj = {yj}, yj = {xj, yj}, and xj 6= yj′ for every j, j ′ ∈ µ. The
transitive closure of X is X ∪ Y with Y = {yj : j ∈ µ}. In particular
〈X ∪ Y,∈〉 is extensional. The next arguments are a slight modification of
the construction given in the proof of the Extension Principle of [BH]. Thus,
we sketch it in five steps and refer the reader to that paper for the details.

1. Take D a κ+-good countably incomplete ultrafilter over κ and consider
the diagonal embeddings dα : Vα(X) → Vα(X ∪ Y )κ

D. 8

2. For every β < α, the extensional structure Vα(X ∪ Y )κ
D is an end

extension of Vβ(X ∪ Y )κ
D.

3. Using transfinite recursion and the axiom SU , one gets isomorphisms
σα : Vα(X ∪ Y )κ

D → 〈Sα,∈〉 in such a way that σαdVβ(X ∪ Y )κ
D = σβ

for every β < α. Moreover, one can take σα(z) = z for every z ∈ X∪Y .
9

4. The restrictions σαdVα(X)κ
D yield isomorphisms τα : Vα(X)κ

D → 〈Tα,∈
〉 onto sets Tα which are transitive up to atoms.

7ZFC o denotes ZFC where the extensionality axiom EXT is replaced by EXTo.
8Recall the following theorems of Keisler. 1) “Let I be a set of power ν. Then there

exists a ν+-good countably incomplete ultrafilter over I”. 2) “Let D be a ν-good countably
incomplete ultrafilter over I and let A be a model for the language L with ||L|| < ν. Then
the ultrapower AI

D is ν-saturated”. (See [CK] § 6.1).
9See the proof of the Theorem 2.2. In order to make the correspondance α 7→ σα

definable, one takes σα as the least isomorphism (in the well-ordering of the universe)
having the desired properties.
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5. Consider the mapping F : WF(X) → T where T =
⋃

α Tα and F =⋃
α τα◦dα. Simultaneous reflection principles hold for both 〈WF(X),∈〉

and 〈T,∈〉, thus F is an elementary embedding of ∈-structures.

Now let S = 〈WF(X),∈〉, P =
⋃

α WF(Tα) and define

∗ .
= ı ◦ F : WF(X) −→ P

∗ satisfies the transfer principle, because F is an elementary embedding and
ı is an inclusion of classes which are transitive up to atoms. Notice that the
internal submodel I∗ = T ∼= ⋃

α Vα(X)κ
D. Thus the property (iv) is given by

5. and the saturation property (v) holds because D is κ+-good. Properties
(i) and (vi) straightforwardly follow from the definitions.

Now let’s turn to the rank function and prove (ii) and (iii). For each
α, consider the rank function ψα : WF(Tα) → λα as defined in the proof of
the Representation Theorem 2.2. Without loss of generality, we can suppose
λβ ⊂ λα for every β < α. In fact, the definition of each λα is based on the
order-completion of 〈bακ

D, ε 〉 which is in turn defined by means of the usual
Dedekind cut construction. Thus one can take the unions ψP =

⋃
α ψα and

λ =
⋃

α λα and get a rank function ψP : P → λ where {ψP (∗α) : α ∈ ON} is
a cofinal subclass of λ. Let A be any set with A ⊆ P. For each a ∈ A one
can take βa ∈ ON with ψP (a) ≤ ψ(∗βa) and consider β = Sup{βα : a ∈ A}.
Then A is rank-bounded by ψP (∗β) and A ∈ P. This completes the proof
of (ii). Now look at the Proposition 2.1. As λ is not wellordered and is not
cofinal with any α-sequence, one gets that 〈P,∈〉 |= ZFC−

o . a

We summarize the main features of our construction.

• Nonstandard methods are allowed with respect to the whole standard
ZFC mathematics.

• All usual standard ZFC− arguments can be performed in the nonstan-
dard universes, which are transitive up to atoms and (strongly) full
classes.

• Though nonwellfounded, the nonstandard universes P are provided
with a rank function ψP (p) = Sup{ψP (p′) + 1 : p′ ∈ p} taking lin-
early ordered values.
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• In the likeness of the superstructures, the nonstandard universes P
have a cumulative hierarchy structure

P =
⋃

ξ∈λ Pξ where Pξ+1 = Pξ ∪ P(Pξ)

• The external elements are wellfounded with respect to to the internal
sets, i.e. no descending chain

b1 3 b2 3 . . . 3 bn 3 . . .

exists where all the bn’s are external.

• The κ-saturation property holds.

• The full standardization property is satisfied: “for every A, there exists
a standard set B such that A and B have the same standard elements”
(take B = ∗A′ where A′ = {x ∈ S : ∗x ∈ A}).
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