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Abstract

We present a uniform version of Di Nola Theorem, this enables to
embed all MV-algebras of a bounded cardinality in an algebra of functions
with values in a single non-standard ultrapower of the real interval [0, 1].
This result also implies the existence, for any cardinal α, of a single MV-
algebra in which all infinite MV-algebras of cardinality at most α embed.
Recasting the above construction with iterated ultrapowers, we show how
to construct such an algebra of values in a definable way, thus providing
a sort of “canonical” set of values for the functional representation.
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1 Introduction

The main general tools in representation theory of MV-algebras are given by
Chang representation Theorem [4], McNaughton Theorem and Di Nola represen-
tation Theorem [9]. The first gives a subdirect representation of all MV-algebras
via linearly ordered MV-algebras (MV-chains). The second gives a characteri-
sation of free MV-algebras as algebras of continuous, piece-wise linear functions
with integer coefficients on [0,1]. Finally, the last describes MV-algebras as sub-
algebras of algebras of functions with values into a non-standard ultrapower of
the MV-algebra [0, 1]; in other words, given an arbitrary MV-algebra A, there
exist an ultrapower ∗[0, 1] and a set X such that A can be embedded into the
MV-algebra of functions from X to ∗[0, 1].

In the light of the latter functional representation, it is worth to stress that
the class of semisimple MV-algebras can be characterised, up to isomorphism, as
the class of subalgebras of the MV-algebras [0, 1]X for some set X. Notably free
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MV-algebras are semisimple, whereas the Lindenbaum algebra of the infinite
valued  Lukasiewicz predicate logic is not [3].

In this paper we investigate how the non-standard representation of an MV-
algebra A depends on the cardinality of A. For any infinite cardinal α, we prove
that there exists an ultrapower U such that all MV-algebras of cardinality at
most α are embedded in an MV-algebra of functions with values in U . In
particular, we get a functional representation of all countable MV-algebras.
Using the well-known Mundici’s functor, the above results can be transferred to
abelian lattice ordered groups with strong unit.

The main logical motivation to our investigation comes from the following
considerations on the logic of perfect MV-algebras. This explanation would
require many preliminary details on perfect MV-algebras and first order  Luka-
siewicz logic, which fall outside the scope of this article; we suggest [11, 1, 2] for
all unexplained notions in the end of this section.

Let  L denote the propositional  Lukasiewicz logic [13] and let  Lp be the
extension of  L with the axiom (2ϕ2)↔ (2ϕ)2. In [2] it is proved that  Lp is the
logic of perfect MV-chains.

A similar result also holds for the first order  Lukasiewicz logic,  L∀. Namely,
let  L∀p be the extension of  L∀ with the axiom (2ϕ2)↔ (2ϕ)2 and let P be the
class of all perfect MV-chains, then a formula ϕ is provable in  L∀p if, and only
if, it is valid in every P-structure1.

On the other hand the following characterisations also hold.

Proposition 1.1 ([1]). Let K be the class of all ultrapowers of Γ(Z×lex R, (1, 0)),
i.e., all perfect MV-chains of type ∗Γ(Z×lex R, (1, 0)).

• The logic Lp is complete with respect to K

• The logic  L∀p is complete with respect to all K-structures.

When dealing with completeness results one may restrict to countable alge-
bras. Since all the algebras from K are pairwise elementarily equivalent, then
by the joint embedding property, there exists a perfect MV-algebra U ∈ K such
that every countable algebra in K embeds into U . Since all the embeddings
from any MV-algebra A ∈ K into U are elementary we get:

Theorem 1.2.

• The logic Lp is complete with respect to U .

• The logic  L∀p is complete with respect to all U -structures.

The extension of such result to the  Lukasiewicz logic is a challenging task
which motivates, from the logical side, the study presented here.

To make the exposition self-contained and available for a reader with only
fragmentary knowledge of ultrapowers and model theory, in addition to the
reference, we will also give sketches of the proofs of some model theoretic results
needed later.

1K-structure are models in which the truth values range in some algebra in K, for further
details see [11]
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2 Preliminaries

Definition 2.1. A structure A = (A,⊕,¬, 0) is an MV-algebra if A satisfies
the following equations, for every x, y ∈ A:

(i) (x⊕ y)⊕ z = x⊕ (y ⊕ z); (ii) x⊕ y = y ⊕ x;
(iii) x⊕ 0 = x; (iv) x⊕ ¬0 = ¬0;
(v) ¬¬x = x; (vi) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Any MV-algebra is naturally endowed with a partial order given by x ≤ y if,
and only if, ¬x⊕ y = 1; we call MV-chain any MV-algebra in which the order
defined above is linear. For further details on MV-algebra the standard reference
is [7].

Definition 2.2. Let A be an MV-algebra, a sequence a = 〈ak : k ∈ Z〉 in A is
good if the following properties are satisfied:

1. ak ⊕ ak+1 = ak for all k ∈ Z,

2. there is some n ∈ N such that ak = 0 for all k ≥ n and ak = 1 for all
k ≤ −n.

One of the most surprising properties enjoyed by MV-algebras is their cat-
egorical equivalence with abelian lattice-ordered groups with strong unit (`u-
group, for short) [14]. Indeed, given any `u-group (G,+, 0, u) one may define an
MV-algebra by considering its unit interval, [0, u], endowed with the following
operations (definable in the language of the `u-group):

x⊕ y = (x+ y) ∧ u and ¬x = u− x

This MV-algebra is indicated by Γ(G, u). Vice versa, let A be an MV-algebra
and GA be the set of all good sequences in A, then a structure of `u-group can
be defined on GA. The correspondence is such that if A = Γ(G, u) then GA is
isomorphic to G, and vice versa. For further details see [7].

Lemma 2.3. Let A be an MV -algebra and (G, u) an `u-group such that A ∼=
Γ(G, u). Let α be an infinite cardinal then |A| = α if, and only if, |G| = α.

Proof. Suppose |A| = α, with α an infinite cardinal. Let a = 〈ai〉 be a good
sequence. Then there is an integer na such that ai = 1 for all i ≤ −na and
ai = 0 for all i ≥ na. Thus we can identify the good sequence a with a 2na + 1
tuple, 〈a−na , a−na+1, ..., ana−1, ana〉. Call na the index of a. Let Sn be the set of
tuples of index n, then |Sn| ≤ α2n+1. But α2n+1 = α. Thus |Sn| has cardinality
at most α. The set S of all good sequences is the union of all Sn. Hence S is
|S| ≤ α|N|, which is just α since N is denumerable. So the set of good sequences
S has cardinality at most α. But since |S1| = |A| = α the cardinality of S must
be exactly α. Vice versa, if |G| = α then obviously |A| ≤ α. But if |A| = β < α
then |GA| = β < α, since GA is isomorphic to G. This gives a contradiction,
hence |G| = α.
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Lemma 2.4. Let G be an abelian `-group and α be an infinite cardinal such
that |G| = α. Then G can be embedded into an abelian divisible `-group DG

such that |DG| = α

Proof. First we show that any abelian group can be embedded in an abelian
divisible group of cardinality α, where α = max{ℵ0, |G|}. Indeed, let X be a
generating set of G and let F be the free abelian group with basis X. Let H
be a subgroup of F such that G is isomorphic to F/H. Let D be the direct
product of |X| copies of Q. Since F is isomorphic to the direct product of |X|
copies of Z it can embedded in D, in a natural way. Hence G embeds in the
abelian divisible group D/H. Moreover |D/H| ≤ |X| · |Q| ≤ α and obviously
|G| ≤ |D/H|, whence |D/H| = α. Finally, the group D/H can be converted
into an `-group by taking as positive the elements h of D/H such that nh ∈ G+

for some positive integer n.

We recall some notions and results from model theory.

Definition 2.5. Let α be a cardinal. A proper filter D over I is said to be
α-regular if there exists a set E ⊆ D such that |E| = α and each i ∈ I belongs
to only finitely many e ∈ E.

For any set I of infinite cardinality α there exists an α-regular ultrafilter
over I [6]. Given a cardinal α, let α+ be the smallest cardinal greater than α.
We let ≡ stand for elementary equivalence, ↪→ for embeddability and ↪→el. for
elementary embeddability.

Definition 2.6. Given a cardinal α, we say that a model A is α-universal if
and only if for every model B we have:

B ≡ A and |B| < α implies B ↪→el. A.

Theorem 2.7 ([6]). Let |L| ≤ α and D be an ultrafilter which is α-regular.
Then, for every model A, the ultrapower

∏
D A is α+-universal.

Proof. Let E ⊆ D such that each i ∈ I belongs to only finitely many e ∈ E
and |E| = α. Let A and B be two models such that A ≡ B and |B| ≤ α.
Consider ΓB, the elementary diagram of B in the expanded language L(B)
(L(B) contains a new constant for any element in B). To prove that B is
elementarily embedded in

∏
D A it suffices to find an expansion (

∏
D A, ab)b∈B

of the ultrapower
∏
D A, which is a model of ΓB.

Since |ΓB| ≤ α, there is a injective function H : ΓB −→ E. Let us fix i ∈ I;
since there are only finitely many e ∈ E such that i ∈ e, we can consider the
conjunction ϕ ∈ ΓB of all sentences ψ such that i ∈ H(ψ). If the sentence
ϕ contains parameters c1, ..., ck, it can be associated to anL-sentence ϕ′ :=
∃x1...∃xkϕ(c1/x1, ..., ck/xk), with x1, ..., xk fresh variables; obviously if ϕ holds
in (B, b)b∈B then ϕ′ holds in B, and therefore ϕ′ holds in A. This gives a way
of building an expansion (A, fb(i))b∈B of A to L(B), which is a model of ϕ.
Notice that fb ∈ AI is such that for all i ∈ I and ψ ∈ ΓB,

i ∈ H(ψ) implies (A, fb(i))b∈B |= ψ.
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Moreover, for each ψ ∈ ΓB, H(ψ) ∈ D, whence by  Loś Theorem
∏
D(A, fb(i))b∈B |=

ψ. So
∏
D(A, ab)b∈B with ab = (fb)D is the required expansion.

3 MV-algebras of infinite cardinality

Let LMV = {0,¬,⊕} be the language of MV-algebras and Llg = {0,−,+,∨,∧,≤
} be the language of `-groups.

The following is a simple generalisation of a result contained in [5].

Theorem 3.1. For any sentence σ in LMV there is a formula with only one
free variable σ̂(v) in Llg such that for any MV-algebra A we have:

A |= σ if, and only if, G |= σ̂[u],

for any abelian `-group G and u > 0 in G such that A ≡ Γ(G, u).

Recall also that:

Theorem 3.2 ([15, 3.1.2]). Any non-trivial divisible totally ordered `-group is
elementarily equivalent to the additive group R of real numbers.

The MV-algebra counterpart of divisible groups are called divisible MV-
algebras [10], the functor Γ remains a categorical equivalence when restricted
to those categories. From Theorem 3.1 and Theorem 3.2, it can be proved:

Theorem 3.3. Any non-trivial divisible MV-chain is elementarily equivalent
to Γ(R, 1) = [0, 1].

Theorem 3.4. Let α be an infinite cardinal and A be an MV-chain such that
|A| = α. A can be embedded into an ultrapower of the MV-algebra [0, 1] via an
ultrafilter α-regular over α which does not depend on A.

Proof. Let A be an infinite MV-chain such that |A| = α and A ∼= Γ(G, u). Then,
by Lemma 2.3, G is an ordered abelian group with strong unit u and |G| = α.
Hence (G, u) can be embedded into a divisible ordered group DG with strong
unit uD; in addition, by Lemma 2.4, |DG| = α. Now let Ad = Γ(DG, uD): then
A embeds in Ad and Ad is a divisible MV-algebra; so by Theorem 3.3, Ad is
elementarily equivalent to [0, 1].

Let F be a α-regular ultrafilter over α; then, by Theorem 2.7,
∏
F [0, 1] is

α+-universal, hence Ad ↪→
∏
F [0, 1]. This proves that A can be embedded into

the ultrapower
∏
F [0, 1].

Some comments are in order here. First of all, we would like to mention that,
as the anonymous referee suggests, one can avoid the use of α-regular ultrafilters
and prove the existence of such an ultrapower by using the joint embedding
property for divisible MV-algebras. Indeed one can order all divisible MV-
algebra of a bounded cardinality and then, starting from the first two, repeatedly
embed the successive in the list together with the one previously obtained. This,
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together with Lemma 2.3, Lemma 2.4 and Theorem 3.3, gives the above result.
Secondly, Theorem 3.4 may seem to fit in the general theory of Jónsson classes
[8], however the existence of a homogeneous-universal structure for a Jónsson
class is guaranteed only for a few particular cardinals. This makes our result
stronger than what can be directly obtained from the theory of Jónsson classes.

The following fact, which is part of the classical literature on the subject,
gives a sharp estimation of the cardinality of the target algebra.

Theorem 3.5 ([6]). Let F be a α-regular ultrafilter of α, with α infinite cardinal,
then |

∏
F A| = |A|α.

Let us recall that an ideal of an MV-algebra is a non-empty downward-
closed set, closed under ⊕. An ideal I is called prime if whenever x ∧ y ∈ I
then either x ∈ I or y ∈ I. Given an MV-algebra A it is customary to denote
by Spec(A) the set of its prime ideals.

Theorem 3.6. Let A be an MV-algebra such that |A| = α, with α an infinite
cardinal. Then there exists a set X such that A can be embedded into an MV-
algebra of functions from X to an ultrapower of the MV-algebra [0, 1] via an
α-regular ultrafilter over α which does not depend on A.

Proof. Let A be an infinite MV-algebra of cardinality α. Then by Chang’s
representation theorem we have:

A ↪→
∏

P∈Spec(A)

A/P.

Obviously for every prime ideal P of A, the quotient is such that |A/P | ≤ α.
Let F be an ultrafilter α-regular over α. By Theorem 2.7, the ultrapower∏

F [0, 1] of the MV-algebra [0, 1] is α+-universal. Then for every P ∈ Spec(A)
the MV-chain A/P can be embedded into

∏
F [0, 1]. Indeed the ultrafilter F is

independent of A/P . Hence A can be embedded into (
∏
F [0, 1])Spec(A).

For any cardinal α, the above theorem gives an MV-algebra of values U such
that any MV-algebra of cardinality at most α can be represented as an algebra
of functions with value in U . Now it seems natural to ask further, whether
there exists a single MV-algebra at all, in which all MV-algebras of cardinality
at most α embed.

Corollary 3.7. For any infinite cardinal α there exists an MV-algebra of func-
tions A such that any MV-algebra of infinite cardinality at most α embeds in
A.

Proof. In the proof above only X depends on A, so it is sufficient to remove this
dependency. Let MVα be the class of all MV-algebras of cardinality at most α
and let Kα be the set of the cardinalities of Spec(A) for A ∈MVα, i.e.

Kα = {β | ∃A ∈MVα with |Spec(A)| = β}.
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Let A ∈ K and |Spec(A)| = β, then by the subdirect representation and Theo-
rem 3.4 A ↪→

∏
F [0, 1]β .

Now let γ = supKα, then each
∏
F [0, 1]β with β < γ embeds in

∏
F [0, 1]γ

via the function

Φ(f)(ξ) =

{
f(ξ) if ξ < β

f(0) β ≤ ξ < γ.

So each A ∈ MVα embeds in
∏
F [0, 1]γ through the composition of the two

embeddings above.

4 On canonical representations

In this section we refine the previous embedding theorems by using certain defin-
able2 structures, rather than usual (nondefinable) ultrapowers. These structures
are iterated ultrapowers in the sense of [6, Section 6.5]; although we will define it-
erated ultrapowers in this paper, we refer to this last volume for a more detailed
exposition of the argument and for all unproved claims which follow.

According to [6], an iterated ultrapower is a structure which can be obtained
out of a linearly ordered set of ultrapowers of a given base structure in such a
way that all these ultrapowers are elementarily embedded in it. We outline
here the formal construction of iterated ultrapowers (taken from [6] with a few
simplifications), starting with some preliminary work of a combinatorial flavour.

Let A be a first order structure, B be a set, (Y,<) be a linear order, and
D = (Dy, y ∈ Y ) be a linearly ordered sequence of ultrafilters on B, indexed by
Y , and possibly containing repetitions.

Let K = BY be the set of all functions from Y to B. Let Z be a subset of Y .
We say that a function f with domain K lives on Z if, for every function i ∈ K,
f(i) depends only on i|Z ; and that a subset of K lives on Z if its characteristic
function lives on Z.

In the following let Z range over finite subsets of Y . Let BZ the set of all
functions from Z to B. To each Z we can associate an ultrafilter DZ on BZ as
follows (our definition is slightly different from [6], but defines the same object).

Let Z = y1 < . . . < yn be the order on Z induced by Y . Any function from
Z to B (viewed as a set of pairs) can be written as {(y1, α1), . . . , (yn, αn)} for
some α1, . . . , αn ∈ B. Now let

DZ = {s ⊆ BZ : Dy1α1 . . . Dynαn.{(y1, α1), . . . , (yn, αn)} ∈ s},

where Dyα.φ(α) means {α : φ(α)} ∈ Dy.
The set DZ is an ultrafilter on BZ , and coincides with the usual finitary

product ultrafilter Dy1 × . . .×Dyn .
Now we can consider the set

E(D) = {s ⊆ K : ∃Z. s lives on Z and (s ↓ Z) ∈ DZ},
2More precisely we mean definable in ZFC.
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where s ↓ Z is the set of all restrictions to Z of the members of s.
We note that the subsets of K living on some finite subset of Y form a

Boolean algebra S, and the set E(D) is an ultrafilter in S. E(D) can be con-
sidered as an infinitary product of the ultrafilters Dy (although it is not an
ultrafilter on K as one could expect).

Now we are ready to define iterated ultrapowers, and we do it in analogy
with [6].

Definition 4.1. Let A be a first order structure, B be a set, and D be a linearly
ordered sequence of ultrafilters on B indexed by the linear order (Y,<). The
iterated ultrapower of A on D, denoted ΠDA, is a first order structure over
the same language as A. The domain of ΠDA is the set of all functions f from
K(= BY ) to A which live on some finite subset of Y , modulo the equivalence
=D given by:

f =D g if, and only if, {i ∈ K : f(i) = g(i)} ∈ E(D).

Every n-ary predicate symbol R of the language of A is interpreted in ΠDA by
the following relation R′:

R′([f1], . . . , [fn]) if, and only if, {i ∈ K : RA(f1(i), . . . , fn(i))} ∈ E(D),

where [f ] is the equivalence class of f modulo =D, andRA is the interpretation of
R in A. Likewise, every n-ary function symbol G is interpreted by the following
function G′:

G′([f1], . . . , [fn]) = [g] if, and only if, {i ∈ K : GA(f1(i), . . . , fn(i)) = g(i)} ∈ E(D),

where GA is the interpretation of G in A; and every constant symbol c is inter-
preted by letting c′(i) = cA for every i ∈ K, where cA is the interpretation of c
in A.

Note that the definitions above do not depend on the choice of representatives
in the classes, as usual when defining ultraproducts or similar.

An embedding property of iterated ultrapowers is:

Lemma 4.2 ([6, Prop. 6.5.9]). For every y ∈ Y , ΠDyA embeds elementarily in
ΠDA.

So far we have a general notion of iterated ultrapower. In the present situa-
tion, we start from a base structure A and a set B (where we can suppose that
B is a cardinal α), and we would like to build a definable iterated ultrapower of
all ultrapowers of A modulo ultrafilters on α.

The problem is that there is no available definable linear ordering of these
ultrapowers. However, we can use the same stratagem of [12], developed to
find a definable model of nonstandard analysis. Namely, we index, with repeti-
tions, ultrapowers by using a set of indexes which has a natural linear ordering,
definable in α.

The formal construction is as follows.
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Lemma 4.3. Let A be a first order structure and let α be an infinite cardinal.
There is an iterated ultrapower ΠDA of A, definable in A and α, where all
ultrapowers of A over α embed elementarily.

Proof. Let P(α) be the powerset of α. We note that P(α) has a natural “lexi-
cographic” linear order: given E,F ⊆ α, we let E < F if E and F are different,
and the least element of α where E and F differ belongs to F .

Moreover, let |P(α)| be the cardinality of P(α), that is, the least ordinal
having a bijection with P(α).

Let Y be the set of all maps y : |P(α)| → P(α) such that the image of y is
an ultrafilter on α. Note that every ultrafilter on α appears as image of some
(actually infinitely many) elements of Y .

The set Y is totally ordered by setting y < y′ if there is an ordinal ξ < |P(α)|
such that y|ξ = y′|ξ (that is, y and y′ coincide on all the ordinals less than ξ)
and y(ξ) < y′(ξ) in the lexicographic order of P (α).

For every y ∈ Y , let Dy be the ultrafilter on α associated to y, i.e. the
image of y. Let Dα be the resulting indexed family of ultrafilters on α. Then
D = Dα has the required properties. In fact, ΠDαA is definable in A and α by
construction, and every ΠDyA embeds elementarily in ΠDαA by the previous
lemma.

Lemma 4.3 above gives us:

Theorem 4.4. For every infinite cardinal α there is an iterated ultrapower Πα

of [0, 1], definable in α, where every MV-chain of cardinality α embeds.

Proof. By Di Nola Theorem for MV-chains, for every infinite cardinal α and for
every MV-chain A of cardinality α, there is an ultrapower of [0, 1], modulo an
ultrafilter on α, where A embeds. Now let Dα be the sequence of ultrafilters on
α built in the previous lemma.

By construction, ΠDα [0, 1] is an iterated ultrapower definable in α (the base
structure is [0, 1] which is definable itself), where all ultrapowers of [0, 1] modulo
ultrafilters on α embed; hence, all MV-chains of cardinality α embed in ΠDα [0, 1]
as well, and we can take Πα = ΠDα [0, 1].

Corollary 4.5. For every infinite cardinal α there is an iterated ultrapower Πα

of [0, 1], definable in α, such that every MV-algebra of cardinality α embeds in
a power of Πα.

Proof. Take as Πα the iterated ultrapower of the previous theorem. By the
Chang’s embedding, we have for every MV-algebra A of cardinality α:

A ↪→
∏

P∈Spec(A)

A

P
↪→

∏
P∈Spec(A)

Πα = (Πα)Spec(A).
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It should be noted that also in this case the proof of Corollary 3.7 works,
yielding a definable MV-algebra in which all elements of MVα embed (yet, not
in a definable way, for if A is an MV algebra, there is no available definable
isomorphism between

∏Spec(A)
α and

∏|Spec(A)|
α ).
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