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Abstract

In this paper two new combinatorial principles in nonstandard analysis
are isolated and applications are given. The second principle provides an
equivalent formulation of Henson’s isomorphism property.

Introduction.
In his 1974 paper [He], C. Ward Henson introduced the isomorphism property
(IP) for nonstandard models of analysis, giving a number of interesting appli-
cations. He showed that IP gives a nice picture of internal sets and applied
it to investigate nonstandard objects in functional analysis. Just to mention
two results in that paper, it follows from IP that any two infinite internal sets
have the same cardinality, and that the nonstandard hull of any Banach space
is isometrically isomorphic to the nonstandard hull of some separable Banach
space.
Later on, David Ross [Ro] introduced the special model axiom, a property
strictly stronger than IP, and used it to investigate internal orders and cer-
tain questions concerning Loeb measures. Recently, several papers appeared in
the literature (see [J3] for a survey) where the strength of these principles is
investigated and applications are given. In particular, Renling Jin solved almost
all the problems left open in [Ro] and, jointly with Saharon Shelah, found an
equivalent formulation of IP, namely the resplendency property (RP). With re-
spect to IP, in several applications the use of RP considerably simplifies proofs
(see [JS]).
All the above principles are formulated as model-theoretic properties, and in
their known applications a heavy use of the formalism of first-order logic seems
to be essential. The goal of this paper is to show that formulating and apply-
ing the isomorphism property is possible using only the basics of nonstandard
analysis. To this end, we will show that what makes IP stronger than the usual
κ-saturation, is a purely combinatorial property of internal sets, namely the
principle ∆1.
One of the consequences of the isomorphism property is the usual saturation
property. Renling Jin for countable languages, and subsequently James Schmerl
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in the general case, showed that the isomorphism property for languages of car-
dinality less than κ is equivalent to IP for finite languages plus κ-saturation. The
main result in this paper is the equivalence between the isomorphism property
for finite languages and our combinatorial principle ∆1.
In our opinion, the material presented here should suggest that the isomorphism
property is in fact an easy-to-handle principle for anybody working in nonstan-
dard analysis. To justify this claim, we will assume ∆1 and give new proofs of
several applications, including almost all results appeared so far in the litera-
ture, which are consequences of IP. With the only exception of the last section,
everything in this paper is formulated within the usual language of nonstan-
dard analysis. In particular, any technical notion and result from first order
logic, such as the theory of a structure, the consistency of a set of formulas, the
compactness theorem, the Löwenheim-Skolem theorem etc., is avoided.
Our basic definitions and notations in nonstandard analysis follow [CK] §4.4.
In particular, by a nonstandard model we mean a triple 〈V (X), V (Y ), ∗〉, where
V (X) and V (Y ) denote the superstructures of height ω over the infinite base
sets X and Y respectively, and where the nonstandard embedding ∗ : V (X) →
V (Y ) is a bounded elementary extension with ∗X = Y . 1 For simplicity,
we shall directly assume X and Y to be sets of atoms, and that the set of
natural numbers IN ⊆ X. Internal sets are elements of the internal submodel
I∗ = {y ∈ V (Y ) : y ∈ ∗x for some x ∈ V (X)}. If A is an internal set, we denote
by PI(A) the internal collection of its internal subsets. A ∗finite set is an internal
set in 1-1 internal bijection with some initial segment [0, ξ] = {0, . . . , ξ} ⊂ ∗IN.
A ∗infinite set is an internal set which is not ∗finite. For unexplained notions
and results in nonstandard analysis, good references are the surveys in [ACH].
For model-theoretic topics, we refer to [CK].

§1. The principle ∆0.
Let us recall some basic algebraic notions. Let 〈P,≤〉 be a partially ordered set
(poset). 2 A subset D ⊆ P is dense if for each p ∈ P there exists d ∈ D with
d ≤ p. A subset F ⊆ P is a filter if (i) p′ ≥ p ∈ F implies p′ ∈ F (upward
closure) and (ii) p, p′ ∈ F implies q ≤ p, p′ for some q ∈ F (compatibility). We
now borrow a combinatorial notion from the forcing tecnique in set theory, and
transfer it into the nonstandard analysis context. Let P be an internal poset.
We say that a filter G ⊆ P is generic if G ∩ D 6= ∅ for each internal dense
D ⊆ P . Now, consider the following generic filter property ∆0 for nonstandard
models.

∆0 : Each internal poset has a generic filter.

In §3, we will show that there is plenty of nonstandard models where ∆0 holds.
1Recall that a base set A is a set which behaves as a set of atoms with respect to its

superstructure, i.e. a ∩ x = ∅ for all a ∈ A and x ∈ V (A).
2Abusing notation, sometimes we shall identify P with 〈P,≤〉.

2



Before going to applications, let’s see a sample of poset we will be considering
throughout the paper. For internal sets A and B, denote by

F(A, B) = {f : f is an internal partial function from A to B}
and set f ≤ g if f is an extension of g. 3 Clearly, if A and B are internal,
the poset 〈F(A,B),≤〉 is internal as well. One can think of each f ∈ F(A,B)
as a piece of information concerning a total function Φ : A → B. In this
sense, f ≤ g means that f gives more information about Φ than g does. Now,
let F be any filter on F(A, B). By definition of filter, it is easily seen that⋃

F =
⋃{f : f ∈ F} is (the graph of) some partial function from A to B. In

other words, pieces of information provided by elements of a filter F ⊆ F(A,B)
are compatible with each other, so that they can be consistently put together.
We now give a number of applications of ∆0. These results have been already
proved by assuming the isomorphism property IP. However, as ∆0 is strictly
weaker than IP, our proofs yield stronger theorems. 4 Also, note that in all the
proofs appeared so far in the literature an essential use of the formalism of first
order logic is made, and technical results from model theory are employed. On
the contrary, proofs from ∆0 have an algebraic flavour, they are often definitely
shorter and (our opinion) they seem to be easier and closer to intuition.
In the following, when we say that ∆0 implies a property ψ, we mean that ψ is
true in any nonstandard model where ∆0 holds. References to proofs of related
results are given for each of the presented applications.
Let 〈A,≤〉 be a poset. For each a ∈ A, denote by Sa = {x ∈ A : x < a} the
initial segment generated by a and denote by Ta = {x ∈ A : x 6≥ a} ⊇ Sa. Note
that a ≤ a′ implies Sa ⊆ Sa′ and Ta ⊆ Ta′ . If 〈A,≤〉 is linearly ordered, then
trivially Sa = Ta.

Proposition 1.1 ([Ro] Th.5.1; [J1] Th.6; [JS] Appl.3)
Assume ∆0. Let 〈A, <〉 be an internal poset without right end-point. Then there
exists an external set X ⊂ A such that X ∩ Sa is internal for each a ∈ A.

Proof. Let P = {f ∈ F(A, {0, 1}) : dom(f) ⊆ Ta for some a ∈ A}. For
each a ∈ A let Λa = {f ∈ P : Sa ⊆ dom(f)}, and for each internal B ⊆ A
let ΓB = {f ∈ P : ∃ a ∈ dom(f) f(a) 6= χB(a)}, where χB : B → {0, 1}
is the characteristic function of B. If f ∈ P with dom(f) ⊆ Ta′ , define g =
f ∪ {〈x, 0〉 : x ∈ Sa \ dom(f)}. g ⊇ f is an internal function with dom(g) =
dom(f) ∪ Sa ⊆ Ta′′ where a′′ = a if a ≥ a′, and a′′ = a′ if a 6≥ a′ respectively.
Thus g ∈ Λa and g ≤ f . This proves that each Λa is dense in P . Proceed
similarly to show that also each ΓB is dense. If G is a generic filter on P , then
F =

⋃
G is a partial function. For each a ∈ A, take a′ > a. As G ∩ Λa′ 6= ∅,

3In the usual axiomatic set theory, a function is its graph. Thus, a partial function f from
A to B is a subset f ⊆ A × B such that if 〈a, b〉 ∈ f and 〈a, b′〉 ∈ f , then a = a′. f is an
extension of g if f ⊇ g.

4In [DH] it is proved that, for any given cardinal κ, there are nonstandard models where
∆0 + κ-saturation holds but IP fails.
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clearly a ∈ Sa′ ⊆ dom(f). Thus dom(F ) = A and F : A → {0, 1} is the
characteristic function of some X ⊆ A. X is external because for every internal
set B, ΓB ∩ G 6= ∅ implies B 6= X. For each a ∈ A, take f ∈ G ∩ Λa. Then
X ∩ Sa = {x ∈ dom(f) : x ∈ Sa and f(x) = 1} is internal. a
Corollary 1.2
Assume ∆0. There exists an external X ⊂ ∗IN such that X ∩ [0, ξ] is internal
for each ξ ∈ ∗IN.

If f is any function, and X ⊆ dom(f), we denote by fdX = {〈x, f(x)〉 : x ∈ X}
its restriction to X. If f is 1-1 and Y ⊆ ran(f), we denote by f−1dY =
{〈x, f(x)〉 : f(x) ∈ Y } its co-restriction to Y .

Proposition 1.3 ([He] Th.1.8; [Ro] Th.6.1; [JS] Appl.4)
Assume ∆0. Let A and B be internal ∗infinite sets. Then there exist bijections
ϕ,ψ : A → B such that:
(i) for all ∗finite a ⊂ A and b ⊂ B, the restrictions ϕda and ϕ−1db are internal
functions;
(ii) for all a ⊂ A and b ⊂ B such that A\a and B\b are ∗infinite, the restrictions
ψda and ψ−1db are internal functions.

Proof. Let P = {f ∈ F(A,B) : f is ∗finite and 1-1}. For each ∗finite a ⊂ A
let Λa = {f ∈ P : a ⊆ dom(f)}, and for each ∗finite b ⊂ B let Γb = {f ∈ P :
b ⊆ Range(f)}. Consider the following standard property.

”Let X and Y be infinite sets and let π = {f ∈ F(X × Y ) :
f is a finite 1-1 function} be partially ordered by reverse inclusion.
Then for all finite x ⊂ X and y ⊂ Y , λ(x) = {f ∈ P : x ⊆ dom(f)}
and γ(y) = {f ∈ P : y ⊆ Range(f)} are dense in π”.

By transfer, one gets that all Λa and Γb are dense in P . Take G a generic filter
on P . Then ϕ =

⋃
G : A → B is a bijection which satisfies (i). To prove

(ii), proceed similarly by considering P ′ = {f ∈ F(A, B) : f is 1-1 and both
A \ dom(f) and B \ ran(f) are ∗infinite} instead of P . a
Corollary 1.4 ([Ro] Lemma 3.1)
Assume ∆0. Any two ∗infinite internal sets have the same external cardinality.

Proposition 1.5 ([Ro] Th.4.5; [J1] Th.5; [JS] Appl.2)
Assume ∆0. Let 〈A,≤〉 and 〈B,≤〉 be internal linear orders without right end-
points. Then there is an order-preserving cofinal map ϕ : A′ → B where A′ ⊆ A
is cofinal. Moreover, if 〈B,≤〉 is dense, one can take A′ = A.

Proof. By a straightforward application of the transfer principle, one gets the
following fact. For every a ∈ A and for every b ∈ B, the sets Λa = {f ∈ P : a′ ≥
a for some a′ ∈ dom(f)} and Γb = {f ∈ P : b′ ≥ b for some b ∈ ran(f)} are dense
in the internal poset P = {f ∈ F(A, B) : f is ∗finite and order-preserving}.
Moreover, if 〈B,≤〉 is dense without end-points, then also each Λ′a = {f ∈ P :
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a ∈ dom(f)} is dense in P . If G is a generic filter on P , then F =
⋃

G is a map
with the desired properties. a
Corollary 1.6
Assume ∆0. If 〈A,≤〉 and 〈B,≤〉 are internal linear orders without right end-
point, then they have the same cofinality.

Proposition 1.7
Assume ∆0. Let 〈B,≤〉 be an internal linear order without right end-point.
Then there is an order-preserving cofinal map F : ∗IN → B.

Proof. Consider the internal poset P = {f ∈ F(∗IN, B) : f is order-preserving
and dom(f) = [0, ξ] for some ξ ∈ ∗IN}. For all a ∈ A and b ∈ B, the internal sets
Λa = {f ∈ P : a ∈ dom(f)} and Γb = {f ∈ P : b′ ≥ b for some b′ ∈ ran(f)} are
dense in P . In fact, let f ∈ P with dom(f) = [0, ξ]. If b > f(a) for every a ≤ ξ,
then g = f ∪{〈ξ+1, b〉} ≤ f and g ∈ Γb. Now suppose a /∈ [0, ξ]. Apply transfer
to the following standard property. ”Let 〈X, <〉 be a linear order without right
end-point. Then for each x ∈ X there is an order-preserving map θ : IN → X
with θ(0) > x”. Pick an internal order-preserving map Θ : ∗IN → B with
Θ(0) > f(ξ) and define g = f ∪ {〈ξ + η + 1, Θ(η)〉 : 0 ≤ η ≤ a − ξ − 1}. Then
g ≤ f and g ∈ Λa. If G is a generic filter on P , then

⋃
G is the map for which

we are looking. a
Proposition 1.8
Assume ∆0. If 〈A,≤〉 and 〈B,≤〉 are dense internal linear orders without end-
points, then they are isomorphic.

Proof. Proceed as in the proof of Proposition 1.5: the density of A and B
implies that the internal sets Λ′a = {f ∈ P : a ∈ dom(f)} and Γ′b = {f ∈ P :
b ∈ Range(f)} are dense in P for all a ∈ A and all b ∈ B. a
An initial segment X ⊆ F of an ordered field F is a regular gap if it is upper
bounded without least upper bound, and for every positive ε ∈ F , there is
some x ∈ X with x + ε /∈ X. An ordered field without regular gaps is called
Scott-complete.

Proposition 1.9 ([Ka] Th.4.5)
Assume ∆0. For every ξ, η ∈ ∗IR with ξ < η, there exists a regular gap X such
that ξ ∈ X < η. 5

Proof. Let the internal set P = {[A,B] closed (nonempty) interval: ξ < A <
B < η} be partially ordered by inclusion, and let G be a generic filter on P .
We claim that the initial segment X = {x ∈ ∗IR : x < A for some [A, B] ∈ G}
is a regular gap with the desired properties. Clearly ξ ∈ X. Note that if
x ≥ B for some [A, B] ∈ G, then x /∈ X (if, by contradiction, x < A′ for
some [A′, B′] ∈ G, then B ≤ x < A′ ⇒ [A,B] ∩ [A′, B′] = ∅, against the filter

5By X < η we mean x < η for all x ∈ X.
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property of G). In particular, X < η and X is upper bounded. For each a ∈ ∗IR,
Λa = {[A,B] ∈ P : a /∈ [A,B]} is dense in P , so a /∈ [A,B] for some [A,B] ∈ G,
and a cannot be the least upper bound of X. At last, for every positive ε ∈ ∗IR,
it is easily seen that Γε = {[A,B] ∈ P : B − A < ε} is dense, so there is
[A, B] ∈ G with B − A < ε

2 . Clearly x = A − ε
2 ∈ X but x + ε /∈ X. This

completes the proof that X is regular. a

§2. The principle ∆1.
Sometimes a set which is not dense in a poset P can be dense with respect to
some subset of P . For instance, let A and B be infinite ∗finite sets and consider
P = {f ∈ F(A,B) : f is 1-1}. If the internal cardinality |A| < |B|, then for
no a ∈ A, the set Λa = {f ∈ P : a ∈ dom(f)} is dense in P . However, if we
consider the subset Q = {f ∈ P : f is finite } ⊂ P , then each Λa ∩Q is dense in
Q. We say that a set D is Q-dense if D∩Q is dense in Q. If D is any collection,
we say that a filter G is D-generic if G∩D 6= ∅ for all D ∈ D. We now generalize
∆0 and introduce the principle ∆1.

∆1 : Let P be an internal poset, and let {Dξ : ξ ∈ ∗IN} be an
internal collection. Denote by D =

⋃{Dn : n ∈ IN}. If there is a
nonempty subset Q ⊂ P such that every D ∈ D is Q-dense, then
there exists a D-generic filter G on P .

In particular, a D-generic filter exists for every internal collection D of Q-dense
subsets (trivially, consider the constant internal sequence Dξ = D for all ξ ∈
∗IN). We remark that, assuming ℵ1-saturation, any countable sequence {Dn :
n ∈ IN} of internal sets can be extended to an internal sequence {Dξ : ξ ∈ ∗IN},
but this fact does not hold not in general. 6 In the last section it is shown that
∆1 is equivalent to Henson’s isomorphism property for finite languages.
By assuming ∆1, the result in Proposition 1.5 can be improved (no density
hypothesis is needed).

Proposition 2.1 ([Ro] Th.4.5; [J1] Th.5; [JS] Appl.2)
Assume ∆1. If 〈A,≤〉 and 〈B,≤〉 are internal linear orders without right end-
points, then there is an order-preserving cofinal map ϕ : A → B.

Proof. Consider the internal poset P = {f ∈ F(A,B) : f is ∗finite and order-
preserving} and let Q = {f ∈ P : ∀a, a′ ∈ dom(f) with a < a′, the open interval
(a, a′) is infinite}. We claim that D = {Λa : a ∈ A} ∪ {Γb : b ∈ B} is a family
of Q-dense subsets, where Λa = {f ∈ P : a ∈ dom(f)} and Γb = {f ∈ P : b′ ≥ b
for some b′ ∈ ran(f)}. Let f ∈ Q be given. Since f is ∗finite, there is a greatest
element ã in the domain of f . Now let a ∈ A, and assume a > ã (otherwise
the proof is trivial). Pick an unbounded ξ ∈ ∗IN. As B has no last element,

6Clearly, in presence of ℵ1-saturation, ∆1 is conveniently reformulated this way: “Let P
be an internal poset and let D be a countable union of internal sets. If there is a nonempty
subset ... etc.”
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one can find an internal collection {f(ã) < b0 < b1 < . . . < bξ} of elements
of B. Then f ′ = f ∪ {〈a, bξ〉} ∈ Λa ∩ Q. Now, if b ∈ B, find an internal
collection {b < b′0 < b′1 < . . . < b′ξ} similarly as above. Pick a′ > ã and let
f ′ = f ∪ {〈a′, b′ξ〉}. Then clearly f ′ ∈ Γb ∩ Q. If G is a D-generic filter, then⋃

G : A → B is the desired cofinal map. a
Proposition 2.2 ([He] Th.1.7)
Assume ∆1. If A and B are two infinite internal sets then there is a bijection
ϕ : A → B such that, for every subset a ⊆ A, a is internal if and only if its
image ϕ[a] = {ϕ(x) : x ∈ a} is internal.

Proof. Consider the internal set

P = {f ∈ F(PI(A),PI(B)) : f is 1-1,
dom(f) and ran(f) are partitions of A and B respectively,
and ∀a ∈ dom(f) a is a singleton ⇔ f(a) is a singleton}.

and define the following internal partial order on P : f ≤ g ⇔ dom(f) is a
refinement of dom(g) and g(a) =

⋃{f(c) : c ∈ C} whenever a =
⋃

C ∈ dom(g)
for some internal C ⊂ dom(f). 7 Now, let Q = {f ∈ P : f is finite and
∀a ∈ dom(f) either a and f(a) are both infinite or they have the same finite
cardinality} and consider sets Λa = {f ∈ P : a =

⋃
C for some internal

C ⊆ dom(f)} and Γb = {f ∈ P : b =
⋃

C for some internal C ⊆ ran(f)}. Then
all elements in D = {Λa : a ∈ PI(A)} ∪ {Γb : b ∈ PI(B)} are Q-dense. In fact,
let f ∈ Q and a ∈ PI(A) be given. Define a function g with dom(g) = {a′ ∩ a :
a′ ∈ dom(f)} ∪ {a′ \ a : a′ ∈ dom(f)} as follows. If a′ ∩ a and a′ \ a are both
infinite, pick an internal b ⊆ f(a) such that b and f(a) \ b are both infinite, and
define g(a′∩a) = b and g(a′\a) = f(a)\b. If at least one of the two sets is finite,
let’s say |a′ ∩ a| = n, pick b ⊆ f(a) with |b| = n and define g(a′ ∩ a) = b and
g(a′ \ a) = f(a) \ b. Note that a =

⋃
C where C = {a′ ∩ a : a′ ∈ dom(f)} is an

internal subset of dom(g). Clearly, g ∈ Λa ∩Q and g ≤ f , hence Λa is Q-dense.
The proof that each Γb is Q-dense is similar. Now, let G be a D-generic filter on
P . It is straightforwardly proved that

⋃
G = Φ : PI(A) → PI(B) is a bijection.

Since a is a singleton if and only if Φ(a) is a singleton, we can define a map
ϕ : A → B by setting ϕ(x) = y if and only if Φ({x}) = {y}. ϕ is the bijection
with the desired properties. a
Corollary 2.3
Assume ∆1. All infinite internal sets have the same cardinality.

Proposition 2.4 ([He] Th.1.7)
Assume ∆1. If A and B are infinite internal sets, then there exists a bijection
ϕ : A → B such that, for every subset a ⊆ A, a is internal ⇔ either ϕ[a] or
B \ ϕ[a] is ∗finite.

7A partition τ is a refinement of π if every x ∈ π is union of elements in τ .
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Proof. Let P ′(B) = {b ∈ PI(B) : either b or B \ b is ∗finite}. The proof goes
as in the previous proposition, except that one considers the following poset P ′

instead of P :

P ′ = {f ∈ F(PI(A),P ′(B)) : f is 1-1,
dom(f) and ran(f) are partitions of A and B respectively,
and ∀a ∈ dom(f) a is a singleton ⇔ f(a) is a singleton}.

a
An initial segment U ⊂ ∗IN is an additive cut if x + y ∈ U for all x, y ∈ U . Any
additive cut U ⊂ [0, N ] yields a topology on the interval [0, N ]. Precisely, a
subset A ⊆ [0, N ] is U -open iff for every a ∈ A there is ξ ∈ [0, N ] \ U such that
[a− ξ, a + ξ] ⊆ A. The U -open sets form the U -topology. An U -meager set is a
set which is meager in the U -topology. An additive cut U ⊆ [0, N ] is a good cut
if there is a U -meager set of positive Loeb measure. A bad cut is an additive
cut which is not good. We refer the interested reader to [KL], where the above
notion of U -topology is introduced and studied. See also [J4].

Proposition 2.5 ([J4] Th.4)
Assume ∆1. Then for every unbounded N ∈ ∗IN, there is a bad cut U ⊂ [0, N ].

Proof. We shall use the following characterization proved in [KL].

An additive cut U ⊂ [0, N ] is a bad cut if and only if for every
U -crossing sequence f : [0, M ] → ∗IN, the sum

∑
x<M

f(x)
f(x+1) is

unbounded.

Recall that a U -crossing sequence f is a strictly increasing internal function
defined on an initial segment of ∗IN such that, for every u ∈ U , there is some
ξ ∈ dom(f) with u < f(ξ) ∈ U . Now let an unbounded N be given, and let
P = {(A,B) open interval: 0 ≤ A < B ≤ N} be partially ordered by inclusion.
Consider Q = {(A,B) ∈ P : A/B ∼ 0}. We shall show that Λa = {(A,B) ∈
P : a + a ≤ A or a ≥ B} is Q-dense in P for each a ∈ ∗IN. Let (A, B) ∈ Q be
given. We need to find (A′, B′) ∈ Q ∩ Λa with (A′, B′) ⊆ (A,B). If a + a ≤ A,
already (A,B) ∈ Λa; and if a+a ≥ B, let A′ = A and B′ = B/2. We are left to
consider the case A < a + a < B. Since A

B = A
a+a · a+a

B ∼ 0, at least one of the
two factors is infinitesimal. If A

a+a ∼ 0, let A′ = A and B′ = a, and if a+a
B ∼ 0,

let A′ = a + a and B′ = B. It is easily seen that (A′, B′) ∈ Q ∩ Λa. We now
claim that for each strictly increasing internal function f : [0,M ] → ∗IN such
that

∑
x<M

f(x)
f(x+1) is bounded, the set Γf = {(A,B) ∈ P : ran(f)∩ (A,B) = ∅}

is Q-dense. Let (A,B) ∈ Q and f be as above. If ran(f)∩ (A,B) = ∅ the thesis
is trivial. Otherwise, consider ε = min{ f(x)

f(x+1) : [f(x), f(x+1)] ⊆ (A,B)}. Such
a least element exists because f is ∗finite, and moreover ε ∼ 0. To prove this
latter fact, we distinguish two cases. First, let us assume that ran(f)∩ (A,B) =
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{f(ξ) < f(ξ+1) < · · · < f(ξ+m)} is finite. Then m·ε ≤ f(ξ)
f(ξ+1) · · · f(ξ+m−1)

f(ξ+m) =
f(ξ)

f(ξ+m) < A/B ∼ 0 implies ε ∼ 0. In case ran(f) ∩ (A,B) is infinite, i.e. if m

is unbounded, then m · ε ≤ ∑
i<m

f(ξ+i)
f(ξ+i+1) ≤

∑
x<M

f(x)
f(x+1) is bounded, hence

ε ∼ 0. Pick η ∈ {ξ < ξ +1 < . . . < ξ +m−1} with ε = f(η)
f(η+1) and let A′ = f(η)

and B′ = f(η + 1). Then clearly (A′, B′) ⊆ (A,B) and (A′, B′) ∈ Γf ∩Q. Now
define D0 = {Λa : a ∈ ∗IN} and, for ξ ≥ 1, let Dξ = {Γf : f : [0, M ] → ∗IN is
a strictly increasing internal function such that

∑
x<M

f(x)
f(x+1) ≤ ξ}. We proved

above that every set in D =
⋃{Dn : n ∈ IN} is Q-dense. Thus there is a D-

generic filter G on P . We claim that the initial segment U = {u ∈ ∗IN : u ≤ A
for some (A,B) ∈ G} is the desired bad cut. It is straightforwardly seen that
G ∩ Λa 6= ∅ for each a ∈ ∗IN implies that U is an additive cut (note that
(A,B) ∈ G ⇒ B /∈ U). Besides, each strictly increasing internal function
f : [0,M ] → ∗IN such that

∑
x<M

f(x)
f(x+1) is bounded, is in Dn for some finite

n ≥ 1. Thus G ∩ Γf 6= ∅ and there is (A,B) ∈ G with ran(f) ∩ (A,B) = ∅.
Now, clearly A ∈ U and if f(ξ) > A then also f(ξ) > B, hence f(ξ) /∈ U . We
conclude that f cannot be U -crossing. a
The next result, first proved by David Ross by assuming the special model
axiom, is about Loeb measures.

Proposition 2.6 ([Ro] Th.5.5; [JS] Appl.1)
Assume ∆1. Let Ω be an internal set, A an internal algebra of subsets of Ω
containing all singletons, and µ : A → ∗IR an internal finitely additive measure.
If µ(Ω) is unbounded and µ({ξ}) is infinitesimal for each ξ ∈ Ω, then there is a
subset X ⊂ Ω such that:
(i) for all A ∈ A with µ(A) finite, A ∩X ∈ A has infinitesimal measure;
(ii) for all A ∈ A with A ⊇ X, µ(A) is unbounded.

Proof. Consider the internal poset P = {f ∈ F(Ω, {0, 1}) : f−1(0), f−1(1) ∈
A} and let Q = {f ∈ P : f−1(0) has finite measure and f−1(1) is a finite
set}. 8 For each ξ ∈ ∗IN, let Dξ = {Λξ(A) : µ(A) < ξ} ∪ {Γ(A) : µ(A) < ξ}
where Λξ(A) = {f ∈ P : A ⊆ dom(f) and µ(f−1(1) ∩ A) < 1/ξ} and Γ(A) =
{f ∈ P : f(a) = 1 for some a ∈ dom(f) \ A}. Note that {Dξ : ξ ∈ ∗IN} is an
internal family. Each set in D =

⋃{Dn : n ∈ IN} is Q-dense in P . In fact, given
f ∈ Q with µ(f−1(0)) < n ∈ IN, define g = f ∪ {〈a, 0〉 : a ∈ A \ dom(f)} and
h = f ∪{〈a′, 1〉} where a′ /∈ A∪dom(f). Then g ∈ Λn(A)∩Q, h ∈ Γ(A)∩Q and
g, h ≤ f . Now let G be a D-generic filter. Since G∩Λn({a}) 6= ∅ for each a ∈ Ω,⋃

G : Ω → {0, 1} is the characteristic function of some X ⊂ Ω. Now, let A ∈ A
be a given set of finite measure, let’s say µ(A) < m ∈ IN. As G ∩ Γ(A) 6= ∅,
clearly X 6⊆ A and this proves (ii). As for (i), take any f ∈ G ∩ Λm(A). Then
A ∩X = A ∩ f−1(1) ∈ A and µ(A ∩X) < 1/m. The latter inequality holds for
each standard k ≥ m as well, thus µ(A ∩X) is infinitesimal. a

8Abusing notation, we denoted f−1(0) = {a ∈ dom(f) : f(a) = 0}. Similarly for f−1(1).
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§3. The equivalence between ∆1 and the isomorphism property.
Let us first consider the problem of finding (a large class of) nonstandard models
where ∆0 holds. Denote by Z0 the set theory where the following axioms are
postulated:

Weak extensionality, empty set, pair, union, power set, bounded sep-
aration schema.

By weak extensionality we mean the following version of extensionality which
allows atoms.

∀x∀y [∃z ∈ x ∧ (∀t t ∈ x ↔ t ∈ y)] → x = y

The bounded separation schema is the separation schema where only bounded
formulas are considered. Note that if ∗ : V (X) → V (Y ) is any nonstandard
embedding, superstructures V (X) and V (Y ), as well as the internal submodel
I∗, are models of Z0. In general, the interpretation of the membership relation
symbol in a model M |= Z0 is not the real membership. Thus we need to
distinguish between an element A ∈ M and the collection AM = {a ∈ M :
M |= a ∈ A} of its M-elements. If M |= ”〈P,¹〉 is a poset”, we denote by
〈PM,≤〉, or simply by PM, the poset where, by definition, p ≤ q ⇔M |= p ¹ q.
We say that a model M |= Z0 satisfies the generic filter property ∆0 if for
every P ∈ M with M |= ”P is a poset”, there is a filter G on PM such that
G ∩ DM 6= ∅ whenever M |= ”D is a dense subset of P”. We remark that in
general G /∈ M, i.e. G 6= AM for all A ∈ M. In order to make this definition
of ∆0 consistent with the one given in §1, we agree on the following. When we
say that a nonstandard model 〈V (X), V (Y ), ∗〉 satisfies ∆0, we actually mean
that its internal submodel does.

Theorem 3.1
Any model of Z0 has an elementary extension of the same cardinality where ∆0

holds.

Proof. Let a model N |= Z0 be given (clearly N is infinite). For every n ∈ IN,
we define an elementary extension Mn ≺ Mn+1 and an element Gn

P ∈ Mn+1

for each P ∈ Mn with Mn |= ”P is a poset”, in such a way that the following
are satisfied.
(i) Mn+1 has the same cardinality as N .
(ii) Mn+1 |= ”Gn

P is a filter on P”.
(iii) If Mn |= ”D is a dense subset of P” then Mn+1 |= ”Gn

P ∩D 6= ∅”.
(iv) If Mn−1 |= ”Q is a poset” then Mn+1 |= ”Gn−1

Q ⊆ Gn
Q”.

Let M0 = ∅ be the empty structure and M1 = N . The elementary extension
∅ ≺ N trivially satisfies the thesis, because there is no G0

P to be defined. Now
assume Mn−1 and Mn have been defined that satisfy the desired properties.
Let Ln be the language containing the membership relation symbol, a constant
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symbol a for each element a ∈Mn and a constant symbol γP for each P ∈Mn

with Mn |= ”P is a poset”. Consider the following set Σn of Ln-sentences.

{ϕ(a1, . . . ,ak) : Mn |= ϕ(a1, . . . , ak)} ⋃
{”γP is a filter on P” : Mn |= ”P is a poset”} ⋃

{”γP ∩D 6= ∅” : Mn |= ”D is a dense subset of the poset P”} ⋃
{”g ∈ γQ” : Mn |= ”g ∈ Gn−1

Q ”}.

Each finite subset of Σn is realized in some expansion of Mn as a consequence
of the following fact, which is easily proved.

Given a poset P , a filter F ⊆ P , a finite numeber of elements
p1, . . . , pn ∈ F , and a finite number D1, . . . , Dk of dense subsets
of P , there is a (principal) filter G on P such that p1, . . . , pn ∈ G
and G ∩Di 6= ∅ for all i = 1, . . . , k.

By the completeness theorem and the downward Löwenheim-Skolem theorem,
there exists a model Mn+1 |= Σn of the same cardinality as Mn. Without loss
of generality, we can identify each element a ∈ Mn with the interpretation in
Mn+1 of the corresponding constant symbol a. Let Gn

P be the interpretation
in Mn+1 of the constant symbol γP . Then Mn ≺ Mn+1 is an elementary
extension and the desired properties are satisfied. We claim that the union
M =

⋃{Mn : n ∈ IN} of the elementary chain satisfies ∆0. By (i), M and N
have the same cardinality. If P ∈ M and M |= ”P is a poset”, then there is
some n ∈ IN with Mn |= ”P is a poset”. Let GP =

⋃{(Gm
P )Mn+1 : m ≥ n}.

It is easily seen that G is a filter on PM, as a consequence of (ii) and (iv).
Moreover, if M |= ”D is a dense subset of P”, then, by (iii), (Gm

P ∩D)Mm 6= ∅
for some m ≥ n, hence, by (iv), GP ∩DM 6= ∅. This completes the proof. a

Corollary 3.2
For every infinite set of atoms X, there is a nonstandard model 〈V (X), V (Y ), ∗〉
where ∆0 holds. Moreover, we can assume that the cardinality of the internal
submodel |I∗| = |V (X)|.
Proof. Every ω-superstructure over a set of atoms X is a model of Z0. Thus
Theorem 3.1 can be applied to the model S = 〈V (X),∈〉 to get an elementary
extension N Â S having the same cardinality as S and where ∆0 holds. Now
consider the submodel N t ⊂ N , the so-called truncation of N , whose universe
is N t = {b ∈ N : b ∈ a for some a ∈ S}. Note that |N t| = |S|. It is
straightforwardly proved that N t is a bounded elementary submodel of N . N t

is wellfounded because S only consists of finite levels in the cumulative hierarchy
over X. Now let π : N t → T be a Mostowski collapse where Y = π(X) is a
set of atoms. We can assume π(x) = x for all x ∈ X. One can easily verify
that T ⊆ V (Y ). The inclusion maps  : V (X) ↪→ N t and ı : T ↪→ V (Y )
are bounded elementary extensions (recall that bounded formulas are preserved
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under transitive models). If ∗ = ı ◦ π ◦ , then 〈V (X), V (Y ), ∗〉 is the desired
nonstandard universe. a
Let us now turn to the strength of the principle ∆1. Trivially ∆1 ⇒ ∆0. The
reverse implication does not hold, even in presence of saturation. In fact, it
is proved in [DH] that for any cardinal κ, there are κ-saturated nonstandard
models where ∆0 holds but ∆1 fails.
Recall that an L-structure A is internally presented provided its universe and
all A-interpretation of symbols in L are internal sets. For finite languages, an
internally presented structure is necessarily internal, but not in general. The
isomorphism property IP (κ), κ an infinite cardinal, was introduced by Ward
Henson in his 1974 paper [He].

IP (κ) : Let A and B be internally presented L-structures for some
first-order language L of cardinality less than κ. If A and B are
elementarily equivalent then they are isomorphic.

For any given κ, nonstandard models which satisfy IP (κ) can be constructed as
direct limits of chains of enlargements. Recently, several papers have appeared
in the literature about the isomorphism property and other similar strong satu-
ration principles (see Jin’s survey [J3]). In the sequel, we shall use an equivalent
formulation of IP (κ), namely the resplendency property RP (κ), which was iso-
lated by Renling Jin and Saharon Shelah in [JS].

RP (κ) : Let A be an internally presented L-structure for some
first-order language L of cardinality less than κ, and let X be a
new relation symbol. If Σ(X) is a set of L ∪ {X}-sentences which
is consistent with the theory of A, then Σ(X) is realized in A, i.e.
〈A, X 〉 |= Σ(X) for some relation X on A.

Theorem 3.3
IP (ℵ0) ⇒ ∆1.

Proof. Let P be an internal poset, ∅ 6= Q ⊆ P and {Dξ : ξ ∈ ∗IN} an internal
family such that every set in D =

⋃{Dn : n ∈ IN} is Q-dense. Consider the
structure A = 〈A; P, ∗IN, Θ, ∈, ¹, ≤〉 where the universe A = P ∪ PI(P ) ∪
PI(PI(P )) ∪ ∗IN; Θ : ∗IN → PI(PI(P )) is the internal mapping ξ 7→ Dξ; ¹ is
the partial order on P ; and ≤ is the usual linear order on ∗IN. Clearly A is
an internally presented structure for a finite language. Note that each standard
n ∈ IN is definable in A. That is, for each n ∈ IN there is an L-formula ϕn(x)
(having x as its only free variable) such thatA |= ϕn(a) ⇔ a = n. For simplicity,
we denote by ”D ∈ Dn” the L-formula ”∀x ϕn(x) → D ∈ Θ(x)”. Now, let X be
a new unary relation symbol and let Σ(X) be the set containing the following
(L ∪ {X})-sentences:

• ”X is a filter on P”
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• ”∀D ∈ Dn, D ∩X 6= ∅” (n = 0, 1, 2, . . .)

Note that 〈A, G〉 |= Σ(X) iff G is a D-generic filter on P . Thus, by RP (ℵ0),
it suffices to show that theory(A) ∪ Σ(X) is consistent. Apply the down-
ward Löwenheim-Skolem theorem and get a countable elementary submodel
〈A′, Q′〉 = 〈A′; P ′, N ′, Θ′, ∈′, ¹, ≤, Q′ 〉 of 〈A, Q〉. For simplicity, we iden-
tify each a ∈ A′ with the set aA

′
of its A′-elements. For every n ∈ IN,

denote by D′n = Θ′(n) and enumerate the (countably many) elements of
D′ =

⋃{D′n : n ∈ IN} = {Di : i ∈ IN}. We now define by induction a (weakly)
decreasing sequence {qi : i ∈ IN} ⊆ Q′ where qi ∈ Di for every i ∈ IN. Pick any
q′ ∈ Q′. Since D0 ∈ D′ ⊆ D, by the hypothesis 〈A, Q〉 |= ∃x ∈ Q ∩D0 x ¹ q′,
and so by transfer we get an element q0 ∈ Q′ ∩D0 with A′ |= q0 ¹ q′. For any
given qi ∈ Q′, this construction can be repeated to find an element qi+1 ∈ Q′∩Di

such that A′ |= qi+1 ¹ qi. Now, let X = {p ∈ P ′ : A′ |= p º qi for some i ∈ IN}
be the filter on P ′ generated by the sequence {qi : i ∈ IN}. Then X realizes
Σ(X) in A′, hence theory(A) ∪ Σ(X) is consistent. a
In the proof of the next theorem, we shall use the following general property of
nonstandard models.

Lemma 3.4
Every internal structure for a finite language is ℵ0-saturated.

Proof. Let A be an internal structure for some finite language L. Let
{a1, . . . , an} be a given finite subset of A and Σ(x) be a set of formulas in
the language L′ = L ∪ {c1, . . . , cn}, where c1, . . . , cn are new constant symbols.
Suppose that Σ(x) is consistent with the theory of A′ = 〈A, a1, . . . , an〉. We
have to show that Σ(x) is realized in A′ by some element a. By using an appro-
priate coding, we can identify each symbol in L′ and each L′-formula with an
element in V (∅), the collection of hereditarily finite sets. Recall that if ∗ is any
nonstandard embedding, then ∗a = a for each a ∈ V (∅) (this is easily proved
by induction on the finite rank of a). In particular, we can assume ∗ϕ = ϕ for
each L′-formula. If F denotes the set of all L′-formulas, by transfer one gets
an internal version |=i of the satisfaction relation for internal L′-structures. By
definition, |=i applies to internal formulas in ∗F ; however, by the above con-
siderations, we can assume that |=i and |= agree on standard formulas (equiv-
alently, on internal formulas of finite lenght). Now, Σ(x) = {σn(x) : n ∈ IN}
is a (possibly finite) countable set. Let χ : IN → F be the standard function
such that χ : n 7→ σ0(x) ∧ . . . ∧ σn(x), and consider its nonstandard extension
∗χ : ∗IN → ∗F . As a finite tuple of internal sets, A′ is internal, and so the
following is an internal property for ξ ∈ ∗IN. P (ξ) : “A′ |=i ∃x ∗χ(ξ)(x)”. By
hypothesis, P (n) holds for each standard n ∈ IN; thus by overspill, there is an
unbounded N ∈ ∗IN and an element a ∈ A such that A′ |=i

∗χ(N)(a). By
applying transfer to the following standard fact:

“For every n, m ∈ IN and for every L′-structure B,
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n < m ⇒ B |= ∀x [χ(m)(x) → χ(n)(x)]”

one getsA′ |= σ0(a)∧. . .∧σn(a) for all standard n ∈ IN. In particular, A′ |= Σ(a)
and the proof is completed. a

Theorem 3.5
∆1 ⇒ IP (ℵ0)

Proof. Let A and B be two internal structures for a finite language L, and
suppose they are elementarily equivalent. For each S ∈ L, denote by SA and
SB its interpretation in A and B respectively, and consider the following poset

P = {f ∈ F(A,B) : f is 1-1 and
for each constant symbol c ∈ L and for every a ∈ dom(f), a = cA ⇔ f(a) = cB;

for each n-ary function symbol F ∈ L and for every a1, . . . , an, a ∈ dom(f)
FA(a1, . . . , an) = a ⇔ FB(f(a1), . . . , f(an)) = f(a);

for each n-ary relation symbol R ∈ L and for every a1, . . . , an ∈ dom(f)
〈a1, . . . , an〉 ∈ RA ⇔ 〈f(a1), . . . , f(an)〉 ∈ RB}

P is internal because L is finite. Now let

Q = {f ∈ P : dom(f) = {a1, . . . , an} is finite and
〈A, a1, . . . , an〉 ≡ 〈B, f(a1), . . . , f(an)〉}

Note that Q is nonempty. In fact, trivially A ≡ B implies that the empty
function ∅ ∈ Q. Let D = {Λa : a ∈ A} ∪ {Γb : b ∈ B} where Λa = {f ∈ P :
a ∈ dom(f)} and Γb = {f ∈ P : b ∈ ran(f)}. D is an internal family of Q-dense
subsets, as a straight consequence of the following back-and-forth property.

If 〈A, a1, . . . , an〉 ≡ 〈B, b1, . . . , bn〉, then for each a ∈ A, there is
b ∈ B with 〈A, a1, . . . , an, a〉 ≡ 〈B, b1, . . . , bn, b〉. Vice versa, for each
b ∈ B, there is a ∈ A with 〈A, a1, . . . , an, a〉 ≡ 〈B, b1, . . . , bn, b〉.

The above property holds because, by previous lemma, both A and B are ℵ0-
saturated. Now pick G a D-generic filter on P . The union

⋃
G : A → B is the

desired isomorphism between A and B. a
A proof of IP (ℵ0) from ∆′

1 (a preliminary version of ∆1), was first indicated
to the author by Ward Henson during the Analog Congress and, independently
in written form, by Karel Hrbàc̆ek. Precisely, ∆′

1 is the (apparently) weakened
version of ∆1 where Q is a countable unions of internal sets. The idea that ∆′

1

could be strengthened to arbitrary external Q, and that the resulting principle
∆1 would still follow from IP (ℵ0), was suggested by Karel Hrbàc̆ek.
The proof of ∆′

1 ⇒ IPℵ0 goes as follows. For each N ∈ ∗IN, let FN be the
set of all internal L-formulas having quantifier rank at most N and whose free
variables are among x1, . . . , xN . Denote by ≡N the internal relation of ele-
mentary equivalence restricted to formulas in FN . By overspill, there is an
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unbounded N with A ≡N B. Let P be defined as in the above proof, and let
Q =

⋃{Qn : n ∈ IN} ⊆ P where

Qn = {f ∈ P : dom(f) = {a1, . . . , ak} with k ≤ n and
〈A, a1, . . . , ak〉 ≡N−n 〈B, f(a1), . . . , f(ak)〉}

Note that Q is nonempty because the empty function ∅ ∈ Q0. By applying the
internal version of the back-and-forth property of an Ehrenfeucht-Fraissé game,
it is proved that all sets Λa and Γb (defined as above) are Q-dense. 9 A generic
filter on P yields the desired isomorphism.
Renling Jin [J2] for κ = ℵ1 and James Schmerl [Sc] in the general case, proved
the equivalence IP (κ) ⇔ IP (ℵ0) + κ-saturation. This result, together with
Theorems 3.3 and 3.5, yields the

Corollary 3.6
For each infinite cardinal κ, the isomorphism property for languages of cardi-
nality less than κ is equivalent to ∆1 plus κ-saturation.

Several combinatorial principles in the style of ∆0 and ∆1 and their applications,
will appear in [DH].
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