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This paper considers the identification problem of multi-input-output-error autoregressive systems. A hierarchical gradient based
iterative (H-GI) algorithm and a hierarchical least squares based iterative (H-LSI) algorithm are presented by using the hierarchical
identification principle. A gradient based iterative (GI) algorithm and a least squares based iterative (LSI) algorithm are presented
for comparison. The simulation results indicate that the H-LSI algorithm can obtain more accurate parameter estimates than the

LSI algorithm, and the H-GI algorithm converges faster than the GI algorithm.

1. Introduction

System identification studies mathematical models of dy-
namic systems by fitting experimental data to a suitable
model structure [1, 2]. Many practical systems have multiple
inputs and multiple outputs such as chemical processes [3,
4], automation devices [5-7], and network communication
engineering [8-10]. For decades, much research has been per-
formed on the multivariable systems [11,12], and some typical
approaches for the parameter estimation of the multivariable
systems have been reported [I3], such as the canonical
approach [14], the iterative methods [15, 16], and the least
squares methods [17]. Recently, Panda and Vijayaraghavan
adopted the sequential relay feedback test to estimate the
parameter of the linear multivariable systems [18]. Jafari et al.
presented an iterative least squares algorithm to identify the
multivariable nonlinear systems with colored noises [19].

The multivariable systems contain both parameter vectors
and parameter matrices, and the systems inputs and system
outputs are relevant and coupled [20-22]. For the sake
of reducing the computational complexity, the hierarchical
identification principle is utilized to transform a complex sys-
tem into several subsystems and then to estimate the param-
eter vector of each subsystem [23, 24], respectively. In this
literature, Schranz et al. proposed a feasible hierarchical

identification process for identifying the viscoelastic model of
respiratory mechanics [25]. Xu et al. developed the parameter
estimation for dynamical response signals [26, 27].

The iterative methods have been widely applied in identi-
fying the parameters of linear or nonlinear systems [28-30].
Many iterative algorithms for system identification are based
on the gradient method [3l]and the least squares method
[32-35]. The basic idea of iterative methods is to update the
parameter estimates using batch data.

This paper focuses on the parameter estimation for
output-error autoregressive (OEAR) systems using the hier-
archical identification principle and the iterative identifica-
tion principle and presents a hierarchical gradient based
iterative (H-GI) algorithm and a hierarchical least squares
based iterative (H-LSI) algorithm. The key is to decompose
a multi-input OEAR system into two subsystems and then to
identify each subsystem. The work in [36, 37] discussed the
single-input single-output systems, but many practical sys-
tems have multiple inputs and multiple outputs with the
development of industrial technology. Compared with the
work in [36, 37], this paper discusses the parameter estima-
tion for multi-input OEAR systems and the presented H-
LSI algorithm can achieve higher estimation accuracy than
the LSI algorithm, and the H-GI algorithm also can achieve
higher estimation accuracy than the GI algorithm.
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The rest of this paper is organized as follows. Section 2
gives some definitions and the identification model of multi-
input OEAR systems. Section 3 presents a gradient based
iterative algorithm and a least squares based iterative algo-
rithm for multi-input OEAR systems. Section 4 derives a
hierarchical gradient based iterative algorithm. Section 5
derives a hierarchical least squares based iterative algorithm.
Section 6 provides two illustrative examples to demonstrate
the effectiveness of the proposed algorithms. Finally, conclud-
ing remarks are given in Section 7.

2. The Problem Formulation

Let us define some notation.

Symbols: meaning

1,: an n dimensional column vector whose entries are
all1

Do: a large positive constant, for example, p, = 10°
X the transpose of the vector or matrix X

IXI2: X017 = tr[XX"]

X == A: A defined as X

A max[X]: the maximum eigenvalue of the symmetric
real matrix X.

Consider the following multi-input-output-error type mod-
els:

y(m)= u; (1) +w(r), 6y

A()’

where y(r) € R is the system output, uj(‘r) e R, j =
1,2,...,r, are the system inputs, and w(r) € R is the colored
noise with zero mean. A i(2) and B ;(z) are polynomials in the

unit backward shift operator z ™', and

+azf

-1 -2
Aj(z)=1+ayz +apz +- in,

j
a; €R, (2)

- -2
B;(z) =b;z ! +bpz "+

“n,
+bjnjz i, b eR.

Assume that the orders »; are known, y(1) = 0, u; (T) =0,
and w(t) = 0 as 7 < 0. The colored noise w(t) can be fitted
by a moving average process

w(r)=D(2)v(1), 3)

or an autoregressive process

L 0, @
zZ

or an autoregressive moving average process

D (z)

w(r) = @

v(1), )
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where v(7) is the white noise with zero mean and C(z), D(z)
are polynomials in the unit backward shift operator z™:

c; €R,

Cz)=1+ clz_1 + czz_2 + c,,cz_"“, y

(6)

D(z)=1+ dlzf1 +dzz’2 +-~-+dndz’"d, d; eR.

This paper considers the colored noise to be an autoregressive
process, so the models in (1) can be taken as the multi-input
OEAR systems.

Define the intermediate variables:

xj(r):: uj(‘r), j=12,...,r. (7)

Aj (2)
From (4) and (7), we have
[1-C@]w(r)+v(r)

w(t) =

= —iqw(r—i) +v (1),
i=1

(8)
xj(1)=[1-4;@)]x; (1) +B; () u; (1)
J
Z [ a;x;(t—1i)+ bjiu]- (- i)] .
i=1
The output y(7) in (1) can be written as
r M
y(1) = ZZ [—aj,-x]- (r—1i)+ bﬁuj (r— i)]
j=1i=1
9)
- Zciw(r— i)+ v(r).
i-1
Define the parameter vectors as
0= [ST, CT]T eR", n=ny+n, ny= Zan,
=1
T of 71T 7,
9:=91,9,,....9;] eR™,
T (10)
9; = [ ap @5, bbby, | € R
j=12,...,1,
Ci= [CI,Q,...,CnC]T e R™
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and the information vectors as
o) =[¢" .y (@] er",
$@ =L (1), ¢] (0),....¢" D] eR™,

¢; (1) = [—xj(T—l),—xj(T—Z),...,

—x]-(‘r—nj),uj(‘r—1),u]-(T—2),...,uj(‘r—nj)]T (1)

c IRZn]-’
v = [~wE-1),-wE-2),...,~w(r-n)]"
€ R™.

According to the above definitions, (8) and (9) can be written
as

w@ =y (@ctv(), (12)

x;(1) = ¢]T (19, (13)

y(@)=Y¢ (09 +y" @)c+v(r)
j=1 (14)

=o' (M9+y  (D)c+v(D) =9 (1)0+v(1).

Equation (14) is the identification model of the multi-input
OEAR system.

3. The Gradient Based and Least Squares
Based Iterative Algorithm

Consider the data {u, (i), u, (i), ..., u, (i), y(i)} fromi = 71— p+
1 to i = 7 and define quadratic criterion function as

T

JO)= Y [y -9 ()]

i=T—p+1

2

(15)

Let k = 1,2,3,... be an iteration variable and ék(r) be the
estimate of @ at iteration k. Minimizing J(0) by using the
negative gradient search, we can obtain

0,0 =0, 0~ " Dgrad [ (8, )]
=0, (1) (16)

+u @ Y o) [y -9 0, ()],

i=T—p+1

where p (t) > 0 is an iterative step-size. Because the
information vector ¢(r) contains the unknown variables
x;(r = 1) and w(t — 1), we use the estimates X1 (T =) and
Wy_, (T —1i) at iteration k — 1 to replace the unknown variables
x; (t—i) and w(7—1); we can obtain the gradient based iterative

(GI) algorithm for estimating the parameter vector 0 of the
multi-input OEAR systems:

00 =0, c-Dru Y §0) [y -9 ()

i=T—p+1
'ak—l (T)] , k=1,2,...,
o) = [of 0. 9L 0]
-~ ~ ~ ~ T
(1) = [14 (0,85 @b (D]

¢ (1) = [-%je0 (=1, =%y (T-1)),

wy(r=1)s.u; (r=n))]"
V(@) = [0, (- 1), Ty (7-2),.00,
~w, (1-n)]",
R (=) =y (1-1) 9 (1), 1)

@y (r—i) = y(r—i) -y (1 —1) 9 (1),

Y e () (i)] ,

i=1-p+1

Y < 2/‘;nlax [
—~ —~ T
8.0 =[5 0. 0]
. . R . T
9 (1) =[0,,0,8,,,....8, @] ,

§j’k (T) = [ajl,k (T) > ajZ,k (T) e Ajnj,k (T) ’Ejl,k (T) ,
- ~ T
bjak (T) 5+ by ik (T)] ,

¢ ~ ~ ~ T

G (1) = [Cl,k (1),G4 (T)5- -5 Gy (T)] )

The convergence rate of the GI algorithm is slow. To improve
the convergence speed, we derive a least squares based
iterative (LSI) identification algorithm. Minimizing J (@) and
letting the derivative of J(8) with respect to € be zero give
the LSI identification algorithm for the multi-input OEAR
systems:

i=T—p+1 i=t—p+1

-1
§k<r>=l > @(i)@i(i)} [

> @(i)y(i)},

k=1,2,3,...,
—~ ~T T T
ACEFAORAGIE

. . N . T
$ (1) = [$1, (0. By (0o b (0]



b (0) = [ X (T= 1), =X (T 1)),
wj(r=1),.u;(r-n)]",

V(1) = [0, (1= 1), ~W, (1-2),...,
@, (r-n)]",

Rip(r—i) =y (T-0) 9,4 (1),

Wy (1—i) = y(r—i) - gy (r—1) 9 (1),

ACEEACEATI

80 = [0, (.85, (0.0 (0]

9, (0 = [@1k (0,800 (1)1 By 4 (1), By, (1),
b (7)- - by (T)]T ,

. N . . T
& (1) =[x (0,6, (1.5, (@]

(18)
4. The Hierarchical Gradient
Based Iterative Algorithm
Define intermediate variables:
7@ =y@ -y (@e (19)
7@ =y@-¢" (1)9. (20)

Using the hierarchical identification principle, the multi-
input OEAR system in (14) can be decomposed into two
fictitious subsystems:

y (@ =¢" ()9+v(7), (21)

y@ =y (@c+v(n). (22)

Next, we identify the parameters 9 and ¢ of each subsystem in
(21) and (22), respectively. Define quadratic criterion func-
tions as

LEo= Y [ni-¢" 09,

i=T—p+1

(23)
LEO= Y [ho-v 0.

i=7-p+1

Let §k(1) and ¢, (7) be the estimates of 9 and c at iteration k.
Using the negative gradient search and minimizing J, (9, ¢
and J,(9, ¢), we can obtain
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9 (1)
=9 @ (24)
(1) ipﬂ¢ @ 7 &) -¢" )9 0],
GG
G @ (25)

(D) Yy @) [ -y D&, @)

i=T—p+1

Here, p,, (1) and p,; (1) are the iterative step-sizes or conver-
gence factors. Substituting (19) into (24) and (20) into (25),
we can obtain

9 (1) = 9y (1) + pyyc (1)

i _ (26)
- Y b [y -y ()e-¢" (), (D],
i=T—p+1
C (1) =€y (1) + pyy (7)
(27)

Y vO[yH-¢"DI-v D, ()]

i=T—p+1

The parameter estimates §k(‘r) and €, (1) cannot be computed
by (26) and (27), because the information vectors ¢(7) and
(1) contain unknown variables x ;(7—i) and w(7—1), and the
parameter vectors 9 and ¢ in (26) and (27) are unknown. We
solve this problem by replacing the unknown variables x;(7 —
i) and w(r —1) with their corresponding estimates X k-1 (t—1)

and wy_, (r—i) atiteration k—1 and define the estimates $k(r)
and ¥, (7) at iteration k as

B0 = [B1, (0,80 (Do By (0] € R,

b (@)= [ (T- 1),
Ry (t-m) oy =D (r=m)] g
€ R™,

U, (1) = [~Wy (7= 1), ~Wpy (1-2),...,
~D, (r-n)]" eR™,

From (12) and (14), we have

x;(r—i)=¢; (1-i)9,
(29)
wr-i)=y(r-i)-¢ (t-i)9.
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Substituting ¢ j(‘r—i) and 9 f with their estimates (7) j’k(‘r—i) and

§j)k(‘r), we can get the estimates Ej)k(‘r — i) and Wy (7 — i) at
iteration k:

R (i) = by (T —1) 9, (1),
(30)

@k(‘r—i)=y(T—i)—(7>Z(T—i)§k(T)~

Replacing ¢(7), y(1) in (26) and (27) with their estimates
é,.(t) and ¥, (1), replacing c in (26) with its estimate ¢_, (),
and replacing 9 in (27) with its estimate §k (1), we have

(@) =9 M +u (@ Y ¢ )

i=T—p+1
PORACE O R A GI
(1)
G0 =G @)+ (D) Y YD)

i=T—p+1

1y - ©8@ -9 @e., @]

In order to guarantee the convergence of 9,(r) and ¢, (1), a
conservative choice is

ik (T) = po (7) = iy (7)

< max |:2/\;nlax i @k (i) J’Z (),
i=T-p+1 (32)

e O T D ()

i=T—p+1

At last, we can summarize the hierarchical gradient based
iterative parameter estimation (H-GI) algorithm for estimat-
ing ¥ and ¢ of the multi-input OEAR systems:

9.0 =9O+E@ Y &) [r®)-¢ ()
i=T-p+1 (33)

B (=P ()T, ()]

G =C @ +EO Y T [0 -0
i=7-p+1 (34)

9, (1) - ﬁz (1) €y (T)] ,

- . - - T
30 =[x 0.5 0,0 @] (35)

5
b (1) = [~%jpoy (T=1)e =Ky (T 1)), (7
. (36)
- 1),...,uj(‘r—nj)] ,
Wk (T) = [_mk—l (T - 1) a_mk—l (T - 2) )
. (37)
~Wy (t-n)]
R (=i =y (1= )9 (1), (38)
B (r—i)=y(r—i) - (r- )9, (1), (39)
7, () < max [m;}ax Y ) ),
i=T—p+1
! (40)
e Y TOFLO) |
i=7-p+1
. . R . T
9, =[8,,,9,,@,...8, @] , (41)
§j,k (7) = [ajl,k (1), i (7)o @y i (7) ’Ejl,k (1),
i i . (42)
bjz,k (T) > bjnj,k (T)] >
. . . N T
& (1) =[G4 (0,84 (0),...5, (D] . (43)

The steps of computing the parameter estimates 9, () and
¢;.(7) for the multi-input OEAR systems are as follows.

(1) Set the data length p, let T = p, and collect the
input-output data {u, (i), u,(i),...,u, (@), y(@) : i =

0,1,...,p—1}L

(2) Collect the input-output data {u; (1), u,(7), ..., u(7)}
and y(7).

(3) To initialize, let k = 1, 9,(1) = 1, /py, &(7) = 1,, /
Po> Xjo(r = i) = 1/pg, Wy(r — i) = 1/p, fori = 1,2,
... ,max[nj, n.].

(4) Form (Ej’k(‘r) and ¥, (7) by (36) and (37), and form
¢, (1) by (35).

(5) Choose a (1) satisfying (40) and update the esti-
mate §k(‘r) using (33) and €, () using (34).

(6) Read 9;(r) and 9;;(r) using (41) and (42) and
compute k‘j,k(‘r— i) using (38) and wy (7 —i) using (39).

(7) Give a small positive ¢ > 0. If ||§k(r) - I‘A)k_l(r)ll +
€, (1) —C,_ ()|l > &, increase k by 1and go to Step (4);
otherwise, obtain the parameters 9,(7) and ¢, () and
increase s by 1 and go to Step (2).

5. The Hierarchical Least Squares Based
Iterative Algorithm

The H-GI algorithm can produce higher parameter esti-
mation accuracy compared with the GI algorithm, but it



converges slowly. In order to solve this short board, we derive
a hierarchical least squares based iterative algorithm for the
multi-input OEAR systems.

Minimizing J; (9, ¢) and letting the partial derivative of
J, (9, ¢) with respect to 9 be zero and minimizing J, (9, ¢) and
letting the partial derivative of J,(9, ¢) with respect to ¢ be
zero, respectively, we can obtain the least squares estimate

9(1):

r -1
o) =| ¢(i>¢T<i>] [ Y </>(i)y1(i)], (44)
_i:r—p+1 i=T-p+1

PR 20RO

i=T-p+1

-1
l > V’(i))’z(i):|- (45)
i=7—p+1

Inserting (19) into (44) and (20) into (45) gives

-1

9(r) = [ Y ¢@¢" ()
i=t—p+1

(46)
{ Z ¢(i>[y(i>—wT<i)c]],
= )
€= [ Y vy
= )

{ Z w<i)[y<i)—¢T<i)s]}

i=T—p+1

The above estimates 9(1) and ¢(7) are impossible to compute,
since the right-hand side of (46) contains the unknown
parameter vector ¢ and the unknown information vectors ¢(i)
and (i) and the right-hand side of (47) also contains the
unknown parameter vector 9 and the unknown information
vectors ¢(i) and y(i). We solve this difficulty by replacing ¢ (i),
(i) with their estimates (7),((1'), ¥, (i) and replacing c in (46)
and 9 in (47) with their estimates ¢;_, (7) and §k(r). Then, we
can summarize the hierarchical least squares based iterative
(LSI) algorithm of estimating the parameter vectors 9 and ¢
as follows:

-1

9, (1) = [ y $k(i>$2<i>]
i=T-p+1 (48)

: { Y ) [y -F; e, (7)]] :
i=T—p+1
- -1

& (1) = [ PIRAGEAG)

i=T—p+1 (49)

[ > %(i)[y(z’)—&f(n?)k(r)]],

i=T—-p+1
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. . . . T
@) = (b1, .85 (Db )] (50)
;lgj,k (r) = [_fj,kq (r=-1),...,
. (51)
—fc]-,k_l (T—n]-),uj (tr - 1),...,uj (T—n]-)] ,
V(1) = [0, (t-1),-Wy_, (t-2),...,
. (52)
_mk—l (T - nc)] >
R (i) =y (1-0) 9 (@), (53)
G (r—i) = y(r—i) - (r—1) 9 (1), (54)
. . . . T
I (1) = [SlT,k (T),Sik (r),...,sik (T)] , (55)

The procedure for computing the parameter estimation
9,(7) and €, (1) is as follows.

(1) Give the data length p, let 7 = p, collect the
input-output data {u, (i), u,(i),...,u, (@), y(@) : i =
1,..., p— 1}, and give a small positive & > 0.

(2) Collect the input-output data {u; (1), u,(7), ..., u,(7)}
and y(1).

(3) To initialize, let k = 1, 3?]-’0(‘[ — i) = 1/py, Wo(T — 1) =
1/pg fori =1,2,...,max[n,n].

(4) Form (Ej‘k(r), Y, (1), and ¢, (1) by (51), (52), and (50),
respectively.

(5) Update the estimates §k(‘r) and ¢, (7) by (48) and (49)
and read 9, (1) by (55).

(6) Compute a?j)k('r) by (53) and wy () by (54).

D) I 19:(1) = 9o, @I + I6(1) - G @I > &
increase k by 1 and go to Step (4); otherwise, obtain
the parameters 9,.(7) and ¢, (1) and increase s by 1 and
go to Step (2).

6. Example

Example 1. Consider the following two-input OEAR system:
B, (z) B, (2)
A, (2) A, (2)

A(z)=1+a,z "+ alzz_2 =1+035z"

u, (1) +

u, (1) + v(T),

y(1) = @

+0.272 2,

B, (z) = b,z ' + b,z > =0.782"" —0.40z2,
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TABLE 1: The LSI parameter estimates and errors for Example 1.
k a1 v} by, by, 2 ary) by, by, G 8 (%)
1 -0.00174 0.00053 0.78866 —0.68631 0.00895 —0.00818 0.57027 0.61302 —0.00050 55.79849
2 0.35369 0.27184 0.78727 —0.40443 —0.17629 0.15694 0.55786 0.51059 0.27174 12.15009
3 0.35056 0.26746 0.78457 —0.40524 —0.19397 0.17507 0.56099 0.50495 0.38379 3.57156
4 0.35033 0.26820 0.78447 —0.40537 —0.18622 0.17255 0.56123 0.50724 0.38677 3.52725
5 0.35051 0.26838 0.78449 —0.40522 —-0.18616 0.16982 0.56117 0.50718 0.38644 3.58654
6 0.35054 0.26843 0.78450 —-0.40520 —-0.18807 0.17162 0.56114 0.50618 0.38616 3.53048
7 0.35054 0.26839 0.78449 —-0.40520 —-0.18776 0.17156 0.56117 0.50634 0.38641 3.52131
8 0.35053 0.26838 0.78449 —-0.40521 —-0.18765 0.17141 0.56116 0.50639 0.38639 3.52730
9 0.35053 0.26839 0.78449 —-0.40520 —-0.18771 0.17145 0.56116 0.50636 0.38637 3.52652
10 0.35053 0.26839 0.78449 —0.40520 -0.18771 0.17146 0.56116 0.50636 0.38638 3.52588
True values  0.35000 0.27000 0.78000 —0.40000 —0.20000 0.18000 0.56000 0.50000 0.43000
TaBLE 2: The H-LSI parameter estimates and errors for Example 1.
k a V) by, b, )| o by, by, G 0 (%)
1 —0.00165 0.00045 0.78903 —0.68649 0.00000 0.00000 0.57043 0.61368 0.04854 53.42619
2 0.33787 0.25774 0.78598 —-0.41664 -0.17740 0.16201 0.56029 0.50972 0.22291 15.77773
3 0.35202 0.26929 0.78458 —0.40359 —-0.18973 0.17231 0.56283 0.50476 0.39352 2.96102
4 0.35065 0.26837 0.78458 —0.40503 —0.18892 0.17175 0.56297 0.50464 0.44493 1.66301
5 0.35054 0.26835 0.78458 —0.40512 —0.18923 0.17183 0.56296 0.50444 0.44660 1.73488
6 0.35052 0.26832 0.78458 -0.40514 —0.18926 0.17188 0.56296 0.50442 0.44567 1.68306
7 0.35053 0.26833 0.78457 -0.40514 —0.18926 0.17187 0.56296 0.50443 0.44578 1.68902
8 0.35052 0.26833 0.78457 -0.40514 —-0.18926 0.17187 0.56296 0.50443 0.44578 1.68914
9 0.35052 0.26833 0.78457 -0.40514 —-0.18926 0.17187 0.56296 0.50443 0.44578 1.68894
10 0.35052 0.26833 0.78457 —-0.40514 —-0.18926 0.17187 0.56296 0.50443 0.44578 1.68898
True values  0.35000 0.27000 0.78000 —-0.40000 —0.20000 0.18000 0.56000 0.50000 0.43000
Ay (2)=1+ayz " +a,2° =1-020z" 0.6 F
+0.18272, 051
-1 -2 -1 -2 0.4+
B, (z) =byz +byz " =056z +0.50z 7,
§ 03
Cz)=1+¢z ' =1+043z", 0 H-ISI LS
0 = [‘111’ 12, by1, byys a1, 053, b5y, by, Cl]T 0.1}
=[0.35,0.27,0.78, -0.40, 0 . . H— : : : : :
0 1 2 3 4 6 7 8 9 10
~0.20,0.18, 0.56, 0.50, 0.43] .
(56) FIGURE 1: The GI estimation errors & versus k with different o°.

The inputs {u, (1), u,(7)} are taken as two persistent excitation
signal sequences with zero mean and unit variance and {v(7)}
asa ;/vhite noise sequence with zero mean and variance o° =
0.20°.

Take the data length L = 2000, applying the LSI algorithm
and the H-LSI algorithm to estimate the parameters of this
example system. The parameter estimates and their errors
of the LSI algorithm are shown in Table 1, the parameter
estimates and their errors of H-LSI algorithm are shown in
Table 2, and the parameter estimation errors of the LSI and
H-LSI algorithms versus k are shown in Figure 1.

From the simulation results in Tables 1 and 2 and Figure 1,
we can draw the following conclusions.

(i) The estimation errors given by the LSI algorithm
and H-LSI algorithm become smaller and smaller as
iteration variable k increases.

(ii) Under the same noise variance, the estimation errors
given by the H-LSI algorithm are lower than that
given by the LSI algorithm.
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TaBLE 3: The H-LSI parameter estimates and errors for Example 2.
k an &P by b, 9 by by, G 3 (%)
1 0.00000 0.00000 0.55541 —-0.78641 0.05229 -0.02811 0.59789 —-0.92588 0.01269 34.42173
2 0.14148 —-0.30660 0.55273 -0.70377 0.18346 —0.14142 0.60426 —-0.82256 0.58395 21.10705
3 0.19132 -0.23272 0.55125 -0.67866 0.21589 —-0.09534 0.60251 -0.80142 0.01985 19.82911
4 0.18954 —-0.24197 0.55162 -0.67979 0.21649 -0.09730 0.60299 —-0.80191 0.37416 5.32335
5 0.19059 -0.23897 0.55155 —-0.67915 0.21666 —-0.09655 0.60291 -0.80167 0.27810 1.93353
6 0.19032 -0.23977 0.55157 -0.67931 0.21662 -0.09670 0.60293 -0.80172 0.30098 1.11341
7 0.19039 —-0.23956 0.55157 -0.67927 0.21663 -0.09667 0.60293 -0.80171 0.29514 1.17583
8 0.19037 -0.23961 0.55157 -0.67928 0.21662 —-0.09668 0.60293 -0.80171 0.29664 1.14596
9 0.19038 -0.23960 0.55157 -0.67928 0.21662 —-0.09667 0.60293 -0.80171 0.29625 1.15289
10 0.19038 -0.23960 0.55157 -0.67928 0.21662 —0.09668 0.60293 -0.80171 0.29635 1.15101
True values  0.18000 —-0.25000 0.55000 —-0.68000 0.22000 —-0.10000 0.60000 —-0.80000 0.30000
TABLE 4: The H-GI parameter estimates and errors for Example 2.
k 91 ob) by, by, ) by, by, G 9 (%)
1 0.06363 —-0.03646 0.51672 —-0.72852 0.01182 -0.03937 0.54579 —-0.85581 0.00627 31.71160
2 0.17357 -0.19236 0.53839 —-0.74274 0.14494 -0.16525 0.57604 —-0.89230 0.09049 18.71188
5 0.18370 -0.23560 0.55059 —-0.69456 0.15382 -0.14339 0.59693 —-0.85356 0.09666 15.92395
10 0.18597 -0.24230 0.55243 —-0.68240 0.17824 -0.12609 0.60144 -0.83140 0.10937 14.08831
20 0.18821 -0.24117 0.55225 —-0.68049 0.20204 -0.10795 0.60193 -0.81289 0.13405 11.85943
50 0.18994 —-0.23981 0.55225 —-0.67953 0.21588 -0.09733 0.60184 —-0.80231 0.18766 8.00236
True values  0.18000 -0.25000 0.55000 —-0.68000 0.22000 —-0.10000 0.60000 —-0.80000 0.30000
TaBLE 5: The H-GI parameter estimates and errors for Example 2.
k an V) by b, 2] by by, G 6 (%)
1 0.02264  —0.01297 018381  —0.25916  0.02264  —0.01297 019416  —0.30444  0.00295  68.31458
2 0.09666  -0.06071 034760  —-0.48848 010932  —0.05447 036923  —0.57459  0.28748  34.49578
5 024231 019630 053350 —0.64647 022618  —0.09991 057665 —-0.77609  0.33914 735051
10 023004  -020855 055156  —-0.65412 022289  -0.09268 059940  —0.79531  0.33141 544993
20 021210  -0.22233 055260 -0.66565  0.21857  —-0.09528  0.60089  —-0.80002 031890  3.45097
50 019366  —-0.23682 055262 —-0.67729 021663  -0.09677  0.60117 ~ —0.80156  0.29411 147162
True values 018000  —0.25000  0.55000  —0.68000  0.22000  —0.10000  0.60000  —0.80000  0.30000
(iii) The estimation accuracy of the H-LSI algorithm is B, (2) = byz ' +byz* =040z - 09027,
close to their true values; this indicates that the
proposed algorithm can effectively identify the multi- C@)=1+¢z ' =1+041z"",
input OEAR systems.
T
0 =la;,,a1,,b1,b,,05,,05,,b,,, by, ¢ =1[0.30,
Example 2. Consider the following another two-input OEAR (12,812 b11, Bz B B b b ] =
system: -0.20,0.55,-0.80, 0.20, -0.10, 0.40,
B, (2) B, (2) 1
T) = u (1) + ——u, (1) + v(T), T
y &) A, (2) 10 A, (2) 2(7) C(z) ® -0.90,0.41]".
1 -2 -1 (57)
A, (g)=1+a,2 +a,z =1+0.30z ) ) o
The simulation conditions are the same as that of Example 1,
~0.20z72, and the noise variance o> = 0.20>. Take the data length
L = 3000. Applying the GI algorithm and the H-GI
B,(2) = b,z ' +byz 2 =0.552"" - 0.80z 2, algorithm to estimate the parameters of this example sys-

A,(z) =1+ 61212_1 + azzz_2 =1+0.20z""

-0.10z 2,

tem, the simulation results are shown in Tables 3-5 and
Figure 2.

From the simulation results in Tables 3-5 and Figure 2,
we can draw the following conclusions.
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(i) Under the same noise variance and data length, the
H-GI algorithm has less estimation errors than the
GI algorithm. This shows that the H-GI estimation
algorithm can obtain more accurate estimates than
the GI algorithm.

(ii) As the iteration variable k increases, the H-GI param-
eter estimates are very close to their true values.

(iii) The proposed H-GI algorithm requires more itera-
tions than the H-LSI algorithm to achieve almost
same estimation accuracy.

7. Conclusions

Combining the iterative technique and the hierarchical iden-
tification principle, a H-GI algorithm and a H-LSI algorithm
are derived for identifying the multi-input OEAR systems.
Compared with the GI algorithm, the H-GI algorithm can
generate more accurate parameter estimates. Compared with
the H-GI algorithm, the H-LSI algorithm has faster con-
vergence speed. The proposed methods can be extended to
discuss the parameter estimation of the multi-input-output
systems with colored noise [38-42] and time-delay systems
[43, 44], such as network and signal processing [45-52].
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