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A simple and natural introduction to the concept and formalism of spontaneous

wave function collapse can and should be based on textbook knowledge of standard

quantum state collapse and monitoring. This approach explains the origin of noise

driving the paradigmatic stochastic Schrödinger equations of spontaneous localiza-

tion of the wave function Ψ. It reveals, on the other hand, that these equations are

empirically redundant and the master equations of the noise-averaged state ρ̂ are the

only empirically testable dynamics in current spontaneous collapse theories.

I. INTRODUCTION

“We are being captured in the old castle of standard quantum mechanics. Sometimes we

think that we have walked into a new wing. It belongs to the old one, however” [1].

Year 1986 marked the birth of two theories, prototypes of what we call theory of spon-

taneous wave function collapse. Both the GRW paper published in Physical Review D [3]

followed by Bell’s insightful work [4] and the author’s Thesis [5] constructed strict stochastic

jump equations to explain unconditional emergence of classical behavior in large quantum

systems. Subsequently, both theories obtained their time-continuous versions, driven by

white-noise rather than by stochastic jumps. The corresponding refinement of the GRW pro-

posal [6–8] is the Continuous Spontaneous Localization (CSL) theory, the author’s gravity-

related spontaneous collapse theory [5, 9, 10] used to be called DP theory after Penrose

concluded to the same equation for the characteristic time of spontaneous collapse in large

bodies [11]. These theories modified the standard theory of quantum mechanics in order

to describe the irreversible process of wave function collapse. The mathematical structure

of modification surprised the proponents themselves and it looked strange and original for
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many of the interested as well. In fact, these theories were considered new physics with new

mathematical structures, to replace standard equations like Schrödinger ’s. The predicted

effects of spontaneous collapses are extreme small and have thus remained untestable for the

lack of experimental technique. After three decades, fortunately, tests on nanomasses are

now becoming gradually available. Theories like GRW, CSL, DP have not changed over the

decades apart from their parameter ambiguities, see reviews by Bassi et al. [12, 13]. But

our understanding and teaching spontaneous collapse should be revised radically.

Personally, I knew that GRW’s random jumps looked like unsharp measurements but,

in the late nineteen-eighty’s, I believed that unsharp measurements were phenomenologi-

cal modifications of von Neumann standard ones. My belief extended also for the time-

continuous limit of unsharp measurements [14] that DP collapse equations [10] were based

on. Finally in the nineteen-nineties I got rid of my ignorance and learned that unsharp

measurements and my time-continuous measurement (monitoring) could have equally been

derived from standard quantum theory [15, 16].

That was disappointing [1]. Excitement about the radical novelty of our modified quan-

tum mechanics evaporated. Novelty got reduced to the concept that tiny collapses, that

get amplified for bulk degrees of freedom, happen everywhere and without measurement

devices. That’s why we call them spontaneous. But they are standard collapses otherwise.

I have accordingly stressed upon their revised interpretation recently [2], the present work

is arguing further toward such demand.

II. HOW TO TEACH GRW SPONTANEOUS COLLAPSE?

We should build as much as possible on standard knowledge, using standard concepts,

equations, terminology. Key notion is unsharp generalized measurement, which has been

standard ever since von Neumann showed how inserting an ancilla between object and mea-

suring device will control measurement unsharpness [17]. Hence we are in the best pedagog-

ical position to explain GRW theory to educated physicists. No doubt, for old generations

measurement means the projective (sharp) one but this has changed recently due to the

boom in quantum information science. For younger scientists, generalized measurements

are the standard ones, projective measurements are the specific case [18, 19]. For new gen-

eration, there is a natural way to get acquainted with spontaneous collapse. The correct
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and efficient teaching goes like this.

GRW theory assumes that independent position measurements of unsharpness (precision)

rC/
√

2, with GRW choice rC = 10−5 cm, are happening randomly at average frequency

λ = 10−19 Hz on each (non-relativistic) particle in the Universe. The two parameters rC , λ

are considered new universal constants of Nature. The mathematical model of unsharp

measurements is exactly the same as for independent von Neumann detectors [17] where

the Gaussian ancilla wave function has the width σ = rC/
√

2 [1]. The difference from

standard von Neumann detection is the concept of being spontaneous: GRW measurements

are supposed to happen without presence of detectors.

The merit of GRW is wave function localization in bulk degrees of freedom like, e.g., the

center-of-mass (c.o.m.) of large objects. Quantum theory allows for arbitrary large quantum

fluctuations of macroscopic degrees of freedom in large quantized systems. The extreme ex-

ample is a Schrödinger cat state where two macroscopically different wave functions would

be superposed. In GRW theory such macroscopic superpositions or fluctuations become

suppressed by GRW spontaneous measurements but the superpositions of microscopic de-

grees of freedom will invariably survive. These complementary features are guaranteed by

the chosen values of parameters σ and λ. Due to the extreme low rate of measurements,

individual particles are almost never measured. But among an Avogadro number (A) of

constituents some N = Aλ ∼ 104 become spontaneously measured in each second, meaning

that their collective variables, e.g.: center-of-mass, become measured each second at preci-

sion σ/
√
N ∼ 10−7 cm, leading to extreme sharp c.o.m. localization on the long run. That’s

what we expect of spontaneous localization theories.

The mathematical model is the following. We model the Universe or part of it by a

quantized N -body system satisfying the Schrödinger equation

d |Ψ〉
dt

= − i
~
Ĥ |Ψ〉 (1)

apart from instances of spontaneous position measurements that happen randomly and inde-

pendently at rate λ on every constituent. Spontaneous position measurements are standard

generalized measurements. Accordingly, when the k’th coordinate x̂k endures a measure-

ment, the quantum state undergoes the following collapse:

|Ψ〉 =⇒
√
G(xk − x̂k) |Ψ〉

‖
√
G(xk − x̂k) |Ψ〉 ‖

. (2)
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The effects of unsharp position measurement take the Gaussian form:

G(xk − x̂k) =
1

(2πσ2)3/2
exp

(
−(x− x̂)2

2σ2

)
, (3)

where xk is the random outcome of the unsharp position measurement on x̂k, and σ sets

the scale of unsharpness (precision). The probability of the outcomes xk is defined by the

standard rule:

p(xk) = ‖
√
G(xk − x̂k) |Ψ〉 ‖2. (4)

We have thus specified the mathematical model of GRW in terms of standard unsharp

position measurements targeting every constituent at rate λ and precision σ. These mea-

surements are selective measurements if we assume that the measurement outcomes xk are

accessible. If they are not, we talk about non-selective measurements and the jump equation

(2) should be averaged over the outcomes, according to the probability distribution (4). The

mathematical model of the GRW theory reduces to the following master equation for the

density matrix ρ̂:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + λ

∑
k

(∫
dxk

√
G(xk − x̂k)ρ̂

√
G(xk − x̂k)

)
− λρ̂

= − i
~

[Ĥ, ρ̂] + λ
∑
k

D[x̂k]ρ̂. (5)

The decoherence superoperator is defined by

D[x̂]ρ̂ =

∫
dx
√
G(x− x̂)ρ̂

√
G(x− x̂)− ρ̂. (6)

We can analytically calculate it in coordinate representation ρ(x,x′) of the density matrix.

Its contribution on the rhs of the master equation (5) shows spatial decoherence, saturating

for large separations:

dρ(x,x′)

dt
= . . . − λ

∑
k

(
1− exp

(
−(xk − x′k)2

8σ2

))
ρ(x,x′), (7)

where ellipsis stands for the Hamiltonian part.

The amplification mechanism is best illustrated in c.o.m. dynamics. As we said, for

the individual particles the decoherence term remains negligible whereas for bulk degrees

of freedom, e.g.: the c.o.m., it becomes crucial to damp Schrödinger cats, as we desired.

Assume, for simplicity, free spatial motion of a many-body object. Then the non-selective
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GRW equation (5) yields the following autonomous equation for the reduced c.o.m. density

matrix ρ̂cm:
dρ̂cm
dt

= − i
~

[Ĥcm, ρ̂cm] +NλD[x̂cm]ρ̂cm. (8)

As we see, the decoherence term concerning the c.o.m. coordinate has been amplified by the

number N of the constituents [3] ensuring the desired fast decay of macroscopic superposi-

tions:

dρcm(xcm,x
′
cm)

dt
= . . . −Nλ

(
1− exp

(
−(xcm − x′cm)2

8σ2

))
ρ(xcm,x

′
cm). (9)

In the selective evolution the individual GRW measurements (2) entangle the c.o.m., rota-

tion, and internal degrees of freedom, hence |Ψcm〉 does not exist in general. It does in a

limiting case of rigid many-body motion when the unitary evolution of |Ψcm〉 is interrupted

by spontaneous σ-precision measurements of the c.o.m. coordinate x̂cm similarly to (2) just

the average rate of the measurements becomes Nλ [20] instead of λ.

III. LOCALIZATION IS NOT TESTABLE, BUT DECOHERENCE IS

Standard concept of selective measurement implies that we have access to the measure-

ment outcomes, which are the values xk in GRW. If they are accessible variables then the

stochastic jump process of the GRW state vector |Ψ〉 is testable otherwise it is not. If not,

then the same spontaneous measurement is called non-selective and what is testable is the

density operator ρ̂. The stochastic jump process (1-4) becomes illusory and the master

equation (5) contains the whole GRW physics.

This latter sentence holds in GRW where, as a matter of fact, the xk’s remain unac-

cessible. Consider the conservative preparation-detection scenario. Assume we prepared a

well-defined pure initial state ρ̂0 = |Ψ0〉 〈Ψ0| and by time t later we desire to test it for the

presence of GRW collapses (2), we perform no test prior to this one. As a matter of fact,

the relevant state is ρ̂t, being the solution of the master equation (5) which does not know

about GRW collapses but about GRW decoherence. This is equally valid in the particular

case of the macroscopic Schrödinger cat initial state, i.e., a superposition of c.o.m. at two

distant locations. The c.o.m. GRW master equation (8) will exhaustively predict the results

of all subsequent tests on the c.o.m. (including the results and statistics of possible naked

eye observations).
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Obviously, inference on stochastic collapse assumes our access to the measurement out-

comes. In real laboratory quantum measurements it is the detector design and operation

that determine if we have full (or partial) access to the measurement outcomes or we have

no access at all. In the case of GRW collapse, accessibility of outcomes it is not a matter of

postulation. It is useless to postulate that xk’s are accessible without a prescription of how

to access them.

IV. DIGRESSION: RANDOM UNITARY PROCESS INDISTINGUISHABLE

FROM GRW

Let us consider an alternative to GRW random process where the stochastic non-linear

GRW jumps (2) are replaced by the following stochastic unitary jumps:

|Ψ〉 =⇒ eikx̂k |Ψ〉 , (10)

corresponding to the transfer of momentum ~k to the k’th constituent. The probability

distribution of momentum transfer is universal, independent of the particle and of the state:

p(k) =
1

(2πσ−2)3/2
exp

(
− k2

2σ−2

)
. (11)

The decoherence superoperator acts as

D[x̂]ρ̂ =

∫
dkp(k)eikx̂ρ̂e−ikx̂ − ρ̂, (12)

which looks completely different from the GRW structure (6) but it coincides with it! Hence

the master equation for the Schrödinger dynamics (1) with the averaged unitary jumps (10)

will be the the master equation (5) derived earlier for the GRW theory. As we argued

in Sec. III, the GRW theory can only be tested at the level of the density operator, no

experiment could tell us whether the underlying stochastic process of |Ψ〉 was the GRW

stochastic localizing process (1-4) or the above stochastic unitary process.

V. HOW TO THINK ABOUT CSL?

We could repeat what we said concerning correct and efficient teaching of GRW in Section

II. This time the standard discipline of modern physics, relevant to CSL, is time-continuous



7

quantum measurement (monitoring) which is just the time-continuous limit of unsharp se-

quential measurements similar to those underlying GRW in Section II. Quantum monitoring

theory was not yet conceived in 1986 (GRW), it was born in 1988, at it became widely known

in the nineties, to become the standard theory of quantum monitoring in the laboratory

[15, 16]. It played instrumental role for semi-classical gravity’s consistent introduction to

spontaneous collapse theories [21, 22]. Below I utilize the summary of standard Markovian

quantum monitoring theory from [21].

So, how should we interpret CSL? It derives from GRW. The discrete sequence of spon-

taneous unsharp position measurements is replaced by spontaneous monitoring the spatial

number distribution of particles [7] (or, in a later version, of the spatial mass distribution

of particles [8]). Accordingly, CSL introduces the smeared mass distribution

n̂(x) =
∑
k

G(x− x̂k), (13)

where, this time, the width of the Gaussian is rC . Monitoring yields the measured signal in

the form

nt(x) = 〈Ψt| n̂(x) |Ψt〉+ δnt(x), (14)

where δnt(x) is the signal white-noise still depending on the spatial resolution/correlation

of monitoring. The CSL signal noise is a spatially uncorrelated white-noise:

Eδnt(x)δns(y) =
1

4γ
δ(x− y)δ(t− s). (15)

Just like in the case of GRW sequential spontaneous measurements, the conditional

quantum state evolves stochastically, this time according to the following stochastic

Schrödinger equation, driven by the signal noise in the Ito-sense:

d |Ψ〉
dt

=

{
− i
~
Ĥ − γ

2

∫
dx (n̂(x)− 〈n̂(x)〉)2 + 4γ

∫
dx (n̂(x)− 〈n̂(x)〉) δn(x)

}
|Ψ〉 . (16)

So far we have introduced the equations of selective spontaneous monitoring, assuming that

the signal (14) is accessible, which won’t be the case, similarly to GRW. In non-selective

monitoring, the CSL physics reduces to the signal-averaged evolution of the conditional

state, i.e., to the CSL master equation:

dρ̂

dt
= − i

~
[Ĥ, ρ̂]− γ

2

∫
dx[n̂(x), [n̂(x), ρ̂]]. (17)
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(Note γ = (4πr2C)3/2λ would ensure the coincidence with GRW’s spatial decoherence rate at

the single particle level although CSL defined a slightly different γ [7]).

The traditional CSL-teaching differs in a single major point: it does not mention

the theory of monitoring. Hence it does not use the notion of signal nt(x), the equa-

tion (14) is not part of it. Instead, CSL’s traditional definition postulates the stochastic

Schrödinger equation:

d |Ψ〉
dt

=

{
− i
~
Ĥ − γ

2

∫
dx (n̂(x)− 〈n̂(x)〉)2 +

√
γ

∫
dx (n̂(x)− 〈n̂(x)〉)w(x)

}
|Ψ〉 , (18)

which would correspond to the replacement δnt(x) = 2
√
γwt(x) had CSL derived it from

our (16). The traditional CSL dynamics is driven by the spatially uncorrelated standard

white-noise, satisfying

Eδwt(x)δws(y) = δ(x− y)δ(t− s). (19)

In CSL narrative (e.g.: [13]) the origin of the noise field as well its anti-Hermitian coupling to

density n̂(x) are mentioned among theory elements yet to be justified, still without reference

to the spontaneous monitoring interpretation available already for long enough time.

Needless to repeat arguments from Section III on GRW. All testable predictions follow

from the CSL master equation (17), the stochastic Schrödinger equation (18) is empirically

redundant, collapse in the claimed quantitative sense is an illusion.

VI. FINAL REMARKS

Disregarding that spontaneous collapse theories are rooted in standard quantum mechan-

ical collapse theories with hidden detectors has had too many drawbacks.

The principal one is the illusion that the quantitative models of spontaneous collapse

(localization) in their current forms are relevant empirically like master equations of spon-

taneous decoherence are which have already been under empiric tests due to recent break-

throughs in technologies. This illusion is surviving despite no proposals have been ever made

for a future experiment to test underlying localization effects of |Ψ〉 beyond decoherence of ρ̂;

all proposals have so far concerned the dynamical features (e.g.: spontaneous decoherence)

of the averaged state ρ̂.

Secondary drawbacks concern illusions that teaching and interpretation of spontaneous

collapse necessitate radical departure from standard quantum theory both conceptually and
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mathematically. This may have kept philosophers excited, may have prevented students of

learning the subject faster, physicists of going deeper into their foundational investigations.

Physics research will gradually adapt itself to the option that spontaneous collapse fits

better to standard quantum knowledge than we thought of it before. Monitoring theory

roots were revealed for DP spontaneous collapse from the beginning, and have been detailed

and exploited for CSL, too, recently in [21, 22].
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