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Abstract

Various scientific theories stand in a reductive relation to each other.
In a recent article, we have argued that a generalized version of the Nagel-
Schaffner model (GNS) is the right account of this relation. In this article,
we present a Bayesian analysis of how GNS impacts on confirmation.
We formalize the relation between the reducing and the reduced theory
before and after the reduction using Bayesian networks, and thereby show
that, post-reduction, the two theories are confirmatory of each other. We
then ask when a purported reduction should be accepted on epistemic
grounds. To do so, we compare the prior and posterior probabilities of
the conjunction of both theories before and after the reduction and ask
how well each is confirmed by the available evidence.

1 Introduction

A number of contemporary scientific research programs are reductionist
in the sense that their aim is to account for the behaviour of a system at
a certain level of organization in terms of the behavior of its constituents.
Statistical mechanics (SM) is a case in point: it aims to account for the
laws of thermodynamics (TD) in terms of the laws of mechanics and proba-
bilistic assumptions. Other examples of (putative) intertheoretical reduc-
tions are chemistry to atomic physics, rigid body mechanics to particle
mechanics, psychology to neuroscience, and agent-based modeling in the
social sciences.

These programs have attracted the attention of philosophers and have
led to a renewed interest in Nagelian reduction, which, for many years,
has been considered a dead end.1 In an earlier article (Dizadji-Bahmani,
Frigg and Hartmann 2010), we have argued that the points leveled against
Nagel’s original model (1961, Ch. 11) can either be overcome in a more so-
phisticated version of the approach, which we call the Generalized Nagel-
Schaffner Model of reduction (GNS), or turn out to be red herrings on
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closer inspection. Part of our defence of Nagelian reduction was that it
has desirable consequences for the confirmation of theories: given two
theories whose target domains are identical (or have significant overlap),
evidence confirming one theory should also confirm the other theory, but
this can only happen if an intertheoretic link is established. GNS provides
this link. In this paper, we show in detail how the establishment of an
intertheoretical reduction (in the sense of GNS) boosts the confirmation
of both theories. More specifically, we use the framework of Bayesian
confirmation theory and show that if there is a reductive relation between
two theories, then confirmation flows both from the reducing to the re-
duced theory and from the reduced to the reducing theory. For instance,
evidence that exclusively confirms SM before the reduction also confirms
(though perhaps to a lower degree) TD after the reduction, and vice versa.

The plan is as follows. Section 2 sets the scene by briefly outlining GNS
and introducing the case of SM, which will serve as our example through-
out the paper. In Section 3, we present a short summary of Bayesian
confirmation theory. Section 4 contains the main argument: we consider
confirmation in a scenario in which there is no intertheoretic reduction
and then compare it with one in which there is. The result is that reduc-
tion boosts confirmation. Section 5 discusses various implications of this
result. In Section 6, we sum up our results and outline a number of open
problems.

2 The Generalized Nagel-Schaffner
Model

TD describes systems like gases and solids in terms of macroscopic prop-
erties such as volume, pressure, temperature and entropy, and gives a
correct description of the behaviour of such systems. The aim of statisti-
cal mechanics is to account for the laws of TD in terms of the dynamical
laws governing the microscopic constituents of macroscopic systems and
probabilistic assumptions.2 In particular, SM aims to show that the Sec-
ond Law of TD is a consequence of the mechanical motion of the molecules
of the gas. For example, consider a container divided in two by a parti-
tion wall. The left half is filled with a gas, while the right half is empty.
If we now remove the partition, the gas will spread and soon be evenly
distributed throughout the entire container; the gas’s entropy increases
as it spreads. This is an instance of a process obeying the Second Law of
TD. Roughly speaking, the Second Law says that the entropy of a closed
system cannot decrease, and usually increases when the system is left on
its own in a non-equilibrium state. The aim of SM is to account for the
Second Law in general in terms of the equations governing the motion of
the molecules of the gas and some probabilistic assumptions; that is, it
aims to show that the Second Law is a consequence of its basic postulates.
Or almost. In fact, it is impossible to derive the exact Second Law (which
is an exceptionless law) from a probabilistic theory. So what we aim to do
instead is to derive a probabilistic law that is strongly analogous to the
TD Second Law, in this case the proposition that entropy is highly likely
to increase (which is known as Boltzmann’s Law).

That analogous versions of the laws of the phenomenological theory
(here TD) should follow from the laws of the fundamental theory (here

2For a detailed discussion of SM, see Frigg (2008) and references therein.
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SM) is the basic idea of GNS.3 Consider a phenomenological theory TP

and a fundamental theory TF . Each theory has a number empirical propo-

sitions. Let TP := {T(1)
P , . . . ,T

(nP )

P } and TF := {T(1)
F , . . . ,T

(nF )

F } be the
set of empirical propositions of TP and TF respectively.4 The reduction of
TP to TF consists of the following three steps (for details and discussion,
see Dizadji-Bahmani, Frigg and Hartmann (2010) and Schaffner (1967)).

1. Adopt assumptions (so-called ‘auxiliary assumptions’) describing
the particular setup under investigation. Here, these are assump-
tions about the mechanical properties of the gas molecules. Then
derive from these and TF a restricted version of each element

T
(i)
F of TF . Denote these by T

∗(i)
F and the corresponding set by

T ∗
F

:= {T∗(1)F , . . . ,T
∗(nF )

F }.
2. TF and TP are formulated in different vocabularies. In our example,

SM talks about trajectories in phase space and probability measures
while TD talks about macroscopic properties such as pressure and
temperature. In order to connect the two theories, we adopt bridge
laws. These connect terms of one theory with terms of the other,
for instance mean kinetic energy in SM with temperature in TD.
Substituting the terms in T ∗

F
with terms from the macro theory as

per the bridge laws yields T ∗
P

, i.e. the set {T∗(1)P , . . . ,T
∗(nP )

P }.
3. Show that each element of T ∗

P
is strongly analogous to the corre-

sponding element in TP .

If these conditions obtain, TP is reduced to TF . (Following standard
terminology, we say that TP is the reduced theory and that TF is the
reducing theory.)

Let us now consider how theories are supported by evidence. With
regard to our two theories, there are three kinds of evidence: evidence
that only confirms, to some degree, the phenomenological theory, evi-
dence that only confirms, to some degree, the fundamental theory and
evidence that confirms, to some degree, both. We make this clear with
examples from TD and SM. For the first case, consider what is known
as the Joule-Thomson process: there are two chambers of different di-
mensions connected to each other by a permeable membrane, filled with
a gas. At the end of each chamber, there is a piston which allows the
pressure and volume for the gas in each chamber to be varied by applying
a force. The pressure in the first chamber is higher than the pressure in
the second. Now push the gas from the first chamber into the second,
but so slowly that the pressure remains constant in both chambers and
no heat is exchanged with the environment. Then, the gas in the second
chamber cools down. The amount of cooling can be calculated using the
principles of TD, and is found to coincide with experimental values. So
we have a confirmation of TD, but not of SM since no SM assumptions
have been used in the argument. For the second, consider the dependence
of a metal’s electrical conductivity on temperature. From SM, one can
derive an equation relating the change in the electrical conductivity of
certain metals given a change in temperature which is what one finds in
experiment. TD, in contrast, is entirely silent about this phenomenon.

3For a detailed exposition of GNS as well as a defence, see our (2010).
4The empirical propositions of a theory are its various laws. GNS has it that two theories

stand in a reductive relation to one another in virtue of certain relations obtaining between
their empirical propositions, as is set out in the main text. Notice, however, that we are not
committed to the view that a theory just is a set of laws. i.e. TA is not identified with TA.
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Third, consider again the gas confined to the left half of the box which
spreads evenly when the dividing wall is removed. It follows from TD that
the thermodynamic entropy of the gas increases; at the same time, it is a
consequence of SM that the Boltzmann entropy increases in that process.
So the spreading of the gas confirms both SM and TD.

3 A Primer on Bayesianism

Bayesianism is, arguably, our best account of the logic of science.5 It is
a quantitative framework in which what it means for a piece of evidence
to confirm a hypothesis is made precise and various puzzles pertaining to
confirmation are resolved. The plan for this section is to briefly outline
the Bayesian model of confirmation and introduce Bayesian Networks,
which are a useful representational tool. This will allow us to explore the
relation between reduction and confirmation in a precise way in the next
section.

Consider a hypothesis, H and a piece of evidence, E. E confirms H if
P (H|E) > P (H); E disconfirms H if P (H|E) < P (H); E is irrelevant for
H if P (H|E) = P (H). P (H|E) is related to P (E|H), P (H) and P (E) via
Bayes’ Theorem:

P (H|E) =
P (E|H)P (H)

P (E)
(1)

=
P (E|H)P (H)

P (E|H)P (H) + P (E|¬H)P (¬H)
(2)

By fixing the relevant probabilities, Bayes theorem gives us the value
of P (H|E), which, under the above criterion, determines the confirmatory
relation between the evidence and the hypothesis.

For our purposes, it will be useful to explore the relation between
reduction and confirmation in terms of Bayesian networks.6 Bayesian
networks considerably help to simplify (or make feasible) calculations in
complicated multi-variate situations. More specifically, they help in repre-
senting the relations between (sets of) variables; graphical structure allows
us to read these off directly.

A directed graph is a graph consisting of nodes and arrows. Parent
nodes are nodes with outgoing arrows; child nodes are nodes with in-
coming arrows; and root nodes are nodes with only outgoing arrows. A
directed acyclical graph (DAG) is a graph consisting of nodes and arrows
such that one cannot run in a cycle; that is, a directed graph such that
there is no path from a parent node back to itself. A Bayesian network is
a DAG whose nodes represent propositional variables, and arrows encode
the relationship between these variables.

Let us now frame the confirmatory relation between a hypothesis and
a piece of evidence in terms of a Bayesian network. We introduce two
binary propositional variables E and H. H can take two values: H, the
hypothesis is true, and ¬H, the hypothesis is false. E has two values as

5Bayesianism is presented and critically discussed in Earman (1992) and Howson and
Urbach (2005). Recent surveys of Bayesian epistemology are Hájek and Hartmann (2010) and
Hartmann and Sprenger (2010).

6Bayesian networks are introduced in Neapolitan (2003) and Pearl (1988). Bovens and
Hartmann (2003) give a non-technical introduction and discuss applications from epistemology
and philosophy of science.

4



Figure 1: The Bayesian Network representing the relation between E and H .

well, viz. E, the evidence obtains, and ¬E, the evidence does not obtain.7

The relation between E and H can be represented in the Bayesian network
depicted in figure 1.

The arrow from the propositional variable H to E means that there is
a direct influence of H on E.8 The arrow goes from H to E because the
truth or falsity of the hypothesis affects the probability of the evidence
obtaining. For example, it may be more likely that E obtains if H is true
than if H is false.

In general, to fully specify the Bayesian network, we have to fix two
sets of parameters. First, the prior probabilities of all root nodes. In our
case, this means that we have to specify P (H). Second, the conditional
probabilities of all other nodes, given their parents. In the present case,
this means that we have to fix the likelihoods P (E|H) and P (E|¬H). Using
Bayes’ theorem, we can then fully specify all the other probabilities.

To simplify discussion of the relation between reduction and confirma-
tion in the next section, we introduce the following notional conventions:
h := P (H), h∗ := P (H|E), p := P (E|H) and q := P (E|¬H). Then equation
(2) becomes:

h∗ =
h p

h p+ (1− h) q
=

1

1 + 1−h
h
· q
p

(3)

The expression x := q/p is called the likelihood ratio. If E confirms H, then
x ∈ (0, 1). If E disconfirms H, then x > 1. If E and H are independent,
then x = 1. Finally we set z̄ := 1 − z for all parameters z and use this
abbreviation in the remainder.

To avoid technical complications, we assume that all probabilities are
non-extreme throughout, i.e. that they lie in the open interval (0, 1). This
with the exception of conditional probabilities P (A|B) where A is a logical
consequence of B; in this case we have P (A|B) = 1.

4 Reduction and Confirmation

4.1 Before the Reduction

We examine the situation before a reduction is attempted. To simplify
things, we assume that TF and TP have only one element, viz. TF and TP

respectively. The generalization to more than one element is conceptually
straightforward. Furthermore, E confirms TF and TP, EF only confirms
TF and EP only confirms TP. Introducing corresponding propositional
variables TF , TP , E , EF and EP , we can represent the situation before
the attempted reduction in the Bayesian network depicted in figure 2.

7Propositional variables are denoted by italicized letters; their particular values are denoted
by non-italicized letters. Throughout, we are only concerned with two-valued propositional
variables, A, which can take values A or ¬A.

8Unlike some users of Bayesian networks, for instance Spirites et al (2001), we are only
interested in probabilistic dependencies between variables, and not in causal relations.

5



Figure 2: The Bayesian network representing the situation before the reduction.

Following our methodology, we have to specify the prior probabilities
of TF and TP (i.e. of all root nodes) and the conditional probabilities
of E, EF and EP (i.e. of all child nodes), given their parents. Let the
corresponding probability measure be P1. We denote:

P1(TF) = tF , P1(TP) = tP

P1(EF|TF) = pF , P1(EF|¬TF) = qF

P1(EP|TP) = pP , P1(EP|¬TP) = qP (4)

P1(E|TF,TP) = α , P1(E|TF,¬TP) = β

P1(E|¬TF,TP) = γ , P1(E|¬TF,¬TP) = δ

These parameters cannot be freely chosen as we assume that the following
conditions hold: First, EF confirms TF, hence pF > qF . Second, EP

confirms TP, hence, pP > qP . Third, E confirms TF and fourth E confirms
TP. The last two conditions entail the following constraints on α, β, γ and
δ (all proofs are in the appendix):9

(α− β) tF + (γ − δ) tF > 0 (5)

(α− γ) tP + (β − δ) tP > 0 (6)

These inequalities hold, for example, if α > β, γ > δ, which seems to be a
natural condition.

Given this network structure and the conditional independences en-
coded in it, it is easy to see, for example, that the variable EF is inde-
pendent of TP given TF and that EP is independent of TF given TP . In
symbols:

EF ⊥⊥ TP |TF , EP ⊥⊥ TF |TP (7)

Hence, EF does not confirm (or disconfirm) TP and EP does not confirm
(or disconfirm) TF:

P1(TP|EF) = P1(TP) , P1(TF|EP) = P1(TF) (8)

We conclude that there is no flow of confirmation from one theory to the
other. The intuitive reason for this is that there is no chain of arrows from
EF to TP . Note also that the variables TF and TP are probabilistically
independent before the reduction:

P1(TF,TP) = P1(TF)P1(TP) = tF tP (9)

9One may also want to require that P1(TF|E, EF) > P1(TF) and P1(TP|E, EP) > P1(TP).
Note, however, that both inequalities follow from the above four conditions (proof omitted).
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Figure 3: The Bayesian Network representing the situation after the reduction.

All this may, however, not be right in practice. Scientists may feel,
for example, that the two theories are much more intimately connected.
An indication for this may be that there is, as we assume, evidence E
that supports both theories. Another reason may be that there are for-
mal (or other) relations between the two theories. In this case, scientists
will attempt to reduce one theory to the other. Let us now model this
situation.

4.2 After the Reduction

Recall the three steps involved in reducing one theory to another set out
in Section 2: First, derive T∗F from the auxiliary assumptions and TF.
Second, introduce bridge laws and obtain T∗P from T∗F. Third, show that
T∗P is strongly analogous to TP.

The situation after the reduction can then be represented in the
Bayesian network depicted in figure 3. To complete the network, we spec-
ify the following conditional probabilities:

P2(TP|T∗P) = p∗P , P2(TP|¬T∗P) = q∗P (10)

P2(T∗F|TF) = p∗F , P2(TF|¬TF) = q∗F (11)

Note that eq. (10) replaces the second equation in first line of eq. (4). We
also have to represent the bridge law in probabilistic terms. Naturally, we
require:

P2(T∗P|T∗F) = 1 , P2(T∗P|¬T∗F) = 0 (12)

All other probability assignments hold as in the case of P1. Requiring this
condition makes sure that we can compare the two scenarios later, i.e. the
situations before and after the reduction.

Three remarks about the three steps in the reduction are in order.
First, T∗F may be more or less good. How good it is depends on the
context (i.e. the application in question and the auxiliary assumptions
made) and on the judgement of the scientists involved. In line with our
Bayesian approach, we assume that the judgement of the scientists can
be expressed in probabilistic terms. Second, the move from T∗F to T∗P
in virtue of the bridge laws may well be controversial amongst scientists.
Whilst bridge-laws are non-conventional factual claims, different scientists
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may assign different credences to them. Third, what counts as strongly
analogous will also depend on the specific context and on the judgement of
the scientists. For example, whether entropy fluctuations can be neglected
or not cannot be decided independently of the specific problem at hand,
see Callender (2001).10 All this fits our Bayesian account well.

Note that, in the Bayesian network in figure 3, there is now a direct
sequence of arrows from TF to TP, i.e. the path through T∗F to T∗P. And
hence, we expect that EF is now probabilistically relevant for TP and that
EP is now probabilistically relevant for TF. And this is indeed what we
find: the independencies formulated in eq. (7) do not hold any more. We
state our results in the following two theorems:

Theorem 1. EF confirms TP iff (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

This theorem entails that EF confirms TP if the following three condi-
tions hold: (i) EF confirms TF (i.e. pF > qF ), (ii) TF confirms11 T∗F (i.e.
p∗F > q∗F ), and (iii) T∗P confirms TP (i.e. p∗P > q∗P ). These conditions are
immediately plausible. Condition (i) was assumed from the beginning,
and conditions (ii) and (iii) make sure that there is a positive flow of
confirmation from TF to T∗F ≡ T∗P (qua bridge law) and from T∗P to TP.12

Theorem 2. EP confirms TF iff (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

This theorem is analogous to the previous theorem. It entails that EP

confirms TF if the following three conditions hold: (i) EP confirms TP

(i.e. pP > qP ), (ii) TF confirms T∗F (i.e. p∗F > q∗F ), and (iii) T∗P confirms
TP (i.e. p∗P > q∗P ).

Note that, in our representation, the bridge law states a perfect corre-
lation between T ∗F and T ∗P . A bridge law is posited by scientists working
in a particular field, and it may happen that not everybody in that com-
munity is convinced of it. Thus, different scientists may assign different
credences to a particular bridge law. In a case where a lower likelihood
is assigned to a bridge law, the reduction may still be epistemically valu-
able – the flow of confirmation will just be less. How much confirmation
will flow depends, of course, on the values of the likelihoods.

For future reference, let us calculate the prior probability of the con-
junction of both theories. We obtain:

P2(TF,TP) = tF (p∗F p
∗
P + p∗F q

∗
P ) (13)

In a similar way, the posterior probability of both theories given the
total evidence, i.e. the expression P2(TF,TP|E,EF,EP), can be calculated
(see appendix).

Finally, let us remark on the specific representation we have chosen
in the Bayesian Network in figure 3. Clearly, having a sequence of ar-
rows from TF to TP ensures that confirmation can flow from one theory
to the other. This sequence of arrows from the reducing theory to the
reduced theory, however, makes sense. It is not just driven by our wish
to establish a flow of confirmation from the reducing theory to the re-
duced theory. First, T∗F is an approximation of TF. It follows from it

10Again, for a full defence of the GNS see Dizadji-Bahmani, Frigg and Hartmann (2010).
11Some authors use the word ‘confirm’ only to refer to the relation between between a

hypothesis and a piece of evidence and the word ‘support’ to (also) include the relation
between two theories. We do not follow this usage and use the word ‘confirm’ in both cases.

12Interestingly, however, EF also confirms TP if condition (i) holds and if both p∗F < q∗F and
p∗P < q∗P . This result, which shows up in related confirmation-theoretical contexts, should not
worry us as all that is is important is that EP confirms TF if p∗F > q∗F and if p∗P > q∗P , as is,
indeed, the case.
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and (or so we argue) depends on it in a probabilistically sense, which jus-
tifies the direction of the arrow. Second, we have drawn an arrow from
T ∗F to T ∗P although the propositional variables in question are, qua the
bridge law, intersubstitutable with each other. This is modeled by assign-
ing appropriate conditional probabilities. The arrow could have also been
drawn from T ∗P to T ∗F . In this case we had to require P (T∗F|T∗P) = 1 and
P (T∗F|¬T∗P) = 0. These conditions are, however, equivalent to eqs. (12)
for non-extreme priors. Third, it may look strange that we have drawn
an arrow from T ∗P to TP to model the relation of strong analogy as a
symmetrical relation. We would like to reply to this objection that, then,
‘analogy’ is perhaps not the right word as T∗P is indeed stronger than TP,
and so it makes sense to draw an arrow from T ∗P to TP . We conclude that
the chain of arrows from TF to TP is indeed plausible.

5 Why Accept a Purported Reduction?

Under what conditions should we accept a proposed reduction? More
specifically, given everything we know about the domains of the two the-
ories, when should we accept a proposed reduction and when should we
reject it? In the Bayesian framework the aim is to raise relevant prob-
abilities, and we accept a reduction if it achieves this goal. The crucial
question then is which probabilities are relevant. Is it the prior proba-
bility of the conjunction of TF and TP? Or the posterior probability of
the conjunction of TF and TP, i.e. the probability of TF and TP given
the total evidence (i.e. E, EF and EP)? Or should we rather accept a
proposed reduction if the conjunction of TF and TP is better confirmed
by the evidence after the reduction (compared to the situation before the
reduction)? If one decides to follow the last proposal, then one will also
have to choose one of the various confirmation measures (Fitelson 1999).
We examine these three proposals in turn.

Let us first compare the prior probabilities of the conjunction of TF

and TP before and after the reduction. Before the reduction, the two
theories are independent, as expressed in eq. (9). For convenience, let us
restate the condition:

P1(TF,TP) = tF tP (14)

We now calculate the prior probability of the conjunction of TF and TP

after the reduction and obtain

P2(TF,TP) = tF (p∗F p
∗
P + p∗F q

∗
P ) . (15)

While the expression in eq. (14) is an explicit function of tP , the expression
in eq. (15) is not. This is because, after the reduction, TP is no longer
a root node, and so it is not assigned a prior probability. In order to
meaningfully compare the situation before and after the reduction, we
not only have to assume that P2(EP|TP) = P1(EP|TP) etc., but also that
P2(TP) = P1(TP). Let us therefore calculate:

t̃P := P2(TP) = t∗F p
∗
P + t

∗
F q
∗
P (16)

with
t∗F = P2(T∗F) = P2(T∗P) = p∗F tF + q∗F tF . (17)

Alternatively, we have:

t̃P := (p∗F p
∗
P + p∗F q

∗
P ) tF + (q∗F p

∗
P + q∗F q

∗
P ) tF (18)
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This equation follows if we insert eq. (17) into eq. (16) or by direct cal-
culation from the Bayesian network depicted in figure 3. We now require
P2(TP) = P1(TP), i.e.

tP = t̃P (19)

and replace tP in eq. (14) by the expression for t̃P given in eq. (18).
With this we calculate the difference,

∆0 := P2(TF,TP)− P1(TF,TP) (20)

and obtain:
∆0 = (p∗F − q∗F ) (p∗P − q∗P ) tF tF (21)

Hence,

Theorem 3. ∆0 = 0 iff (p∗F = q∗F ) or (p∗P = q∗P ). And ∆0 > 0 if
(p∗F > q∗F ) and if (p∗P > q∗P ).

The first part of the theorem says that if either TF and T∗F are independent
or if T∗P and TP are independent, then TF and TP remain independent
after the ‘reduction’. The second part of the theorem says that the con-
junction of TF and TP is more likely after the reduction if TF confirms
T∗F and if T∗P confirms TP.

Next, let us compare the posterior probabilities of the conjunction of
TF and TP before and after the reduction. To do so, we calculate the
difference,

∆1 := P2(TF,TP|E,EF,EP)− P1(TF,TP|E,EF,EP) (22)

and obtain:
∆1 = (p∗F − q∗F ) (p∗P − q∗P ) tF tF · α ∆̃1 , (23)

The explicit expression for ∆̃1 is given in the appendix. Eq. (23) then
entails the following theorem:

Theorem 4. ∆1 = 0 if (p∗F = q∗F ) or (p∗P = q∗P ).

This result has an intuitive interpretation: If either TF and T∗F or T∗P and
TP are independent, then the flow of confirmation from TF to TP (and
vice versa) is stopped and the epistemic situation before and after the
‘reduction’ are the same.

Using the expression for ∆̃1, we obtain:

Theorem 5. ∆1 > 0 if the following three conditions hold: (i) β, γ > δ,
(ii) 0 < xF , xP < 1, and (iii) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Condition (i) seems natural in the light of inequalities (5) and (6). In fact,
it is a rather weak condition which also holds, for example, for Set 2, below.
Condition (ii) makes sure that EF confirms TF and EP confirms TP; we
have assumed this throughout. Condition (iii) is our usual condition.
Hence, none of these conditions is in any way problematic. Given this, we
conclude that the posterior probability of the conjunction of TF and TP

indeed increases after a reductive relationship is established between the
two theories.

Finally, let us compare the degree of confirmation of the conjunction of
TF and TP before and after the reduction. To do so, we use the difference
measure.13 Adapted to our case, the difference measure is defined as
follows:

di := Pi(TF,TP|E,EF,EP)− Pi(TF,TP) for i = 1, 2 (24)

13Results may depend on the chosen confirmation measure, see Fitelson (1999). Whether
our results do is a question that should be addressed in future research.

10



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4: The phase diagram for ∆2. Here xP is plotted as a function of xF

for p∗F = p∗P = .8 and q∗F = q∗P = .3 and the parameters specified in Set 1 (left
figure) and in Set 2 (right figure). All points below the phase curve correspond
to ∆2 < 0. All points above the phase curve correspond to ∆2 > 0.

We can now calculate
∆2 := d2 − d1 (25)

and obtain

∆2 = ∆1 −∆0

= (p∗F − q∗F ) (p∗P − q∗P ) tF tF · (α ∆̃1 − 1) . (26)

Hence,

Theorem 6. ∆2 = 0 if (p∗F = q∗F ) or (p∗P = q∗P ).

That is, if either TF and T∗F or T∗P and TP are independent, then the
evidence confirms the conjunction of TF and TP equally well before and
after the reduction.

Comparing eq. (26) with eq. (23), we see that, for given values of p∗F ,
q∗F < p∗F , p∗P , q∗P < p∗P , and tF , ∆2 > 0 entails ∆̃1 > 1/α. Notice,
however, that the converse does not hold. Hence, it is ‘easier’ to boost
the posterior probability of both theories with a reduction than it is to
increase the confirmation of the conjunction of both theories. Especially
if 1/α is large, the confirmation may not be greater after the reduction.

In order to better understand the properties of ∆2, we now consider
two concrete numerical examples. In both cases, we set p∗F = p∗P = .8 and
q∗F = q∗P = .3, i.e. we assume that there is a flow of confirmation from the
reducing theory to the reduced theory. The first case is then defined as
follows:

Set 1: tF = .8, α = .8, β = .6, γ = .4, δ = .2.

These assignments are consistent with eqs. (5), (6) and (19). Here a high
value is given to tF . In general, the assignments of this set exhibit much
confidence in the fundamental theory. The phase diagram on the left-hand
side of figure 4 plots the likelihood of the phenomenological theory (xP )
against the likelihood of the fundamental theory (xF ). All points below
the phase curve correspond to ∆2 < 0. All points above the phase curve
correspond to ∆2 > 0.

We see that the conjunction of both theories gains from a reduction
in three typical cases: (i) If TF is strongly supported by EF (i.e. small
xF ) and TP is weakly supported by EP (i.e. xP ' .8). (ii) If TF is weakly
supported by EF (i.e. large xF ) and TP is strongly supported by EP (i.e.
xP / .2). (iii) If both theories are not particularly well confirmed by
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EF and EP respectively (i.e. xF , xP ' .5). If xF + xP / 1, then the
conjunction of both theories is better confirmed before the reduction.

The second case consists in the following assignments:

Set 2: tF = .2, α = .5, β = .3, γ = .6, δ = .1.

Again, these assignments are consistent with eqs. (5), (6) and (19). The
phase diagram on the right-hand side of figure 4 plots the likelihood of the
phenomenological theory (xP ) against the likelihood of the fundamental
theory (xF ). All points below the phase curve correspond to ∆2 < 0. All
points above the phase curve correspond to ∆2 > 0.

In contrast to Set 1, we now assign a low value to tF . In general, the
assignments of this set exhibit low confidence in the fundamental theory.
It turns out that ∆2 > 0 for almost all values of xF and xP . Only if
xF , xP ≈ 0, i.e. if TF is strongly supported by EF and if TP is strongly
supported by EP, then the confirmation is higher before the reduction
than after the reduction.

To summarize, a GNS reduction between two theories, such as TD
and SM, is epistemically advantageous in virtue of the three results above.
We have shown that a reduction makes sure that evidence which, prior to
reduction, only supported one of the theories, due to the reduction comes
to support the other theory as well. Moreover, a successful reduction
increases both the prior and the posterior probabilities of the conjunction
of both theories. And in many cases, a reduction results in the conjunction
of both theories being better confirmed.

6 Conclusion

We have discussed how the Generalized Nagel-Schaffner model of reduc-
tion impacts on the confirmation of theories by evidence. We formulated
criteria that help us assess proposed reductions epistemically, and we have
shown how a reduction facilitates the flow of confirmation from the reduc-
ing theory to the reduced theory and back. Our Bayesian account also
shows to what extent the various judgements depend on the probabilistic
judgements of the scientists, connecting – or so we argue – our account
to the practice of science. Disagreement amongst scientists can be traced
back to disagreement about the assignment of prior probabilities and like-
lihoods.

We would like to end this paper with proposals for several follow-up
projects: First, it would be interesting to compare the coherence before
and after the reduction.14 Here, one might want to focus on the two
theories in question, or on the conjunction of the theories and all available
evidence. It might be reasonable to focus on the latter, as the evidence is
also uncertain and one might, in the end, be interested in the ‘package’ as a
whole, comprising all available theories and all available evidence. Should
coherence considerations play a role when it comes to decide whether a
theory should be accepted?

Second, as already mentioned, several other confirmation measures
have to be checked and the stability of our results have to be explored.

Third, one may want to examine the situation where evidence for, say,
the fundamental theory disconfirms the phenomenological theory.15 How
shall one deal with these situations?

14For a discussion of various coherence measures and of the relation between coherence and
truth, see Bovens and Hartmann (2003).

15Thanks to Jan Sprenger for bringing up this point.
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Fourth and finally, other types of intertheoretic relation should be
studied from a Bayesian point of view. Here, we are thinking of Batter-
man’s singular limits (Batterman 2002) and Hartmann’s ‘stories’ (1999).
But there will surely be other examples. This project requires the collab-
oration between philosophers of science, who conduct case studies, and
formal philosophers, who provide the corresponding Bayesian analysis. It
may also be asked which picture about the structure of science as a whole
emerges from all this. It seems plausible to find something like a network
structure, with more or less connected theories and models, and it might
be interesting to discuss the implications of this for the debate about the
(dis-)unity of science.
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Appendix

Let us start with the situation before the reduction and the Bayesian net-
work represented in figure 2. The joint distribution P1(TF , TP , E,EF , EP )
is given by the expression

P1(TF )P1(TP )P1(E|TF , TP )P1(EF |TF )P1(EP |EP ) .

Using the methodology described in Bovens and Hartmann (2003, Ch. 3),
we obtain:

P1(TF,E) =
X

TP ,EF ,EP

P1(TF , TP , E,EF , EP )

= tF (tP α+ tP β) (27)

Similarly, we calculate

P1(TP,E) = tP (tF α+ tF γ) (28)

P1(E) = tF (tP α+ tP β) + tF (tP γ + tP δ) (29)

= tP (tF α+ tF γ) + tP (tF β + tF δ) (30)

To prove eq. (5) we note, using the definition of conditional probability,
that P1(TP|E) > P1(TP) iff P1(TP,E) − P1(TP)P1(E) > 0 and obtain
using eqs. (28) and (30)

P1(TP,E)− P1(TP)P1(E) = tP tP
ˆ
(α− β) tF + (γ − δ) tF

˜
, (31)

from which eq. (5) immediately follows. The proof of eq. (6) proceeds
accordingly using eqs. (28) and (29).

Next, we calculate the prior probability of the two theories.

P1(TF,TP) =
X

E,EF ,EP

P1(TF , TP , E,EF , EP )

= P1(TF)P1(TP) = tF tP

13



Similarly, we obtain for the posterior probability P ∗1 :=
P1(TF,TP|E,EF,EP):

P ∗1 =
P1(TF,TP,E,EF,EP)

P1(E,EF,EP)

=
tF tP pF pP α

tF tP pF pP α+ tF tP pF qP β + tF tP qF pP γ + tF tP qF qP δ

=
tF tP α

tF (tP α+ tP xP β) + tF xF (tP γ + tP xP δ)
, (32)

with the likelihood ratios xF := qF /pF and xP := qP /pP .
Let us now turn to the situation after the reduction and the

Bayesian network represented in figure 3. The joint distribution
P2(TF , TP , T

∗
F , T

∗
P , E,EF , EP ) is given by

P2(TF )P2(E|TF , TP )P2(EF |TF )P2(EP |EP )P2(TP |T ∗P )P2(T ∗P |T ∗F )P2(T ∗F |TF ) .

To simplify our notation, we introduce the following abbreviations:

ϕα := p∗F p∗P + p∗F q∗P , ϕβ := p∗F p∗P + p∗F q∗P

ϕγ := q∗F p∗P + q∗F q∗P , ϕδ := q∗F p∗P + q∗F q∗P

For later use, we note that 0 < ϕα, ϕβ , ϕγ , ϕδ < 1 and

ϕα − ϕγ = ϕδ − ϕβ = (p∗F − q∗F ) (p∗P − q∗P ) (33)

ϕα + ϕβ = ϕγ + ϕδ = 1 . (34)

We then obtain for the prior probability of the conjunction of both theories
after the reduction

P2(TF,TP) = tF ϕα . (35)

For the posterior P ∗2 := P2(TF,TP|E,EF,EP), we obtain:

P ∗2 =
tF αϕα

tF (αϕα + xP β ϕβ) + tF xF (γ ϕγ + xP δ ϕδ)
(36)

Similarly, we calculate

P2(TP) = tF ϕα + tF ϕγ (37)

P2(TP|EF) =
tF ϕα + tF xF ϕγ

tF + tF xF
(38)

P2(TF|EP) =
tF (ϕα + xP ϕβ)

tF (ϕα + xP ϕβ) + tF (ϕγ + xP ϕδ)
. (39)

We now calculate

P2(TP|EF)− P2(TP) =
tF tF (ϕα − ϕγ) (1− xF )

tF + tF xF

=
tF tF (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P )

pF
`
tF + tF xF

´ .

This proves theorem 1. Similarly, we calculate

P2(TF|EP)− P2(TF) =
tF tF (ϕα − ϕγ) (1− xP )

tF (ϕα + xP ϕβ) + tF (ϕγ + xP ϕδ)

=
tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

pP
ˆ
tF (ϕα + xP ϕβ) + tF (ϕγ + xP ϕδ)

˜ ,
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which proves theorem 2.
To proof eq. (21), we note that, using eq. (35)

∆0 = (ϕα − tP ) tF .

We now use eqs. (19) and (37) and obtain

∆0 = (ϕα − tF ϕα − tF ϕγ) tF

= (ϕα − ϕγ) tF tF .

Eq. (21) then follows using eq. (33).
Let us finally calculate ∆1 using eqs. (32) and (36). We obtain

∆1 = (ϕα − ϕγ) tF tF · α ∆̃1 , (40)

with
∆̃1 = N−1

1 N−1
2 · ∆̃′1 (41)

and

N1 = tF (tP α+ tP xP β) + tF xF (tP γ + tP xP δ)

N2 = tF (αϕα + xP β ϕβ) + tF xF (γ ϕγ + xP δ ϕδ) .

Note that N1, N2 > 0. We are therefore most interested in ∆̃′1, which is
given by

∆̃′1 = tF xF (ϕα − ϕγ) (γ − δ xP ) + tF xP (β − δ xF )

+ γ ϕγ xF + δ ϕγ xF xP .

From conditions (i) and (ii) of theorem 5, we conclude that γ > δ xP and
β > δ xF . Hence ∆̃′1 > 0, which proves the theorem.
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