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Abstract

We reconsider the Nagelian theory of reduction and argue that, contrary to a
widely held view, it is the right analysis of intertheoretic reduction, since the
alleged difficulties of the theory either vanish upon closer inspection or turn out
to be substantive philosophical questions rather than knock-down arguments.

1 Introduction

The purpose of this paper is to examine synchronic intertheoretic reduction,
i.e. the reductive relation between pairs of theories which have the same (or
largely overlapping) domains of application and which are simultaneously
valid to various extents.1 Examples of putative synchronic intertheoretic re-
duction are the reduction of chemistry to atomic physics, rigid body mechan-
ics to particle mechanics, and thermodynamics (TD) to statistical mechanics
(SM).

The central contention of this paper is that a Nagelian account of reduction
is essentially on the right track: With some modifications and qualifications

∗Authors are listed alphabetically; the paper is fully collaborative. To contact the
authors write to f.dizadji-bahmani@lse.ac.uk, r.p.frigg@lse.ac.uk, or s.hartmann@uvt.nl.

1There are, of course, other types of reductive relations, most notably diachronic theory
reductions, an example of which is Newtonian and relativistic mechanics. See Nickles
(1975). For an in-depth discussion of such cases, see Batterman (2002).
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that account tells the right story about how synchronic intertheoretic reduc-
tion works. For reasons that will become clear as we proceed, we refer to this
modified and qualified account as the Generalised Nagel-Schaffner Model of
Reduction (GNS). To prime our intuitions, we start with a discussion of the
reduction of TD to SM, which serves as the touchstone for our views about
reduction (Section 2). We proceed to present a preliminary statement of GNS
by first discussing Nagel’s original views (1961, Ch. 11) and then introducing
the amendments proposed by Schaffner and, indeed, Nagel himself (Section
3.1). Subsequently, we list seven (families of) problems that allegedly render
this account untenable (Section 3.2). After briefly pointing out that these
problems cannot be avoided by substituting GNS with so-called New Wave
Reductionism, we reconsider the alleged difficulties of GNS. We conclude that
they are not only far from being as insurmountable as they are often said
to be, but that some of them vanish upon closer inspection, and those that
don’t turn out to be interesting philosophical issues rather than knock-down
arguments (Section 4). The discussion of these problems leads to various
important qualifications. In the last section, we give a definitive statement
of GNS and clarify its relation to reductionism, the view that eventually all
theories reduce to one fundamental theory (Section 5).

2 Statistical Mechanics - A Reductionist En-

terprise

SM is the study of the connection between micro-physics and macro-physics.
TD correctly accounts for a broad range of phenomena that we observe in
macroscopic systems like gases and solids. It does so by characterizing the be-
havior of such systems as governed by laws which are formulated in terms of
macroscopic properties such as volume, pressure, temperature and entropy.
The aim of SM is to account for this behaviour in terms of the dynami-
cal laws governing the microscopic constituents of macroscopic systems and
probabilistic assumptions.

Although the success of the reduction of TD to SM is a matter of controversy,
there is no doubt that accounting for the laws of TD in terms of laws gov-
erning the micro-constituents of systems is a reductionist enterprise.2 But

2This is widely acknowledged in the literature, both in physics and philosophy. See,

2



before we can assess the success of reduction, we need to know what is meant
by reduction. That practitioners of SM do not really discuss the issue is no
surprise; however, it should raise some eyebrows that, by and large, philoso-
phers working on the foundations of SM also rarely, if ever, address this issue.
So the pressing question remains: What notion of reduction is at work in the
context of TD and SM?

Different statements of the reductive aims of SM emphasise different aspects
of reduction (ontological, explanatory, methodological, etc.), but all agree
that a successful reduction of TD to microphysics involves the derivation of
the laws of TD from the laws of microphysics plus probabilistic assumptions.
This has a familiar ring to it: Deducing the laws of one theory from another,
more fundamental one, is precisely what Nagel (1961, Ch. 11) considered a
reduction to be. Indeed, the Nagelian model of reduction seems to be the
(usually unquestioned and unacknowledged) ‘background philosophy’ of SM.

One could lay the case to rest at this point if Nagel’s model of reduction was
generally accepted as a viable theory of reduction. However, the contrary is
the case. As is well known, the Nagelian model of reduction was, from its
inception, widely criticised, and is now generally regarded as outdated and
misconceived. Representative for a widely shared sentiment about Nagel’s
account is Primas, who states that ‘there exists not a single physically well-
founded and nontrivial example for theory reduction in the sense of... Nagel’
(1998, 83).

This leaves us in an awkward situation. On the one hand, if Nagel’s account
really is the philosophical backbone of SM, then we have an (allegedly) out-
dated and discarded philosophy at work in what is generally accepted as the
third pillar of modern physics alongside relativity and quantum theory! This
is unacceptable. If we want to stick with Nagelian reduction, the criticisms
have to be rebutted. On the other hand, if, first appearances notwithstand-
ing, Nagel’s account is not the philosophical backbone of SM, what then is?
In other words, the question we then face is: What notion of reduction, if
not Nagel’s, is at work in SM?

for instance, Dougherty (1993, 843), Ehrenfest & Ehrenfest (1912, 1), Fermi (1936, ix),
Goldstein (2001, 40), Huang (1963, Preface), Khinchin (1949, 7), Lebowitz (1999, 346),
Ridderbos (2002, 66), Sklar (1993, 3) and Uffink (2007, 923), and Tolman (1938, 9).
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This dilemma is not recognised in the literature on SM, much less seriously
discussed. But when raised in informal discussions, one is usually told to em-
brace the second option: Nagelian reduction is outdated and discarded, but
the so-called ‘New Wave Reductionism’ associated with the work of Church-
land, Hooker, and Bickle provides a model of reduction that avoids the pitfalls
of Nagelian reduction while providing a viable philosophical backbone of SM.
In what follows, we point out that this is an empty promise and argue that
a broadly Nagelian picture of reduction is correct.

Our methodology is to present two paradigm cases of reduction (in a pre-
theoretic sense) which serve as a benchmark for any putative model of re-
duction. That is, some such model ought to be an abstraction that captures
the salient features of the relation between these two cases. These are the
Boyle-Charles Law and the Second Law of thermodynamics.

Boyle-Charles Law. In TD, the state of a gas can be specified by three quan-
tities: pressure p, volume V , and temperature T . Under certain conditions –
low pressure and the gas initially being in equilibrium (i.e. if it is evenly
distributed over V , and p and T do not change over time) – volume and
temperature are related to one another by the so-called Boyle-Charles Law:
p V = k T , where k is a constant. Let us call this law, together with the
qualifications about its scope, the thermal theory of the ideal gas.

Consider a gas consisting of n particles of mass m, confined to a volume V ,
for instance, a vessel on the laboratory table. Each particle has a particular
velocity ~v, and its motion is governed by Newton’s equations of motion. As-
sume that the gas is ideal in the sense that it consists of point particles and
that they only interact elastically. Assume, furthermore, that we are given a
velocity distribution f(~v), specifying what portion of all particles move with
~v (the exact form of this distribution is immaterial at the moment). Let us
call Newtonian mechanics plus the assumptions just mentioned the kinetic
theory of the ideal gas. The aim now is to derive the law of the thermal
theory of the ideal gas from the laws of the kinetic theory.3

Pressure is defined (in Newtonian physics) as force per surface: p = F
A
/A,

3For details, see Greiner et al (1993, 12-15) or Pauli (1973, 94-103).
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where A is surface and F
A

the force acting perpendicular to the surface. If
a particle crashes into the wall of the vessel and is reflected, it exerts a force
onto the wall, and the exact magnitude of this force follows immediately
from Newton’s equation. We now assume that all particles in the gas are
kinetically-interacting and perfectly elastic point particles. Then, consider a
wall in the x− y plane. Some purely algebraic manipulations show that the
pressure exerted by the gas on that wall is

p =
mn

V

∫ ∞
−∞

d3v f(~v)v2
z =:

mn

V
〈v2

z〉, (1)

where vz is a particle’s velocity in z-direction, and 〈v2
z〉 the average of the

square of the velocity (which is defined by the integral in the equation).
This equation says that the pressure exerted on a wall in the x− y plane is
proportional to the mean quadratic velocity in z-direction of all the particles
in the gas. We now assume that space is isotropic, meaning that no direction
in space is in any way special and that, for this reason, the components of f(~v)
are the same for all spatial directions. From this assumption, it immediately
follows that:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉, (2)

and since, by definition, ~v2 = v2
x + v2

y + v2
z , we have

p =
mn

3V
〈~v2〉. (3)

The kinetic energy Ekin is defined as m~v2/2, and hence this equation becomes

pV =
2n

3
〈Ekin〉, (4)

where 〈Ekin〉 is the average kinetic energy of a particle, and hence n〈Ekin〉
the average kinetic energy of the gas. Now compare Equation 4 with the
Boyle-Charles Law, p V = k T , which yields

T =
2n

3k
〈Ekin〉. (5)

The upshot of these calculations is that if we associate the temperature T
with mean kinetic energy of a particle (multiplied by a constant), then the
Boyle-Charles Law follows from Newtonian physics (here the equation of
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motion and the definitions of pressure and kinetic energy) and auxiliary as-
sumptions (that the molecules are point particles interacting only kinetically,
that they collide elastically, and that the velocity distribution is isotropic).

Second Law of Thermodynamics. The Second Law of thermodynamics states
that, in an isolated system, the thermodynamic entropy S

T
cannot decrease,

which is equivalent to saying that transitions from equilibrium to non-equili-
brium states cannot occur. The aim of reduction is to derive this law from
first principles. The details of such a derivation are too complicated to be
presented here, but the main ideas are the following:4 We begin by carv-
ing up the system’s state space into disjunct regions Mi, which we asso-
ciate with macrostates of the gas. We then define the Boltzmann entropy as
S

B
= k

B
log[µ(Mt)], where Mt is the region in which the system’s microstate

is at time t and µ(Mt) is the Lebesgue measure of that region (the Lebesgue
measure is the generalisation of the ‘ordinary’ three dimensional volume to
higher dimensional state spaces). The main challenge then is to show that
the dynamics of the system is such that S

B
increases and reaches its max-

imum when the system reaches equilibrium. Such a proof involves various
assumptions about the system, most notably the so-called Past Hypothesis
and some properties of the dynamics such as being chaotic. For the sake of
argument, let us assume that this can be shown (which, in fact, is a matter of
controversy). It is then generally accepted that we have reduced the Second
Law of TD to SM.

Two points deserve attention. First, the reduction, even if successful, is only
approximate. The thermodynamic entropy is static in equilibrium: Once it
has reached equilibrium, it does not change any more. The Boltzmann en-
tropy, by contrast, fluctuates. This is generally deemed to be unproblematic
because the fluctuations are very small and S

B
stays close to the equilibrium

value most of the time. Second, the reduction associates S
T

and S
B

. In fact,
this association performs that same function as Equation (5) in above case:
Only if we associate the two can we derive the Second Law of TD from SM.

4For a discussion of the details of this derivation as well as the difficulties that occur,
see Frigg (2008) and Uffink (2007). Furthermore, we here only discuss Boltzmannian SM;
with the Gibbsian framework, the question poses itself in a different way.
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3 Nagelian Reduction

We first introduce what we call the Generalised Nagel-Schaffner model of
Reduction, and then present some problems it purportedly faces.

3.1 The Generalised Nagel-Schaffner Model

On Nagel’s original account (1961, 353-354), a theory T
P

(here TD) reduces
to another theory T

F
(here SM) iff the laws of T

P
can be deduced from the

laws of T
F

and some auxiliary assumptions.5 The auxiliary assumptions are
typically idealisations and boundary conditions. More specifically, two con-
ditions for successful reduction are postulated. Connectability requires that,
for every theoretical term in T

P
, there be a theoretical term in T

F
that corre-

sponds to it. Derivability says that, given connectability, the laws of T
P

can
be derived from the laws of T

F
plus auxiliary assumptions. In this case, we

call T
F

the reducing theory and T
P

the reduced theory.

For Nagel, there are two classes of reduction. In homogeneous reductions, the
two theories share the same relevant predicates. In this case, the connectabil-
ity requirement is trivially satisfied. Examples of this kind of reduction are
the reduction of Kepler’s theory of planetary motion to Newton’s mechanics,
and the reduction of classical rigid body mechanics to classical particle me-
chanics because in both cases the latter theory contains all the relevant terms
of the former. If the theories do not share the relevant terms, the putative
reduction is heterogeneous. In this case, it is not even possible to derive the
laws of T

P
from T

F
. To overcome this difficulty, Nagel postulates that there

be so-called bridge laws which connect the vocabulary of T
P

to that of T
F

by
providing ‘rules of translation’ specifying how one ‘language’ translates into
the other.

An obvious difficulty for this model is that, often, it is in fact not possible to
derive the exact laws of T

P
. For instance, we have seen in the last section that

it is not possible to derive the exact Second Law of thermodynamics since
the Boltzmann entropy fluctuates in equilibrium, which the thermodynamic
entropy does not. Thus exact derivability is too stringent a requirement: It
suffices to deduce laws that are approximately the same as the laws being

5The indexes ‘P’ and ‘F’ stand for ‘phenomenological’ and ‘fundamental’ respectively.
This just an aide-mémoire and nothing depends on it.
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targeted. This revision of the original model has been developed in a string
of publications by Schaffner (1967; 1976; 1977; 1993, Ch. 9), and, indeed, by
Nagel himself (1974). More specifically, the proposal is that T

F
reduces T

P

iff there is a corrected version T ∗
P

of T
P

such that, (a) T ∗
P

is derivable from
T

F
given that the terms of T ∗

P
are associated via bridge laws with terms of

T
F

, and that (b) the relation between T ∗
P

and T
P

is one of, at least, strong
analogy (sometimes also ‘approximate equality’, ‘close agreement’, or ‘good
approximation’).

It is worth pointing out that the derivation of T ∗
P

involves two steps: We first
derive a special version of T

F
, T ∗

F
by introducing auxiliary assumptions, and

then replace the relevant terms by their ‘correspondents’ using bridge laws,
which yields T ∗

P
. (Of course this is equivalent to saying that we derive T ∗

P

from T
F

plus auxiliary assumptions and bridge laws, but for the following
discussion it is helpful to clearly distinguish the two steps.)6 This can be
seen in the above example: We first deduce a ‘kinematic version’ of the law
from the kinetic theory, namely Equation 4, which is T ∗

F
, and then use the

bridge law – Equation 5 – to obtain p V = k T (which is T ∗
P

and T
P

in this
simple case).

In sum, reduction is the deductive subsumption of a corrected version of T
P

under T
F

, where the deduction involves first deriving a restricted version,
T ∗

F
, of the reducing theory by introducing boundary conditions and auxiliary

assumptions and then using bridge laws to obtain T ∗
P

from T ∗
F

. This is il-
lustrated in Figure 1. We call this the Generalised Nagel-Schaffner model of
reduction (GNS).7

Bridge laws are crucial to this picture of reduction. While Nagel himself
remains relatively non-committal about the exact form and nature of bridge
laws, Schaffner (1976, 614-15; 1993, 411-477) offers a concise characterisation
of bridge laws, which he calls reduction functions. For Schaffner, a reduction
function is a statement to the effect that a term t

P
of T ∗

P
and a term t

F
of

T
F

(or T ∗
F

; both theories contain the same terms) are coextensional. For ex-

6Note that this ordering is a regulative reconstruction; in actual practice it may well
be the case that people work ‘from both directions’.

7This schema is sometimes also referred to as the generalized reduction-replacement
model (GRR); see e.g. Schaffner (1993, Ch. 9). However, GRR is often taken to also
incorporate Schaffner’s view of bridge laws, which we follow in spirit but not in detail (see
below). To avoid confusion as regards bridge laws we use ‘GNS’ rather than ‘GRR’.
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Figure 1: The Generalised Nagel-Schaffner model of reduction

ample, the terms ‘temperature’ and ‘mean kinetic energy’ are coextensional
when applied to a gas (we come back to this qualification below). At least
in physics, properties usually have magnitudes: A gas does not have a tem-
perature simpliciter, it has a temperature of so and so many degrees Kelvin.
Thus, a bridge law not only establishes coextensionality; it also specifies the
functional relationship between the magnitudes of the terms. Formally, the
bridge law contains a function f such that τ

P
= f(τ

F
), where, respectively,

τ
P

and τ
F

are the values of t
P

and t
F

. The latter condition is not redundant:
it does not follow from the fact that ‘temperature’ and ‘mean kinetic energy’
are coextensional, that the functional relation between their magnitudes is
the one specified by Equation (5). In fact, coextensionality could be true and
yet the functional relation between the two be completely different. For this
reason, a bridge law is incomplete without a specification of the functional
dependence of magnitudes. So we can give the following tentative defini-
tion of bridge laws (we will qualify this statement below): A bridge law is a
statement to the effect that (i) t

P
applies if, and only if, t

F
applies, and (ii)

τ
P

= f(τ
F

).

Schaffner’s presentation of bridge laws suggests that he takes it to be the
case that, in a successful reduction, (a) every term of T ∗

P
is connected to a

term of T
F

, and that (b) a term of T ∗
P

is connected to exactly one one term
of T

F
(see, for instance, 1967, 139-140). We take neither of these conditions

to be necessary for a successful reduction. Our reasons to deny (b) will be-
come clear when we discuss multiple realisability (in Section 4). The reason
to deny (a) is that we want to allow for partial reductions. If all terms of
T ∗

P
are connected to terms of T

F
and all laws (or central statements) of T ∗

P

can be deduced from T
F

plus bridge laws under the same auxiliary assump-
tions, then we have a complete reduction of the entire theory T

P
. If only

some terms are connected and we can deduce only some laws (or central
statements), then only the laws that can be derived are reduced, but not the
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entire theory. In this case, we speak of a partial reduction of T ∗
P

.8

These are the main tenets of GNS. We now list a number of criticisms, which
we address in Section 4. The discussion of these criticisms leads to important
qualifications of GNS. We present a definitive statement of the position in
Section 5. Finally, we make a point of nomenclature: When we talk about
‘Nagelian Reduction’, we refer to GNS. This is justified, since GNS is the
best match between the central ideas of Nagel’s (1961) original theory and
the needs of scientific practice.

3.2 Problems for GNS

The Nagel-Schaffner model faces a number of criticisms; some of them are
puzzles requiring a solution, others are purported refutations. Most of these
have been put forward against Nagel’s original views rather than against
Schaffner’s, or even GNS. However, since GNS is equally open to most of
these objections, they need to be tackled.

Problem 1: The syntactic view of theories. Nagel formulated his theory in
the framework of the so-called syntactic view of theories, which regards the-
ories as axiomatic systems formulated in first-order logic whose non-logical
vocabulary is bifurcated into observational and theoretical terms. This view
is deemed untenable for many reasons, one of them being that first-order
logic is too weak to adequately formalise theories and that the distinction
between observational and theoretical terms is unsustainable.9 This, so one
often hears, renders Nagelian reduction untenable.

Problem 2: The meaning of terms. The rationale for invoking bridge laws is
to connect the vocabularies of two theories to each other. Feyerabend (1962)
argued that such a move is impermissible. The meanings of the central terms
of a theory are fixed by the role they play in the theory. For this reason, terms
in different theories have different meanings (and even where two different
theories seemingly share theoretical terms, for example ‘mass’ in Newtonian
Mechanics and Special Relativity, this is merely a sharing of names, but not

8Sometimes this is couched as the difference between theory-reduction and law-
reduction. When understood in this way, there is no fundamental difference between
the two, and theory-reduction is simply complete law-reduction.

9See for instance Suppes (1977) for critical discussion of the syntactic view.
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of concepts, since the terms have different meanings in each context). But,
it is argued, one cannot associate terms with different meanings with each
other. Since the meaning of a term is determined by its theoretical context,
it is impossible to associate terms from different theoretical contexts with
each other, which makes Nagelian reduction impossible.

Problem 3: The content of bridge laws. There is a question about what kind
of statements bridge laws are. Nagel considers three options (1961, 354-355):
they can be claims of meaning equivalence, conventional stipulations, or as-
sertions about matters of fact. The third option can be broken down further,
since a statement connecting two quantities could assert the identity of two
properties, the presence of a (merely) de facto correlation between them, or
the existence of a nomic connection. Although the issue of the content bridge
laws is not per se an objection, it is a question that has often been discussed
in ways that gave rise to various objections, in particular in connection with
multiple realisability (Problem 4), to which we turn now.

Problem 4: Bridge laws and multiple realisability. The issue of multiple real-
isability (MR) is omnipresent in discussions of reduction. A T

P
-property is

multiply realisable if it corresponds to more than one different T
F

-properties.
The standard example of a multiply realisable property is that of pain: Pain
can be realised by different physical states, for instance in a human’s and in
a dog’s brain. The issue also seems to arise in SM because, as Sklar points
out (Sklar 1993, 352), temperature is multiply realisable. MR is commonly
considered to undermine reduction. There seem to be four different (groups
of) arguments for the conclusion that MR undermines reduction.10

The first argument from MR is that, in order to reduce T
P

-phenomena to
T

F
-phenomena, T

P
-properties must be shown to be ‘nothing over and above’

T
F

-properties. That is, it must be shown that T
P

-properties do not exist
as something extra or in addition to T

F
-properties: There is only one group

of entities, T
F

-properties. Showing this requires the identification of T
P

-
properties with T

F
-properties. But a multiply realisable T

P
-property is not

identifiable with a T
F

-property. This undercuts reduction.

10For a discussion (but not necessarily endorsement) of the first see Kim (2008), the
second and the third Richardson (2008), and the forth Sober (1999). These themes can, in
one way or another, bet traced back to Fodor (1974), which is locus classicus for arguments
against reduction based on MR.
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The second argument takes as its starting point the observation that certain
T

P
-properties are not only multiply realisable, but that, on top of that, their

realisers at the T
P

-level are also of disparate kinds. Dog brains differ vastly
from human brains and gases of particles have little in common with crystals
or spin systems, and yet they can exhibit the same macro properties, vis. pain
and temperature. This puts us in the awkward situation that T

P
-properties

are homogeneous in kind and yet have a variety of very different realisers.
This, so the argument goes, cannot be. A homogeneous T

P
-property can

only be reduced to a homogeneous T
F

-property. So, at the very least, one
would have to require that all realisers of a given T

P
-property share some

important feature in common for the association to count as reduction. But
in just those putative cases of MR, this unity amongst the T

F
-properties is

lacking.

The third argument takes issues with disjunctive laws. If a T
P

-property B
is multiply realisable, then the associated bridge law has to be a disjunction
of the form B = A1

F ∨ A2
F ∨ . . ., where A’s are the T

F
-property realisers of

B. What is worse is that this bridge law is not only a disjunction, but it is
also (at least potentially) open-ended. However, it is claimed that a law of
nature cannot have the form of an disjunction, let alone an open-ended one:
Laws cannot be disjunctive. For this reason, bridge laws are not laws when
there is MR, and thus Nagelian reduction is untenable.

The fourth worry is that MR undercuts the explanatory value of a reduction:
If a T

P
-property is multiply realizable at a lower level, then the lower level

science is not able to explain phenomena at the higher level which the higher
level science explains well.

Problem 5: The Epistemology of Bridge Laws. How are bridge laws estab-
lished? Nagel (ibid. 356) points out that this is a difficult issue since we
cannot test bridge laws independently. The kinetic theory of gases can be
put to test only after we have adopted Equation 5 as a bridge law, but then
we can only test the entire ‘package’ of the kinetic theory and the bridge law,
while it is impossible to subject the bridge law to independent tests. While
this is not a problem if one sees bridge laws as analytical statements or mere
conventions, it is an issue for those who see bridge laws as making factual
claims.
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Problem 6: Spurious reduction. Auxiliary assumptions play an essential role
in the derivation of T ∗

F
from T

F
, and T ∗

F
is essential to the reduction because

it is T ∗
F

that connects to T ∗
P

. Two worries pertain to this. The first is that,
if T ∗

P
can be deduced only with the help of additional assumptions, then it

is not true that T
P

has been reduced to T
F

, and hence the reduction of T
P

fails. If anything, T
P

has been reduced to T
F

plus auxiliary assumptions, but
this is not what we were aiming for. The second and more pressing worry
is that, as long as no restrictions are placed on what assumptions are allow-
able, reductions are cheap, if not trivial, because we can always write down
assumptions that imply T ∗

F
. In fact, we could simply add T ∗

F
as an auxiliary

assumption, and then trivially derive it. This, however, would certainly not
amount to a reduction of T

P
to T

F
.

Problem 7: Strong analogy. Strong analogy is essential to GNS. This raises
three issues. The first is that the notion of strong analogy is too vague and
hard to pin down to do serious work in a reduction. It is a commonplace that
everything is similar to everything else, and hence saying that one theory is
analogous to another one is a vacuous claim. Second, even if one is not going
as far as regarding analogy as arbitrary, there remains the worry that there
does not seem to be a general characterisation of the strong analogy required
in a reduction. What counts as an analogy is context dependent and can be
decided only case-by-case, which is a problem for a view that aims to be a
general account of reduction (cf. Sarkar 1998, 173). The third worry is that,
since T ∗

P
, rather than T

P
itself, is deduced from T

F
, it is illegitimate to say

that T
P

has been reduced. What really has been reduced is T ∗
P

, and T
P

has
simply been lost, or replaced, on the way, and so there is no reduction of T

P
.

These difficulties are regarded by many as so severe that avoiding Nagelian
reduction altogether seems to be a better strategy than addressing them.
This option appears to be particularly attractive because a viable alternative
seems to be readily available: the position know as New Wave Reductionism
(NWR).11 This position is often recommended as a substitute that can do all

11The position has first been prosed by Churchland (1979, 80-88), and has then been
developed by Churchland (1985, 1987), Hooker (1981), and Bickle (1996, 1998). The
term ‘New Wave’ is due to Bickle, and therefore the label ‘New Wave Reductionism’ is
sometimes reserved for Bickle’s view. It has become customary, however, to use it broadly
and take it to denote the entire tradition starting with Churchland.
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the work that Nagelian reduction was meant to do, while not suffering from
any of its problems.12 This is mistaken. In fact, Endicott (1998, 2001) has
argued that, in fact, NSW collapses into Nagelian reduction and leaves the
intellectual landscape largely unchanged. We endorse Endicott’s arguments
(modulo some minor points that are inconsequential for the overall argument)
and conclude that replacing Nagelian Reduction with NWR does not solve
any of the problems that attach to intertheoretic reduction.

4 Nagelian Reduction Reconsidered

Given that we can’t avoid the problems of GNS by simply replacing it with
another view of reduction, these problem have to be addressed. This is the
task of the present section.

Problem 1. The objection that GNS is based on the syntactic view of the-
ories and therefore untenable is mistaken. Although Nagel was a proponent
of the syntactic view, there is no textual (or other) evidence that he took the
syntactic view to be an essential part of his model of reduction; and Schaffner
makes no assumptions about the correct analysis of theories when presenting
his theory of reduction. This is for good reasons, because the syntactic view
is unnecessary to get GNS off the ground, as is clear from the above exam-
ples: Neither did we present a first-order formulation of the theory, nor did
we even mention a bifurcation of the vocabulary into theoretical and obser-
vational terms. Where first order logic is too weak, we can replace it with
any formal system that is strong enough to do what we need it to do. The
bifurcation of the vocabulary plays no role at all.

Problem 2. Feyerabend’s criticism is that reduction is impossible because,
in order to associate two terms with each other, they must have the same
meaning, which, however, is never the case if the terms occur in two different
theories. Whether this argument is cogent depends on what one means by
‘meaning’. Feyerabend associates the meaning of a term with the role the
term plays in a theoretical framework. Thus, the meaning of the term ‘tem-
perature’ as it occurs in thermodynamics is determined by everything we say
about temperature in the language of thermodynamics. Given this concep-

12This view is hard to pin to down in print, but it has been put to us in discussion on
countless occasions.
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tion of meaning, it is clear that terms occurring in different theories must
have different meanings. But when meaning is framed in this way, meaning
equivalence is immaterial to reduction; what matters is whether the proper-
ties that the terms in the bridge laws refer to stand in a relevant relation to
each other. Feyerabend’s imposition that only terms with the same meaning
can be associated with each other is unmotivated, unnecessary, and foreign
to GNS.13

Problem 3. What is the status of bridge laws? The first two options Nagel
considers are meaning equivalence and convention. These can be discarded.
That bridge laws cannot be claims of meaning equivalence follows from our
discussion of Problem 2. Neither can they be mere conventions. Conventions
are arbitrary and all that matters is that they be respected after a choice
has been made. We can choose to drive on the right or on the left hand side
of the road; neither choice is better, or more justified, than the other. What
matters is that everybody respects the choice once it has been made by the
group. Bridge laws are not like that. Clearly, there is right and wrong in the-
oretical association. It is true that the temperature of a gas is proportional
to 〈Ekin〉, but it is false that it is proportional to 〈Ekin〉2. Furthermore, often,
a process of painstaking research was necessary to make such associations.
That does not sit well with an understanding of bridge laws as conventions.

For this reason, bridge laws are factual claims. This, however, leaves open
the question whether bridge laws express mere correlations (or Humean regu-
larities), nomic connections involving certain necessities, identity statements,
or yet other metaphysical relations. There is a strong push in the literature
to first come to a general answer to this question and then settle for identity.

To assess this tendency, we have to distinguish between two different kinds
of bridge laws: The first kind associates basic entities of T

P
and T

F
with each

other; they identify, for instance, light and electromagnetic radiation, electric
currents and the flow of electrons, and gases and swarms of atoms (see, for
instance, Sklar, 1967, 120). We refer to this kind of bridge laws as entity as-
sociation laws. The second kind of bridge laws enter the scene once the basic

13In fact, Nagel himself (1961, 352) denied that meaning has to be preserved in reduc-
tions. For those subscribing to the so-called direct reference view of meaning (roughly the
view that the meaning of term is its referent), this conclusion would be reversed: Meaning
equivalence would play an essential role in reduction.
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entities of T
P

and T
F

are associated with each other and then assert that the
T

P
-properties of a system stand in a relevant relation to the T

F
-properties of

that system, and that the magnitudes of these properties stand in a relevant
functional relationship. Let us call these property association laws.

Entity association laws are different from property association laws both in
content and in origin. Entity association laws indeed express identities: gases
are swarms of molecules, genes are strings of amino acids, etc. The same
does not hold for property association laws; these laws can, but need not ex-
press identities. We will argue for this claim shortly. The second difference
is that, while property association laws are external to T

F
, entity association

laws are internal to T
F

. It is the basic posit of the wave theory of light that
light is an electromagnetic wave; it is the basic posit of the kinetic theory
of gases that gases are swarms of atoms; and it is the basic posit of statis-
tical mechanics that the systems within the scope of thermodynamics have
a molecular constitution and that the behaviour of molecules is governed by
the laws of mechanics.14 Entity association laws can, of course, be false; but
if they are, it is the reducing theory that is false. By contrast, property
association laws are external to T

F
. For instance, there is nothing in the

kinetic theory of gases per se that tells us to associate mean kinetic energy
with temperature. This raises questions both about their content and form.

Problem 4. The question about the content of property association bridge
laws is best discussed in the context of arguments against reduction based on
MR. Unlike entity association laws, which clearly have to be identities, prop-
erty association laws could, at least in principle, also be mere regularities,
lawlike connections, or express yet another relation. However, there is a long
tradition of arguing that all bridge laws have to establish identities. Hence,
property association laws have to establish identities between properties be-
cause everything less than identity is insufficient for a genuine reduction.15

As per the first argument, the driving force behind the requirement that

14For this reason, there is even a question whether calling these laws bridge ‘laws’ is a
appropriate. We would prefer to refer to them as the ‘background reduction of T

F
’.

15Causey (1972) was one of the first to introduce this line of argument. Sometimes
the argument is put as a criticism of bridge laws: it is assumed that bridge laws only
express extensional equivalence and then it is concluded that bridge laws are insufficient
for reduction because reduction requires identity.
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bridge laws express identities is the view that, for a reduction to be suc-
cessful, it has to be shown that T

P
-properties are nothing over and above

T
F

-properties. We believe this to be mistaken. Whether or not the estab-
lishment of strict identities is a desideratum for a reduction depends on what
one wants a reduction to achieve. If metaphysical parsimony or the defence
of physicalism are one’s primary goals, then identity may well be essential
(although, even then, less than identity might be sufficient; we return to
this issue when discussing explanation). But in science neither of these are
very high on the agenda. Reductions are desirable first and foremost for two
other reasons: consistency and confirmation. That is, T

F
and T

P
have to

be consistent, and evidence confirming T
F

also confirms T
P

and vice versa.
Further items can be added to this list, explanation being the most obvious
addition (the condition that T

F
explain T

P
, we come back to this below).

However, these additions are not essential: Reductions that achieve nothing
but consistency and confirmation are bona fide reductions. These aims, and
this is the crucial point, can be achieved without bridge laws being identity
statements. In fact, mere de facto correlations between properties are all that
is required for the needs of reduction, and we can remain agnostic about the
question of whether bridge laws express anything beyond mere correlation.

Let us discuss consistency and confirmation in more detail. No rational per-
son should hold contradictory beliefs. Hence, given two (self-) consistent
theories T1 and T2, these ought to be consistent with each other (T1 and T2

are required to be consistent because no one should hold an inconsistent the-
ory to begin with). If the two theories use completely different languages and
are about a different target domain, then this requirement is satisfied triv-
ially; there does not seem to be a problem about the consistency of algebraic
quantum field theory and costly signaling theory in evolutionary biology.
Things become more involved if the two theories’ target domains are identi-
cal (or have significant overlap), in which case consistency does not come for
free (i.e. not merely as a result of the theories not sharing any non-logical
vocabulary). Theories like SM contain what we have above called entity as-
sociation laws and so SM and TD are not consistent merely on the grounds
that they use different vocabulary; they make claims about the same sys-
tems and the question arises whether these claims are consistent with each
other.16 Establishing a reductive relation between SM and TD ensures the

16Instrumentalists may require only the consistency of claims about observables; realists
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consistency and hence co-tenability of the two accounts, because, trivially,
if one consistent theory can be deduced from another consistent theory the
two are consistent.17 All that is needed for such a deduction is that there be
conditionals saying ‘for all x, x is t

F
if and only if it is t

P
’.18 It simply does

not matter whether this conditional expresses an identity, a nomic necessity
or a mere de facto correlation; all we need for the deduction is that whenever
t

F
applies, then t

P
applies.

Next in line is confirmation. Consider again two theories whose target do-
mains are identical (or have significant overlap). We then would expect
evidence confirming one theory to also confirm the other theory, and we ex-
pect confirmation to ‘travel’ both ways (though not necessarily with the same
strength). This, however, can happen only if the two theories are connected
to one another, and the connection postulated by GNS fits the bill.19 As-
sume, first, that we have evidence supporting T ∗

P
and the bridge laws. On

GNS, this theory is a deductive consequence of T
F

(plus auxiliary assump-
tions) and the bridge laws, and on every credible account of confirmation, a
general theory receives some boost in confirmation if one of its consequence
bears out (although different accounts of confirmation analyse the basic idea
in different ways). Conversely, if we have evidence supporting T

F
and the

bride laws, then T ∗
P

receives confirmatory support because a deductive conse-
quence of a hypothesis inherits the confirmation of the hypothesis itself. As
in the case of consistency, all that matters for confirmation is that there be
sentences connecting terms from one theory to terms of the other so that the
deduction becomes possible, but it is immaterial to the deduction whether
these sentences express mere Humean regularities or some strong metaphys-
ical relation. So, again, no commitment to an identity reading of bridge laws
is forced upon us.

may also require consistency of theoretical claims. But there is a consistency issue no
matter where one stands on the question of scientific realism.

17In fact, what is established is the consistency T
F

and T ∗
P

rather than T
P

. T
P

and T
F

may remain inconsistent, strictly speaking, because, as seen, T ∗
P

is usually (only) strongly
analogous with T

P
. However, all we really need is that T

F
be consistent with a ‘near

enough’ cousin of T
P

, and because T ∗
P

and T
P

are strongly analogous this is indeed the
case.

18Strictly speaking it is not even necessary that the right-to-left implication holds.
19In our (2011) we show that this is the case if we adopt a Bayesian framework.
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The second argument is that reduction is incompatible with there being a
diverse set of realisers for one T

P
-property: There must be something that

binds together, or unifies, all the realisers or a T
P

-property over and above
merely being realisers of that particular T

P
-property. This demand is un-

justified. In fact, the second argument is just the identity view in disguise.
While it admits that there can be different realisers, it requires that they all
share something in common and then the implicit assumption is that what
T

P
-property is really reduced to is this common feature. We have already

argued that identity is unnecessary for reduction, and so we also reject this
argument. There simply is no reason to think that, say, ‘temperature’ for
gas being co-extensional with mean kinetic energy precludes it from being
co-extensional with a completely different micro-property in other systems.

The third argument from MR is that bridge laws cannot be genuine laws
where multiply realisable properties are involved because multiply realisable
properties require disjunctive bridge laws but genuine laws of nature cannot
be disjunctive. It is hard to see why this should be so, and we can only share
Sober’s ‘sense of incomprehension and mystery’ at why the word ‘or’ should
undermine the aims of reduction (1999, 553). First, as Sober points out, it
is not clear where to draw the line between disjunctive and non-disjunctive
laws, since what is non-disjunctive in one formulation could turn out to be
disjunctive in another one and vice versa. Second, even if it is true that
‘proper’ laws of nature (whatever these are) cannot be disjunctive, there is
no need for bridge laws to be laws of nature in that sense. Bridge laws can be
of a different kind and have to satisfy less stringent demands than other laws
of nature. All we require from bridge laws is that they serve the purposes of
reduction (which, on our view, are consistency and confirmation), and dis-
junctions pose no problem for these (even if they are open-ended). Third, it
is not clear why laws of nature cannot have a disjunctive form. What seems
to lie in the background are worries concerning natural kinds and spurious
confirmation. But it is not clear whether these worries are conclusive, and
the burden of proof lies with those who argue against disjunctive laws.20

20Often, the point is simply asserted. Kim, for instance, asserts that a multiply realisable
property is ‘unfit to figure in laws, and is thereby disqualified as a useful scientific property’
because of its ’causal/nomic heterogeneity’ (1999, 18). Needham (2009) is right to point
out that this view is wrong: There is a good theory essentially involving temperature,
namely TD, and MR is certainly no reason to deny TD its status as a scientific theory!
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The last argument is that MR undercuts the explanatory power of reduc-
tions. We want to resist this argument for two reasons. First, rife doctrine
nonewithstanding, reductions do not ipso facto have to double as explana-
tions. The two core aims of reduction – consistency and confirmation – can
be had without adding further items to the list, and reductions are desirable
even if they do not serve any other purposes. Explanation, in particular, is
nice to have where it can be had, but it is not a sine qua non of reduction.21

Second, it is not clear to us why MR should undercut reductive explanation.
Kim (2008, 94) characterises a reductive explanation as one that shows that
a particular T

F
phenomenon constitutes ‘an underlying mechanism’ whose

‘operation’ yields a T
P

phenomenon and which makes the T
P

phenomenon
‘intelligible in the light of the underlying phenomena and mechanisms’. It is
not clear why MR should undercut reductive explanations in this sense. We
explain why gases have temperature by appeal to the dynamical properties
of its constituents. If this explanation is successful, then it is so irrespective
of whether other kinds of systems can have temperature, too. Assume that
gases were the only kind of objects that had temperature, and that we had a
successful explanation of why gases have temperature in terms of the molec-
ular motion of gas molecules. Why would this explanation no longer be an
explanation once we realise that other systems also have temperature? There
is no reason to believe that what used to be an explanation suddenly loses
its status as an explanation. It has just become a more local explanation,
because it does not cover all cases of temperature, but local explanations are
still explanations.

Problem 5. How do we establish bridge laws? The alleged problem is that we
cannot test them independently. In fact, it is not the case, as Nagel seems
to suggest, that we start with T

F
, then write down a bridge law (which we

know to be correct!), and finally deduce T ∗
P

. Rather, what happens is that
we begin with T

F
and T

P
and then try to find bridge laws that (modulo small

corrections) make T
P

derivable from T
F

(cf. Ager, Aronson and Weingard
1974, 119-122)). So the correct analysis of how the two theories relate should
be

21Additions like explanation may or may not require a commitment to a stronger notion
of bridge laws. In fact, Klein (2009) argues that we can have reductive explanations
without committing to a view of bridge laws which sees them as expressing metaphysical
relations.
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Premise 1 : T
F

Premise 2 : T
P

——————————–
Conclusion: bridge law

In the above example, it is not the Boyle-Charles Law that we derive from
the kinetic theory plus a bridge law (Equation 5); it is the bridge law that is
derived from the Boyle-Charles Law and the kinetic theory.

We agree with this point, but deny that it is a problem for GNS. In fact, this
is just an instance of the Duhem problem: We are often unable to confirm
hypotheses independently because we can only put entire packages (consist-
ing of theories and auxiliary assumptions) to test. That the Duhem problem
crops up in Nagelian reduction is hardly a cause for celebration, but given
that this is a widespread problem in many (if not all) parts of science, it
hardly is a reason to give up Nagelian reduction. As is well known, there is
no royal route around the problem and arguments vary from case to case. So
the conclusion to be drawn from this is simply that, in any given case of a
purported reduction, we have to think carefully about what evidential sup-
port we have for the bridge laws we use. Sometimes we may take the bridge
law seriously because we have good evidence for both T

F
and T

P
, and the

reduction is sufficiently smooth.22 In other cases, we may have other reasons
to take the bridge laws seriously. Asking for a universal account of evidential
support for bridge laws is a mistaken demand, and not one the GNS has to
meet.

Problem 6. Let us begin with the second problem, namely that GNS is too
liberal. GNS, so the objection goes, allows for auxiliary assumptions that
are so strong that they are doing all the work, and, in fact, render T

F
itself

an idle wheel. Yet, it still forces us to say that T
P

has been reduced to T
F

,
which is implausible. This is a fair concern, but not one that poses an insur-
mountable problem. Our proposal is to impose the following two conditions
on auxiliary assumptions: First, T

F
must be used in the deduction of T ∗

P
; that

is, T ∗
P

must not follow from the auxiliary assumptions alone. We call this
the condition of non-redundancy. Second, the auxiliary assumptions must

22In fact, proponents of NWR argue that smoothness supports the claim that the bridge
law is an identity claim (Churchland 1995, 11). We think that this is too strong, but the
main idea, namely that smoothness supports factual correctness, seems valid.
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belong to the paradigm of T
F

; i.e. auxiliary assumptions cannot be foreign to
the conceptual apparatus of T

F
. This is the condition of immanence. These

two restrictions successfully undercut spurious reductions.

Let us illustrate this with the example of the Second Law. Trivial self-
deduction is ruled out by the first condition: we cannot simply write down
the Second Law as an auxiliary assumption and then deduce it. But our two
conditions also deal correctly with less trivial cases. Assume for the sake of
argument that Boltzmann’s programme has been completed successfully and
a derivation of Boltzmann’s Law from the apparatus of Boltzmannian SM
and the auxiliary assumption that the system is ergodic has been given. In
our view, this would be a successful reduction, because ergodicity is part and
parcel of classical mechanics, which is central to Boltzmannian SM. The aux-
iliary assumption merely restricts the class of allowable phase flows to ones
that are ergodic, but it does not introduce anything into the theory that is in
principle foreign to it. By contrast, consider the research programme known
as stochastic dynamics.23 The leading idea of this approach is to replace the
Hamiltonian dynamics of the system with an explicitly probabilistic law of
evolution. Characteristically, this is done by coarse-graining the phase space
and then postulating a probabilistic law describing the transition from one
cell of the partition to another one. The Second Law is then derived from
this probabilistic dynamics. In our view, this is not a successful reduction
of TD to SM, because the Second Law follows from the auxiliary assump-
tions alone (contra non-triviality), and the probabilistic transition laws are
entirely foreign to classical mechanics. Unless one could somehow derive the
probabilistic laws from the Hamiltonian equations of motion governing the
system, these probability laws violate immanence.

The two conditions also offer a straightforward solution to the first worry:
Given that the auxiliary assumptions have to belong to the paradigm of the
reducing theory, there is nothing wrong with saying that T

P
has been reduced

to T
F

.

Problem 7. The first criticism is that the notion that two theories be anal-
ogous to each other seems hopelessly vague and that therefore an account
of reduction based on this is a non-starter. At least in the context of GNS,

23For a discussion of this programme, see Uffink (2007, 1038-63).
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not anything goes, however. There are two conditions that T ∗
P

must satisfy.
First, we require that the two theories use the same conceptual machinery:
T ∗

P
must share with T

P
all essential terms. Consider again the Second Law.

T ∗
P

is couched in the same terms as T
P

, namely entropy, and differs only in
how the properties vary, namely that in the former entropy fluctuates. Sec-
ond, Schaffner (1967, 144) requires that T ∗

P
corrects T

P
in the sense that T ∗

P

makes more accurate predictions than T
P

. This is the case in our example,
since experiments show that entropy fluctuates as predicted by T ∗

P
(and ruled

out by T
P

). While Schaffner’s requirement sits well with the example of the
Second Law, it may be too restrictive in general. So we propose a slightly
weaker requirement, doing the same work without running the risk of ruling
bona fide reductions. The requirement is that T ∗

P
be at least equally empiri-

cally adequate as T
P

. These two conditions undercut any attempt at playing
fast and loose with analogies in such a way as might.

There is a further worry that there is no general characterisation of ‘strongly
analogous’, but such a characterisation is an essential part of a workable
theory of reduction. Therefore, the criterion that T ∗

P
and T

P
be strongly

analogous is empty and GNS is not a definite position at all. We disagree
with this conclusion. Being strongly analogous is a contextual relation, and
we should not expect there to be a general theory of analogy. Whether or
not T ∗

P
is strongly analogous to T

P
has to be decided either in the relevant

scientific discipline itself or the special philosophy of it. The above example
of the derivation of the Second Law makes this clear. That Boltzmann’s Law
is strongly analogous to the Second Law in a way that underwrites reductive
claims does not follow from some philosophical theory of analogy; it is the
result of a careful analysis of the case at hand. Callender (1999, 2001) has
argued, in our view convincingly, that the unrestricted Second Law is too
strong, and that we can accept Boltzmann’s Law without contravening any
known empirical fact, which is why we can regard these laws as strongly
analogous. Indeed, we should expect the same to be the case with almost
every putative case of reduction: it is the particular science at stake that has
to provide us with a criterion of relevant similarity in the particular context.

The third worry is that, unless the analogy is identity, T
P

has in fact been
replaced rather than reduced, and so we should not longer speak about re-
duction; in fact, T ∗

P
, not T

P
, has been reduced. This is a matter of definition.

If the term ‘reduction’ is reserved for cases of exact derivation, then T
P

is
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not reduced. However, we see no reason to regiment language in this way.
As we have just seen, GNS imposes strict conditions on what counts a strong
analogy is by no means arbitrary. As long as it is understood that reduction
involves an analogy of this kind, we can see no harm in calling the GNS
procedure ‘reduction’.

5 Reduction and Reductionism

We have argued that GNS is alive and well, and that scientists involved in
a reductionist research programme do the right thing if they take GNS as a
regulative ideal. This, however, should not be taken to support reduction-
ism, the (much stronger) claim that ultimately all sciences are reducible to
one basic science (usually physics). What we have presented is an analy-
sis of what a successful reduction would look like, and, as such, it does not
prejudge whether or not there are such reductions. Whether any given the-
ory can actually be reduced to another theory, or even whether theoretical
reduction can be achieved across the board, is, in our view, a factual and
not a philosophical question. But this does not render GNS superfluous; the
question of whether or not a purported reduction is a successful reduction
can only be answered against the background of a presupposed conception
of an reduction, and it is this conception that GNS provides.

This ‘wait and see’ attitude does not conflict with our claim that reduction
is to great extend driven by the desire for consistency. Consistency, so one
might argue, is absolutely necessary and once one sees reduction as driven
by the quest for consistency there better be reductions across the board.
Therefore, so the argument goes, we are committed to reductionism after all.
This is wrong. We are committed to the claim that if we have a situation
of the kind described above (in which the two theories have an overlapping
target domain), then one must have a reduction.24 However, we are not
committed to the claim that the situation described in the antecedent is
ubiquitous. Whether there are such overlaps is an empirical question, and
unless one can somehow make it plausible that such overlaps are ubiquitous,

24We assume here that we want to keep the reduced theory and that elimination is not
a possibility. Then reduction seems the only way to establish consistency. Of course, if
there is another way to achieve consistency (whilst keeping the reduced theory), then we
would not be forced to claim that there has got to be a reduction, after all.
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the view on reduction we advocate does not force reductionism upon us.
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