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Abstract

Apartness spaces were introduced as a constructive counterpart to proximity spaces which, in turn, aimed
to model the concept of nearness of sets in a metric or topological environment. In this paper we introduce
apartness algebras and apartness frames intended to be abstract counterparts to the apartness spaces of Bridges
and Vita [3], and we prove a discrete duality for them.

1 Introduction

A discrete duality is a duality between classes of algebras and classes of relational systems (frames): Let Alg be
a class of algebras and let Frm be a class of frames. Establishing a discrete duality between these two classes
requires the following steps:

1. With every algebra A from Alg associate a canonical frame €f(A) of the algebra and show that it belongs
to Frm.

2. With every frame X from Frm associate a complex algebra €m(X), and show that it belongs to Alg.
3. Prove two Representation Theorems:

(a) Foreach A € Alg there is an embedding 4 : A — Cm€f(A).
(b) For each frame X € Frm there is an embedding i : X — €f&m(X).

Canonical frames are the counterparts of dual spaces of algebras in the Priestley style duality; however, they are
not endowed with a topology and hence may be though of as having a discrete topology. Complex algebras of
canonical frames are the counterparts to canonical extensions in the style of Jonsson and Tarski [8]. In the setting
of discrete dualities, the canonical extension is built from the two structures which, respectively, explicitly refer
to their algebraic and relational origin, . This provides an insight into the role which both algebras and frames
play in establishing representation theory. A general outline of discrete duality can be found in [11].

Apartness spaces were introduced in [3] as a foundation for constructive topology in the sense of [2]. A point
— set apartness is a relation > between points and subsets of a set X satisfying certain suitable axioms, and a
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pair (X,) is called an apartness space. Intuitively, x < S expresses that the point x is apart from the set S.
These relations can be considered an abstraction of metric spaces (X,d), when one sets x 1 S if and only if
(Fr>0)(Vy)yeS=d(x,y) >r].

Apartness spaces are a natural counterpart to the proximity spaces [see 9]. Broadly speaking, a proximity on a
set X is a binary relation 0 between subsets of X, and SOT is meant to express that S is near to 7 in some sense;
for a thorough treatment of proximity relations the reader is invited to consult the standard text by Naimpally and
Warrack [9]. Proximity spaces have a strong connection to pointless topology and contact algebras which are of
considerable interest in the field of qualitative spatial reasoning; these connections have been investigated in some
detail by Vakarelov et al. [15]. A discrete duality for proximity spaces can be derived from the developments in

[6].
A point — set apartness induces a point — point apartness relation D on X by xDy <= x < {y}, as well as

an operator — defined by —S§ a {x : x> S} which behaves in some sense like complementation and which is
usually called an apartness—complement. In the original papers on apartness spaces, a point—point apartness
was introduced as a notion separate from the point—set apartness, but it was later shown by [14], that this is not
necessary, and that D will suffice. Therefore, apartness spaces can be axiomatized purely from the apartness—
complement —.

It turns out that the apartness—complement is a sufficiency operator in the sense of Diintsch and Ortowska [5];
these were introduced in the context of modal logic to express relational properties that could not expressed
with the standard possibility or necessity operators; a case in point is irreflexivity, others are antisymmetry and
extensionality.

Recognizing that apartness spaces can be viewed as algebras with a sufficiency operator, one can use all the
machinery developed in that area, in particular, the theory of Boolean algebras with operators. However, since
we are working within an intuitionistic environment, our base structures will be Heyting algebras instead of
Boolean algebras.

In this paper we introduce apartness algebras and apartness frames intended to be abstract the counterparts to
apartness spaces. These two notions capture in an axiomatic way all the relevant properties of the apartness
spaces and, moreover, they provide a clear division between the properties whose nature and origin are relational
or algebraic. Then the discrete duality between the apartness algebras and the apartness frames clarifies how
these two kinds of properties are related.

2 Notation

If S C X, we let S be the set complement of S in X. For a function f: X — Y and S C X, we set f[S] ad {f(x):
xeS}.

If <is a partial order on X and S C X we define the upser T Sof Sby TS d {y:(Ix)[xeSand x <y|};if S = {x},
we usually just write T x; the collection of all upsets is denoted by %'(X). Downsets | S and | x are defined
analogously. Note that the complement of an upset is a downset and vice versa. The following is well known
[see e.g. 13]:

Theorem 2.1. € (X) is a complete Heyting algebra under the set operations U and N and S — T a L (S\T).

The set of all binary relations on X is denoted by Rel(X); 1’ is the identity on X and 0/ is the diversity, i.e.
0 =Xx2\1".1fx € X, we let R(x) & {z € X : xRz}; the relational converse is denoted by R”.



If R € Rel(X), we define two modal-style operators on 2X by

2.1 [R](S)
(2.2) [[RII(S)

{x: (Vy)xRy =y e S|} = {x:R(x) C S}.
{x: (Wy)[yeS=xRy]} ={x:SCR(x)}.
[ ] is the usual necessity operator. The following correspondences are well known:
Lemma 2.2.  [. Ris reflexive if and only if [R](S) C S.

2. R s transitive if and only if [R](S) C [R][R](S).

[[]] is a sufficiency operator in the sense of [5], i.e.

2. [[RIJ(SUT) = [[RII(S) N{[RII(T).
Furthermore, [[R]] is complete in the sense that for all {S;:i € I} C 2%,
R (Utsizi e 1y) = MIRI(S) i € 1}

For later use, we will mention the following correspondences:

Lemma 2.3. [5]

1. Ris irreflexive if and only if [[R]](S)NS =0.

2. R is symmetric if and only if S C [[R]]([[R]](S)).

R is called co—transitive, if

(2.3) (Vx,y)[xRy = X = R(x) UR™(y)].
The definition immediately implies

Lemma 2.4. If R is not empty and co—transitive, then dom(R) = X.

Below, we give various characterizations of co—transitivity.

Lemma 2.5. R is co—transitive if and only if [[R]](S) C [[R]]([[R]](S)).

Proof. This follows easily from Lemma 2.2(2) and the fact that [R](T) = [[R]|(T).

Theorem 2.6. Suppose that R is symmetric. Then, the following are equivalent:
1. Ris co—transitive.
2. xRy implies R(x) = R(y).

3. [RIS)NT =0 = [[R]](S) < [[R]|(T) for all S,T € X.



4. x € [[R)(S) = X = [[R]]{x} U[[R]])(S) for all S C X.

Proof. We first show 1. <= 2:

“=": Suppose that R is co—transitive, and let xRy. By the symmetry of R it is sufficient to show that R(x) C R();
thus, let xRz. Since R is co—transitive and R is symmetric, we have X = R(x) UR(z). Now, xRy by the hypothesis,
and thus, yRz, again by symmetry of R.

“«<”: Let xRy, and suppose that z & R(x). Then, xRz, and the hypothesis implies that R(x) = R(z). Hence, xRy
implies zRy and therefore, yRz by symmetry.

2. = 3.0 Let [[R]](S)NT = 0. Choose some x € [[R]](X)), i.e. S C R(x); we need to show that T C R(x). Let
z € T, and assume that z € R(x); then, R(x) = R(z) by the hypothesis. It follows that S C R(z) which implies that
z € [[R]](S). This contradicts [[R]](S)NT = 0.

3. =4.: Letx € [[R]](S), and xRy; then, {x} N[[R]]({y}) = 0, and thus, [[R]]({y}) C [[R]]({x}) by 2. above. The
symmetry of R now implies that in fact [[R]]({y}) = [[R]]({x}). Since S C R(x), this shows that S C R(y), and it
follows that y € [[R]](S).

4. = 1.: Let xRy; then x € [[{y}]], and the hypothesis implies that X = [[{x}]]U[[{y}]]. Thus, z € R(x) UR(y)
for all z € X, and the symmetry of R now implies co—transitivity. O

We assume that the reader has some familiarity with Heyting algebras and their relatives; all unexplained lattice
theoretic concepts can be found in [1].

3 Apartness spaces

Since we aim to work in an intuitionistic framework, our basic structures are Heyting algebras (2X,U, N, —,0,X);
the pseudocomplement of S C X will denoted by S*. If no confusion can arise, we will just use X instead of the
name for the full structure.

The original axiom system for apartness spaces given by Bridges and Vita [3] involves a nonempty irreflexive
and symmetric relation D on a nonempty set X and a relation > between elements of X and subsets of X that
satisfied certain axioms. Later, Richman [14] showed that the relation D was definable from the < relation, and
that the original system, and that the following system was equivalent to the original one: An apartness space
is a structure 2~ = (X, —), where X is a nonempty set, and — : 2X — 2% is an operator, called an apartness
complement, that satisfies A| — As below for all x,y € Sand §,T C X:

Ag. There is some x € X such that —{x} # 0.

Aj. x € —{y} implies y € —{x}.

Ay, —SNS=0.

As. —(SUT)=-SN-T.

Ay —SNT=0=-SC-T.

As. x€ =S =X =—{x}U—S.



Note that Ap, A; and As are really frame properties, since they involve singleton sets. Thus, we let D be the
binary relation on X defined by

3.1 xDy <% x € —{y}.

The D — complement of S C X is defined by ~ S a {x: (Vy)[y € S = xDy]}. By (2.2), we see that ~ S = [[D]](S);
thus, ~ is a complete sufficiency operator, and, in particular, ~ is antitone. Furthermore, — is also a sufficiency
operator on 2X by A3 and the fact that — = X [see e.g. 3, Proposition 22].

Allin all, we have three complement—like operators on 2%, and it is easy to see that

(3.2) —SC~SCS*

for all § C X. By the definition of — and ~ we note that — and ~ agree on singletons, i.e.
xe—{y} —=uxe~{y}

for all x,y € X.

It may be instructive to mention some topological properties derived from — and ~. Since the sets of the form
—S§ are closed under finite intersections by A3z, and —0 = X, —X = 0, they form the basis for a topology 7~ on X
[3]. The sets of the form ~ § also form the basis of a topology 7~ in which the intersection of an arbitrary family
of open sets is open; this follows from the fact that ~ is a completely co—additive operator.

The decisive properties of D are given by the following Lemma.
Lemma 3.1. /3] D is not empty, irreflexive, symmetric, and co—transitive.
We think of D as a relation of distinctness of points. D may be a proper subset of (', and thus, the fact that x and

y are not distinct does not imply that they are equal. Note that D is extensional (i.e. D(x) = D(y) implies x = y)
if and only if D=0'".

From the characterization of co—transitivity given in Theorem 2.6(2), we observe that A4 corresponds to the
separation property of proximity spaces up to extensionality of D: If we think of D as a proximity of points, then
D is called separated, if xDy implies x = y.

The sum axiom {x}8(SUT) <= {x} S or {x}8T of proximity relations in its apartness form, however, does not
follow from the axioms of apartness spaces.

The following Lemma collects some earlier results which come in helpful:

Lemma 3.2. 1. [3, Proposition 22] —0 = X.
2. [3, Proposition 27] If S = U;c; —Si, then ~ S = S*. In particular, ~ (—S) = (—S)*.
3. [3, Proposition 28] Letx € X. If (3T C X)[x€ —T and —T C~ S|, then x € —S.

4. [16, Lemma 2] —S = — ~~§ = — ~ 8.

In the classical case — and ~ coincide:

Theorem 3.3. Suppose that * is set complementation. Then, ~ S = —S.



Proof. Clearly, —S C~ S. Assume that x €~ S, x € —S. Now, x €~ S if and only if § C~ {x} = —{x} by the
definition of ~; furthermore, {x} N —S = 0 and A4 imply that —S C —{x}, so that altogether SU—S C —{x}.
Now,

SU-SC—{x} B ——(x}c—(SU-) 2 -sn-—s2o0.
On the other hand, — — {x} N —{x} = 0 implies — — —{x} U — — {x} = X. The irreflexivity of D implies that

x & —{x} = ———{x}, and thus x € — — {x}, showing that the latter is not empty. O

The next result shows that A4 can be expressed as an equation using the * operator. To avoid some notational
clutter, we suppose that * binds stronger than —, i.e. we write —S* instead of —(S*).

Lemma 3.4. [7] In the presence of Ay and As,
Ay <= —S=—(-9)".
Proof. “=": Since —SN(—S)* =0, A4 implies —S C —(—5)*.

For the converse, observe that SN —S = 0 by A, implies S C (—S)*, and hence, —(—S)* C —S by As.

“e": Let —SNT = 0. Then, T C (—S)*, and thus, —(—S)* C —T, since — is antitone by A3. Our hypothesis
now implies that —S C —T. O

Next, we show that As follows from the other axioms:
Theorem 3.5. A; — Ay imply As.

Proof. Let x € —S, and suppose that y ¢ —S; we show that y € —{x}. Since y ¢ —S, we have {y} N —S =0, i.e.
{y} C (—S)*. Now, observing that —S C —(—S5)* by Lemma 3.4 — whose proof uses only A, and Az —, we obtain

DI (=) B (- - B -sc-Dr=xe -} Bye—{x}.
This completes the proof. O

Theorem 3.6. If R is a nonempty irreflexive, symmetric, and co—transitive relation on X, then (X,[[R]]) is an
apartness space. Furthermore,

(3.3) [[RI](S) UIRINRII(S) = X,
forall S CX.

Proof. Since [[R]] is a sufficiency operator, Aj is satisfied, and the irreflexivity of R and Lemma 2.2(1) imply A,.
A4 follows from Theorem 2.6.

Finally, we show (3.3): Suppose that x € X and S C X, and recall that
x € [[R]|($) <= S S R(x),
x € [[RIN[[R]](S) <= [[R]] < R(x),
<= (W)[S CR(y) = xRy].

If x & [[R]](S), there is some z € S such that x(—R)z. Let S C R(y); then, zRy, and co—transitivity of R implies that
R(x) = R(z). It follows that xRy. O



Condition (3.3) enables us to express the fact that the apartness complement — is the D — complement ~ by an
equation in —:

Lemma3.7. If -SU——-S=X forall S CX, then — = ~.

Proof. By (3.2), all we have to show is ~ § C —S§; thus, let x €~ S. Then, {x} C~ S, and it follows that
~r S Cr {x} = —{x} since ~ is antitone.

If x € —S, we are done. Otherwise, x € — — S; then, by As, —{x} U— —S =X. Since —SN——S5=0Dby Ay, it
follows that —S C —{x}. Thus, ~~ SU—S C —{x}, and hence, — — {x} C — ~~ SN — — S, since — is antitone.
By Lemma 3.2(4), — ~~ S = —§, and thus, — — {x} C —SN——S =0, i.e. —{x} =X. This, however, contradicts
{x}n—{x} =0. O

4 Apartness algebras

The aim in this and the next Section is to prove a duality theorem for a class of apartness spaces, namely, those in
which the apartness complement is the D — complement. By Lemma 3.7, these are exactly the apartness spaces
for which —SU——S=X forall S C X.

With some abuse of language we will identify the structure with its universe, if no confusion is likely to arise. If
(L,+,,—,0,1) is a Heyting algebra (HA) and a € L, we denote the pseudocomplement a — 0 of a by a*. The
collection of all prime filters of L is denoted by Prim(L).

a € L is called dense, if a* = 0, and the set of dense elements is denoted by Z(L). An element a of L is called
regular, if is is of the form b* for some b € L. The collection of regular elements of L is denoted by Z(L). An
element a of L is called complemented, if a+ a* = 1. Clearly, each complemented element is regular, and the set

C(L) of complemented elements of L is a subalgebra of L and a Boolean algebra. If S C L, we set S¢ Lsn C(L).

The following are well known, see e.g. [1]:
Lemmad.l. 1. P(L)is a filter of L.

2. (#(L),V,N,”,0,1) is a Boolean algebra with the operations aN\b=a-b, aV b= (a+b)**, and a = a*.
Furthermore, Z(L) = L/ (L) via the assignment a — a**.

3. A prime filter F of L is maximal if and only if 2(L) C F if and only if (Va)[a™ € F = a € F].

An apartness algebra is a Heyting algebra (L,+,-,—,0, 1, p) with a unary operator p that satisfies the following
conditions:

HA;. p(

HAz. p(x+y) =p(x)-p(y).
HAs. p(

HA4. x<pp(x).

HAs. p(x)+p(p(x)) = 1.



p is called trivial, if p(x) = 0 for all x # 0.

HAs tells us that the image of p consists of complemented elements p(x), in particular, that p(p(x)) = p(x)*,
since p(x)-p(p(x)) = 0 by HA3. Furthermore, HA;5 reflects the property [[R]](S) U [[R]][[R]](S) = X of Theorem
3.6.

If L is a Stone algebra, then p obviously satisfies HAs. On the other hand, not every apartness algebra is a Stone
algebra, as the example in Figure 1 shows. There, p(x*) =0, and p(y) = p(x).

Figure 1: A non—Stone apartness algebra
1

rho(rho(x))

x*

rho(x)

0

Let us first exhibit some simple properties of apartness algebras. By HA| and HA,, p is a sufficiency operator.
Furthermore,

Lemmad4.2. [. p(x)=p(p(px))).
2. x<y<p(p)=pl) =p)
3. If FFGCL G=]G, and FNp[G] # 0, then FcNp[Gc] # 0.
Proof. 1. By HA4, p(x) < p(p(p(x))). Conversely, since x < p(p(x)) by HA4 and since p is antitone, we have
p(p(p(x))) < p(x) by HA3.
2. This follows immediately from HA; and 1. above.

3. Suppose that F N p[G] # 0, say, x € G and p(x) € F. By HAs, p(x), p(p(x)) € C(L). Since G =1 G and
x < p(p(x)) by HA4, p(p(x)) € Gc, and p(p(p(x))) = p(x) € F. O

The following property corresponds to Axiom A4 of apartness spaces:
AYE p(x)-y=0=p(x) <p(y).

The property Ailg can be expressed equationally in various ways:



Theorem 4.3. The following are equivalent:
alg
1. A,~.

2. p(x)=p(p(x)).

5 p()* = p(p().
Proof. 1. = 2. Since p(x)-p(x)* = 0, AY¢ implies that p(x) < p((p(x)*). Conversely, x- p(x) = 0 implies
x < p(x)*, and thus, p(p(x)*) < p(x), since p is antitone by HA,.

2. = 3.: Consider

HAy = p(x") <p(p(p(x"))) = p(p(x)).
Since p(x)-p(p(x)) = 0 by HA3, we obtain p(p(x)) < p(x)*.

3. = 1.: Suppose that p(x) -y = 0. Since p(p(x)) = p(x)*, it follows that y < p(p(x)), and thus, p(p(p(x)))
px) <p(y).

»
[}

Ol

Observe that AY® tells us that p[L] C (L), and HAs says that p[L] C C(L). Thus, we see that HAs implies A%
The converse, however, is not true: Consider the Heyting algebra shown in Figure 2. If p(x) = x*, then L satisfies

Figure 2: An algebra that satisfies HA| — HA4 and Ajlg, but not HA5
1

HA| — HA4 and A%, but not HAs.

S Apartness frames and duality

We now turn to frames. The canonical frame Cf(L) of L is the relational structure (Prim(L),C,R,), where

(F,G) €Rp &P p[G] # 0. An apartness frame is a structure (X, <,R), where < is a partial ordering of X,
and R a nonempty binary relation on X, such that

HFy. x <yimplies R(x) C R(y).
HF;. R is irreflexive.

HF,. R is symmetric.



HF3. R is co—transitive.

Relations satisfying HF; — HF; are considered in theories of incomplete information, where they are called
diversity relations, see e.g. [4].

Theorem 5.1. The canonical frame of a nontrivial apartness algebra is an apartness frame.

Proof. Since p is nontrivial, there is some x € L, x # 0 such that p(x) # 0. Then, there are prime filters F, G such
that x € G and p(x) € F, showing that R, # 0.

HFo: Let F C G, and (F,H) € Ry. Then, FNp[H] # 0, and thus, GN p[H] # 0.

HF;: Since p(x)-x=0by HA3, FNp[F] =0.

HF,: Let FNp[G] # 0, say, x € G and p(x) € F. Then, p(p(x)) € p[F], and x < p(p(x)) by HA4 shows that
p(p(x)) €G.

HF3: Let (F,G) € Rp; we need to show that (H,G) & R, implies (H,F) € R, for all H € Prim(L). Now,
(F,G) € R, implies that F N p[G] # 0, and so there is some x € G with p(x) € F. Suppose that H N p[G] = 0; in
particular, p(x) ¢ H. Since p(x)+ p(x)* = 1 by HAs, and H is a prime filter, it follows that p(x)* € H. Now,
p(x) € F implies that p(p(x)) € p[F], and, by Ailg and Theorem 4.3(3), p(p(x)) = p(x)*. This shows that
HNp[F]#0,i.e. that (H,F) € R,. Hence, R, is co-transitive. O

Suppose that ¢'(X) is the collection of all § C X for which S =1 S. The complex algebra €m(X) of X is the
structure (€(X),N,U,—,0,X,p), where S — T £ | (S\ T) and p(S) < [[R])(S).

Theorem 5.2. The complex algebra of an apartness frame is an apartness algebra.

Proof. By Theorem 2.1, (¢'(X),N,U,—,0,X,) is a complete Heyting algebra. In the next step we show that p is
well defined: Let S € €(X), x € p(S), and x < y. By the definition of p, S C R(x), and HF, shows that S C R(y).
Thus, y € p(S), and it follows that p(S) =T p(S).

HA| and HA, follows from the fact that p is a completely co—additive sufficiency operator.
HAj3: Letx € p(S); then, S C R(x), and the irreflexivity of R shows that x ¢ S. Hence, p(S)NS =0.

HA4: Let x € S; we need to show that x € pp(S), i.e. that p(S) C R(x). Suppose that y € p(S); then, S C R(y).
x € S implies yRx, and the symmetry of R implies that y € R(x).

HAs: Letx & p(S); then, there is some y € S such that xRy. Assume that x & (p(S))*; then, T xN p(S) # 0, and
thus, there is some z € X such that x < z and S C R(z). Since x < z, HF, implies that R(x) C R(z). Now, since
xRy, Lemma 2.6(2) implies that R(x) = R(y), hence, R(y) C R(z). It follows now from y € S and S C R(z) that
zRy, and by the symmetry of R we obtain yRz. Hence, z € R(z), contradicting the irreflexivity of R. 0

Theorem 5.3. Suppose that (X,<,R) is an apartness frame, and (L,+,- —,0,1,p) an apartness algebra.

1. The mapping h : L — E€mC&f(L) defined by a KA {F € Prim(L) : a € F} is an embedding of apartness
algebras.

2. The mapping k : X — €f&m(L) defined by x & {S € €(X) :x € S} is an embedding of apartness frames.
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Proof. 1. Clearly, h(a) =1 h(a), and thus, & is well defined; furthermore, it is easy to see (and well known) that
h is injective, preserves + and -, and 2(0) = @ as well as A(1) = Prim(L).

Our next aim is to show that h(x — y) = h(x) — h(y); recall that h(x) — h(y) = | (h(x) \ h(y)).

“C”: Suppose that x — y € F, and assume that F €| (h(x) \ h(y)). then, there is some G € Prim(L) such that
FCG xeG,andy¢ G. Now, x - y€ F C G and x € G imply that x- (x — y) € G, and thus, y € G, a
contradiction.

“D”: . Suppose that x — y & F; we need to show that F €| (h(x) \ h(y)), i.e. we need to find a prime filter G
containing F U{x} for which y € G; since y < x — y, it follows that y & F. Let F’ be the filter generated by F U {x}.
Assume that x — y € F’; then, there is some z € F such that x-z=x—y,and thus x-z=x-(x-z) =x-(x > y) <y. It
follows that z <x — y. Since z € F, this contradicts x — y ¢ F. By the Prime Ideal Theorem, there is a prime filter
G containing F' and disjoint from | (x — y). From y <x — y we obtain y ¢ G, and therefore, F C G € h(x) \ h(y).

Finally, we show that A(p(x)) = p(h(x)):

“C”: Let F € Prim(L) and p(x) € F; we need to prove that i(x) C R, (F). Thus, suppose that x € G; then,
p(x) € FNp[G], and it follows that (F,G) € R,.

“2”: We show the contrapositive. Thus, suppose that p(x) & F; to show that F & p(h(x)), we need to find a
prime filter G such that x € G and F Np[G] = 0.

Letm & {yeC(L):p(y*) € F}. Suppose that yo,...,y, € M; then, p(yj)-...-p(y;) € F, and

POD) - PO E Pt 4 V) = P Yn) ),

and thus, M is closed under finite products. If yg-...-y, =0, then y;;+... +y; = 1, since y; € C(L), and thus,
yi € F for some i < n. This contradicts HA3, since p(y}) € F by definition of M.

Next, we show that M U {x} has the finite intersection property; by the preceding argument, it is sufficient to show
that y-x A0 forally e M. If y € M and y-x = 0, then x < y*, and therefore, p(y*) < p(x) since p is antitone.
Now, y € M implies that p(y*) € F and it follows that p(x) € F. This contradicts our hypothesis p(x) ¢ F. Thus,
M U {x} has the finite intersection property and therefore the filter M’ generated by M U {x} is proper. Hence, by
the Prime Ideal Theorem, there is a prime filter G of L containing M’. Assume that F N p[G] # 0; then, there is
some z € G such that p(z) € F, and by Lemma 4.2(3) we may suppose that z € C(L). Now, z = z**, and it follows
that z* € M. Since M C G and z € G, we arrive at a contradiction.

2. Clearly, k(x) is a prime filter of €m(X). We first show that k is injective: Let x,y € X, x # y; since < is
antisymmetric, we suppose w.l.0.g. that x € y. Then, y ¢7 x, and it follows that T x € (k(x) \ k(y)). If x < y, then

each T closed set containing x also contains y; thus, k preserves <. Finally, let xRy, and set S d:fT y; then, S € k(y),
and S C R(x) by HF,. Hence, x € [[R]|(S), and therefore, [[R]|(S) € k(x), since [[R]](S) € €' (X). It follows that
k(x) N [[R]][k(y)] # 0, and thus, k(x)R,k(y). O

So, we have shown the duality theorem for apartness algebras:
Corollary 5.4. 1. Each apartness algebra can be embedded into the complex algebra of its canonical frame.

2. Each apartness frame can be embedded into the canonical frame of its complex algebra.
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6 Outlook

A discrete duality between a class Alg of algebras and a class Frm of frames leads to what is called duality via
truth [10, 12]. Algebras and frames may serve as semantic structures of formal languages and then they determine
the notions of truth of formulas of a language or truth of sequents of formulas. A principle for establishing duality
via truth says that a class of algebras and a class of frames provide equivalent semantics of a formal language
whose signature coincides with the signature of the algebras in question. Consequently, the algebras and the
frames express equivalent notions of truth.

Suppose that Alg is a class of algebras which are signature and/or axiomatic extensions of the class of lattices
and define a propositional language .Zj, whose formulas are built from propositional variables of a set Var with
propositional connectives that correspond to the operations of the algebras from Alg. Truth determined by Alg-
-semantics is defined as usual, namely, if the algebras from Alg are based on lattices with a top element 1, then
for W € Alg we say that a formula « is true in W whenever v(x) = 1 for every evaluation v : Var — W, extended
homomorphically to all the formulas of Zj,. If the algebras from Alg do not have a designated top element, then
usually the notion of truth applies to sequents & - B, where o, B € Zaj,. A sequent ¢ - f is true in an algebra
W if v(et) < v(B) for every evaluation.

Similarly, truth determined by Frm-semantics is stated in terms of models .# = (X,m), where X € Frm, and
m : Var — 2% is a meaning function which extends homomorphically to all the formulas. A formula « is true in
M whenever m(a) = X. A sequent @ - B is true in .# whenever m(a) C m(f3).

If it is possible to prove that for every formula & € Z4j,, @ is true in all models (X, m) for all X € Frm if and only
if a is true in in the complex algebra €m(X) of X for every frame X € Frm, then the Representation Theorems
of discrete duality enable us to establish a duality via truth between the classes Alg and Frm:

For every formula a € £, the following conditions are equivalent:

1. ais true in all algebras W € Alg.
2. a is true in all models (X,m) for each X € Frm.

Along these lines we define an apartness logic whose algebraic semantics is determined by apartness algebras of
Section 4, and whose frame semantics are determined by the apartness frames of Section 5. A dual tableau style
deduction system for the logic will be the subject of a separate paper.
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