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Abstract

Contact relations have been studied in the context of qualitative geometry and physics since the
early 1920s, and haveceently received attention in dlitative spatial reasoning. In this paper, we
present a sound and complete proof system in the style of Rasiowa & Sikorski (1963) for relation

algebras generated by a contact relation.

1 Introduction

Contact relations arise in the context of qualitative geometry and spatial reasoning, going back to the
work of de Laguna (1922), Nicod (1924), Whitehead (1929), and, more recently, of Clarke (1981),
Cohn et al. (1997), Pratt & Schoop (1998, 1999) and others. They are a generalisation of the “overlap
relation” , obtained from a “part of” relation, which for the first time was formalised bgni@vski
(1916), (see also lssiiewski, 1983). One of Lsgiiewski’s main concerns was to build a paradox—free
foundation of Mathematics, one pillar of which was mereology as it was originally called, the
general theory of manifolds or collective sets. Nowadays, mereology has become synonymous with

the relational part of qualitative spatial reasoning.

The traditional example of a contact structure is the set of all nonempty regular closed sets of a

connected regulaf, space with contact defined by

(1.2) wCy<=zny#0.

Another example is the sét of all nonempty closed disks of the Euclidean plane where the contact
relationC' is also defined by (1.1). We will see below that there are very different models of contact

structures.
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For a discussion of the ontological issues we refer the reader to Simons (1987), Cohn et al. (1997),
Pratt & Lemon (1997), and to the special edition on ontology oftiternational Journal of Human—
Computer Studie43 (1995); an overview of current development in mereology can be found in Varzi
(1996).

Before we properly define contact relations, we should like to recall a few facts of binary relations.

Relations and their algebras have been studied since the latter half of the last century, e.g. by
de Morgan (1864), Peirce (1870) and Sudei’ (1890 - 1905). Tarski (1941), who, incidentally, was
LeSniewski’s only doctoral student, gave a first formal introduction to the algebra of relations; his aim
was to provide an algebraic semantics for first order logic — just as Boolean algebras were an adequate
algebraisation of classical propositional logic.

Suppose thadtl’ is a non—empty set. Ainary relation oniV is a subset oft x W. The collection of
all binary relations oV will be denoted byRel(W). If R, S € Rel(W) andz,y, z € W, we often
write z Ry for {z,y) € R, andzRySz for {z,y) € R A (y,z) € S. FurthermoreR(z) denotes the
set{y € W : xRy}, and[ is the identity relation oV’.

It is easy to see thakel(1V) is a Boolean algebra under the set theoretic operations with smallest
element) and largest elemefit’ x W, which we also denote bly. Other natural operations on binary
relations are the “relative” operations, namelgmposition andconverse : Relational composition

is defined as

R; S ={{z,y): (3= € W)aRzSy},
and converse is

R = {(z,y) : yRa}.

Any A C Rel(W) which is closed with respect to the Boolean set operations, and the relative op-
erations and contains the constafit¥’, I is called analgebra of binary relation§BRA). If M C
Rel(W), then[M] denotes the smallest BRA containif).

A decisive property of BRAs, which exhibits their expressive power is

Proposition 1.1. (Tarski & Givant, 1987)
If M C Rel(W), then[M] contains exactly those relations which are definable in the relational
structure(WW, M) by first order formulas containing at most three variables, two of which are free.

We note that any equation and any inequality between relations can be writtes 45 for someT’,
viz.

(1.2) R=S<~— —(R®S)=V,

(1.3) R£S<—=V;(RaS);V=V.



Here, R @ S is the symmetric difference ot and.s, i.e.
R®S=(RN-=-S)U(SN-R).

Finite BRAs can be conveniently represented by composition tables, where the rows and the columns
are labelled by the atoms, and a cell contains the relative product of the two atoms which point to it; to
save space, we usually just list the atoms which make up the relative product. For example, the entry
EC, DC'inthe cel{T PP, ECy means thai' PP; FC' = EC U DC. If I is an atom, then row and
column/ are usually omitted. An example of such an array is given in Table 1.

A contact relation”’ on a seti? (of regions)has the properties

(1.4) C'is reflexive.
(1.5) C'is symmetric.
(1.6) If 2Cz «— yCzforall - €¢ W, thenz = y.

By the extensionality axiom (1.6), a region is determined by all regions it is in contact to. The pair
(W, will be called acontact structure A contact relation algebrgCRA) is the BRA onW
generated by a contact relatiorn In working with CRAs we disregard any underlying algebraic
structure on the set of regions, and consider only the relational part. Since the calculus handles
relations, no knowledge about the concrete geometrical objects is hecessary.

Relation algebras were introduced into spatial reasoning by Egenhofer & Sharma (1992) with addi-
tional results published in Egenhofer & Sharma (1993), Egenhofer (1994). Many well known spatial
relations can be expressed by the relation operators and constaitsd the single relatiofy, for
example,

@.7) P=—(C;-0C), part of

(1.8) PP=P- 1. proper part of

(1.9) O=F,P overlap

(2.10) PO=0 -—-(P+F) partially overlap

(1.11) EC=C--0 external contact

(1.12) TPP=PP. - (FEC;EC) tangential proper part
(1.13) NTPP=PP--TPP non-tangential proper part
(1.14) DC =-C. disconnected

Depending on the domain of interpretation, some of these may be empty; for examip(e,=f 0,
thenP”; P = O = (', and hence(' is RA definable byP as in classical mereology.

It may be worthy of mention that, in the presence of the other two axioms, the extensionality axiom
(1.6) is equivalent to

(1.15) P is antisymmetric



Figure 1: Circle relations
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Table 1: Closed circle algebré,

; TPP TPP NTPP NTPP PO EC DC
TPP PP —(NTPPUNTPP) NTPP —P -7 EC,DC DC
TPP” I, TPP,TPP, PO PP PP, PO NTPP” | PP, PO PP, PO, BEC —P
NTPP NTPP —P NTPP 1 —P DC DC

NTPP” PP, PO NTPP” —(ECUDC) | NTPP" | PP, PO PP, PO —P
PO PP, PO —P PP, PO —P 1 —P —P
EC PP, PO, EC EC,DC PP, PO DC -7 —(NTPPUNTPP) | =P
DC -7 DC -7 DC -7 -7 1

It is known (Pratt, 1992) that for a symmetrit an elemenp of a relation algebra defined by (1.7) is
always reflexive and transitive, so thais indeed a partial order. The converse need not be true: There

are domains, in which a “part ofP makes sense, but for which there is no contact relaticsuch

that” = —(C'; —C'). A case in pointis the class of those regular double Stone algebras, which are not
Boolean algebras (and which can be interpreted as algebras whose elements approximate regions); on
such an algebra there is no contact relatioet 7, for which P = < (Duntsch et al., 1999a).

To give the reader an intuition of CRAs, we shall present a few examples frontsEli et al. (1999c).
The CRA generated on the set of all proper nonempty closed disks by the contact r€lati¢h.1)
is shown in Table 1. It has the eight atoms

I,TPP,TPP,NTPP,NTPP", PO, EC, DC,

with C' being the union of the first seven of these. Some of the non—identity atoms are pictured in
Figure 1.

The algebra of closed circles can be regarded as a translation into the plane of the interval algebra
(Allen, 1983) by “forgetting” the direction, and it should not be confused with the example of all non-
empty proper regular closed sets of the Euclidean plane; the algebra generatéu thys domain is

much more complicated and has at least 25 atoms{§h et al., 1999b). Neither should Figure 1

be used to exemplify relations on the domain of regular closed sets; this is a much too simplistic
view. For example, if: is the disjoint union of two closed disksandb, thenaT P Pz; however, this
instance ofl’ PP has quite different topological properties than the instan@érP in Figure 1.

CRAs are by no means restricted to traditional interpretations of contact. The smallest CRA is the
algebra known ad/; (Comer, 1983); it has four atoms, and its composition is given in Table 2. Here,
C'= PPUPP UI. Anindication of what” looks like can be found in Figure 2; think of a fractal-like
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Figure 2: An ordering for\;

Table 2: The algebraV;

| o | prp [PP] DC |
pP] PP | 1 DC
pP'|| -DC | PP'| PP, DC
D || PP,DC| DC 1

structure with a copy of the rational numbers as its “backbone”, and ever branching at each point
into two copies ofQ; details can be found in itsch (1991) and AnédKa et al. (1994).

As a final example we look at the relation algelrgenerated by the natural order of an atomless
Boolean algebr# with the extreme elements removed (Table 3); wélet< andPP =<. Observe
that D D is Boolean complementation.

Table 3: The algebra;

18] D
° PP | PP | PON | POD DN DD
PP PP —(PODUDD) | PP,PON,DN | PP,PO,D DN DN
PP 1,0 PP PP, PO POD PP, PO,D POD
PON PP, PO PP, PON,DN 1 PP, PO PP, PON,DN | PON
POD POD PP, PO,D PP, PO 1,0 PP PP
DN || PP, PO,D DN PP, PON,DN PP —(PODUDD) | PP
DD POD DN PON PP PP I

There are two possibilities to define a contact relatioyamhich satisfies (1.7): We can take either
C=00rC=0UDD.

Itis our aim to present in this communication a sound and complete logic for contact relation algebras
in which we can prove general facts about contact relation algebras. The semantics of this logic is
relational as introduced by Ortowska (1991, 1996), while the proof system is in the style of Rasiowa
& Sikorski (1963). The rest of the paper is structured as follows: We start with a definition of the
languagel and its semantics, followed by the proof system. Before we embark on the proofs of

soundness and completeness of the system, we shall give an example of a proof, namely, we show that

P as defined by (1.7) is antisymmetric. Finally, we show that our logic is undecidable, and that the

extensionality condition (1.6) is not definable by a modal formula.



2 The languagel and its semantics

The alphabet of the languageconsists of the union of the following sets:

1. Aset{C, 1’} of constants, representing, respectively, the contact and idergiations.
2. A countably infinite seV' I of individuum variables.
3. Aset{U,n, —,;,”} of names for the relational operators.

4. Aset{(,)} of delimiters.

With some abuse of language, we use the same symbols as for the actual operations; it will be clear
from the context which meaning is intended.

The set” F of terms (“contact expressions”) is defined as follows:
1. C'andl’ are terms.

2. If R andS are terms, so are
(R U 5)7 (Rﬁ 5)7 (_R)7 (R75)7 (Rj
3. No other string is a term.

We will use the usual conventions of reducing brackets. Note(ttatan be regarded as the abso-
lutely free algebra of typé&, 2, 1,2, 1) over{C, 1'}.
The set ofL—formulas is

{zRy: Re CE,z,ye VI}.

A model of £ is a pairM = (W, m), whereW is a nonempty set, andh : CE — W x Wis a
mapping such that

(2.1) m(C') is a contact relation.
(2.2) m(1’) is the identity relation oV .
(2.3) m is a homomorphism from' £ to (Rel (W), U, N, —,;,%.

A valuationv is a mapping from/ I to W. If 2z Ry is a formula, then we say thatl satisfies: Ry
underv, written asM, v = xRy, if (v(z),v(y)) € m(R). xRy is calledtrue in the modelM, if
M, v | xRy for all valuationsy, i.e. if m(R) = W?. z Ry is calledvalid, if it is true in all models.

2For historical reasons, it is customary for researchers in the area of relation algebrasl tdarsthe identity; the
superscript comma signifies thHtis the “relative” identity, a®pposed to the “absolute” idgty 1. Similarly, composition,
i.e. relative multiplication is denoted hywhich is not a semicolon, but absolute multiplicatiowith a comma attached
below.



Table 4: Decomposition rules

) K,z(RUS)y, H (—U) K,2— (RUS)y, H
K,xzRy, xSy, H K,2(-R)y, H | K,z(=S)y, H
) K,z(RNS), H ) K,z— (RN S)y, H
K,2Ry,H | K,zSy, H K,2(-R)y,«(=S)y, H
. K, xRy, H . K, 2(-R)y, H
0 K,yRe, H (=) K,y(—R)x, H
K,2(—— Ry, H
(—) K,zRy, H
(;) - K, (R S),y’ A wherez is any variable
K2Rz, H x(R; S)y| K, 25y, H,z(R; S)y
(=) - Kz — (R S)y, H where: is a restricted variable
K,2(-R)z,z(—=S)y, H

3 The proof system

We will define a proof system in the style of Rasiowa & Sikorski (1963). The system consists of
two types of rulesDecomposition ruleenable us to break up formulas into an equivalent sequence
of simpler formulas.Specific rulesnodify a sequence of formulas, and have the status of structural
rules. More precisely, the rules are actually rule schemas in most instances. The role of axioms is
played byaxiomatic sequences

Rasiowa-Sikorski (RS) proof systems are, in a way, dual to tableaux systems: Whereas in the latter
one tries to refute the negation of a formula, the RS systems attempt to verify a formula by closing
the branches of a decomposition tree with axiomatic sequences. Rules in RS systems go in both
directions: we call a ruladmissiblef

The upper sequence is valid iff the lower sequence(s) is (are). valid

Here, a sequence of formulas is valid if its meta-level disjunctionis valid.

The rules of our system are given in Tables 4 and 5. A variaidecalledrestricted in a ruleif it does
not occur in the upper part of that rul& and H are finite, possibly empty, sequences of formulas of
the relational calculus.

The axiomatic sequences are

(3.2) z1'x,
whereR € C'E.

Proofs have the form of trees: Given a formul&y, we successively apply decomposition or specific
rules; in this way we obtain a tree whose root:iBy, and whose nodes consist of sequences of



Table 5: Specific rules

K, zl'y, H
K, yl'z, H

K, zl'y, H
K,xl'z,H xl'y | K, 21"y, H,x1'y '

wherez is any variable

K, xRy, H
K,z1'z,H xRy| K,2Ry, H, xRy '

wherez is any variable

K, xRy, H
K, xRz, H zRy| K,21'y, H, xRy '

wherez is any variable

K,zCy H
K,zl'y, 2Cy, H

(refl C)

K,zCy H

c
(sym ) K,yCaz, H

(ext C') K wherez andt are restricted variables
€x Z
K,2(-C)z,yCz | K, y(—CYt,2Ct | K, 2(—1")y

K
K, 2Cy| K, z(—-C)y

(cut C)

formulas. A branch of tree iglosedif it contains a node which contains an axiomatic sequence as a
subsequence. A tree is callelbsedif all its branches are closed.

If 7 is a branch and a formula, we writeF's 7 if 7 contains a sequendein which F' appears;
similarly we write F’'e T, if F" appearsif’.

We suppose without loss of generality tieach brancly of a proof tree is maximal in the sense that,
wheneverf’s 7 and there is a (decomposition or specific) rule which can be appliéd tben this
rule is applied toF' with an appropriate result appearingih For example, iff" is z(R; S)y, and
K, F, H appear inZ, then, by decomposition rule ), for all z, the sequence

K,zRz, H,z(R;S)y
appears irZ, or the sequence

K,zSy,H,z(R;S)y



appears irZ. Similarly, if K appears ir¥, then, by ruleext C', (at least) one of

K,z(-C)z,yCxz,
K,y(-C)t, 2Ct,
1(7 x(_ll)y

appears ir, wherez, ¢ do not occur ink.

4 A decomposition tree

Before we proceed to show that the proof system is sound and complete, we shall give an example of a
derivation of a valid formula. We want to show that the relativas defined by (1.7) is antisymmetric,
i.e. that

PP Cl,
that is, by definition ofP,
(C;-C)u (-C; YUl =V.

For this example only, we use the same symbols aswith some abuse of notation. Thus, to prove
our claim, we must find a closed proof tree for the formula

(4.1) z((C;—CYU (=C; YU )y,
Applying rule (U) to (4.1) and again to the resulting formula, we obtain
(4.2) 2(C;=Cy, 2(=C;C)y, «l'y.

Rule (ext C') with K given by (4.2) leads to three branches:

(4.3) 2(C; =Cy, 2(=C;C)y, 21y, 2(-=C)z, yC=
(4.4) 2(C; =Cy, =(=C;C)y, 21y, y(=C)t, zCt,
(4.5) 2 (C; Oy, z(—=C; Qy, =1y, z(-1")y,

Node (4.5) is closed, and we look at node (4.3). Decompasiig —C')y with rule (; ) gives two
more branches:

(46) aCz, x(—C;C)y, $1/y, $(—C)Z7 yCZ,$(C; _C)y7
(47) Z(_C)y7 $(—C;C)y, $1/y, $(—C)Z7 yCZ,$(C; _C)y

Node (4.6) is closed. If we apply ruleym C') to yC'z in (4.7), we obtain
(4.8) 2(=C)y, 2(=C;C)y, 21y, 2(=C)z, 2Cy,2(C; =C)y,

which is closed. Similarly, one shows that (4.4) leads to closed branches as well.

9



5 Soundness and completeness

The soundness of the proof system follows from the following
Proposition 5.1. 1. All decomposition rules are admissible.
2. All specific rules are admissible.

3. The axiomatic sequences are valid.

Proof. The admissibility of the decomposition rules and thean 1’), (sym 1), (symC'), (refl C)
rules are proved, mutatis mutandis, in Ortowska (1996), and the admissibility10f is obvious.
Clearly, the axiomatic sequences are valid.

Next, we show that

(5.1) (17) is admissible<= m(1); m(R) C m(R)

for alltermsR € C'F and all modelgW, m). The proof of the admissibility of rulgl’,) is analogous.

“=" Let R € C'F,andK be the sequence
z(=1)z, 2(-R)y;
furthermore, setl = (). Then, the sequences

(5.2) K, 21z, H, 2Ry
(5.3) K, zRy, H, xRy

are clearly valid, and thus, by our assumption, the upper sequenge of
(54) $(—1/)Z7 Z(_R)y7 t Ry

is valid as well.

Recall that/ is the identity relation on the set in question, and thét’) = 7 by (2.2). Assume that
there are som& € C'F and a modelM = (W, m) such that/; m(R) € m(R), i.e. that there are
a,b, c € W for which

(5.5) ale, ec(m(R))b, a(—m(R))b,

in particular,m(a) # 0.
If v is a valuation such that
v(z)=a, v(y) =0, v(z) =g,
thenM, v satisfies none of the formulas of (5.4), contradicting the validity of (5.4).

“<". Name the sequences occurringlinby

10



I'y. K,2Ry, H,
I'y. K,z1'z, H, xRy,

I's. K,zRy, H, xRy.

Sincel'; is a subsequence of both andl's, the validity of I’y implies the validity ofl’; andI's.
Conversely, suppose thBg andI'; are valid, i.e. for all modeld4, for all valuationsy : VI — M
there arel” in 'y, G inI'5 such that

M,v = FandM,v E G.

If F orG occurinl'y, there is nothing more to show. Otherwigejs 21’z, G iszRy, and, by our
hypothesisM, v = x Ry.

Finally, we prove
(5.6) (ext (') is admissible<= m(C)v(z) = m(C)v(y) impliesv(z) = v(y)

for all modelsM = (W, m), all valuationsy : VI — W and allz,y € V1.

“=". Suppose tha{l¥, m) isa modelp : VI — W avaluation, and, y, = € V I. We have to show
that

(5.7)
[(Vz)(v(2)m(C)v(2) = v(y)m(C)v(z)) and(VE)(v(y)m(c)v(t) = v(z)m(C)v(t))] = v(x) = v(y),

i.e.forallz,t € W,

(5.8)
(M,v E z(—C)zorM,v E yCz) and(M,v E y(—C)t or M,v | 2Ct) = M,v | z1'y.

Set
(59) l'o= {I(}v I'y= {I(v $(—C)Z7 yCZ}7 Iy = {I(v y(—C)t, th}v I's = {I(v w(_ll)y}'

By our hypothesis, we know that the joint validity &f, I'2, I's implies the validity ofl'y. This
implies, in particular, thaty € I'y, I, € I'y, F5 € I's with all F; # K cannot live together. Thus, if

1. M,vEz(—-C)zorM,v = yCz and
2. M,v Ey(-C)torM,v E 2Ct,

then we cannot hav&/, v |= 2 (—1")y. Thus,M, v = 21’y, which was to be shown.

“<" Suppose that (5.8) is satisfied for all modéls = (W, m), all valuationsy : VI — W,
and allz, y, z,t € VI, furthermore, suppose thif — I's of (5.9) are valid. We need to show that
M, v = K. Assume not; then, sindeg —I'; are valid, we know that

11



1. M,vEa(-C)zorM,v E yC=z,
2. M,v Ey(-C)torM,v E 2Ct,
3. M,vEa(-1")y.
This contradicts (5.8). O

Proposition 5.2. If a formula is valid then it has a closed proof tree.

Proof. Suppose thak’ is valid formula, and assume that there is a hon closed brdrola proof tree
of I with root F'. Recall that we assunié to be maximal with respect to the application of rules as
explained on page 8.

First we define a relatioR on V' I by

(5.10) eRy <= al'y £ 7.

Claim 1. F is an equivalence relation dnl.

Proof. (Claim 1). Letz € VI; if z1'z¢ Z, thenZ is closed, contrary to our assumption. Thus,
z1'z £ 7, and it follows thatt F'z. If 2 E'y, thenz1'y £ Z, and it follows from the maximality of/
and rule(sym 1') thatyl’z ¢ Z; henceyFz. Finally, letz Fy andyFz; then,al'y £ Z, yl'z £ Z.

Assume that:1'ze Z; by the maximality ofZ and rule(tran 1’) we obtainz1'ye Z oryl'ze Z, a
contradiction. O

Now, we will construct a model which will falsify”, contradicting our assumption. Its baseldéis
the set of equivalence classesiof Let f : VI — W the canonical mapping which assigns to each
x € V1 its equivalence class with respectio DefineD € Rel(W) by

(5.11) J(@)Df(y) <= 2Cy £ Z,

The definition ofD is independent of the choice of representative, as the following shows:

Clam2. If 2Cy ¢ Z, sFEx, tEy,thensCt ¢ Z.

Proof. (Claim 2)

AssumesC'ts Z. By the maximality ofZ and rule(refl C') we havesl’ts Z, and with rule(1}) for
sC't with the new variable:, we obtain

sl'we Z,sCte Z orxCte Z,sClte Z.

SincesFEz, the first case is not possible, and heng€ts Z. Similarly, using(1}) for 2C'y with the
new variabley, we havesC'ye 7. Finally, by maximality ofZ and rule(ext C'), we have

s(=Cye Z, tCye Z or t(—Cae Z, sCae Z or s(—1")te Z.

By our assumption, none of these is possible. O

12



Now, setm(1’) = I onW, m(C) = D, extendm over(C'l> homomorphically, and let/ = (W, m).
Observe that by definition of

(5.12) f@)fly) = 21y £ Z.

All that remains to show that/ is a model, is to prove

Claim 3. D is a contact relation.

Proof. (Claim 3)

Assume thatf (z)(—D) f(z) for somez € VI. Then,zCze Z, and by maximality with respect to
(refl C') we obtainz1’ze Z; this contradicts the fact that is not closed.

Let f(2)Df(y) and assume that(y)(—D) f(z); thenyCze 7, and it follows from the maximality
of Z and(sym (') thatzCys Z. Hence,f(z)(—D) f(y), a contradiction.

Finally, suppose thab(f(z)) = D(f(y)) for somez,y € VI, and letz € V1. By maximality with
respect tdext C') we have exactly one of the following three cases:

1 2(—Cze Z,yCze Z.
2. y(—C)te Z,2Ct e Z.

3. z(-1)ye Z.

If 2(—C)ze Z,yCze Z,thenzCz £ Z, sinceZ is not closed, and thug(z) D f(z), which implies
f(z) € D(f(2)). Then,f(y)D f(z), henceyC'z £ Z, contradicting our hypothesis. Thus, this case
is not possible, and similarly, one shows that 2. cannot happen either. It follows(th#t)y = 7;
sinceZ is not closedz1'y ¢ Z, and thereforey /y. We conclude thaf (z) = f(y). O

Thus,M is indeed a model of.

Next, we define theelational complexity-c(R) of a contact expressioR:

1. If R € {C,1'}, thenrc¢(R) = 1.

2. If R e {—5,57}, thenrc(R) = re(S) + 1.

B.MRe{SUT,SNT,S;T}, thenre(R) =rc(S) + re(T) + 1.
Claim4. Forallz,y e VI, Re CF,

f@)m(R)f(y) &= 2Ry £ 7.

Proof. (Claim4)

13



1. Letre(R) = 1. Then,R € {C,1’}, and, by (5.12) and (5.11),

=
=
3

(W fly) = zl'y £ Z,
(C)fly) = aCy £ Z.

=
=
3

2. Suppose the claim is true fee(S) < n.

(@) Ris—S: Then,

f(z)m(R) f(y) <= not f(z)S f(y), sincem is a homomorphism
— aSye 7, by the induction hypothesis
= a(=S)y £ 7.

In the latter equivalence, the part holds by the fact that is not closed, and the=
direction by the maximality o and the rulgcut).

(b) RisS™ Then,

fl@)m(R) fly) <= f(z)m(S) ' f(y), sincem is a homomorphism
= fly)ym(5)f(z)
= ySae £ 7 by the induction hypothesis
—aSy £Z by maximality of Z and rule(").

(c) RisSUT: Then,

fl@)ym(R) fly) <= f(x)m(S)f(y) or f(x)m(T) f(y), sincem is a homomorphism
= aSy fZoraly 7 by the induction hypothesis
= a(SUT)y £ 7 by maximality of Z and rule(U).

(d) RisSNT: Then,

f2)m(R) f(y) <= f(z)m(S)f(y) and f(z)m(T) f(y), sincem is a homomorphism
< aSy fZandaTy £ 7 by the induction hypothesis
S a(SNTy £ 7 by maximality of Z and rule(n).

(e) RisS;T: Then,
f@)m(R) f(y) <= 3z € VI) f(z)m(S) f(z)m(T) f(y) sincem is a homomorphism

< (Fz e VI)[zSz £ ZandzTy ¢ 7] by the induction hypothesis
= x(S;Ty 7 by maximality of Z and rule(; ).

This proves Claim 4. O

14



Now we can finish the proof of Proposition 5.2. Létbex Py, and letv : VI — W be the valuation
z +% f(z). Sincel is the root of the tree, we hawe”ys Z. On the other hand,

M,v E 2Py = v(z)m(P)v(y) by definition of =
= f(z)m(P) f(y) by definition ofv
=aPy £ 7 by Claim 4
a contradiction. O

6 Decidability and modal expressibility

First, we will show that the equational theory of contact relation algebras is undecidable; this is
pertinent for our logic which axiomatises RA expressions of the fof@, 1') = 1, wherer (C', 1) €
C'E. The result will follow from

Proposition 6.1. (Andréka, Givant & N‘meti, 1997)
If a classK of relation algebras contains a simple algebra with infinitely many elements below the
identity relation, therK has an undecidable equational theory. O

Proposition 6.2. The equational theory of CRA is undecidable.

Proof. Let Dy, Dy be two disjoint sets; we suppose that edghs the disjoint union ofD;o and D,y
such that eackD;;, <) is order isomorphic tas, the order type of the natural numbers, and we let
Dij = {02']‘7 12']‘7 22']‘, ce } EachDi is ordered as follows:
x € Dy andy € Dy, or
¥ y<—= Ssax,ye Dgandy <a, or
z,y € Djpandz < y.
Thus,(D;, <;) has order types + w*, see Figure 3. S = Dy U Dy U{T, L}, where{T, L} N
(Do U Dy) = . OrderD by
x=_1 or
T j Yy < Yy = T or
x <;y forsomei e {0,1}.

Letm : D — D be the order anti—-isomorphism 6f with
Tij - L(i+1)(j+1)s

where addition in the indices is moduto Now, it is not hard to see th@D, <) is an orthocomple-
mented lattice, withe* = m(z) forallz ¢ {T,L},andT* = L, 1L* = T. Let the relation”' be
defined by

2Cy <=y A"

15



Figure 3: The ordering ofD;

01 11

Clearly,C' is reflexive and symmetric. Suppose tha y; then,y* £ 2*, and thusgC'y*. On the
other hand(—C')y*, and it follows that”(z) ¢ C'(y), in particularC'(z) # C(y) (see also Biacino
& Gerla, 1991, Proposition 2). Henc€,is a contact relation. Lett be the BRA generated iy on
Dy; then, A is simple (see e.godsson & Tarski, 1951).

For eachr € w, let1’, = {x¢1, z11}% N 1’. We are going to show that eath is in A, and thus, the
equational theory oft is undecidable by Proposition 6.1.e&all from (1.8) thatP P is the relation
< N — 1" on Dy. Since bothy; and0;; are the only minimal elements, we have

1, =1'n—(PP;PP).

Next, suppose that, is defined for all» < k. Letl’ , = Ungk L,andU =V n—(17,;V;1%,);

then,kq; andky; are minimal inl/ N PP, and thus,

L =1'n=[(UnPP);(UnNPP)).
Applying Proposition 6.1 completes the proof. O
Finally, we want to show that the extensionality condition (1.6) is not expressible by a formula of
modal logic.

A bounded morphisrfrom a frameK, = (W, Ry) to a framek, = (Wi, Ry) is a mappingh :
Wy — Wy for which

(6.1) {(x,y) € Roimplies{(h(z),h(y)) € Ry,
(6.2) (z,h(y)) € Ry implies(3z € Wy)[{z,y) € Ro A h(2) = z].

forall =,y € Wy.

A necessary condition for a first order condition to be expressible by a modal formula is invariance
under bounded morphisms (see e.g. van Benthem, 1984, for the result, and further references).

Proposition 6.3. The class of contact structures cannot be axiomatised by modal formulas.
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Figure 4: A contact frame
7

Proof. We will present a contact frame whose image under a bounded morphism is not a contact
frame. ConsidetV ={0,1,...,7},U ={1,3,5,7}andC € Rel(WW) as depicted in Figure 4; there

aCb iff @ = b ora and b are direct neighbours. Itis not hard to check thas a contact relation. Let

S be the restriction of ' to U x U; then,

S(1) = {1,3,5,7} = S(7),

and thusS does not satisfy (1.6). On the other hand, the mapging? — U defined for alle < 7
by

a+1, ifaiseven
fla) = { .
a, otherwise

is a bounded morphism. O

7 Summary and outlook

A contact relation”’ on a setiV of regions is characterised by reflexivity, symmetry, and the exten-
sionality axiom (1.6). The set of all relations which can be defined ffoand the identityl’ on W

by using the (absolute) Boolean operators and the relative operatwisis a contact relation algebra
(CRA) onW (Duntsch et al., 1999c). The relations in a CRA are present in any model of mereology
which uses an extensional contact relatigrthus, CRAs are useful for various scenarios.

In this article, we have presented a sound and complete proof system for contact relation algebras with
a Rasiowa & Sikorski — style proof system, and the relational semantics of Ortowska (1991, 1996).
We have also shown that the equational theory of CRAs is undecidable.

Buszkowski & Orlowska (1997) present a logic for proving data dependencies and relationships
among them. They show that the logic is undecidable, and exhibit decidable fragments of their theory.
It would be interesting to know how far their method is applicable to the theory of CRAs.

17



One further task is to find a relational or “modal—style” logic for contact frames, i.e. a logic whose
models are frame&V, C'), whereC' is a contact relation. As shown above, such a logic cannot be a
traditional modal logic.

Another task is to develop and implement complete proof systems for models of mereology which
carry an additional algebraic structure such as the mereology of Clarke (1981) or the RCC of Randell
et al. (1992). Some such systems have recently been presented, for example, Asher & Vieu (1995),
Bennett (1996), Pratt & Schoop (1998), but the discussion in Lemon & Pratt (1997) shows that im-
provements can still be made.
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