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Abstract

Contact relations have been studied in the context of qualitative geometry and physics since the
early 1920s, and have recently received attention in qualitative spatial reasoning. In this paper, we
present a sound and complete proof system in the style of Rasiowa & Sikorski (1963) for relation

algebras generated by a contact relation.

1 Introduction

Contact relations arise in the context of qualitative geometry and spatial reasoning, going back to the

work of de Laguna (1922), Nicod (1924), Whitehead (1929), and, more recently, of Clarke (1981),

Cohn et al. (1997), Pratt & Schoop (1998, 1999) and others. They are a generalisation of the “overlap

relation” , obtained from a “part of” relation, which for the first time was formalised by Le´sniewski

(1916), (see also Le´sniewski, 1983). One of Le´sniewski’s main concerns was to build a paradox–free

foundation of Mathematics, one pillar of which was mereology1 or, as it was originally called, the

general theory of manifolds or collective sets. Nowadays, mereology has become synonymous with

the relational part of qualitative spatial reasoning.

The traditional example of a contact structure is the set of all nonempty regular closed sets of a

connected regularT0 space with contact defined by

xCy () x \ y 6= ;:(1.1)

Another example is the setW of all nonempty closed disks of the Euclidean plane where the contact

relationC is also defined by (1.1). We will see below that there are very different models of contact

structures.
�The authors gratefully acknowledge support by the KBN/British Council Grant No WAR/992/151
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For a discussion of the ontological issues we refer the reader to Simons (1987), Cohn et al. (1997),

Pratt & Lemon (1997), and to the special edition on ontology of theInternational Journal of Human–

Computer Studies43 (1995); an overview of current development in mereology can be found in Varzi

(1996).

Before we properly define contact relations, we should like to recall a few facts of binary relations.

Relations and their algebras have been studied since the latter half of the last century, e.g. by

de Morgan (1864), Peirce (1870) and Schr¨oder (1890 - 1905). Tarski (1941), who, incidentally, was

Leśniewski’s only doctoral student, gave a first formal introduction to the algebra of relations; his aim

was to provide an algebraic semantics for first order logic – just as Boolean algebras were an adequate

algebraisation of classical propositional logic.

Suppose thatW is a non–empty set. Abinary relation onW is a subset ofW �W . The collection of

all binary relations onW will be denoted byRel(W ). If R; S 2 Rel(W ) andx; y; z 2 W , we often

write xRy for hx; yi 2 R, andxRySz for hx; yi 2 R ^ hy; zi 2 S. Furthermore,R(x) denotes the

setfy 2 W : xRyg, andI is the identity relation onW .

It is easy to see thatRel(W ) is a Boolean algebra under the set theoretic operations with smallest

element; and largest elementW�W , which we also denote byV . Other natural operations on binary

relations are the “relative” operations, namely,composition; andconverse� : Relational composition

is defined as

R;S = fhx; yi : (9z 2 W )xRzSyg;

and converse is

R�= fhx; yi : yRxg:

Any A � Rel(W ) which is closed with respect to the Boolean set operations, and the relative op-

erations and contains the constants;; V; I is called analgebra of binary relations(BRA). If M �

Rel(W ), then[M ] denotes the smallest BRA containingM .

A decisive property of BRAs, which exhibits their expressive power is

Proposition 1.1. (Tarski & Givant, 1987)

If M � Rel(W ), then [M ] contains exactly those relations which are definable in the relational

structurehW;Mi by first order formulas containing at most three variables, two of which are free.

We note that any equation and any inequality between relations can be written asT = V for someT ,

viz.

R = S () �(R
 S) = V;(1.2)

R 6= S () V ; (R
 S);V = V:(1.3)
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Here,R
 S is the symmetric difference ofR andS, i.e.

R
 S = (R \ �S) [ (S \ �R):

Finite BRAs can be conveniently represented by composition tables, where the rows and the columns

are labelled by the atoms, and a cell contains the relative product of the two atoms which point to it; to

save space, we usually just list the atoms which make up the relative product. For example, the entry

EC;DC in the cellhTPP;ECi means thatTPP ;EC = EC [DC. If I is an atom, then row and

columnI are usually omitted. An example of such an array is given in Table 1.

A contact relationC on a setW (of regions)has the properties

C is reflexive.(1.4)

C is symmetric.(1.5)

If xCz () yCz for all z 2 W; thenx = y:(1.6)

By the extensionality axiom (1.6), a region is determined by all regions it is in contact to. The pair

hW;Ci will be called acontact structure. A contact relation algebra(CRA) is the BRA onW

generated by a contact relationC. In working with CRAs we disregard any underlying algebraic

structure on the set of regions, and consider only the relational part. Since the calculus handles

relations, no knowledge about the concrete geometrical objects is necessary.

Relation algebras were introduced into spatial reasoning by Egenhofer & Sharma (1992) with addi-

tional results published in Egenhofer & Sharma (1993), Egenhofer (1994). Many well known spatial

relations can be expressed by the relation operators and constants,=, and the single relationC, for

example,

P = �(C;�C); part of(1.7)

PP = P � �I: proper part of(1.8)

O = P�;P overlap(1.9)

PO = O � �(P + P�) partially overlap(1.10)

EC = C � �O external contact(1.11)

TPP = PP � (EC;EC) tangential proper part(1.12)

NTPP = PP � �TPP non–tangential proper part(1.13)

DC = �C: disconnected(1.14)

Depending on the domain of interpretation, some of these may be empty; for example, ifEC = ;,

thenP�;P = O = C, and hence,C is RA definable byP as in classical mereology.

It may be worthy of mention that, in the presence of the other two axioms, the extensionality axiom

(1.6) is equivalent to

P is antisymmetric:(1.15)
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Figure 1: Circle relations
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Table 1: Closed circle algebraCc

; TPP TPP� NTPP NTPP� PO EC DC

TPP PP �(NTPP [NTPP�) NTPP �P �P� EC; DC DC

TPP� I; TPP; TPP�; PO PP� PP�; PO NTPP� PP�; PO PP�; PO; EC �P

NTPP NTPP �P� NTPP 1 �P� DC DC

NTPP� PP�; PO NTPP� �(EC [DC) NTPP� PP�; PO PP�; PO �P

PO PP; PO �P PP; PO �P 1 �P �P

EC PP; PO; EC EC;DC PP; PO DC �P� �(NTPP [NTPP�) �P

DC �P� DC �P� DC �P� �P� 1

It is known (Pratt, 1992) that for a symmetricC, an elementP of a relation algebra defined by (1.7) is

always reflexive and transitive, so thatP is indeed a partial order. The converse need not be true: There

are domains, in which a “part of”P makes sense, but for which there is no contact relationC such

thatP = �(C;�C). A case in point is the class of those regular double Stone algebras, which are not

Boolean algebras (and which can be interpreted as algebras whose elements approximate regions); on

such an algebra there is no contact relationC 6= I , for whichP = � (Düntsch et al., 1999a).

To give the reader an intuition of CRAs, we shall present a few examples from D¨untsch et al. (1999c).

The CRA generated on the set of all proper nonempty closed disks by the contact relationC of (1.1)

is shown in Table 1. It has the eight atoms

I; TPP; TPP�; NTPP;NTPP�; PO;EC;DC;

with C being the union of the first seven of these. Some of the non–identity atoms are pictured in

Figure 1.

The algebra of closed circles can be regarded as a translation into the plane of the interval algebra

(Allen, 1983) by “forgetting” the direction, and it should not be confused with the example of all non-

empty proper regular closed sets of the Euclidean plane; the algebra generated byC in this domain is

much more complicated and has at least 25 atoms (D¨untsch et al., 1999b). Neither should Figure 1

be used to exemplify relations on the domain of regular closed sets; this is a much too simplistic

view. For example, ifx is the disjoint union of two closed disksa andb, thenaTPPx; however, this

instance ofTPP has quite different topological properties than the instance ofTPP in Figure 1.

CRAs are by no means restricted to traditional interpretations of contact. The smallest CRA is the

algebra known asN1 (Comer, 1983); it has four atoms, and its composition is given in Table 2. Here,

C = PP [PP�[I . An indication of whatP looks like can be found in Figure 2; think of a fractal-like
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Figure 2: An ordering forN1 Table 2: The algebraN1

Æ PP PP� DC

PP PP 1 DC

PP� �DC PP� PP�; DC

DC PP;DC DC 1

structure with a copyQ of the rational numbers as its “backbone”, and ever branching at each point

into two copies ofQ; details can be found in D¨untsch (1991) and Andr´eka et al. (1994).

As a final example we look at the relation algebraG generated by the natural order of an atomless

Boolean algebraB with the extreme elements removed (Table 3); we letP =� andPP =�. Observe

thatDD is Boolean complementation.

Table 3: The algebraG

O D
Æ

PP PP� PON POD DN DD

PP PP �(POD [DD) PP; PON;DN PP; PO;D DN DN

PP� I; O PP� PP�; PO POD PP�; PO;D POD

PON PP; PO PP�; PON;DN 1 PP; PO PP�; PON;DN PON

POD POD PP�; PO;D PP�; PO I;O PP� PP�

DN PP; PO;D DN PP; PON;DN PP �(POD [DD) PP

DD POD DN PON PP PP� I

There are two possibilities to define a contact relation onG which satisfies (1.7): We can take either

C = O orC = O [DD.

It is our aim to present in this communication a sound and complete logic for contact relation algebras

in which we can prove general facts about contact relation algebras. The semantics of this logic is

relational as introduced by Orłowska (1991, 1996), while the proof system is in the style of Rasiowa

& Sikorski (1963). The rest of the paper is structured as follows: We start with a definition of the

languageL and its semantics, followed by the proof system. Before we embark on the proofs of

soundness and completeness of the system, we shall give an example of a proof, namely, we show that

P as defined by (1.7) is antisymmetric. Finally, we show that our logic is undecidable, and that the

extensionality condition (1.6) is not definable by a modal formula.
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2 The languageL and its semantics

The alphabet of the languageL consists of the union of the following sets:

1. A setfC; 10g of constants, representing, respectively, the contact and identity2 relations.

2. A countably infinite setV I of individuum variables.

3. A setf[;\;�; ; ;�g of names for the relational operators.

4. A setf(; )g of delimiters.

With some abuse of language, we use the same symbols as for the actual operations; it will be clear

from the context which meaning is intended.

The setCE of terms (“contact expressions”) is defined as follows:

1. C and10 are terms.

2. If R andS are terms, so are

(R [ S); (R\ S); (�R); (R;S); (R�):

3. No other string is a term.

We will use the usual conventions of reducing brackets. Note thatCE can be regarded as the abso-

lutely free algebra of typeh2; 2; 1; 2; 1i overfC; 10g.

The set ofL–formulas is

fxRy : R 2 CE; x; y 2 V Ig:

A model ofL is a pairM = hW;mi, whereW is a nonempty set, andm : CE ! W � W is a

mapping such that

m(C) is a contact relation.(2.1)

m(10) is the identity relation onW .(2.2)

m is a homomorphism fromCE to hRel(W );[;\;�; ; ;�i.(2.3)

A valuationv is a mapping fromV I to W . If xRy is a formula, then we say thatM satisfiesxRy

underv, written asM; v j= xRy, if hv(x); v(y)i 2 m(R). xRy is calledtrue in the modelM , if

M; v j= xRy for all valuationsv, i.e. ifm(R) = W 2. xRy is calledvalid, if it is true in all models.

2For historical reasons, it is customary for researchers in the area of relation algebras to use1
0 for the identity; the

superscript comma signifies that1
0 is the “relative” identity, asopposed to the “absolute” identity 1. Similarly, composition,

i.e. relative multiplication is denoted by;, which is not a semicolon, but absolute multiplication� with a comma attached
below.
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Table 4: Decomposition rules

([)
K;x(R [ S)y;H

K; xRy; xSy;H
(�[)

K;x� (R [ S)y;H

K; x(�R)y;H jK;x(�S)y;H

(\)
K;x(R \ S);H

K; xRy;H jK;xSy;H
(�\)

K;x� (R \ S)y;H

K; x(�R)y; x(�S)y;H

(�)
K;xR�y;H

K; yRx;H
(��)

K;x(�R�)y;H

K; y(�R)x;H

(��)
K;x(��R)y;H

K; xRy;H

(; )
K;x(R;S)y;H

K; xRz;H; x(R;S)y jK; zSy;H; x(R;S)y
wherez is any variable

(�; )
K;x� (R;S)y;H

K; x(�R)z; z(�S)y;H
wherez is a restricted variable

3 The proof system

We will define a proof system in the style of Rasiowa & Sikorski (1963). The system consists of

two types of rules:Decomposition rulesenable us to break up formulas into an equivalent sequence

of simpler formulas.Specific rulesmodify a sequence of formulas, and have the status of structural

rules. More precisely, the rules are actually rule schemas in most instances. The role of axioms is

played byaxiomatic sequences.

Rasiowa–Sikorski (RS) proof systems are, in a way, dual to tableaux systems: Whereas in the latter

one tries to refute the negation of a formula, the RS systems attempt to verify a formula by closing

the branches of a decomposition tree with axiomatic sequences. Rules in RS systems go in both

directions: we call a ruleadmissibleif

The upper sequence is valid iff the lower sequence(s) is (are) valid.

Here, a sequence of formulas is valid if its meta-level disjunction is valid.

The rules of our system are given in Tables 4 and 5. A variablez is calledrestricted in a ruleif it does

not occur in the upper part of that rule.K andH are finite, possibly empty, sequences of formulas of

the relational calculus.

The axiomatic sequences are

xRy; x(�R)y;(3.1)

x10x;(3.2)

whereR 2 CE.

Proofs have the form of trees: Given a formulaxRy, we successively apply decomposition or specific

rules; in this way we obtain a tree whose root isxRy, and whose nodes consist of sequences of
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Table 5: Specific rules

(sym10)
K;x10y;H

K; y10x;H

(tran 10)
K;x10y;H

K; x10z;H; x10y jK; z10y;H; x10y
, wherez is any variable

(10

1
)

K;xRy;H

K; x10z;H; xRy jK; zRy;H; xRy
, wherez is any variable

(10

2
)

K;xRy;H

K; xRz;H; xRy jK; z10y;H; xRy
, wherez is any variable

(re
C)
K;xCy;H

K; x10y; xCy;H

(symC)
K;xCy;H

K; yCx;H

(extC)
K

K;x(�C)z; yCz jK; y(�C)t; xCt jK;x(�10)y
wherez andt are restricted variables

(cutC)
K

K;xCy jK;x(�C)y

formulas. A branch of tree isclosedif it contains a node which contains an axiomatic sequence as a

subsequence. A tree is calledclosedif all its branches are closed.

If Z is a branch andF a formula, we writeF" Z if Z contains a sequence� in whichF appears;

similarly we writeF" �, if F appears in�.

We suppose without loss of generality thateach branchZ of a proof tree is maximal in the sense that,

wheneverF" Z and there is a (decomposition or specific) rule which can be applied toF , then this

rule is applied toF with an appropriate result appearing inZ. For example, ifF is x(R;S)y, and

K;F;H appear inZ, then, by decomposition rule(; ), for all z, the sequence

K; xRz;H; x(R;S)y

appears inZ, or the sequence

K; zSy;H; x(R;S)y
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appears inZ. Similarly, if K appears inZ, then, by ruleextC, (at least) one of

K; x(�C)z; yCz;

K; y(�C)t; xCt;

K; x(�10)y

appears inZ, wherez; t do not occur inK.

4 A decomposition tree

Before we proceed to show that the proof system is sound and complete, we shall give an example of a

derivation of a valid formula. We want to show that the relationP as defined by (1.7) is antisymmetric,

i.e. that

P \ P�� 10;

that is, by definition ofP ,

(C;�C)[ (�C;C)[ 10 = V:

For this example only, we use the same symbols as inL with some abuse of notation. Thus, to prove

our claim, we must find a closed proof tree for the formula

x((C;�C)[ (�C;C)[ 10)y:(4.1)

Applying rule([) to (4.1) and again to the resulting formula, we obtain

x(C;�C)y; x(�C;C)y; x10y:(4.2)

Rule(extC) with K given by (4.2) leads to three branches:

x(C;�C)y; x(�C;C)y; x10y; x(�C)z; yCz(4.3)

x(C;�C)y; x(�C;C)y; x10y; y(�C)t; xCt;(4.4)

x(C;�C)y; x(�C;C)y; x10y; x(�10)y;(4.5)

Node (4.5) is closed, and we look at node (4.3). Decomposingx(C;�C)y with rule (; ) gives two

more branches:

xCz; x(�C;C)y; x10y; x(�C)z; yCz; x(C;�C)y;(4.6)

z(�C)y; x(�C;C)y; x10y; x(�C)z; yCz; x(C;�C)y:(4.7)

Node (4.6) is closed. If we apply rule(symC) to yCz in (4.7), we obtain

z(�C)y; x(�C;C)y; x10y; x(�C)z; zCy; x(C;�C)y;(4.8)

which is closed. Similarly, one shows that (4.4) leads to closed branches as well.
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5 Soundness and completeness

The soundness of the proof system follows from the following

Proposition 5.1. 1. All decomposition rules are admissible.

2. All specific rules are admissible.

3. The axiomatic sequences are valid.

Proof. The admissibility of the decomposition rules and the(tran 10); (sym10); (symC); (re
C)

rules are proved, mutatis mutandis, in Orłowska (1996), and the admissibility of(cut) is obvious.

Clearly, the axiomatic sequences are valid.

Next, we show that

(101) is admissible() m(10);m(R) � m(R)(5.1)

for all termsR 2 CE and all modelshW;mi. The proof of the admissibility of rule(102) is analogous.

“)”: Let R 2 CE, andK be the sequence

x(�10)z; z(�R)y;

furthermore, setH = ;. Then, the sequences

K; x10z; H; xRy(5.2)

K; zRy; H; xRy(5.3)

are clearly valid, and thus, by our assumption, the upper sequence of101

x(�10)z; z(�R)y; xRy(5.4)

is valid as well.

Recall thatI is the identity relation on the set in question, and thatm(10) = I by (2.2). Assume that

there are someR 2 CE and a modelM = hW;mi such thatI ;m(R) 6� m(R), i.e. that there are

a; b; c 2 W for which

aIc; c(m(R))b; a(�m(R))b;(5.5)

in particular,m(a) 6= ;.

If v is a valuation such that

v(x) = a; v(y) = b; v(z) = c;

thenM; v satisfies none of the formulas of (5.4), contradicting the validity of (5.4).

“(”: Name the sequences occurring in101 by
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�1. K; xRy;H ,

�2. K; x10z;H; xRy,

�3. K; zRy;H; xRy.

Since�1 is a subsequence of both�2 and�3, the validity of�1 implies the validity of�2 and�3.

Conversely, suppose that�2 and�3 are valid, i.e. for all modelsM , for all valuationsv : V I ! M

there areF in �2, G in �3 such that

M; v j= F andM; v j= G:

If F or G occur in�1, there is nothing more to show. Otherwise,F is x10z, G iszRy, and, by our

hypothesis,M; v j= xRy.

Finally, we prove

(extC) is admissible() m(C)v(x) = m(C)v(y) impliesv(x) = v(y)(5.6)

for all modelsM = hW;mi, all valuationsv : V I ! W and allx; y 2 V I .

“)”: Suppose thathW;mi is a model,v : V I ! W a valuation, andx; y; z 2 V I . We have to show
that

[(8z)(v(x)m(C)v(z) ) v(y)m(C)v(z)) and(8t)(v(y)m(c)v(t) ) v(x)m(C)v(t))] ) v(x) = v(y);

(5.7)

i.e. for all z; t 2 W ,

(M; v j= x(�C)z orM; v j= yCz) and(M; v j= y(�C)t orM; v j= xCt))M; v j= x10y:

(5.8)

Set

�0 = fKg; �1 = fK; x(�C)z; yCzg; �2 = fK; y(�C)t; xCtg; �3 = fK; x(�10)yg:(5.9)

By our hypothesis, we know that the joint validity of�1;�2;�3 implies the validity of�0. This

implies, in particular, thatF1 2 �1; F2 2 �2; F3 2 �3 with all Fi 6= K cannot live together. Thus, if

1. M; v j= x(�C)z orM; v j= yCz, and

2. M; v j= y(�C)t orM; v j= xCt,

then we cannot haveM; v j= x(�10)y. Thus,M; v j= x10y, which was to be shown.

“(”: Suppose that (5.8) is satisfied for all modelsM = hW;mi, all valuationsv : V I ! W ,

and allx; y; z; t 2 V I ; furthermore, suppose that�1 – �3 of (5.9) are valid. We need to show that

M; v j= K. Assume not; then, since�1 –�3 are valid, we know that
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1. M; v j= x(�C)z orM; v j= yCz,

2. M; v j= y(�C)t orM; v j= xCt,

3. M; v j= x(�10)y.

This contradicts (5.8).

Proposition 5.2. If a formula is valid then it has a closed proof tree.

Proof. Suppose thatF is valid formula, and assume that there is a non closed branchZ in a proof tree

of F with rootF . Recall that we assumeZ to be maximal with respect to the application of rules as

explained on page 8.

First we define a relationE onV I by

xEy() x10y 6 " Z:(5.10)

Claim 1. E is an equivalence relation onV I .

Proof. (Claim 1). Letx 2 V I ; if x10x" Z, thenZ is closed, contrary to our assumption. Thus,

x10x 6 " Z, and it follows thatxEx. If xEy, thenx10y 6 " Z, and it follows from the maximality ofZ

and rule(sym10) thaty10x 6 " Z; hence,yEx. Finally, letxEy andyEz; then,x10y 6 " Z; y10z 6 " Z.

Assume thatx10z" Z; by the maximality ofZ and rule(tran 10) we obtainx10y" Z or y10z" Z, a

contradiction.

Now, we will construct a model which will falsifyF , contradicting our assumption. Its base setW is

the set of equivalence classes ofE. Let f : V I � W the canonical mapping which assigns to each

x 2 V I its equivalence class with respect toE. DefineD 2 Rel(W ) by

f(x)Df(y)() xCy 6 " Z;(5.11)

The definition ofD is independent of the choice of representative, as the following shows:

Claim 2. If xCy 6 " Z; sEx; tEy, thensCt 6 " Z.

Proof. (Claim 2)

AssumesCt" Z. By the maximality ofZ and rule(re
C) we haves10t" Z, and with rule(101) for

sCt with the new variablex, we obtain

s10x" Z; sCt" Z or xCt" Z; sCt" Z:

SincesEx, the first case is not possible, and hence,xCt" Z. Similarly, using(102) for xCy with the

new variabley, we havesCy" Z. Finally, by maximality ofZ and rule(extC), we have

s(�C)y" Z; tCy" Z or t(�C)x" Z; sCx" Z or s(�10)t" Z:

By our assumption, none of these is possible.
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Now, setm(10) = I onW , m(C) = D, extendm overCE homomorphically, and letM = hW;mi.

Observe that by definition ofE

f(x)If(y)() x10y 6 " Z:(5.12)

All that remains to show thatM is a model, is to prove

Claim 3. D is a contact relation.

Proof. (Claim 3)

Assume thatf(x)(�D)f(x) for somex 2 V I . Then,xCx" Z, and by maximality with respect to

(re
C) we obtainx10x" Z; this contradicts the fact thatZ is not closed.

Let f(x)Df(y) and assume thatf(y)(�D)f(x); thenyCx" Z, and it follows from the maximality

of Z and(symC) thatxCy" Z. Hence,f(x)(�D)f(y), a contradiction.

Finally, suppose thatD(f(x)) = D(f(y)) for somex; y 2 V I , and letz 2 V I . By maximality with

respect to(extC) we have exactly one of the following three cases:

1. x(�C)z" Z; yCz " Z.

2. y(�C)t" Z; xCt " Z.

3. x(�10)y " Z.

If x(�C)z" Z; yCz " Z, thenxCz 6 " Z, sinceZ is not closed, and thus,f(x)Df(z), which implies

f(z) 2 D(f(x)). Then,f(y)Df(z), hence,yCz 6 " Z, contradicting our hypothesis. Thus, this case

is not possible, and similarly, one shows that 2. cannot happen either. It follows thatx(�10)y " Z;

sinceZ is not closed,x10y 6 " Z, and therefore,xEy. We conclude thatf(x) = f(y).

Thus,M is indeed a model ofL.

Next, we define therelational complexityrc(R) of a contact expressionR:

1. If R 2 fC; 10g, thenrc(R) = 1.

2. If R 2 f�S; S�g, thenrc(R) = rc(S) + 1.

3. If R 2 fS [ T; S \ T; S;Tg, thenrc(R) = rc(S) + rc(T ) + 1.

Claim 4. For allx; y 2 V I; R 2 CE,

f(x)m(R)f(y)() xRy 6 " Z:

Proof. (Claim4)

13



1. Letrc(R) = 1. Then,R 2 fC; 10g, and, by (5.12) and (5.11),

f(x)m(10)f(y)() x10y 6 " Z;

f(x)m(C)f(y)() xCy 6 " Z:

2. Suppose the claim is true forrc(S) � n.

(a) R is�S: Then,

f(x)m(R)f(y)() notf(x)Sf(y); sincem is a homomorphism

() xSy" Z; by the induction hypothesis

() x(�S)y 6 " Z:

In the latter equivalence, the) part holds by the fact thatZ is not closed, and the(

direction by the maximality ofZ and the rule(cut).

(b) R is S�: Then,

f(x)m(R)f(y)() f(x)m(S)�f(y); sincem is a homomorphism

() f(y)m(S)f(x)

() ySx 6 " Z by the induction hypothesis

() xS�y 6 " Z by maximality ofZ and rule(�):

(c) R is S [ T : Then,

f(x)m(R)f(y)() f(x)m(S)f(y) or f(x)m(T )f(y); sincem is a homomorphism

() xSy 6 " Z or xTy 6 " Z by the induction hypothesis

() x(S [ T )y 6 " Z by maximality ofZ and rule([):

(d) R is S \ T : Then,

f(x)m(R)f(y)() f(x)m(S)f(y) andf(x)m(T )f(y); sincem is a homomorphism

() xSy 6 " Z andxTy 6 " Z by the induction hypothesis

() x(S \ T )y 6 " Z by maximality ofZ and rule(\):

(e) R is S;T : Then,

f(x)m(R)f(y)() (9z 2 V I)f(x)m(S)f(z)m(T)f(y) sincem is a homomorphism

() (9z 2 V I)[xSz 6 " Z andzTy 6 " Z] by the induction hypothesis

() x(S;T )y 6 " Z by maximality ofZ and rule(; ):

This proves Claim 4.
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Now we can finish the proof of Proposition 5.2. LetF bexPy, and letv : V I ! W be the valuation

x
v
7! f(x). SinceF is the root of the tree, we havexPy" Z. On the other hand,

M; v j= xPy ) v(x)m(P )v(y) by definition of j=

) f(x)m(P )f(y) by definition ofv

) xPy 6 " Z by Claim 4;

a contradiction.

6 Decidability and modal expressibility

First, we will show that the equational theory of contact relation algebras is undecidable; this is

pertinent for our logic which axiomatises RA expressions of the form�(C; 10) = 1, where�(C; 10) 2

CE. The result will follow from

Proposition 6.1. (Andréka, Givant & Németi, 1997)

If a classK of relation algebras contains a simple algebra with infinitely many elements below the

identity relation, thenK has an undecidable equational theory. 2

Proposition 6.2. The equational theory of CRA is undecidable.

Proof. LetD0; D1 be two disjoint sets; we suppose that eachDi is the disjoint union ofDi0 andDi1

such that eachhDij;�i is order isomorphic to!, the order type of the natural numbers, and we let

Dij = f0ij ; 1ij; 2ij; : : :g. EachDi is ordered as follows:

x �i y ()

8>><
>>:

x 2 Di1 andy 2 Di0; or

x; y 2 Di0 andy � x; or

x; y 2 Di1 andx � y:

Thus,hDi;�ii has order type! + !�, see Figure 3. SetD = D0 [ D1 [ f>;?g, wheref>;?g \

(D0 [D1) = ;. OrderD by

x � y ()

8>><
>>:

x = ? or

y = > or

x �i y for somei 2 f0; 1g:

Letm : D ! D be the order anti–isomorphism ofD with

xij
m
7! x(i+1)(j+1);

where addition in the indices is modulo2. Now, it is not hard to see thathD;�i is an orthocomple-

mented lattice, withx� = m(x) for all x 62 f>;?g, and>� = ?; ?� = >. Let the relationC be

defined by

xCy () y 6� x�:
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Figure 3: The ordering ofDi
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Clearly,C is reflexive and symmetric. Suppose thatx 6� y; then,y� 6� x�, and thus,xCy�. On the

other handy(�C)y�, and it follows thatC(x) 6� C(y), in particular,C(x) 6= C(y) (see also Biacino

& Gerla, 1991, Proposition 2). Hence,C is a contact relation. LetA be the BRA generated byC on

D0; then,A is simple (see e.g. J´onsson & Tarski, 1951).

For eachx 2 !, let 10x = fx01; x11g
2 \ 10. We are going to show that each10x is inA, and thus, the

equational theory ofA is undecidable by Proposition 6.1. Recall from (1.8) thatPP is the relation

� \ � 10 onD0. Since both001 and011 are the only minimal elements, we have

100 = 10 \ �(PP�;PP ):

Next, suppose that10n is defined for alln � k. Let 10<k =
S
n�k 1

0

n, andU = V \ �(10<k;V ; 10<k);

then,k01 andk11 are minimal inU \ PP , and thus,

10k = 10 \ �[(U \ PP )�; (U \ PP )]:

Applying Proposition 6.1 completes the proof.

Finally, we want to show that the extensionality condition (1.6) is not expressible by a formula of

modal logic.

A bounded morphismfrom a frameK0 = hW0; R0i to a frameK1 = hW1; R1i is a mappingh :

W0 ! W1 for which

hx; yi 2 R0 implieshh(x); h(y)i 2 R1;(6.1)

hx; h(y)i 2 R1 implies(9z 2 W0)[hz; yi 2 R0 ^ h(z) = x]:(6.2)

for all x; y 2 W0.

A necessary condition for a first order condition to be expressible by a modal formula is invariance

under bounded morphisms (see e.g. van Benthem, 1984, for the result, and further references).

Proposition 6.3. The class of contact structures cannot be axiomatised by modal formulas.
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Figure 4: A contact frame
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Proof. We will present a contact frame whose image under a bounded morphism is not a contact

frame. ConsiderW = f0; 1; : : : ; 7g,U = f1; 3; 5; 7gandC 2 Rel(W ) as depicted in Figure 4; there

aCb iff a = b or a and b are direct neighbours. It is not hard to check thatC is a contact relation. Let

S be the restriction ofC toU � U ; then,

S(1) = f1; 3; 5; 7g= S(7);

and thus,S does not satisfy (1.6). On the other hand, the mappingf : W ! U defined for alla � 7

by

f(a) =

8<
:
a+ 1; if a is even;

a; otherwise;

is a bounded morphism.

7 Summary and outlook

A contact relationC on a setW of regions is characterised by reflexivity, symmetry, and the exten-

sionality axiom (1.6). The set of all relations which can be defined fromC and the identity10 onW

by using the (absolute) Boolean operators and the relative operators; and�is a contact relation algebra

(CRA) onW (Düntsch et al., 1999c). The relations in a CRA are present in any model of mereology

which uses an extensional contact relationC; thus, CRAs are useful for various scenarios.

In this article, we have presented a sound and complete proof system for contact relation algebras with

a Rasiowa & Sikorski – style proof system, and the relational semantics of Orłowska (1991, 1996).

We have also shown that the equational theory of CRAs is undecidable.

Buszkowski & Orlowska (1997) present a logic for proving data dependencies and relationships

among them. They show that the logic is undecidable, and exhibit decidable fragments of their theory.

It would be interesting to know how far their method is applicable to the theory of CRAs.
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One further task is to find a relational or “modal–style” logic for contact frames, i.e. a logic whose

models are frameshW;Ci, whereC is a contact relation. As shown above, such a logic cannot be a

traditional modal logic.

Another task is to develop and implement complete proof systems for models of mereology which

carry an additional algebraic structure such as the mereology of Clarke (1981) or the RCC of Randell

et al. (1992). Some such systems have recently been presented, for example, Asher & Vieu (1995),

Bennett (1996), Pratt & Schoop (1998), but the discussion in Lemon & Pratt (1997) shows that im-

provements can still be made.
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Leśniewski, S. (1983). On the foundation of mathematics.Topoi, 2, 7–52.

19



Nicod, J. (1924). Geometry in a sensible world. Doctoral thesis, Sorbonne, Paris. English translation

in Geometry and Induction, Routledge and Kegan Paul, 1969.

Orłowska, E. (1991). Relational interpretation of modal logics. In H. Andr´eka, J. D. Monk & I. Németi
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