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Abstract Weprove a preservation theorem forNTP1 in the context of the generic vari-
ations construction. We also prove that NTP1 is preserved under adding to a geometric
theory a generic predicate.
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1 Introduction

The theorem of Shelah stating that a theory has the tree property (TP) if and only if
it has the tree property of the first kind (TP1) or the tree property of the second kind
(TP2) leads to two natural generalizations of the notion a of a simple theory (i.e., a
theory without the tree property), namely NTP1 and NTP2 theories.

Initially, the NTP1 property was studied mainly in the context of �∗-maximality
([7,9]). Recently, several very interesting new results on NTP1 have appeared in [4].
First, it has been proved there that the TP1 property is always witnessed by a formula
in a single variable, which gives chances to apply techniques from other contexts (e.g.
stability, NIP, NTP2) relying on analogous facts. Secondly, the authors studied a notion
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closely related to NTP1, namely NSOP1 (see for example [4, Definition 5.1])—this is
a strengthening of NTP1, which still holds in all simple theories. It is an open question
whether it is equivalent to NTP1.

Question 1.1 ([6]) Is NTP1 equivalent to NSOP1?

Chernikov and Ramsey characterized NSOP1 in terms of some natural properties
of certain ternary relations between small sets of parameters and also proved that
existence of an abstract independence relation satisfying a certain list of natural axioms
implies NSOP1 (in particular, it implies NTP1), which was used to provide natural
examples of NSOP1 theories: the ω-free PAC fields studied by Chatzidakis [9] and
linear spaces with a generic bilinear form studied by Nicolas Granger in his Ph.D.
thesis ([7]). Another class of such examples is provided by the “pfc” construction,
thanks to the following fact from [4]:

Fact 1.2 Suppose T is a simple theory which is the theory of a Fraïssé limit of a SAP
Fraïssé class K . Then Tp f c is N SO P1. Moreover, if the D-rank of T is at least 2, then
Tp f c is not simple.

Themainmotivation for this paper is proving the preservation ofNTP1 under certain
constructions enriching a given theory, which yields new examples of NTP1 theories
from the already established ones.

We prove (in Theorem 3.1) the preservation of NTP1 under the generic variations
construction in the context considered in [1],which generalizes that of the pfc construc-
tion. This strengthens significantly [1, Theorem 4.4], where under a much stronger
assumption of stability it was proved that the resulting theory is NSOP (which is a
weaker property than NTP1).

The paper is organized as follows: In Sect. 2, we review some definitions and outline
the generic variations construction from [1] as well as the pfc construction from [4].
We notice that the theory obtained in the second construction is interpretable in the
theory obtained in the first one. In Sect. 3, we prove the above-mentioned Theorem 3.1
(and conclude that NTP1 is preserved under pfc). In Sect. 4, we prove that NTP1 is
preserved by the generic predicate construction from [2].

2 Preliminaries

Throughout the paper, unless stated otherwise, variables and parameters can have
arbitrary (finite) length.

First, we give the definitions of NTP1 and NTP2.

Definition 2.1 A formula φ(x; y) has TP1 (in a fixed theory T ) if there is a collection
of tuples (aη)η∈ω<ω such that:

(1) For all η ∈ ωω, the set {φ(x; aη|n ) : n < ω} is consistent,
(2) If η, ν ∈ ω<ω are incomparable (with respect to inclusion), then φ(x; aη) ∧

φ(x; aν) is inconsistent.
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Generic variations and NTP1 863

A formula ϕ(x, y) has TP2 if there is k < ω and an array {ai, j | i, j < ω} such that
{ϕ(x, ai, f (i)) | i < ω} is consistent for every function f : ω → ω and {ϕ(x, ai, j ) |
j < ω} is k-inconsistent for every i < ω.
A theory T has TP1 [TP2] if some formula does. Otherwise, we say that T has NTP1
[NTP2].

It was observed in [4] that the TP1 property of a formula is equivalent to the following
SOP2 property.

Definition 2.2 A formula φ(x; y) is said to have SOP2 if, working in the monster
model, there are tuples (aη)η∈2<ω satisfying the following two properties:

1. For every ξ ∈ 2ω, the set {φ(x, aξ |n) : n < ω} is consistent;
2. For every pair of incomparable elements η, ν ∈ 2<ω, the formula φ(x; aη) ∧

φ(x; aν) is inconsistent.

And a theory has SOP2 if some formula has it.

Fact 2.3 ([4]) A theory T has TP1 if and only if there is some formula φ(x, y) with
|x | = 1 witnessing this.

Now, let us recall the modeling property on strongly indiscernible trees, which
we will use repeatedly in the paper. Let L0 be the language consisting of two binary
relation symbols and a binary function symbol, which we interpret in subtrees of ω<ω

as the inclusion relation, the lexicographic order and the function sending (η, ν) to
in f (η, ν) = η ∩ ν, respectively.

Definition 2.4 For any S ⊆ ω<ω, we say that a tree (aη)η∈S of compatible tuples of
elements of a model M is strongly indiscernible over a set C ⊆ M , if

q f tpL0(η0, . . . , ηn−1) = q f tpL0(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1/C) = tp(aν0 , . . . , aνn−1/C) for all n < ω and all tuples
(η0, . . . , ηn−1), (ν0, . . . , νn−1) of elements of S.

The following fact comes from [10].

Fact 2.5 Let C be a monster model of a complete theory. Then for any tree
of parameters (aη)η∈ω<ω from C there is a strongly indiscernible tree (bη)η∈ω<ω

locally based on the tree (aη)η∈ω<ω , which means that for every finite set of
formulas � and η0, . . . , ηn−1 ∈ ω<ω, there are μ0, . . . , μn−1 ∈ ω<ω such
that q f tpL0(η0, . . . , ηn−1) = q f tpL0(μ0, . . . , μn−1) and tp�(bη0 , . . . , bηn−1) =
tp�(aμ0 , . . . , aμn−1).

The following observation comes from [5].

Fact 2.6 A theory T has T P1 if and only if there is a formula φ(x, y) and a strongly
indicernible tree (aη)η∈2<ω , such that {φ(x, a0n ) : n < ω} has infinitely many real-
izations, and the formula φ(x, a0) ∧ φ(x, a1) has finitely many realizations.
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Also, by compactness, one easily gets:

Remark 2.7 If (aη)η∈ω<ω is a tree witnessing TP1 of φ(x, y), then for any ν ∈ ωω

the type {φ(x, aν|n ) : n < ω} is non-algebraic. The same holds for a tree (aη)η∈2<ω

witnessing TP1 of φ(x, y) and ν ∈ 2ω.

Next, we outline the “generic variations” construction from [1].
We write M |	 ∃∞x1, . . . , xnφ(x1, . . . , xn, b) (where xi ’s are single variables) if
there are infinitely many pairwise disjoint n-tuples in M satisfying the formula
φ(x1, . . . , xn, b).

Definition 2.8 T eliminates the quantifier ∃∞x1, . . . , xn if for every formula
φ(x1, . . . , xn, y) (where xi ’s are single variables) there is a formula ψφ(y) such that
for every model M of T and every b ∈ M , we have

M |	 ∃∞x1, . . . , xnφ(x1, . . . , xn, b) ⇐⇒ M |	 ψφ(b).

Fact 2.9 (Winkler) If T eliminates the quantifier ∃∞x1 (where x1 is a single variable)
then T eliminates the quantifiers ∃x1, . . . , xn for all n.

For any language L , a new language L+ is obtained by replacing each n-ary
symbol R(x1, . . . , xn), f (x1, . . . , xn), or c (if n = 0) by an (n + 1)-ary symbol
R+(x0, x1, . . . , xn), f +(x0, x1, . . . , xn), or c+(x0), respectively. In the same manner,
one defines an L+-formula φ+(x0, x1, . . . , xn) for each L-formula φ(x1, . . . , xn).

For an L+-structure M and a ∈ M , we denote by Ma the L-structure with universe
M such that for each L-formula φ(x1, . . . , xn) we have φ((Ma)n) = φ+(a, Mn). Let
T + be the theory of all L+-structures M such that for each a ∈ M , Ma |	 T .

Let T be a model-complete theory in a language L eliminating the quantifier ∃∞.

Definition 2.10 ([1]) A suitable tuple is a sequence (n, n + m, φ0(x, y), . . . , φn+m−1
(x, y)), such that:

• for each i < n + m, the formula φi (x, y) is a conjuction of atomic formulas and
negated atomic formulas in L , where

x = (x0, . . . , xm−1), y = (y0, . . . , yn−1).

• for i < n + m,

T |	 φi (x, y) →
∧

r<s<m

xr �= xs ∧
∧

r<s<n

yr �= ys ∧
∧

r<n,s<m

yr �= xs .

• for i < m, T ∪ ∃x∃yφn+i (x, y) is consistent.

Then, we define:

T 1 = T + ∪
⎧
⎨

⎩∀ y

⎛

⎝
∧

j<n

(
ψφ j

)+
(y j , y)
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→ ∃x

⎛

⎝
∧

j<n

φ+
j (y j , x, y) ∧

∧

i<m

φ+
n+i (xi , x, y)

⎞

⎠

⎞

⎠ :

(n, n + m, φ0(x, y), . . . , φn+m−1(x, y)) − sui table} .

Fact 2.11 ([1]) Let T be a model-complete theory eliminating the quantifier ∃∞. Then
T 1 is consistent and is a model-companion of T +.

Fact 2.12 ([1]) Assume T is model-complete and eliminates the quantifier ∃∞. Then
T 1 is complete.

Finally, we will outline the “pfc” construction from Subsection 6.3 of [4]. For the
reader’s convenience, we repeat the definitions used there.

Definition 2.13 Suppose K is a class of finite structures. We say K has the strong
amalgamation property (SAP) if given A, B, C ∈ K and embeddings e : A → B and
f : A → C there is D ∈ K and embeddings g : B → D and h : C → D such that

(1) ge = h f , and
(2) im(g) ∩ im(h) = im(ge) (and hence = im(h f ) as well).

We will say that a theory is SAP if it has a countable ultrahomogeneous model whose
age (i.e. the family of all finite substructures) is SAP. The following criterion comes
from [8].

Fact 2.14 Suppose K is the age of a countable structure M. Then, the following are
equivalent:

(1) K has SAP.
(2) M has no algebraicity.

Let K denote an SAP Fraïssé class in a finite relational language L = (Ri : i < k),
where each Ri has arity ni . Denote by T the theory of the Fraïssé limit of the class
K . The language Lp f c is defined to be a two-sorted language, with the sorts denoted
by O (“objects”) and P (“parameters”) and relation symbols Ri

x (y1, y2, . . . , yni ) (of
arity ni + 1) where x is a variable of the sort P and yi ’s are variables of the sort O .
Given an Lp f c-structure M = (A, B) and b ∈ B, the L-structure associated to b in
M , denoted by Ab, is defined to be the L-structure interpreted in M with domain A
and each Ri interpreted as Ri

b(A). Put

K p f c = {M = (A, B) ∈ Mod(L p f c) : |M | < ω, (∀ b ∈ B)(∃D ∈ K )(Ab � D)}.

Fact 2.15 ([4]) K p f c is a Fraïssé class satisfying SAP.

Thanks to the above fact, there is a unique countable ultrahomogeneous Lp f c-
structure with age K p f c—the Fraïssé limit of K p f c.

Definition 2.16 By Tp f c we denote the theory of the Fraïssé limit of the class K p f c

constructed above.
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Note that Tp f c has quantifier elimination.

Proposition 2.17 Let T be the theory of the Fraïssé limit of a SAP Fraïssé class in
a finite relational language. Then the countable model Mp f c of Tp f c is interpretable
in a model of T 1. (Since T has q.e. and, by ω-categoricity, it eliminates ∃∞, one can
apply the generic variations construction to T .)

Proof First, we prove the following:

Claim 1 Let Mp f c = (A, B) be the Fraïssé limit of K p f c. Then, there is a bijection
f : A → B for which the L1 structure N with universe equal to A such that (∀ a ∈
A)(N a = A f (a)) is a model of T 1.

Proof of Claim 1 Choose enumerations A = {ak : k < ω} and B = {bk : k < ω}.
Also, let {�k : k < ω} be the set of all suitable tuples for T . We will construct
inductively injections fk : Ak → Bk such that Ak and Bk are finite subsets of A and
B, respectively, ak ∈ Ak+1, bk ∈ Bk+1, and for each suitable tuple

�s = (n, n + m, φ0(x, y), . . . , φn+m−1(x, y)),

where s < k, and each tuple d = (d0, . . . , dn−1) of elements of Ak such that for
each j < n the formula φ j (x, d) has infinitely many pairwise disjoint realizations in
A fk (d j ), there is a tuple c = (c0, . . . , cm−1) of elements of Ak+1 such that for each
i < m and j < n, A fk+1(ci ) |	 φn+i (c, d) and A fk (d j ) |	 φ j (c, d). The construction
starts by choosing f0 = A0 = B0 = ∅.

Suppose we have already defined fk : Ak → Bk . Consider any �s = (n, n +
m, φ0(x, y), . . . , φn+m−1(x, y)), where s < k, and a tuple d = (d0, . . . , dn−1) of
elements of Ak such that for each j < n the formula φ j (x, d) has infinitely many
pairwise disjoint realizations in A fk (d j ). Let e = (e0, . . . , em−1) be a tuple of pairwise
distinct “new” elements not belonging to A, and put C = Ake. Since, for each j < n,
the formula φ j (x, d) has a realization in A f (d j ) disjoint from Ak , one can put an
L p f c structure on (C, Bk) in such a way that C fk (d j ) |	 φ j (e, d) for each j < n,
and (C, Bk) belongs to K p f c. Then, we can find its isomorphic over (Ak, Bk) copy
(C ′, Bk) = (Ake′, Bk) being a substructure of M . Now, choose a tuple of new (not
belonging to B) elements p = (p0, . . . , pm−1), put D = Bk p and define an L p f c-
structure on on (C ′, D) extending the structure on (C ′, Bk) (inherited from M) in
such a way that for each i < m, C ′

pi
|	 φn+i (e, d) (we use here the assumption that

φn+i (x, y) ∪ T is consistent). Since (C ′, Bk p) ∈ K p f c, we can find its isomorphic
over (C ′, Bk) copy (C ′, Bk p′) being a substructure of M . Extend fk to a function
f ′
k : C ′ → Bk p′ by putting f ′

k(e
′
j ) = p′

j . Repeating this for all (finitely many) tuples
as above (with d contained in Ak and s < k) and, finally, extending the obtained
function to a finite injection fk+1 such that ak ∈ dom( fk+1) and bk ∈ rng( fk+1), we
complete the inductive construction.

Now, f := ⋃
k<ω fk clearly satisfies the conclusion of Claim 1. ��

Let f and N be as in the claim. Then the L p f c-structure C := (A, A) in which Rb(a)

holds iff N |	 R+(a, b) is interpretable in N , and, by the definition of N , we have:

C |	 Rb(a) ⇐⇒ Mp f c |	 R f (b)(a).
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Generic variations and NTP1 867

Hence, C is isomorphic to Mp f c via id × f . This shows that Mp f c is interpretable in
N . ��

3 Preservation of NTP1 under the generic variation

The main goal of this section is to prove the Theorem 3.1 below, which strengthens [1,
Theorem 4.4]. By Corollary 3.6 from [1], the assumptions are satisfied by any theory
having quantifier elimination in which acl(A) = A for all A. (See also Example 3.3
and the discussion in the paragraph preceding it.)

Theorem 3.1 Suppose that T and T 1 both have elimination of quantifiers and T
eliminates the quantifier ∃∞. If T has NTP1, then so does T 1.

Proof As TP1 is equivalent to SOP2, we will suppose for a contradiction that T 1 has
SOP2 witnessed by a formulaψ(x, y)with |x | = 1 (which we can assume by Fact 2.3)
and a strongly indiscernible tree of parameters (aη)η∈2<ω (which we can assume by
Fact 2.5). By q.e., we can additionally assume that ψ(x, y) = ∨i<Mθi (x, y), where
each θi (x, y) is a conjunction of atomic formulas and negations of atomic formulas.
Now, by the pigeonhole principle, there is i < M such that there are infinitely many
formulas among ψ(x, a0n

), n < ω with a common realization. By considering an
appropriate subtree of (aη)η∈2<ω , we can assume that ψ(x, y) = θi (x, y). Hence,
ψ(x, y) is of a form

∧
i<n φ+

i (yi ; x, y) ∧ φ+
n (x; x, y), where φi ’s are conjunctions

of atomic formulas and negations of atomic formulas, and y = (y0, . . . , yn−1) with
|yi | = 1.

Notice that, by strong indiscernibility, for each i < n either aη
i are equal for all

η ∈ 2<ω or they are pairwise distinct. We can assume that there is some l < n such
that:

(∀ η, ν ∈ 2<ω)((∀ i < l)(aη
i = aν

i ) ∧ (∀ i ≥ l)(η �= ν 	⇒ aη
i �= aν

i )). (*)

Put y′ = (y′
l , . . . , y′

n−1), where y′
i ’s are single variables. We aim to get a contradiction

by showing that the formula ψ(x, a0) ∧ ψ(x, a1) is consistent. This will follow from
the following claim:

Claim 1 Let α(x, y, y′) be a formula expressing that the coordinates of y, y′ and x
are all pairwise distinct. Then

(1) (2n − l, 2n − l + 1, φ0(x, y) ∧ φ0(x, y<l y′) ∧ α(x, y, y′), . . . , φl−1(x, y) ∧
φl−1(x, y<l y′) ∧ α(x, y, y′), φl(x, y) ∧ α(x, y, y′), φl(x, y<l y′) ∧ α(x, y, y′),
φl+1(x, y)∧α(x, y, y′), φl+1(x, y<l y′)∧α(x, y, y′), . . . ,φn−1(x, y)∧α(x, y, y′),
φn−1(x, y<l y′) ∧ α(x, y, y′), φn(x, y) ∧ φn(x, y<l y′) ∧ α(x, y, y′)) is a suitable
tuple of formulas in variables (x, yy′),

(2) For each i < l, the formula φi (x, a0) ∧ φi (x, a1) ∧ α(x, a0, a1
l , . . . , a1

n−1) is

non-algebraic in Ca0i , and
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868 J. Dobrowolski

(3) For each i ∈ {l, . . . , n − 1}, the formula φi (x, a0) ∧ α(x, a0, a1
l , . . . , a1

n−1) in

non-algebraic in Ca0i , and the formula φi (x, a1)∧α(x, a0, a1
l , . . . , a1

n−1) in non-

algebraic in Ca1i .

Proof of Claim 1 (1)We only need to check that the formulaφn(x, y)∧φn(x, y<l y′)∧
α(x, y, y′) is consistent with T . Since the formula ψ(x, a∅) ∧ ψ(x, a0) in non-
algebraic (by Remark 2.7), we can find its realization c not occurring in a∅ and in a0. In
particular, c satisfiesφ+

n (x; x, a∅)∧φ+
n (x; x, a0), soCc |	 φ0(c, a∅)∧φ0(c, a0). Also,

since c does not occur in a∅ and in a0, we get by (∗) that Cc |	 α(c, a∅, a0
l , . . . , a0

n−1).
This suffices, as Cc |	 T .

(2) Suppose φi (x, a0) ∧ φi (x, a1) ∧ α(x, a0, a1
l , . . . , a1

n−1) is algebraic for some
i < l. Since aη

i is the same for each η ∈ 2<ω, we see that the tree (aη)η∈2<ω is strongly
indiscernible over a0

i in the sense of the model C of T 1, so it is strongly indiscernible

in the sense of the model Ca0i of T . Since any realization of ψ(x, aη) (in the sense
of C) is a realization of φi (x, aη) in the sense of Ca0i , we get (by Remark 2.7) that
φi (x, y) together with the tree (aη)η∈2<ω (of tuples from Ca0i ) satisfy the assumptions
of Fact 2.6. A contradiction to the assumption that T has NTP1.

(3) The assertion follows since the formulas ψ(x, a0) and ψ(x, a1) are non-
algebraic (by Remark 2.7), and any realization ofψ(x, ak) is a realization of φi (x, ak)

in Cak
i for k = 0, 1. ��

By the above claim and the definition of T 1, we get in particular (forgetting
about the formula α) that there is some c realizing formulas φ+

0 (a0
0; x, a0) ∧

φ+
0 (a1

0; x, a1), . . . , φ+
l−1(a

0
l−1; x, a0)∧φ+

l−1(a
1
l−1; x, a1),φ+

l (a0
l ; x, a0),φ+

l (a1
l ; x, a1),

φ+
l+1(a

0
l+1; x, a0), φ+

l+1(a
1
l+1; x, a1), . . . , φ+

n−1(a
0
n−1; x, a0), φ+

n−1(a
1
n−1; x, a1) and

the formula φ+
n (x, a0) ∧ φ+

n (x, a1). Hence, c realizes ψ(x, a0) ∧ ψ(x, a1), a con-
tradiction. ��

By Proposition 2.17, we get:

Corollary 3.2 Assume T is as in Definition 2.16. If T is NTP1, then so is Tp f c.

Note that the class of theories T eliminating ∃∞ and such that both T and in T 1

have q.e. (i.e., theories as in the assumptions of Theorem 3.1) is strictly bigger than
the class of theories to which one can apply the pfc construction:

Example 3.3 Let T be the theory of independent predicates, i.e. the theory in a
language L consisting of unary predicates Pn, n < ω, axiomatized by sentences
∃x

∧
i∈I Pi (x) ∧ ∧

i∈J ¬Pi (x), I ,J : finite disjoint subsets of ω. Then T is super-
stable, has q.e., and satisfies the condition (∀ A)acl(A) = A (so it eliminates the
quantifier ∃∞), hence also T 1 has q.e. by Corollary 3.6 from [1]. But T is not ω-
categorical, so it cannot be obtained as a theory of the Fraïssé limit of a class of finite
structures, so one cannot apply the pfc construction to T .

The following is Lemma 4.2 from [1]:

Fact 3.4 Assume that T has quantifier elimination and eliminates ∃∞. If there is a
formula φ(x, y) with |x | = 1 and tuples a0, a1, . . . in a model M of T such that the
sets φ(M, ai ) are pairwise disjoint and infinite, then T 1 is not simple.

123



Generic variations and NTP1 869

It is easy to see that in the above context T 1 actually has TP2:

Remark 3.5 Let T be as in Fact 3.4. Then T 1 has TP2.

Proof It is easy to see that, by q.e., we can find a formula φ(x, y) as above being a
conjunction of atomic formulas and negations of atomic formulas. Put ψ(x; yz) :=
φ+(z, x, y) (z is a single variable). Choose pairwise disctinct elements b0, b1, . . . in
a monster model of T 1 and, for each i < ω, find ai,0, ai,1, . . . such that the formu-
las φ(bi ; xai, j ) are pairwise inconsistent and non-algebraic (which we can do, since
Cbi |	 T ). Then the formula ψ(x, yz) := φ(z; x, y) has TP2, witnessed by the array
(ai, j , b j )i, j<ω (the consistency condition follows by compactness from the axioms of
T 1). ��

4 Generic predicate

In this section, we show that NTP1 is preserved by the generic predicate construction
introduced in [2]. The idea of the proof is similar as in [3, Theorem 7.3], but we
should point out that there seems to be a small gap in the proof from [3]. Namely,
in the last paragraph of the proof, since one does not know whether ai j has the same
type over acl(b) for various j’s, one cannot conclude that there are colorings on
acl(ai j b) agreeing on acl(b) (for distinct j’s) induced by sending ai0b0 to ai j b by an
L-elementary map. One can, however, work with algebraically closed tuples, which
we do below and which also yields a correct proof of [3, Theorem 7.3].

First, we outline the random predicate construction. Consider a theory T in a lan-
guage L . For S(x) ∈ L , we let L P denote the language obtained by adding to L a
unary predicate P(x) and we put T 0

P,S = T ∪ {∀ x(P(x) → S(x))}.
Fact 4.1 ([2]) Let T be a theory eliminating quantifiers and eliminating the quantifier
∃∞. Then:

(1) T 0
P,S has a model companion TP,S which is axiomatized by T together with

∀ z

⎡

⎣(∃x)

⎛

⎝φ(x, z) ∧ (x ∩ aclL(z) = ∅) ∧
∧

i<n

s(xi ) ∧
∧

i �= j<n

xi �= x j

⎞

⎠

⎤

⎦

→ (∃x)

(
φ(x, z) ∧

∧

i∈I

P(xi ) ∧
∧

i /∈I

¬P(xi )

)
,

where x = (x0, x1, . . . , xn−1) and I ranges over all subsets of the set
{0, 1, . . . , n − 1}.

(2) aclL(a) = aclL P (a)

(3) a ≡L P b ⇐⇒ there is an isomorphism between L P -structures f : acl(a) →
acl(b) such that f (a) = b.

(4) Modulo TP,S, every formula φ(x) is equivalent to a disjunction of formulas of the
form ∃zφ(x, z), where φ(x, z) is a quantifier-free L P -formula, and for any a, b,
if |	 φ(a, b), then b ∈ acl(a).
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Proposition 4.2 Suppose T is geometric (i.e., it eliminates ∃∞ and acl satisfies the
exchange principle) and NTP1. Then TP is NTP1.

Proof By independence we shall mean the relation of algebraic independence (in
particular, by geometricity, it is symmetric). Suppose for a contradiction that TP has
NTP1 witnessed by a formula φ(x, y) with |x | = 1 and a strongly indiscernible tree
of parameters (aη)η∈2<ω .

Claim 1 The set A := {aη : η ∈ 2<ω} is algebraically independent and disjoint from
acl(∅).

Proof of Claim 1 It is enough to show that for any η ∈ 2<ω, aη is not in the algebraic
closure of the set B := {aν : ν ∈ 2<ω, |ν| ≤ |η|, ν �= η}. But this follows from the
fact that (by strong indiscernibility) for each μ ⊇ η, we have that tpL P (aμ/B) =
tpL P (aη/B). ��

Since (by Remark 2.7) the type
⋃

i<ω{φ(x, a0i ) : i < ω} is not algebraic, we can
choose an A-indiscernible sequence c0, c1, . . . such that each ci is an enumeration
of the algebraic closure of some bi realizing the above type and the bi ’s are pairwise
distinct. Put

p(z, a0) = tpL(c0/a0)

(where z is possibly infinite and extends x) and

pN (z0, . . . , zN−1, a0) = tpL(c0, . . . , cN−1/a0)

for any N < ω (so p(z, a0) = p1(z, a0)). Since T is NTP1, ∪i<ω pN (z0, . . . ,
zN−1, a0i ) is consistent, and (aη)η∈2<ω is strongly indiscernible, we get that
pN (z0, . . . , zN−1, a0) ∪ pN (z0, . . . , zN−1, a1) is consistent for any N < ω. Because
pN (z0, . . . , zN−1, a0) � (

∧
i �= j xi �= x j ) ∧ ∧

i<N p(zi , a0), we get that p(z, a0) ∪
p(z, a1) has a realization c such that the coordinate b of c corresponding to x is not in
acl(A). Note that c is an enumeration ofacl(b). Since b, a0, a1 is an independent triple,
we get that acl(ba0) ∩ acl(a0a1) = acl(a0) and acl(ba1) ∩ acl(a0a1) = acl(a1),
so by the definition of TP we can arbitrarily choose which of the elements of
acl(ba0)\acl(a0) and acl(ba1)\acl(a1) are in P . Since acl(ba0) ∩ acl(ba1) =
acl(b) = c and tpL(ca0) = tpL(ca1), we can do this in such a way that
acl(a0b0) ∼= acl(a0b) ∼= acl(a1b) as L P -structures. Then, by Fact 4.1(3), we get
that tpL P (a0b0) = tpL P (a0b) = tpL P (a1b). In particular, |	 φ(b, a0) ∧ φ(b, a1), a
contradiction. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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