Generic variations and $\mathbf{N T P}_{1}$

Jan Dobrowolski ${ }^{1}$

Received: 22 February 2017 / Accepted: 10 January 2018 / Published online: 27 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract

We prove a preservation theorem for NTP_{1} in the context of the generic variations construction. We also prove that NTP_{1} is preserved under adding to a geometric theory a generic predicate.

Keywords Tree property of the first kind • Generic variations • Parametrized Fraïssé class

Mathematics Subject Classification 03C45

1 Introduction

The theorem of Shelah stating that a theory has the tree property (TP) if and only if it has the tree property of the first kind $\left(\mathrm{TP}_{1}\right)$ or the tree property of the second kind $\left(\mathrm{TP}_{2}\right)$ leads to two natural generalizations of the notion a of a simple theory (i.e., a theory without the tree property), namely NTP_{1} and NTP_{2} theories.

Initially, the NTP_{1} property was studied mainly in the context of \triangleleft^{*}-maximality ([7,9]). Recently, several very interesting new results on NTP_{1} have appeared in [4]. First, it has been proved there that the TP_{1} property is always witnessed by a formula in a single variable, which gives chances to apply techniques from other contexts (e.g. stability, NIP, NTP $_{2}$) relying on analogous facts. Secondly, the authors studied a notion

[^0]closely related to NTP_{1}, namely NSOP_{1} (see for example [4, Definition 5.1])—this is a strengthening of NTP_{1}, which still holds in all simple theories. It is an open question whether it is equivalent to NTP_{1}.

Question 1.1 ([6]) Is $N T P_{1}$ equivalent to $N S O P_{1}$?
Chernikov and Ramsey characterized NSOP_{1} in terms of some natural properties of certain ternary relations between small sets of parameters and also proved that existence of an abstract independence relation satisfying a certain list of natural axioms implies NSOP_{1} (in particular, it implies NTP_{1}), which was used to provide natural examples of NSOP $_{1}$ theories: the ω-free PAC fields studied by Chatzidakis [9] and linear spaces with a generic bilinear form studied by Nicolas Granger in his Ph.D. thesis ([7]). Another class of such examples is provided by the "pfc" construction, thanks to the following fact from [4]:

Fact 1.2 Suppose T is a simple theory which is the theory of a Fraïssé limit of a SAP Fraïssé class K. Then $T_{p f c}$ is $N S O P_{1}$. Moreover, if the D-rank of T is at least 2 , then $T_{p f c}$ is not simple.

The main motivation for this paper is proving the preservation of NTP_{1} under certain constructions enriching a given theory, which yields new examples of NTP ${ }_{1}$ theories from the already established ones.

We prove (in Theorem 3.1) the preservation of NTP_{1} under the generic variations construction in the context considered in [1], which generalizes that of the pfc construction. This strengthens significantly [1, Theorem 4.4], where under a much stronger assumption of stability it was proved that the resulting theory is NSOP (which is a weaker property than NTP_{1}).

The paper is organized as follows: In Sect. 2, we review some definitions and outline the generic variations construction from [1] as well as the pfc construction from [4]. We notice that the theory obtained in the second construction is interpretable in the theory obtained in the first one. In Sect. 3, we prove the above-mentioned Theorem 3.1 (and conclude that NTP_{1} is preserved under pfc). In Sect. 4, we prove that NTP_{1} is preserved by the generic predicate construction from [2].

2 Preliminaries

Throughout the paper, unless stated otherwise, variables and parameters can have arbitrary (finite) length.

First, we give the definitions of NTP_{1} and NTP_{2}.
Definition 2.1 A formula $\phi(x ; y)$ has TP_{1} (in a fixed theory T) if there is a collection of tuples $\left(a_{\eta}\right)_{\eta \in \omega^{<\omega}}$ such that:
(1) For all $\eta \in \omega^{\omega}$, the set $\left\{\phi\left(x ; a_{\eta_{\mid n}}\right): n<\omega\right\}$ is consistent,
(2) If $\eta, v \in \omega^{<\omega}$ are incomparable (with respect to inclusion), then $\phi\left(x ; a_{\eta}\right) \wedge$ $\phi\left(x ; a_{\nu}\right)$ is inconsistent.

A formula $\varphi(x, y)$ has TP_{2} if there is $k<\omega$ and an array $\left\{a_{i, j} \mid i, j<\omega\right\}$ such that $\left\{\varphi\left(x, a_{i, f(i)}\right) \mid i<\omega\right\}$ is consistent for every function $f: \omega \rightarrow \omega$ and $\left\{\varphi\left(x, a_{i, j}\right) \mid\right.$ $j<\omega\}$ is k-inconsistent for every $i<\omega$.
A theory T has $\mathrm{TP}_{1}\left[\mathrm{TP}_{2}\right]$ if some formula does. Otherwise, we say that T has NTP_{1} [NTP_{2}].

It was observed in [4] that the TP_{1} property of a formula is equivalent to the following SOP_{2} property.

Definition 2.2 A formula $\phi(x ; y)$ is said to have SOP_{2} if, working in the monster model, there are tuples $\left(a_{\eta}\right)_{\eta \in 2^{<\omega}}$ satisfying the following two properties:

1. For every $\xi \in 2^{\omega}$, the set $\left\{\phi\left(x, a_{\xi \mid n}\right): n<\omega\right\}$ is consistent;
2. For every pair of incomparable elements $\eta, \nu \in 2^{<\omega}$, the formula $\phi\left(x ; a_{\eta}\right) \wedge$ $\phi\left(x ; a_{\nu}\right)$ is inconsistent.

And a theory has SOP_{2} if some formula has it.
Fact 2.3 ([4]) A theory T has $T P_{1}$ if and only if there is some formula $\phi(x, y)$ with $|x|=1$ witnessing this.

Now, let us recall the modeling property on strongly indiscernible trees, which we will use repeatedly in the paper. Let L_{0} be the language consisting of two binary relation symbols and a binary function symbol, which we interpret in subtrees of $\omega^{<\omega}$ as the inclusion relation, the lexicographic order and the function sending (η, ν) to $\inf (\eta, \nu)=\eta \cap v$, respectively.

Definition 2.4 For any $S \subseteq \omega^{<\omega}$, we say that a tree $\left(a_{\eta}\right)_{\eta \in S}$ of compatible tuples of elements of a model M is strongly indiscernible over a set $C \subseteq M$, if

$$
\operatorname{qftp}_{L_{0}}\left(\eta_{0}, \ldots, \eta_{n-1}\right)=\operatorname{qftp}_{L_{0}}\left(v_{0}, \ldots, v_{n-1}\right)
$$

implies $t p\left(a_{\eta_{0}}, \ldots, a_{\eta_{n-1}} / C\right)=\operatorname{tp}\left(a_{\nu_{0}}, \ldots, a_{v_{n-1}} / C\right)$ for all $n<\omega$ and all tuples $\left(\eta_{0}, \ldots, \eta_{n-1}\right),\left(v_{0}, \ldots, v_{n-1}\right)$ of elements of S.

The following fact comes from [10].
Fact 2.5 Let \mathfrak{C} be a monster model of a complete theory. Then for any tree of parameters $\left(a_{\eta}\right)_{\eta \in \omega^{<\omega}}$ from \mathfrak{C} there is a strongly indiscernible tree $\left(b_{\eta}\right)_{\eta \in \omega^{<\omega}}$ locally based on the tree $\left(a_{\eta}\right)_{\eta \in \omega^{<\omega}}$, which means that for every finite set of formulas Δ and $\eta_{0}, \ldots, \eta_{n-1} \in \omega^{<\omega}$, there are $\mu_{0}, \ldots, \mu_{n-1} \in \omega^{<\omega}$ such that $\operatorname{qftp}_{L_{0}}\left(\eta_{0}, \ldots, \eta_{n-1}\right)=\operatorname{qftp}_{L_{0}}\left(\mu_{0}, \ldots, \mu_{n-1}\right)$ and $t p_{\Delta}\left(b_{\eta_{0}}, \ldots, b_{\eta_{n-1}}\right)=$ $t p_{\Delta}\left(a_{\mu_{0}}, \ldots, a_{\mu_{n-1}}\right)$.

The following observation comes from [5].
Fact 2.6 A theory T has $T P_{1}$ if and only if there is a formula $\phi(x, y)$ and a strongly indicernible tree $\left(a_{\eta}\right)_{\eta \in 2^{<\omega}}$, such that $\left\{\phi\left(x, a_{0^{n}}\right): n<\omega\right\}$ has infinitely many realizations, and the formula $\phi\left(x, a_{0}\right) \wedge \phi\left(x, a_{1}\right)$ has finitely many realizations.

Also, by compactness, one easily gets:
Remark 2.7 If $\left(a_{\eta}\right)_{\eta \in \omega^{<\omega}}$ is a tree witnessing TP_{1} of $\phi(x, y)$, then for any $v \in \omega^{\omega}$ the type $\left\{\phi\left(x, a_{\nu_{\mid n}}\right): n<\omega\right\}$ is non-algebraic. The same holds for a tree $\left(a_{\eta}\right)_{\eta \in 2<\omega}$ witnessing TP_{1} of $\phi(x, y)$ and $v \in 2^{\omega}$.

Next, we outline the "generic variations" construction from [1].
We write $M \vDash \exists^{\infty} x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}, b\right)$ (where x_{i} 's are single variables) if there are infinitely many pairwise disjoint n-tuples in M satisfying the formula $\phi\left(x_{1}, \ldots, x_{n}, b\right)$.

Definition 2.8 T eliminates the quantifier $\exists^{\infty} x_{1}, \ldots, x_{n}$ if for every formula $\phi\left(x_{1}, \ldots, x_{n}, y\right)$ (where x_{i} 's are single variables) there is a formula $\psi_{\phi}(y)$ such that for every model M of T and every $b \in M$, we have

$$
M \models \exists^{\infty} x_{1}, \ldots, x_{n} \phi\left(x_{1}, \ldots, x_{n}, b\right) \Longleftrightarrow M \models \psi_{\phi(b)}
$$

Fact 2.9 (Winkler) If T eliminates the quantifier $\exists^{\infty} x_{1}$ (where x_{1} is a single variable) then T eliminates the quantifiers $\exists x_{1}, \ldots, x_{n}$ for all n.

For any language L, a new language L^{+}is obtained by replacing each n-ary symbol $R\left(x_{1}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)$, or c (if $n=0$) by an $(n+1)$-ary symbol $R^{+}\left(x_{0}, x_{1}, \ldots, x_{n}\right), f^{+}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, or $c^{+}\left(x_{0}\right)$, respectively. In the same manner, one defines an L^{+}-formula $\phi^{+}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ for each L-formula $\phi\left(x_{1}, \ldots, x_{n}\right)$.

For an L^{+}-structure M and $a \in M$, we denote by M^{a} the L-structure with universe M such that for each L-formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ we have $\phi\left(\left(M^{a}\right)^{n}\right)=\phi^{+}\left(a, M^{n}\right)$. Let T^{+}be the theory of all L^{+}-structures M such that for each $a \in M, M^{a} \models T$.

Let T be a model-complete theory in a language L eliminating the quantifier \exists^{∞}.
Definition 2.10 ([1]) A suitable tuple is a sequence ($n, n+m, \phi_{0}(x, y), \ldots, \phi_{n+m-1}$ (x, y)), such that:

- for each $i<n+m$, the formula $\phi_{i}(x, y)$ is a conjuction of atomic formulas and negated atomic formulas in L, where

$$
x=\left(x_{0}, \ldots, x_{m-1}\right), \quad y=\left(y_{0}, \ldots, y_{n-1}\right)
$$

- for $i<n+m$,

$$
T \models \phi_{i}(x, y) \rightarrow \bigwedge_{r<s<m} x_{r} \neq x_{s} \wedge \bigwedge_{r<s<n} y_{r} \neq y_{s} \wedge \bigwedge_{r<n, s<m} y_{r} \neq x_{s}
$$

- for $i<m, T \cup \exists x \exists y \phi_{n+i}(x, y)$ is consistent.

Then, we define:

$$
T^{1}=T^{+} \cup\left\{\forall y \left(\bigwedge_{j<n}\left(\psi_{\phi_{j}}\right)^{+}\left(y_{j}, y\right)\right.\right.
$$

$$
\begin{aligned}
& \left.\rightarrow \exists x\left(\bigwedge_{j<n} \phi_{j}^{+}\left(y_{j}, x, y\right) \wedge \bigwedge_{i<m} \phi_{n+i}^{+}\left(x_{i}, x, y\right)\right)\right): \\
& \left.\left(n, n+m, \phi_{0}(x, y), \ldots, \phi_{n+m-1}(x, y)\right)-\text { suitable }\right\} .
\end{aligned}
$$

Fact 2.11 ([1]) Let T be a model-complete theory eliminating the quantifier \exists^{∞}. Then T^{1} is consistent and is a model-companion of T^{+}.

Fact 2.12 ([1]) Assume T is model-complete and eliminates the quantifier $\exists{ }^{\infty}$. Then T^{1} is complete.

Finally, we will outline the "pfc" construction from Subsection 6.3 of [4]. For the reader's convenience, we repeat the definitions used there.

Definition 2.13 Suppose K is a class of finite structures. We say K has the strong amalgamation property (SAP) if given $A, B, C \in K$ and embeddings $e: A \rightarrow B$ and $f: A \rightarrow C$ there is $D \in K$ and embeddings $g: B \rightarrow D$ and $h: C \rightarrow D$ such that
(1) $g e=h f$, and
(2) $\operatorname{im}(g) \cap \operatorname{im}(h)=\operatorname{im}(g e)$ (and hence $=i m(h f)$ as well).

We will say that a theory is SAP if it has a countable ultrahomogeneous model whose age (i.e. the family of all finite substructures) is SAP. The following criterion comes from [8].

Fact 2.14 Suppose K is the age of a countable structure M. Then, the following are equivalent:
(1) K has SAP.
(2) M has no algebraicity.

Let K denote an SAP Fraïssé class in a finite relational language $\mathcal{L}=\left(R^{i}: i<k\right)$, where each R^{i} has arity n_{i}. Denote by T the theory of the Fraïssé limit of the class K. The language $\mathcal{L}_{p f c}$ is defined to be a two-sorted language, with the sorts denoted by O ("objects") and P ("parameters") and relation symbols $R_{x}^{i}\left(y_{1}, y_{2}, \ldots, y_{n_{i}}\right)$ (of arity $n_{i}+1$) where x is a variable of the sort P and y_{i} 's are variables of the sort O. Given an $\mathcal{L}_{p f c}$-structure $M=(A, B)$ and $b \in B$, the \mathcal{L}-structure associated to b in M, denoted by A_{b}, is defined to be the \mathcal{L}-structure interpreted in M with domain A and each R^{i} interpreted as $R_{b}^{i}(A)$. Put

$$
K_{p f c}=\left\{M=(A, B) \in \operatorname{Mod}\left(L_{p f c}\right):|M|<\omega,(\forall b \in B)(\exists D \in K)\left(A_{b} \simeq D\right)\right\}
$$

Fact 2.15 ([4]) $K_{p f c}$ is a Fraïssé class satisfying SAP.
Thanks to the above fact, there is a unique countable ultrahomogeneous $\mathcal{L}_{p f c^{-}}$ structure with age $K_{p f c}$-the Fraïssé limit of $K_{p f c}$.

Definition 2.16 By $T_{p f c}$ we denote the theory of the Fraïssé limit of the class $K_{p f c}$ constructed above.

Note that $T_{p f c}$ has quantifier elimination.
Proposition 2.17 Let T be the theory of the Fraïssé limit of a SAP Fraïssé class in a finite relational language. Then the countable model $M_{p f c}$ of $T_{p f c}$ is interpretable in a model of T^{1}. (Since T has q.e. and, by ω-categoricity, it eliminates \exists^{∞}, one can apply the generic variations construction to T.)

Proof First, we prove the following:
Claim 1 Let $M_{p f c}=(A, B)$ be the Fraïssé limit of $K_{p f c}$. Then, there is a bijection $f: A \rightarrow B$ for which the L^{1} structure N with universe equal to A such that $(\forall a \in$ A) $\left(N^{a}=A_{f(a)}\right)$ is a model of T^{1}.

Proof of Claim 1 Choose enumerations $A=\left\{a_{k}: k<\omega\right\}$ and $B=\left\{b_{k}: k<\omega\right\}$. Also, let $\left\{\Delta_{k}: k<\omega\right\}$ be the set of all suitable tuples for T. We will construct inductively injections $f_{k}: A_{k} \rightarrow B_{k}$ such that A_{k} and B_{k} are finite subsets of A and B, respectively, $a_{k} \in A_{k+1}, b_{k} \in B_{k+1}$, and for each suitable tuple

$$
\Delta_{s}=\left(n, n+m, \phi_{0}(x, y), \ldots, \phi_{n+m-1}(x, y)\right),
$$

where $s<k$, and each tuple $d=\left(d_{0}, \ldots, d_{n-1}\right)$ of elements of A_{k} such that for each $j<n$ the formula $\phi_{j}(x, d)$ has infinitely many pairwise disjoint realizations in $A_{f_{k}\left(d_{j}\right)}$, there is a tuple $c=\left(c_{0}, \ldots, c_{m-1}\right)$ of elements of A_{k+1} such that for each $i<m$ and $j<n, A_{f_{k+1}\left(c_{i}\right)} \models \phi_{n+i}(c, d)$ and $A_{f_{k}\left(d_{j}\right)} \models \phi_{j}(c, d)$. The construction starts by choosing $f_{0}=A_{0}=B_{0}=\emptyset$.

Suppose we have already defined $f_{k}: A_{k} \rightarrow B_{k}$. Consider any $\Delta_{s}=(n, n+$ $\left.m, \phi_{0}(x, y), \ldots, \phi_{n+m-1}(x, y)\right)$, where $s<k$, and a tuple $d=\left(d_{0}, \ldots, d_{n-1}\right)$ of elements of A_{k} such that for each $j<n$ the formula $\phi_{j}(x, d)$ has infinitely many pairwise disjoint realizations in $A_{f_{k}\left(d_{j}\right)}$. Let $e=\left(e_{0}, \ldots, e_{m-1}\right)$ be a tuple of pairwise distinct "new" elements not belonging to A, and put $C=A_{k} e$. Since, for each $j<n$, the formula $\phi_{j}(x, d)$ has a realization in $A_{f\left(d_{j}\right)}$ disjoint from A_{k}, one can put an $L_{p f c}$ structure on $\left(C, B_{k}\right)$ in such a way that $C_{f_{k}\left(d_{j}\right)} \models \phi_{j}(e, d)$ for each $j<n$, and $\left(C, B_{k}\right)$ belongs to $K_{p f c}$. Then, we can find its isomorphic over (A_{k}, B_{k}) copy $\left(C^{\prime}, B_{k}\right)=\left(A_{k} e^{\prime}, B_{k}\right)$ being a substructure of M. Now, choose a tuple of new (not belonging to B) elements $p=\left(p_{0}, \ldots, p_{m-1}\right)$, put $D=B_{k} p$ and define an $L_{p f c^{-}}$ structure on on (C^{\prime}, D) extending the structure on $\left(C^{\prime}, B_{k}\right)$ (inherited from M) in such a way that for each $i<m, C_{p_{i}}^{\prime} \models \phi_{n+i}(e, d)$ (we use here the assumption that $\phi_{n+i}(x, y) \cup T$ is consistent). Since $\left(C^{\prime}, B_{k} p\right) \in K_{p f c}$, we can find its isomorphic over (C^{\prime}, B_{k}) copy ($C^{\prime}, B_{k} p^{\prime}$) being a substructure of M. Extend f_{k} to a function $f_{k}^{\prime}: C^{\prime} \rightarrow B_{k} p^{\prime}$ by putting $f_{k}^{\prime}\left(e_{j}^{\prime}\right)=p_{j}^{\prime}$. Repeating this for all (finitely many) tuples as above (with d contained in A_{k} and $s<k$) and, finally, extending the obtained function to a finite injection f_{k+1} such that $a_{k} \in \operatorname{dom}\left(f_{k+1}\right)$ and $b_{k} \in \operatorname{rng}\left(f_{k+1}\right)$, we complete the inductive construction.

Now, $f:=\bigcup_{k<\omega} f_{k}$ clearly satisfies the conclusion of Claim 1.
Let f and N be as in the claim. Then the $L_{p f c}$-structure $C:=(A, A)$ in which $R_{b}(a)$ holds iff $N \models R^{+}(a, b)$ is interpretable in N, and, by the definition of N, we have:

$$
C \models R_{b}(a) \Longleftrightarrow M_{p f c} \models R_{f(b)}(a) .
$$

Hence, C is isomorphic to $M_{p f c}$ via $i d \times f$. This shows that $M_{p f c}$ is interpretable in N.

3 Preservation of $\mathbf{N T P}_{1}$ under the generic variation

The main goal of this section is to prove the Theorem 3.1 below, which strengthens [1, Theorem 4.4]. By Corollary 3.6 from [1], the assumptions are satisfied by any theory having quantifier elimination in which $\operatorname{acl}(A)=A$ for all A. (See also Example 3.3 and the discussion in the paragraph preceding it.)

Theorem 3.1 Suppose that T and T^{1} both have elimination of quantifiers and T eliminates the quantifier \exists^{∞}. If T has $N T P_{1}$, then so does T^{1}.

Proof As TP 1 is equivalent to SOP_{2}, we will suppose for a contradiction that T^{1} has SOP_{2} witnessed by a formula $\psi(x, y)$ with $|x|=1$ (which we can assume by Fact 2.3) and a strongly indiscernible tree of parameters $\left(a^{\eta}\right)_{\eta \in 2<\omega}$ (which we can assume by Fact 2.5). By q.e., we can additionally assume that $\psi(x, y)=\vee_{i<M} \theta_{i}(x, y)$, where each $\theta_{i}(x, y)$ is a conjunction of atomic formulas and negations of atomic formulas. Now, by the pigeonhole principle, there is $i<M$ such that there are infinitely many formulas among $\psi\left(x, a^{0^{n}}\right), n<\omega$ with a common realization. By considering an appropriate subtree of $\left(a^{\eta}\right)_{\eta \in 2^{<\omega}}$, we can assume that $\psi(x, y)=\theta_{i}(x, y)$. Hence, $\psi(x, y)$ is of a form $\bigwedge_{i<n} \phi_{i}^{+}\left(y_{i} ; x, y\right) \wedge \phi_{n}^{+}(x ; x, y)$, where ϕ_{i} 's are conjunctions of atomic formulas and negations of atomic formulas, and $y=\left(y_{0}, \ldots, y_{n-1}\right)$ with $\left|y_{i}\right|=1$.

Notice that, by strong indiscernibility, for each $i<n$ either a_{i}^{η} are equal for all $\eta \in 2^{<\omega}$ or they are pairwise distinct. We can assume that there is some $l<n$ such that:

$$
\begin{equation*}
\left(\forall \eta, v \in 2^{<\omega}\right)\left((\forall i<l)\left(a_{i}^{\eta}=a_{i}^{v}\right) \wedge(\forall i \geq l)\left(\eta \neq v \Longrightarrow a_{i}^{\eta} \neq a_{i}^{v}\right)\right) . \tag{*}
\end{equation*}
$$

Put $y^{\prime}=\left(y_{l}^{\prime}, \ldots, y_{n-1}^{\prime}\right)$, where y_{i}^{\prime} 's are single variables. We aim to get a contradiction by showing that the formula $\psi\left(x, a^{0}\right) \wedge \psi\left(x, a^{1}\right)$ is consistent. This will follow from the following claim:

Claim 1 Let $\alpha\left(x, y, y^{\prime}\right)$ be a formula expressing that the coordinates of y, y^{\prime} and x are all pairwise distinct. Then
(1) $\left(2 n-l, 2 n-l+1, \phi_{0}(x, y) \wedge \phi_{0}\left(x, y_{<l} y^{\prime}\right) \wedge \alpha\left(x, y, y^{\prime}\right), \ldots, \phi_{l-1}(x, y) \wedge\right.$ $\phi_{l-1}\left(x, y_{<l} y^{\prime}\right) \wedge \alpha\left(x, y, y^{\prime}\right), \phi_{l}(x, y) \wedge \alpha\left(x, y, y^{\prime}\right), \phi_{l}\left(x, y_{<l} y^{\prime}\right) \wedge \alpha\left(x, y, y^{\prime}\right)$, $\phi_{l+1}(x, y) \wedge \alpha\left(x, y, y^{\prime}\right), \phi_{l+1}\left(x, y_{<l} y^{\prime}\right) \wedge \alpha\left(x, y, y^{\prime}\right), \ldots, \phi_{n-1}(x, y) \wedge \alpha\left(x, y, y^{\prime}\right)$, $\left.\phi_{n-1}\left(x, y_{<l} y^{\prime}\right) \wedge \alpha\left(x, y, y^{\prime}\right), \phi_{n}(x, y) \wedge \phi_{n}\left(x, y_{<l} y^{\prime}\right) \wedge \alpha\left(x, y, y^{\prime}\right)\right)$ is a suitable tuple of formulas in variables $\left(x, y y^{\prime}\right)$,
(2) For each $i<l$, the formula $\phi_{i}\left(x, a^{0}\right) \wedge \phi_{i}\left(x, a^{1}\right) \wedge \alpha\left(x, a^{0}, a_{l}^{1}, \ldots, a_{n-1}^{1}\right)$ is non-algebraic in $\mathfrak{C}^{a_{i}^{0}}$, and
(3) For each $i \in\{l, \ldots, n-1\}$, the formula $\phi_{i}\left(x, a^{0}\right) \wedge \alpha\left(x, a^{0}, a_{l}^{1}, \ldots, a_{n-1}^{1}\right)$ in non-algebraic in $\mathfrak{C}^{a_{i}^{0}}$, and the formula $\phi_{i}\left(x, a^{1}\right) \wedge \alpha\left(x, a^{0}, a_{l}^{1}, \ldots, a_{n-1}^{1}\right)$ in nonalgebraic in $\mathfrak{C}^{a_{i}^{1}}$.
Proof of Claim 1 (1) We only need to check that the formula $\phi_{n}(x, y) \wedge \phi_{n}\left(x, y_{<l} y^{\prime}\right) \wedge$ $\alpha\left(x, y, y^{\prime}\right)$ is consistent with T. Since the formula $\psi\left(x, a^{\emptyset}\right) \wedge \psi\left(x, a^{0}\right)$ in nonalgebraic (by Remark 2.7), we can find its realization c not occurring in a^{\emptyset} and in a^{0}. In particular, c satisfies $\phi_{n}^{+}\left(x ; x, a^{\emptyset}\right) \wedge \phi_{n}^{+}\left(x ; x, a^{0}\right)$, so $\mathfrak{C}^{c} \models \phi_{0}\left(c, a^{\emptyset}\right) \wedge \phi_{0}\left(c, a^{0}\right)$. Also, since c does not occur in a^{\emptyset} and in a^{0}, we get by $(*)$ that $\mathfrak{C}^{c} \models \alpha\left(c, a^{\emptyset}, a_{l}^{0}, \ldots, a_{n-1}^{0}\right)$. This suffices, as $\mathfrak{C}^{c} \models T$.
(2) Suppose $\phi_{i}\left(x, a^{0}\right) \wedge \phi_{i}\left(x, a^{1}\right) \wedge \alpha\left(x, a^{0}, a_{l}^{1}, \ldots, a_{n-1}^{1}\right)$ is algebraic for some $i<l$. Since a_{i}^{η} is the same for each $\eta \in 2^{<\omega}$, we see that the tree $\left(a^{\eta}\right)_{\eta \in 2^{<\omega}}$ is strongly indiscernible over a_{i}^{0} in the sense of the model \mathfrak{C} of T^{1}, so it is strongly indiscernible in the sense of the model $\mathfrak{C}^{a_{i}^{0}}$ of T. Since any realization of $\psi\left(x, a^{\eta}\right)$ (in the sense of \mathfrak{C}) is a realization of $\phi_{i}\left(x, a^{\eta}\right)$ in the sense of $\mathfrak{C}^{a_{i}^{0}}$, we get (by Remark 2.7) that $\phi_{i}(x, y)$ together with the tree $\left(a^{\eta}\right)_{\eta \in 2^{<\omega}}$ (of tuples from $\mathfrak{C}^{a_{i}^{0}}$) satisfy the assumptions of Fact 2.6. A contradiction to the assumption that T has NTP_{1}.
(3) The assertion follows since the formulas $\psi\left(x, a^{0}\right)$ and $\psi\left(x, a^{1}\right)$ are nonalgebraic (by Remark 2.7), and any realization of $\psi\left(x, a^{k}\right)$ is a realization of $\phi_{i}\left(x, a^{k}\right)$ in $\mathfrak{C}_{i}^{a_{i}^{k}}$ for $k=0,1$.

By the above claim and the definition of T^{1}, we get in particular (forgetting about the formula α) that there is some c realizing formulas $\phi_{0}^{+}\left(a_{0}^{0} ; x, a^{0}\right) \wedge$ $\phi_{0}^{+}\left(a_{0}^{1} ; x, a^{1}\right), \ldots, \phi_{l-1}^{+}\left(a_{l-1}^{0} ; x, a^{0}\right) \wedge \phi_{l-1}^{+}\left(a_{l-1}^{1} ; x, a^{1}\right), \phi_{l}^{+}\left(a_{l}^{0} ; x, a^{0}\right), \phi_{l}^{+}\left(a_{l}^{1} ; x, a^{1}\right)$, $\phi_{l+1}^{+}\left(a_{l+1}^{0} ; x, a^{0}\right), \phi_{l+1}^{+}\left(a_{l+1}^{1} ; x, a^{1}\right), \ldots, \phi_{n-1}^{+}\left(a_{n-1}^{0} ; x, a^{0}\right), \phi_{n-1}^{+}\left(a_{n-1}^{1} ; x, a^{1}\right)$ and the formula $\phi_{n}^{+}\left(x, a^{0}\right) \wedge \phi_{n}^{+}\left(x, a^{1}\right)$. Hence, c realizes $\psi\left(x, a^{0}\right) \wedge \psi\left(x, a^{1}\right)$, a contradiction.

By Proposition 2.17, we get:
Corollary 3.2 Assume T is as in Definition 2.16. If T is $N T P_{1}$, then so is $T_{p f c}$.
Note that the class of theories T eliminating \exists^{∞} and such that both T and in T^{1} have q.e. (i.e., theories as in the assumptions of Theorem 3.1) is strictly bigger than the class of theories to which one can apply the pfc construction:

Example 3.3 Let T be the theory of independent predicates, i.e. the theory in a language L consisting of unary predicates $P_{n}, n<\omega$, axiomatized by sentences $\exists x \bigwedge_{i \in I} P_{i}(x) \wedge \bigwedge_{i \in J} \neg P_{i}(x), I, J$: finite disjoint subsets of ω. Then T is superstable, has q.e., and satisfies the condition $(\forall A) \operatorname{acl}(A)=A$ (so it eliminates the quantifier \exists^{∞}), hence also T^{1} has q.e. by Corollary 3.6 from [1]. But T is not ω categorical, so it cannot be obtained as a theory of the Fraïssé limit of a class of finite structures, so one cannot apply the pfc construction to T.

The following is Lemma 4.2 from [1]:
Fact 3.4 Assume that T has quantifier elimination and eliminates \exists^{∞}. If there is a formula $\phi(x, y)$ with $|x|=1$ and tuples a_{0}, a_{1}, \ldots in a model M of T such that the sets $\phi\left(M, a_{i}\right)$ are pairwise disjoint and infinite, then T^{1} is not simple.

It is easy to see that in the above context T^{1} actually has TP_{2} :
Remark 3.5 Let T be as in Fact 3.4. Then T^{1} has TP_{2}.
Proof It is easy to see that, by q.e., we can find a formula $\phi(x, y)$ as above being a conjunction of atomic formulas and negations of atomic formulas. Put $\psi(x ; y z):=$ $\phi^{+}(z, x, y)\left(z\right.$ is a single variable). Choose pairwise disctinct elements b_{0}, b_{1}, \ldots in a monster model of T^{1} and, for each $i<\omega$, find $a_{i, 0}, a_{i, 1}, \ldots$ such that the formulas $\phi\left(b_{i} ; x a_{i, j}\right)$ are pairwise inconsistent and non-algebraic (which we can do, since $\left.\mathfrak{C}^{b_{i}} \models T\right)$. Then the formula $\psi(x, y z):=\phi(z ; x, y)$ has TP_{2}, witnessed by the array $\left(a_{i, j}, b_{j}\right)_{i, j<\omega}$ (the consistency condition follows by compactness from the axioms of T^{1}).

4 Generic predicate

In this section, we show that NTP_{1} is preserved by the generic predicate construction introduced in [2]. The idea of the proof is similar as in [3, Theorem 7.3], but we should point out that there seems to be a small gap in the proof from [3]. Namely, in the last paragraph of the proof, since one does not know whether $a_{i j}$ has the same type over $\operatorname{acl}(b)$ for various j 's, one cannot conclude that there are colorings on $\operatorname{acl}\left(a_{i j} b\right)$ agreeing on $\operatorname{acl}(b)$ (for distinct j 's) induced by sending $a_{i 0} b_{0}$ to $a_{i j} b$ by an L-elementary map. One can, however, work with algebraically closed tuples, which we do below and which also yields a correct proof of [3, Theorem 7.3].

First, we outline the random predicate construction. Consider a theory T in a language L. For $S(x) \in L$, we let L_{P} denote the language obtained by adding to L a unary predicate $P(x)$ and we put $T_{P, S}^{0}=T \cup\{\forall x(P(x) \rightarrow S(x))\}$.

Fact 4.1 ([2]) Let T be a theory eliminating quantifiers and eliminating the quantifier \exists^{∞}. Then:
(1) $T_{P, S}^{0}$ has a model companion $T_{P, S}$ which is axiomatized by T together with

$$
\begin{aligned}
& \forall z\left[(\exists x)\left(\phi(x, z) \wedge\left(x \cap \operatorname{acl}_{L}(z)=\emptyset\right) \wedge \bigwedge_{i<n} s\left(x_{i}\right) \wedge \bigwedge_{i \neq j<n} x_{i} \neq x_{j}\right)\right] \\
& \\
& \rightarrow(\exists x)\left(\phi(x, z) \wedge \bigwedge_{i \in I} P\left(x_{i}\right) \wedge \bigwedge_{i \notin I} \neg P\left(x_{i}\right)\right)
\end{aligned}
$$

where $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ and I ranges over all subsets of the set $\{0,1, \ldots, n-1\}$.
(2) $\operatorname{acl}_{L}(a)=a c l_{L_{P}}(a)$
(3) $a \equiv^{L_{P}} b \Longleftrightarrow$ there is an isomorphism between L_{P}-structures $f: \operatorname{acl}(a) \rightarrow$ $\operatorname{acl}(b)$ such that $f(a)=b$.
(4) Modulo $T_{P, S}$, every formula $\phi(x)$ is equivalent to a disjunction of formulas of the form $\exists z \phi(x, z)$, where $\phi(x, z)$ is a quantifier-free L_{P}-formula, and for any a, b, if $\models \phi(a, b)$, then $b \in \operatorname{acl}(a)$.

Proposition 4.2 Suppose T is geometric (i.e., it eliminates \exists^{∞} and acl satisfies the exchange principle) and $N T P_{1}$. Then T_{P} is $N T P_{1}$.

Proof By independence we shall mean the relation of algebraic independence (in particular, by geometricity, it is symmetric). Suppose for a contradiction that T_{P} has NTP $_{1}$ witnessed by a formula $\phi(x, y)$ with $|x|=1$ and a strongly indiscernible tree of parameters $\left(a^{\eta}\right)_{\eta \in 2<\omega}$.

Claim 1 The set $A:=\left\{a_{\eta}: \eta \in 2^{<\omega}\right\}$ is algebraically independent and disjoint from $\operatorname{acl}(\emptyset)$.

Proof of Claim 1 It is enough to show that for any $\eta \in 2^{<\omega}, a_{\eta}$ is not in the algebraic closure of the set $B:=\left\{a_{v}: v \in 2^{<\omega},|\nu| \leq|\eta|, \nu \neq \eta\right\}$. But this follows from the fact that (by strong indiscernibility) for each $\mu \supseteq \eta$, we have that $t p_{L_{P}}\left(a_{\mu} / B\right)=$ $t p_{L_{P}}\left(a_{\eta} / B\right)$.

Since (by Remark 2.7) the type $\bigcup_{i<\omega}\left\{\phi\left(x, a_{0^{i}}\right): i<\omega\right\}$ is not algebraic, we can choose an A-indiscernible sequence c_{0}, c_{1}, \ldots such that each c_{i} is an enumeration of the algebraic closure of some b_{i} realizing the above type and the b_{i} 's are pairwise distinct. Put

$$
p\left(z, a_{0}\right)=t p_{L}\left(c_{0} / a_{0}\right)
$$

(where z is possibly infinite and extends x) and

$$
p_{N}\left(z_{0}, \ldots, z_{N-1}, a_{0}\right)=t p_{L}\left(c_{0}, \ldots, c_{N-1} / a_{0}\right)
$$

for any $N<\omega$ (so $\left.p\left(z, a_{0}\right)=p_{1}\left(z, a_{0}\right)\right)$. Since T is $\mathrm{NTP}_{1}, \cup_{i<\omega} p_{N}\left(z_{0}, \ldots\right.$, $z_{N-1}, a_{0^{i}}$) is consistent, and $\left(a^{\eta}\right)_{\eta \in 2<\omega}$ is strongly indiscernible, we get that $p_{N}\left(z_{0}, \ldots, z_{N-1}, a_{0}\right) \cup p_{N}\left(z_{0}, \ldots, z_{N-1}, a_{1}\right)$ is consistent for any $N<\omega$. Because $p_{N}\left(z_{0}, \ldots, z_{N-1}, a_{0}\right) \vdash\left(\bigwedge_{i \neq j} x_{i} \neq x_{j}\right) \wedge \bigwedge_{i<N} p\left(z_{i}, a_{0}\right)$, we get that $p\left(z, a_{0}\right) \cup$ $p\left(z, a_{1}\right)$ has a realization c such that the coordinate b of c corresponding to x is not in $\operatorname{acl}(A)$. Note that c is an enumeration of $\operatorname{acl}(b)$. Since b, a_{0}, a_{1} is an independent triple, we get that $\operatorname{acl}\left(b a_{0}\right) \cap \operatorname{acl}\left(a_{0} a_{1}\right)=\operatorname{acl}\left(a_{0}\right)$ and $\operatorname{acl}\left(b a_{1}\right) \cap \operatorname{acl}\left(a_{0} a_{1}\right)=\operatorname{acl}\left(a_{1}\right)$, so by the definition of T_{P} we can arbitrarily choose which of the elements of $\operatorname{acl}\left(b a_{0}\right) \backslash \operatorname{acl}\left(a_{0}\right)$ and $\operatorname{acl}\left(b a_{1}\right) \backslash \operatorname{acl}\left(a_{1}\right)$ are in P. Since $\operatorname{acl}\left(b a_{0}\right) \cap \operatorname{acl}\left(b a_{1}\right)=$ $\operatorname{acl}(b)=c$ and $t p_{L}\left(c a_{0}\right)=t p_{L}\left(c a_{1}\right)$, we can do this in such a way that $\operatorname{acl}\left(a_{0} b_{0}\right) \cong \operatorname{acl}\left(a_{0} b\right) \cong \operatorname{acl}\left(a_{1} b\right)$ as L_{P}-structures. Then, by Fact 4.1(3), we get that $t p_{L_{P}}\left(a_{0} b_{0}\right)=t p_{L_{P}}\left(a_{0} b\right)=t p_{L_{P}}\left(a_{1} b\right)$. In particular, $\models \phi\left(b, a_{0}\right) \wedge \phi\left(b, a_{1}\right)$, a contradiction.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Baudisch, A.: Generic variations of models of T. J. Symb. Log. 67, 1025-1038 (2002)
2. Chatzidakis, Z., Pillay, A.: Generic structures and simple theories. Ann. Pure Appl. Log. 95, 71-92 (1998)
3. Chernikov, A.: Theories without the tree property of the second kind. Ann. Pure Appl. Log. 165, 695-723 (2014)
4. Chernikov, A., Ramsey, N.: On model-theoretic tree properties. J. Math. Log. https://doi.org/10.1142/ S0219061316500094
5. Dobrowolski, J., Kim, H.: A preservation theorem for theories without the tree property of the first kind. Math. Log. Q 63(6), 536-543
6. Dzamonja, M., Shelah, S.: On \triangleleft^{*}-maximality. Ann. Pure Appl. Log. 125, 119-158 (2004)
7. Granger, N.: Stability, simplicity, and the model theory of bilinear forms. PhD thesis, University of Manchester (1999)
8. Hodges, W.: Model Theory, vol. 42. Cambridge Univerity Press, Cambridge (1993)
9. Winkler, P.: Model-completeness and Skolem expansions. In: Model Theory and Algebra, A Memorial Tribute to Abraham Robinson, LNM, vol. 498, Springer, Berlin, pp. 408-463 (1975)
10. Takeuchi, K., Tsuboi, A.: On the existence of indiscernible trees. Ann. Pure Appl. Log. 163, 1891-1902 (2012)

[^0]: The author was supported by NCN Grant No. 2015/19/D/ST1/01174 and by Samsung Science Technology Foundation under Project Number SSTF-BA1301-03.

 Jan Dobrowolski
 dobrowol@math.uni.wroc.pl
 1 Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea

