Mathematical Logic

Generic variations and NTP₁

Jan Dobrowolski¹

Received: 22 February 2017 / Accepted: 10 January 2018 / Published online: 27 January 2018 © The Author(s) 2018. This article is an open access publication

Abstract We prove a preservation theorem for NTP_1 in the context of the generic variations construction. We also prove that NTP_1 is preserved under adding to a geometric theory a generic predicate.

Keywords Tree property of the first kind · Generic variations · Parametrized Fraïssé class

Mathematics Subject Classification 03C45

1 Introduction

The theorem of Shelah stating that a theory has the tree property (TP) if and only if it has the tree property of the first kind (TP₁) or the tree property of the second kind (TP₂) leads to two natural generalizations of the notion a of a simple theory (i.e., a theory without the tree property), namely NTP₁ and NTP₂ theories.

Initially, the NTP₁ property was studied mainly in the context of \triangleleft^* -maximality ([7,9]). Recently, several very interesting new results on NTP₁ have appeared in [4]. First, it has been proved there that the TP₁ property is always witnessed by a formula in a single variable, which gives chances to apply techniques from other contexts (e.g. stability, NIP, NTP₂) relying on analogous facts. Secondly, the authors studied a notion

The author was supported by NCN Grant No. 2015/19/D/ST1/01174 and by Samsung Science Technology Foundation under Project Number SSTF-BA1301-03.

Jan Dobrowolski dobrowol@math.uni.wroc.pl

¹ Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea

closely related to NTP₁, namely NSOP₁ (see for example [4, Definition 5.1])—this is a strengthening of NTP₁, which still holds in all simple theories. It is an open question whether it is equivalent to NTP₁.

Question 1.1 ([6]) Is NTP₁ equivalent to NSOP₁?

Chernikov and Ramsey characterized NSOP₁ in terms of some natural properties of certain ternary relations between small sets of parameters and also proved that existence of an abstract independence relation satisfying a certain list of natural axioms implies NSOP₁ (in particular, it implies NTP₁), which was used to provide natural examples of NSOP₁ theories: the ω -free PAC fields studied by Chatzidakis [9] and linear spaces with a generic bilinear form studied by Nicolas Granger in his Ph.D. thesis ([7]). Another class of such examples is provided by the "pfc" construction, thanks to the following fact from [4]:

Fact 1.2 Suppose T is a simple theory which is the theory of a Fraïssé limit of a SAP Fraïssé class K. Then T_{pfc} is $NSOP_1$. Moreover, if the D-rank of T is at least 2, then T_{pfc} is not simple.

The main motivation for this paper is proving the preservation of NTP_1 under certain constructions enriching a given theory, which yields new examples of NTP_1 theories from the already established ones.

We prove (in Theorem 3.1) the preservation of NTP₁ under the generic variations construction in the context considered in [1], which generalizes that of the pfc construction. This strengthens significantly [1, Theorem 4.4], where under a much stronger assumption of stability it was proved that the resulting theory is NSOP (which is a weaker property than NTP₁).

The paper is organized as follows: In Sect. 2, we review some definitions and outline the generic variations construction from [1] as well as the pfc construction from [4]. We notice that the theory obtained in the second construction is interpretable in the theory obtained in the first one. In Sect. 3, we prove the above-mentioned Theorem 3.1 (and conclude that NTP₁ is preserved under pfc). In Sect. 4, we prove that NTP₁ is preserved by the generic predicate construction from [2].

2 Preliminaries

Throughout the paper, unless stated otherwise, variables and parameters can have arbitrary (finite) length.

First, we give the definitions of NTP₁ and NTP₂.

Definition 2.1 A formula $\phi(x; y)$ has TP₁ (in a fixed theory *T*) if there is a collection of tuples $(a_{\eta})_{\eta \in \omega^{<\omega}}$ such that:

- (1) For all $\eta \in \omega^{\omega}$, the set $\{\phi(x; a_{\eta|n}) : n < \omega\}$ is consistent,
- (2) If $\eta, \nu \in \omega^{<\omega}$ are incomparable (with respect to inclusion), then $\phi(x; a_{\eta}) \land \phi(x; a_{\nu})$ is inconsistent.

A formula $\varphi(x, y)$ has TP₂ if there is $k < \omega$ and an array $\{a_{i,j} \mid i, j < \omega\}$ such that $\{\varphi(x, a_{i,f(i)}) \mid i < \omega\}$ is consistent for every function $f : \omega \to \omega$ and $\{\varphi(x, a_{i,j}) \mid j < \omega\}$ is *k*-inconsistent for every $i < \omega$.

A theory T has TP_1 [TP₂] if some formula does. Otherwise, we say that T has NTP_1 [NTP₂].

It was observed in [4] that the TP_1 property of a formula is equivalent to the following SOP_2 property.

Definition 2.2 A formula $\phi(x; y)$ is said to have SOP₂ if, working in the monster model, there are tuples $(a_n)_{n \in 2^{<\omega}}$ satisfying the following two properties:

- 1. For every $\xi \in 2^{\omega}$, the set $\{\phi(x, a_{\xi|n}) : n < \omega\}$ is consistent;
- 2. For every pair of incomparable elements $\eta, \nu \in 2^{<\omega}$, the formula $\phi(x; a_{\eta}) \land \phi(x; a_{\nu})$ is inconsistent.

And a theory has SOP₂ if some formula has it.

Fact 2.3 ([4]) A theory T has TP_1 if and only if there is some formula $\phi(x, y)$ with |x| = 1 witnessing this.

Now, let us recall the modeling property on strongly indiscernible trees, which we will use repeatedly in the paper. Let L_0 be the language consisting of two binary relation symbols and a binary function symbol, which we interpret in subtrees of $\omega^{<\omega}$ as the inclusion relation, the lexicographic order and the function sending (η, ν) to $inf(\eta, \nu) = \eta \cap \nu$, respectively.

Definition 2.4 For any $S \subseteq \omega^{<\omega}$, we say that a tree $(a_\eta)_{\eta \in S}$ of compatible tuples of elements of a model *M* is strongly indiscernible over a set $C \subseteq M$, if

$$qftp_{L_0}(\eta_0, \dots, \eta_{n-1}) = qftp_{L_0}(\nu_0, \dots, \nu_{n-1})$$

implies $tp(a_{\eta_0}, \ldots, a_{\eta_{n-1}}/C) = tp(a_{\nu_0}, \ldots, a_{\nu_{n-1}}/C)$ for all $n < \omega$ and all tuples $(\eta_0, \ldots, \eta_{n-1}), (\nu_0, \ldots, \nu_{n-1})$ of elements of *S*.

The following fact comes from [10].

Fact 2.5 Let \mathfrak{C} be a monster model of a complete theory. Then for any tree of parameters $(a_\eta)_{\eta \in \omega^{<\omega}}$ from \mathfrak{C} there is a strongly indiscernible tree $(b_\eta)_{\eta \in \omega^{<\omega}}$ locally based on the tree $(a_\eta)_{\eta \in \omega^{<\omega}}$, which means that for every finite set of formulas Δ and $\eta_0, \ldots, \eta_{n-1} \in \omega^{<\omega}$, there are $\mu_0, \ldots, \mu_{n-1} \in \omega^{<\omega}$ such that $qftp_{L_0}(\eta_0, \ldots, \eta_{n-1}) = qftp_{L_0}(\mu_0, \ldots, \mu_{n-1})$ and $tp_{\Delta}(b_{\eta_0}, \ldots, b_{\eta_{n-1}}) =$ $tp_{\Delta}(a_{\mu_0}, \ldots, a_{\mu_{n-1}})$.

The following observation comes from [5].

Fact 2.6 A theory T has TP_1 if and only if there is a formula $\phi(x, y)$ and a strongly indicernible tree $(a_\eta)_{\eta \in 2^{<\omega}}$, such that $\{\phi(x, a_{0^n}) : n < \omega\}$ has infinitely many realizations, and the formula $\phi(x, a_0) \land \phi(x, a_1)$ has finitely many realizations.

Also, by compactness, one easily gets:

Remark 2.7 If $(a_{\eta})_{\eta \in \omega^{<\omega}}$ is a tree witnessing TP₁ of $\phi(x, y)$, then for any $v \in \omega^{\omega}$ the type { $\phi(x, a_{v_{|n}}) : n < \omega$ } is non-algebraic. The same holds for a tree $(a_{\eta})_{\eta \in 2^{<\omega}}$ witnessing TP₁ of $\phi(x, y)$ and $v \in 2^{\omega}$.

Next, we outline the "generic variations" construction from [1]. We write $M \models \exists^{\infty} x_1, \ldots, x_n \phi(x_1, \ldots, x_n, b)$ (where x_i 's are single variables) if there are infinitely many pairwise disjoint *n*-tuples in *M* satisfying the formula $\phi(x_1, \ldots, x_n, b)$.

Definition 2.8 *T* eliminates the quantifier $\exists^{\infty} x_1, \ldots, x_n$ if for every formula $\phi(x_1, \ldots, x_n, y)$ (where x_i 's are single variables) there is a formula $\psi_{\phi}(y)$ such that for every model *M* of *T* and every $b \in M$, we have

$$M \models \exists^{\infty} x_1, \dots, x_n \phi(x_1, \dots, x_n, b) \iff M \models \psi_{\phi(b)}.$$

Fact 2.9 (Winkler) If T eliminates the quantifier $\exists^{\infty} x_1$ (where x_1 is a single variable) then T eliminates the quantifiers $\exists x_1, \ldots, x_n$ for all n.

For any language *L*, a new language L^+ is obtained by replacing each *n*-ary symbol $R(x_1, \ldots, x_n)$, $f(x_1, \ldots, x_n)$, or *c* (if n = 0) by an (n + 1)-ary symbol $R^+(x_0, x_1, \ldots, x_n)$, $f^+(x_0, x_1, \ldots, x_n)$, or $c^+(x_0)$, respectively. In the same manner, one defines an L^+ -formula $\phi^+(x_0, x_1, \ldots, x_n)$ for each *L*-formula $\phi(x_1, \ldots, x_n)$.

For an L^+ -structure M and $a \in M$, we denote by M^a the L-structure with universe M such that for each L-formula $\phi(x_1, \ldots, x_n)$ we have $\phi((M^a)^n) = \phi^+(a, M^n)$. Let T^+ be the theory of all L^+ -structures M such that for each $a \in M$, $M^a \models T$.

Let *T* be a model-complete theory in a language *L* eliminating the quantifier \exists^{∞} .

Definition 2.10 ([1]) A suitable tuple is a sequence $(n, n+m, \phi_0(x, y), \dots, \phi_{n+m-1}(x, y))$, such that:

• for each i < n + m, the formula $\phi_i(x, y)$ is a conjuction of atomic formulas and negated atomic formulas in *L*, where

$$x = (x_0, \ldots, x_{m-1}), \quad y = (y_0, \ldots, y_{n-1}).$$

• for i < n + m,

$$T \models \phi_i(x, y) \rightarrow \bigwedge_{r < s < m} x_r \neq x_s \land \bigwedge_{r < s < n} y_r \neq y_s \land \bigwedge_{r < n, s < m} y_r \neq x_s.$$

• for $i < m, T \cup \exists x \exists y \phi_{n+i}(x, y)$ is consistent.

Then, we define:

$$T^{1} = T^{+} \cup \left\{ \forall y \left(\bigwedge_{j < n} \left(\psi_{\phi_{j}} \right)^{+} (y_{j}, y) \right) \right\}$$

🖉 Springer

$$\rightarrow \exists x \left(\bigwedge_{j < n} \phi_j^+(y_j, x, y) \land \bigwedge_{i < m} \phi_{n+i}^+(x_i, x, y) \right) \right) :$$

(n, n + m, $\phi_0(x, y), \dots, \phi_{n+m-1}(x, y)$) - suitable}

Fact 2.11 ([1]) Let T be a model-complete theory eliminating the quantifier \exists^{∞} . Then T^1 is consistent and is a model-companion of T^+ .

Fact 2.12 ([1]) Assume T is model-complete and eliminates the quantifier \exists^{∞} . Then T^1 is complete.

Finally, we will outline the "pfc" construction from Subsection 6.3 of [4]. For the reader's convenience, we repeat the definitions used there.

Definition 2.13 Suppose *K* is a class of finite structures. We say *K* has the strong amalgamation property (SAP) if given *A*, *B*, *C* \in *K* and embeddings *e* : *A* \rightarrow *B* and *f* : *A* \rightarrow *C* there is *D* \in *K* and embeddings *g* : *B* \rightarrow *D* and *h* : *C* \rightarrow *D* such that

(1) ge = hf, and (2) $im(g) \cap im(h) = im(ge)$ (and hence = im(hf) as well).

We will say that a theory is SAP if it has a countable ultrahomogeneous model whose age (i.e. the family of all finite substructures) is SAP. The following criterion comes from [8].

Fact 2.14 Suppose K is the age of a countable structure M. Then, the following are equivalent:

- (1) K has SAP.
- (2) *M* has no algebraicity.

Let *K* denote an SAP Fraïssé class in a finite relational language $\mathcal{L} = (R^i : i < k)$, where each R^i has arity n_i . Denote by *T* the theory of the Fraïssé limit of the class *K*. The language \mathcal{L}_{pfc} is defined to be a two-sorted language, with the sorts denoted by *O* ("objects") and *P* ("parameters") and relation symbols $R_x^i(y_1, y_2, \ldots, y_{n_i})$ (of arity $n_i + 1$) where *x* is a variable of the sort *P* and y_i 's are variables of the sort *O*. Given an \mathcal{L}_{pfc} -structure M = (A, B) and $b \in B$, the \mathcal{L} -structure associated to *b* in *M*, denoted by A_b , is defined to be the \mathcal{L} -structure interpreted in *M* with domain *A* and each R^i interpreted as $R_b^i(A)$. Put

$$K_{pfc} = \{M = (A, B) \in Mod(L_{pfc}) : |M| < \omega, (\forall b \in B)(\exists D \in K)(A_b \simeq D)\}.$$

Fact 2.15 ([4]) K_{pfc} is a Fraïssé class satisfying SAP.

Thanks to the above fact, there is a unique countable ultrahomogeneous \mathcal{L}_{pfc} -structure with age K_{pfc} —the Fraïssé limit of K_{pfc} .

Definition 2.16 By T_{pfc} we denote the theory of the Fraïssé limit of the class K_{pfc} constructed above.

Note that T_{pfc} has quantifier elimination.

Proposition 2.17 Let T be the theory of the Fraïssé limit of a SAP Fraïssé class in a finite relational language. Then the countable model M_{pfc} of T_{pfc} is interpretable in a model of T^1 . (Since T has q.e. and, by ω -categoricity, it eliminates \exists^{∞} , one can apply the generic variations construction to T.)

Proof First, we prove the following:

Claim 1 Let $M_{pfc} = (A, B)$ be the Fraïssé limit of K_{pfc} . Then, there is a bijection $f : A \to B$ for which the L^1 structure N with universe equal to A such that $(\forall a \in A)(N^a = A_{f(a)})$ is a model of T^1 .

Proof of Claim 1 Choose enumerations $A = \{a_k : k < \omega\}$ and $B = \{b_k : k < \omega\}$. Also, let $\{\Delta_k : k < \omega\}$ be the set of all suitable tuples for *T*. We will construct inductively injections $f_k : A_k \to B_k$ such that A_k and B_k are finite subsets of *A* and *B*, respectively, $a_k \in A_{k+1}, b_k \in B_{k+1}$, and for each suitable tuple

$$\Delta_s = (n, n + m, \phi_0(x, y), \dots, \phi_{n+m-1}(x, y)),$$

where s < k, and each tuple $d = (d_0, \ldots, d_{n-1})$ of elements of A_k such that for each j < n the formula $\phi_j(x, d)$ has infinitely many pairwise disjoint realizations in $A_{f_k(d_j)}$, there is a tuple $c = (c_0, \ldots, c_{m-1})$ of elements of A_{k+1} such that for each i < m and j < n, $A_{f_{k+1}(c_i)} \models \phi_{n+i}(c, d)$ and $A_{f_k(d_j)} \models \phi_j(c, d)$. The construction starts by choosing $f_0 = A_0 = B_0 = \emptyset$.

Suppose we have already defined $f_k : A_k \to B_k$. Consider any $\Delta_s = (n, n + 1)$ $m, \phi_0(x, y), \dots, \phi_{n+m-1}(x, y)),$ where s < k, and a tuple $d = (d_0, \dots, d_{n-1})$ of elements of A_k such that for each j < n the formula $\phi_i(x, d)$ has infinitely many pairwise disjoint realizations in $A_{f_k(d_i)}$. Let $e = (e_0, \ldots, e_{m-1})$ be a tuple of pairwise distinct "new" elements not belonging to A, and put $C = A_k e$. Since, for each j < n, the formula $\phi_i(x, d)$ has a realization in $A_{f(d_i)}$ disjoint from A_k , one can put an L_{pfc} structure on (C, B_k) in such a way that $C_{f_k(d_i)} \models \phi_i(e, d)$ for each j < n, and (C, B_k) belongs to K_{pfc} . Then, we can find its isomorphic over (A_k, B_k) copy $(C', B_k) = (A_k e', B_k)$ being a substructure of M. Now, choose a tuple of new (not belonging to B) elements $p = (p_0, \ldots, p_{m-1})$, put $D = B_k p$ and define an L_{pfc} structure on on (C', D) extending the structure on (C', B_k) (inherited from M) in such a way that for each i < m, $C'_{p_i} \models \phi_{n+i}(e, d)$ (we use here the assumption that $\phi_{n+i}(x, y) \cup T$ is consistent). Since $(C', B_k p) \in K_{pfc}$, we can find its isomorphic over (C', B_k) copy $(C', B_k p')$ being a substructure of M. Extend f_k to a function $f'_k: C' \to B_k p'$ by putting $f'_k(e'_i) = p'_i$. Repeating this for all (finitely many) tuples as above (with d contained in A_k and s < k) and, finally, extending the obtained function to a finite injection f_{k+1} such that $a_k \in dom(f_{k+1})$ and $b_k \in rng(f_{k+1})$, we complete the inductive construction.

Let *f* and *N* be as in the claim. Then the L_{pfc} -structure C := (A, A) in which $R_b(a)$ holds iff $N \models R^+(a, b)$ is interpretable in *N*, and, by the definition of *N*, we have:

Now, $f := \bigcup_{k < \omega} f_k$ clearly satisfies the conclusion of Claim 1.

$$C \models R_b(a) \iff M_{pfc} \models R_{f(b)}(a)$$

Hence, *C* is isomorphic to M_{pfc} via $id \times f$. This shows that M_{pfc} is interpretable in *N*.

3 Preservation of NTP₁ under the generic variation

The main goal of this section is to prove the Theorem 3.1 below, which strengthens [1, Theorem 4.4]. By Corollary 3.6 from [1], the assumptions are satisfied by any theory having quantifier elimination in which acl(A) = A for all A. (See also Example 3.3 and the discussion in the paragraph preceding it.)

Theorem 3.1 Suppose that T and T^1 both have elimination of quantifiers and T eliminates the quantifier \exists^{∞} . If T has NTP_1 , then so does T^1 .

Proof As TP₁ is equivalent to SOP₂, we will suppose for a contradiction that T^1 has SOP₂ witnessed by a formula $\psi(x, y)$ with |x| = 1 (which we can assume by Fact 2.3) and a strongly indiscernible tree of parameters $(a^{\eta})_{\eta \in 2^{<\omega}}$ (which we can assume by Fact 2.5). By q.e., we can additionally assume that $\psi(x, y) = \bigvee_{i < M} \theta_i(x, y)$, where each $\theta_i(x, y)$ is a conjunction of atomic formulas and negations of atomic formulas. Now, by the pigeonhole principle, there is i < M such that there are infinitely many formulas among $\psi(x, a^{0^n}), n < \omega$ with a common realization. By considering an appropriate subtree of $(a^{\eta})_{\eta \in 2^{<\omega}}$, we can assume that $\psi(x, y) = \theta_i(x, y)$. Hence, $\psi(x, y)$ is of a form $\bigwedge_{i < n} \phi_i^+(y_i; x, y) \land \phi_n^+(x; x, y)$, where ϕ_i 's are conjunctions of atomic formulas, and $y = (y_0, \ldots, y_{n-1})$ with $|y_i| = 1$.

Notice that, by strong indiscernibility, for each i < n either a_i^{η} are equal for all $\eta \in 2^{<\omega}$ or they are pairwise distinct. We can assume that there is some l < n such that:

$$(\forall \eta, \nu \in 2^{<\omega})((\forall i < l)(a_i^{\eta} = a_i^{\nu}) \land (\forall i \ge l)(\eta \neq \nu \implies a_i^{\eta} \neq a_i^{\nu})). \quad (*)$$

Put $y' = (y'_l, \dots, y'_{n-1})$, where y'_i 's are single variables. We aim to get a contradiction by showing that the formula $\psi(x, a^0) \wedge \psi(x, a^1)$ is consistent. This will follow from the following claim:

Claim 1 Let $\alpha(x, y, y')$ be a formula expressing that the coordinates of y, y' and x are all pairwise distinct. Then

- (1) $(2n l, 2n l + 1, \phi_0(x, y) \land \phi_0(x, y_{< l}y') \land \alpha(x, y, y'), \dots, \phi_{l-1}(x, y) \land \phi_{l-1}(x, y_{< l}y') \land \alpha(x, y, y'), \phi_l(x, y) \land \alpha(x, y, y'), \phi_l(x, y_{< l}y') \land \alpha(x, y, y'), \phi_{l+1}(x, y) \land \alpha(x, y, y'), \phi_{l+1}(x, y_{< l}y') \land \alpha(x, y, y'), \dots, \phi_{n-1}(x, y) \land \alpha(x, y, y'), \phi_{n-1}(x, y_{< l}y') \land \alpha(x, y, y), \phi_n(x, y) \land \phi_n(x, y_{< l}y') \land \alpha(x, y, y'))$ is a suitable tuple of formulas in variables (x, yy'),
- (2) For each i < l, the formula $\phi_i(x, a^0) \land \phi_i(x, a^1) \land \alpha(x, a^0, a_l^1, \dots, a_{n-1}^1)$ is non-algebraic in $\mathfrak{C}^{a_i^0}$, and

(3) For each $i \in \{l, \ldots, n-1\}$, the formula $\phi_i(x, a^0) \wedge \alpha(x, a^0, a_l^1, \ldots, a_{n-1}^1)$ in non-algebraic in $\mathfrak{C}^{a_i^0}$, and the formula $\phi_i(x, a^1) \wedge \alpha(x, a^0, a_l^1, \ldots, a_{n-1}^1)$ in non-algebraic in $\mathfrak{C}^{a_i^1}$.

Proof of Claim 1 (1) We only need to check that the formula $\phi_n(x, y) \land \phi_n(x, y_{<l}y') \land \alpha(x, y, y')$ is consistent with *T*. Since the formula $\psi(x, a^{\emptyset}) \land \psi(x, a^0)$ in nonalgebraic (by Remark 2.7), we can find its realization *c* not occurring in a^{\emptyset} and in a^0 . In particular, *c* satisfies $\phi_n^+(x; x, a^{\emptyset}) \land \phi_n^+(x; x, a^0)$, so $\mathfrak{C}^c \models \phi_0(c, a^{\emptyset}) \land \phi_0(c, a^0)$. Also, since *c* does not occur in a^{\emptyset} and in a^0 , we get by (*) that $\mathfrak{C}^c \models \alpha(c, a^{\emptyset}, a_l^0, \dots, a_{n-1}^0)$. This suffices, as $\mathfrak{C}^c \models T$.

(2) Suppose $\phi_i(x, a^0) \land \phi_i(x, a^1) \land \alpha(x, a^0, a_l^1, \dots, a_{n-1}^1)$ is algebraic for some i < l. Since a_i^{η} is the same for each $\eta \in 2^{<\omega}$, we see that the tree $(a^{\eta})_{\eta \in 2^{<\omega}}$ is strongly indiscernible over a_i^0 in the sense of the model \mathfrak{C} of T^1 , so it is strongly indiscernible in the sense of the model \mathfrak{C} of T. Since any realization of $\psi(x, a^{\eta})$ (in the sense of \mathfrak{C}) is a realization of $\phi_i(x, a^{\eta})$ in the sense of $\mathfrak{C}^{a_i^0}$, we get (by Remark 2.7) that $\phi_i(x, y)$ together with the tree $(a^{\eta})_{\eta \in 2^{<\omega}}$ (of tuples from $\mathfrak{C}^{a_i^0}$) satisfy the assumptions of Fact 2.6. A contradiction to the assumption that T has NTP₁.

(3) The assertion follows since the formulas $\psi(x, a^0)$ and $\psi(x, a^1)$ are non-algebraic (by Remark 2.7), and any realization of $\psi(x, a^k)$ is a realization of $\phi_i(x, a^k)$ in $\mathfrak{C}^{a_i^k}$ for k = 0, 1.

By the above claim and the definition of T^1 , we get in particular (forgetting about the formula α) that there is some c realizing formulas $\phi_0^+(a_0^0; x, a^0) \land \phi_0^+(a_0^1; x, a^1), \ldots, \phi_{l-1}^+(a_{l-1}^0; x, a^0) \land \phi_{l-1}^+(a_{l-1}^1; x, a^1), \phi_l^+(a_l^0; x, a^0), \phi_l^+(a_l^1; x, a^1), \phi_{l+1}^+(a_{l+1}^0; x, a^0), \phi_{l+1}^+(a_{l+1}^1; x, a^1), \ldots, \phi_{n-1}^+(a_{n-1}^0; x, a^0), \phi_{n-1}^+(a_{n-1}^1; x, a^1)$ and the formula $\phi_n^+(x, a^0) \land \phi_n^+(x, a^1)$. Hence, c realizes $\psi(x, a^0) \land \psi(x, a^1)$, a contradiction.

By Proposition 2.17, we get:

Corollary 3.2 Assume T is as in Definition 2.16. If T is NTP₁, then so is T_{pfc} .

Note that the class of theories T eliminating \exists^{∞} and such that both T and in T^1 have q.e. (i.e., theories as in the assumptions of Theorem 3.1) is strictly bigger than the class of theories to which one can apply the pfc construction:

Example 3.3 Let *T* be the theory of independent predicates, i.e. the theory in a language *L* consisting of unary predicates P_n , $n < \omega$, axiomatized by sentences $\exists x \bigwedge_{i \in I} P_i(x) \land \bigwedge_{i \in J} \neg P_i(x)$, *I*,*J*: finite disjoint subsets of ω . Then *T* is superstable, has q.e., and satisfies the condition $(\forall A)acl(A) = A$ (so it eliminates the quantifier \exists^{∞}), hence also T^1 has q.e. by Corollary 3.6 from [1]. But *T* is not ω -categorical, so it cannot be obtained as a theory of the Fraïssé limit of a class of finite structures, so one cannot apply the pfc construction to *T*.

The following is Lemma 4.2 from [1]:

Fact 3.4 Assume that T has quantifier elimination and eliminates \exists^{∞} . If there is a formula $\phi(x, y)$ with |x| = 1 and tuples a_0, a_1, \ldots in a model M of T such that the sets $\phi(M, a_i)$ are pairwise disjoint and infinite, then T^1 is not simple.

It is easy to see that in the above context T^1 actually has TP₂:

Remark 3.5 Let T be as in Fact 3.4. Then T^1 has TP₂.

Proof It is easy to see that, by q.e., we can find a formula $\phi(x, y)$ as above being a conjunction of atomic formulas and negations of atomic formulas. Put $\psi(x; yz) := \phi^+(z, x, y)$ (*z* is a single variable). Choose pairwise disctinct elements b_0, b_1, \ldots in a monster model of T^1 and, for each $i < \omega$, find $a_{i,0}, a_{i,1}, \ldots$ such that the formulas $\phi(b_i; xa_{i,j})$ are pairwise inconsistent and non-algebraic (which we can do, since $\mathfrak{C}^{b_i} \models T$). Then the formula $\psi(x, yz) := \phi(z; x, y)$ has TP₂, witnessed by the array $(a_{i,j}, b_j)_{i,j < \omega}$ (the consistency condition follows by compactness from the axioms of T^1).

4 Generic predicate

In this section, we show that NTP₁ is preserved by the generic predicate construction introduced in [2]. The idea of the proof is similar as in [3, Theorem 7.3], but we should point out that there seems to be a small gap in the proof from [3]. Namely, in the last paragraph of the proof, since one does not know whether a_{ij} has the same type over acl(b) for various *j*'s, one cannot conclude that there are colorings on $acl(a_{ij}b)$ agreeing on acl(b) (for distinct *j*'s) induced by sending $a_{i0}b_0$ to $a_{ij}b$ by an *L*-elementary map. One can, however, work with algebraically closed tuples, which we do below and which also yields a correct proof of [3, Theorem 7.3].

First, we outline the random predicate construction. Consider a theory *T* in a language *L*. For $S(x) \in L$, we let L_P denote the language obtained by adding to *L* a unary predicate P(x) and we put $T_{P,S}^0 = T \cup \{\forall x(P(x) \rightarrow S(x))\}$.

Fact 4.1 ([2]) *Let T be a theory eliminating quantifiers and eliminating the quantifier* \exists^{∞} *. Then:*

(1) $T_{P,S}^0$ has a model companion $T_{P,S}$ which is axiomatized by T together with

$$\forall z \left[(\exists x) \left(\phi(x, z) \land (x \cap acl_L(z) = \emptyset) \land \bigwedge_{i < n} s(x_i) \land \bigwedge_{i \neq j < n} x_i \neq x_j \right) \right]$$
$$\rightarrow (\exists x) \left(\phi(x, z) \land \bigwedge_{i \in I} P(x_i) \land \bigwedge_{i \notin I} \neg P(x_i) \right),$$

where $x = (x_0, x_1, \dots, x_{n-1})$ and I ranges over all subsets of the set $\{0, 1, \dots, n-1\}$.

- (2) $acl_L(a) = acl_{L_P}(a)$
- (3) $a \equiv^{L_P} b \iff$ there is an isomorphism between L_P -structures $f : \operatorname{acl}(a) \to \operatorname{acl}(b)$ such that f(a) = b.
- (4) Modulo T_{P,S}, every formula φ(x) is equivalent to a disjunction of formulas of the form ∃zφ(x, z), where φ(x, z) is a quantifier-free L_P-formula, and for any a, b, if ⊨ φ(a, b), then b ∈ acl(a).

Proposition 4.2 Suppose T is geometric (i.e., it eliminates \exists^{∞} and acl satisfies the exchange principle) and NTP₁. Then T_P is NTP₁.

Proof By independence we shall mean the relation of algebraic independence (in particular, by geometricity, it is symmetric). Suppose for a contradiction that T_P has NTP₁ witnessed by a formula $\phi(x, y)$ with |x| = 1 and a strongly indiscernible tree of parameters $(a^{\eta})_{\eta \in 2^{<\omega}}$.

Claim 1 The set $A := \{a_{\eta} : \eta \in 2^{<\omega}\}$ is algebraically independent and disjoint from $acl(\emptyset)$.

Proof of Claim 1 It is enough to show that for any $\eta \in 2^{<\omega}$, a_{η} is not in the algebraic closure of the set $B := \{a_{\nu} : \nu \in 2^{<\omega}, |\nu| \le |\eta|, \nu \ne \eta\}$. But this follows from the fact that (by strong indiscernibility) for each $\mu \supseteq \eta$, we have that $tp_{L_P}(a_{\mu}/B) = tp_{L_P}(a_{\eta}/B)$.

Since (by Remark 2.7) the type $\bigcup_{i < \omega} \{\phi(x, a_{0^i}) : i < \omega\}$ is not algebraic, we can choose an *A*-indiscernible sequence c_0, c_1, \ldots such that each c_i is an enumeration of the algebraic closure of some b_i realizing the above type and the b_i 's are pairwise distinct. Put

$$p(z, a_0) = t p_L(c_0/a_0)$$

(where z is possibly infinite and extends x) and

$$p_N(z_0,\ldots,z_{N-1},a_0) = tp_L(c_0,\ldots,c_{N-1}/a_0)$$

for any $N < \omega$ (so $p(z, a_0) = p_1(z, a_0)$). Since *T* is NTP₁, $\bigcup_{i < \omega} p_N(z_0, \ldots, z_{N-1}, a_0)$ is consistent, and $(a^\eta)_{\eta \in 2^{<\omega}}$ is strongly indiscernible, we get that $p_N(z_0, \ldots, z_{N-1}, a_0) \cup p_N(z_0, \ldots, z_{N-1}, a_1)$ is consistent for any $N < \omega$. Because $p_N(z_0, \ldots, z_{N-1}, a_0) \vdash (\bigwedge_{i \neq j} x_i \neq x_j) \land \bigwedge_{i < N} p(z_i, a_0)$, we get that $p(z, a_0) \cup p(z, a_1)$ has a realization *c* such that the coordinate *b* of *c* corresponding to *x* is not in acl(A). Note that *c* is an enumeration of acl(b). Since *b*, a_0, a_1 is an independent triple, we get that $acl(ba_0) \cap acl(a_0a_1) = acl(a_0)$ and $acl(ba_1) \cap acl(a_0a_1) = acl(a_1)$, so by the definition of T_P we can arbitrarily choose which of the elements of $acl(ba_0) \setminus acl(a_0)$ and $acl(ba_1) \setminus acl(a_1)$ are in *P*. Since $acl(ba_0) \cap acl(ba_1) = acl(a_0) \oplus acl(a_0b) \cong acl(a_0b) \cong acl(a_1b)$ as L_P -structures. Then, by Fact 4.1(3), we get that $tp_{L_P}(a_0b) = tp_{L_P}(a_1b)$. In particular, $\models \phi(b, a_0) \land \phi(b, a_1)$, a contradiction.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Baudisch, A.: Generic variations of models of T. J. Symb. Log. 67, 1025-1038 (2002)
- Chatzidakis, Z., Pillay, A.: Generic structures and simple theories. Ann. Pure Appl. Log. 95, 71–92 (1998)
- Chernikov, A.: Theories without the tree property of the second kind. Ann. Pure Appl. Log. 165, 695–723 (2014)
- Chernikov, A., Ramsey, N.: On model-theoretic tree properties. J. Math. Log. https://doi.org/10.1142/ S0219061316500094
- Dobrowolski, J., Kim, H.: A preservation theorem for theories without the tree property of the first kind. Math. Log. Q 63(6), 536–543
- 6. Dzamonja, M., Shelah, S.: On <*-maximality. Ann. Pure Appl. Log. 125, 119–158 (2004)
- 7. Granger, N.: Stability, simplicity, and the model theory of bilinear forms. PhD thesis, University of Manchester (1999)
- 8. Hodges, W.: Model Theory, vol. 42. Cambridge University Press, Cambridge (1993)
- Winkler, P.: Model-completeness and Skolem expansions. In: Model Theory and Algebra, A Memorial Tribute to Abraham Robinson, LNM, vol. 498, Springer, Berlin, pp. 408–463 (1975)
- Takeuchi, K., Tsuboi, A.: On the existence of indiscernible trees. Ann. Pure Appl. Log. 163, 1891–1902 (2012)