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Boolean networks are used for modeling and analysis of complex systems of interacting entities. Classical Boolean networks are
binary and they are relevant for modeling systems with complex switch-like causal interactions. More descriptive power can be
provided by the introduction of gradation in this model. If this is accomplished by using conventional fuzzy logics, the generalized
model cannot secure the Boolean frame. Consequently, the validity of the model’s dynamics is not secured. The aim of this paper is
to present the Boolean consistent generalization of Boolean networks, interpolative Boolean networks. The generalization is based
on interpolative Boolean algebra, the [0, 1]-valued realization of Boolean algebra. The proposed model is adaptive with respect to
the nature of input variables and it offers greater descriptive power as compared with traditional models. For illustrative purposes,
IBN is compared to the models based on existing real-valued approaches. Due to the complexity of the most systems to be analyzed
and the characteristics of interpolative Boolean algebra, the software support is developed to provide graphical and numerical tools

for complex system modeling and analysis.

1. Introduction

Approaches based on logic are used for modeling systems
with complex causal interactions between the components
[1-3]. Obtained models usually have the form of directed
graphs, with a logical state variable and a logical function
assigned to each node. The state of a node evolves in con-
tinuous or discrete time, in accordance with the value real-
ization of the logical function. In comparison to traditional
models of dynamical systems, logical models are less detailed
and requires less information about the process of interest.
Determination of an appropriate level of detail is considered
as the major challenge in modeling. If the model is very
detailed, it might be extremely difficult to gain insight; thus,
the essential nature of the system may be obscured. On the
other hand, if too little detail is included, the model may
not be a reliable representation of reality. The appropriate
level of detail is determined with respect to the purpose
of the model and the amount of information about the
process of interest. The logical modeling is aimed at capturing
the nonlinear dynamics of possibly large-scale systems. The
modeling of such systems is typically hampered by the lack
of information. According to the principle of incompatibility

[4], as the complexity of a system increases our ability
to obtain both relevant and precise model of the system
diminishes, and, eventually, these two model characteristics
become incompatible. In the logical approaches, the precision
suffers for the relevance. This enables modeling of systems
that are too complex for traditional approaches.

Boolean networks (BNs) are the common logical model
for modeling complex systems based on binary logic. They
may be seen as discrete dynamical systems where each node
logical function works dynamically to compute the node state
at the next time step depending on the input values coming
from other nodes [5, 6]. Therefore, the research in this field
mainly addresses the structural and dynamical aspect of BN.
The BN structure can be specified by an expert [7], identified
from the data [8] or randomly constructed [5, 9]. On the
other hand, the validity of the dynamics is secured by the laws
of Boolean algebra (BA). According to the principle of truth
functionality, the values of logical functions in such models
are calculated by the values of their arguments in parallel
or serial manner [10]. Classical models are widely used in
biology and medicine [11-14], geosciences [15-18], and social
sciences [19-22].
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BNs are relevant for modeling systems which exhibit
threshold behavior. If more details are available, BNs can be
generalized by the introduction of gradation. In this case,
logical variables and functions are treated as [0, 1]-valued.
In [9, 23-28], BNs are generalized using conventional, truth
functional fuzzy logics. Since such fuzzy logics are not a BA
[29, 30], the generalized models cannot secure the Boolean
frame. Consequently, the validity of the dynamics of the
model cannot be secured.

In this paper, we proposed the Boolean consistent [0, 1]-
valued generalization of BN. This approach, called the inter-
polative Boolean networks (IBN), is based on interpolative
Boolean algebra (IBA), the [0, 1]-valued realization of BA
[31]. Unlike conventional fuzzy logics which are based on the
truth functionality principle, IBA is based on the structural
functionality principle to secure Boolean consistent gener-
alization. According to this principle, logical functions have
vector nature, and thus, the Boolean consistent calculations of
values can be accomplished by the immanent structure vec-
tors. This enables IBA, and consequently the IBN, to be used
for modeling and analysis of complex dynamical systems in a
Boolean consistent manner. Further, IBN is the general [0, 1]-
valued approach, while Boolecube, Hillcube, and similar
approaches may be seen as the special case of IBN. The
validity of the dynamics of IBN is illustrated on two examples
from the literature using a software support developed for this
purpose.

The paper is organized as follows. In Section 2, we de-
scribe the classical binary BNs and the existing real-valued
realizations of BNs. Section 3 provides the basic concepts
of interpolative Boolean algebra. In Section 4, the proposed
generalization of BN is introduced. Furthermore, the soft-
ware for complex system modeling and analysis, implement-
ing IBN, is presented. In Section 5, the proposed approach
is illustrated on two examples. The obtained results are
compared with both conventional fuzzy approach and the
Boolecube/Hillcube approach. The main conclusions and
directions for future work are given in Section 6.

2. Boolean Networks

Boolean networks are the least detailed mathematical models
of causally interacting entities. The model has the form of a
directed graph, whose nodes represent the entities, and the
edges represent the interactions between the entities:

BN = (N, E), @

where N = {x,,...
edges [5].

,X,,} isaset of nodes and E is a set of direct

2.1. Binary Boolean Networks. Dynamics of BN is introduced
by assigning a Boolean state variable and a Boolean function
to each node. It is assumed that all nodes change state at
each time step, with a unit time-delay. The dynamics of a BN
reflects the topology of the directed graph. The state of node
x; takes the value of its Boolean function whose arguments
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are the states of the node’s predecessors in the previous time
step:

xt+1) = f(x, ©,..x_ ), )

where x;(t + 1) € {0,1} and f; : {0, 1} = {0, 1} are the
state and the Boolean function of node x;, x; (£),..,x; (t) €
{0, 1} are the states of node x; predecessors in the previous
time step, and K; is the number of predecessors of the node
xi-

Dynamics of BN is defined by equations which update the
state of all nodes in a system:

Ax, ®,x, )
- : E)
o (o, )5 N (1)

x; (t+1)

X, (t+1)

where x(t +1) = [x,(t+1) | i=1,...,m]", x(t + 1) € {0, 1},
is the state of a Boolean network at time t + 1, and m is the
number of nodes.

Transition functions f;() in a classic BN, as any binary
logical function, follow the principle of truth functionality
[32, 33]: the value of a complex formula is uniquely deter-
mined by the truth values of its subformulas [34]. In other
words, the value of a logical function is calculated using the
values of functions’ arguments. Since the algebra of binary
BNs is Boolean, the validity of the BN dynamics is secured.
The global dynamics is characterized by the existence of one
or more point or cycle attractors. This is a state or a set of
states where the dynamic of the network stabilizes. For each
attractor there is a basin of attraction which contains states
that converge to the attractor. The dynamics of a BN depends
on which basin of attraction the initial states are located. The
number and size of attractors, and the corresponding basins
of attraction, are the state space properties which reveal the
global dynamics of BNs.

Classical Boolean networks are adequate for modeling
systems with complex switch-like causal interactions. In
such systems, cause and effect relationships between the
components are governed by thresholds [35]. Below (or
above) a certain level, a component has a little or no influence
on the behavior of others, while above (or below) this level the
influence saturates rapidly to a constant level. Such a switch-
like causal relationships can be represented using sigmoid
functions. Binary representation in the classical BNs is an
idealization of such relationships.

2.2. Real-Valued Realization of Boolean Networks. When
more detailed description of a system is required and/or pos-
sible, the Boolean networks can be generalized by the intro-
duction of gradation. In this case, logical state variables and
logical functions are realized as real-valued. This provides
the drastic increases of the descriptive power of the model
[36-38]. The behavior of a system can be quantified with
much more precision, and thus, deeper insight into the
system’s dynamics is possible. In [9, 23-28], Gédel, product,
and Lukasiewicz conventional fuzzy logics are proposed for
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generalization of BNs. However, the validity of the dynamics
of the proposed generalized models cannot be secured, since
the Boolean laws of excluded middle and contradiction are
not followed in fuzzy logic [29]. This implies that the behavior
of complex systems may not be accurately predicted by such
models.

The Boolecube/Hillcube model is able to predict and
explain quantitative experimental data [3]. This approach is
the generalization of BNs based on multilinear interpolation
of Boolean functions. Boolean functions are replaced by their
real-valued realizations called the Boolecubes or the Hill-
cubes. The Boolecube is defined by the following expression:

1 1 1

L _ (4)
= Z z <f(x1 ’’’’’ xm)n(xixi+(1 -x;) (1 _xi))>’

x;=0 x,=0 Xy = i=1

ﬁ(%l,...,xm)zi i

x,=0 x,=0

where x;(t) € {0,1}, x; € [0,1], f(x;,...,x,,) € {0,1}isa
Boolean function, and h(x;) € [0, 1] is the Hill function.

3. Interpolative Boolean Algebra

Interpolative Boolean algebra (IBA) is the Boolean consistent
[0, 1]-valued generalization of finite (atomic) Boolean algebra
(BA) [30, 39]. Formally, IBA is based on the principle of
structural functionality [39-41]. It implies the necessity to
distinctly detach the structure of the logical function from its
value realization. Therefore, IBA is two-leveled algebra con-
sisting of symbolic and valued level. The structural transfor-
mation on a symbolic level enables us to evaluate any logical
function in the Boolean consistent way. Once the transfor-
mations have been conducted, the value level is introduced.
The values do not have an influence on the preservation of
Boolean laws. Therefore, IBA is used as a natural frame for
Boolean consistent fuzzy logic [42], logical aggregation [40],
similarity measure [43], and computational cognition [44].

3.1. The Principle of Structural Functionality. Unlike the truth
functional fuzzy logic and many-valued algebras, IBA is
based on the principle of structural functionality [39-41].
This principle implies that the immanent structure of any
logical function can be directly derived from the structures
of the function’s arguments. In other words, any element of
finite Boolean algebra uniquely corresponds to its structure
(content, relation of inclusion). Relying on the principle of
structural functionality is essentially different from relying
on the principle of truth functionality—the structure of the
observed function is at the forefront rather than the values of
its arguments [45].

The main motive of introducing the principle of structural
functionality is that the principle of truth functionality is
binary in its essence, that is, the truth value of an expression

i <f(x1,...

where x;(t) € {0,1}, x; € [0,1], and f(x,,...,x,,) € {0,1}
is a Boolean function that indicates the inclusion of the
variables/functions in the Boolecube.

The Hillcube approach is the generalization of the Boole-
cube approach since it uses the sigmoid function for mapping
variables. This function is called the Hill function and it is
defined by the following expression:

()"

T

(5)

where #; is the Hill coefficient which defines the steepness of
the function and k; is the threshold parameter. Therefore, the
Hillcube is defined by the following expression:

) [T G ) + (=) (1= @)))) , ©

may be true or false. Therefore, the truth functionality
principle is valid in the sense that it preserves all Boolean
axioms and theorems for a two-valued realization of Boolean
algebra, while it is not valid in many-valued case and fuzzy
logic [29]. On the other hand, according to the principle of
structure functionality, the structure of the logical expression
and the intensity of variables should both be taken into
account in [0, 1]-valued case. The structure of an element
determines which atomic elements of IBA are included in it
and/or which are not included in it. An atomic element of
IBA is the simplest elements of the Boolean algebra domain
of attributes BA in the sense that they do not include in
themselves anything except for a trivial Boolean constant 0.
Atomic element expresses the intensities of variable within
the observed structure. Detailed mathematical formalization
of IBA structural functionality is given further in the text.

In [40], it is shown that the truth functional principle is a
value realization of the structure functional principle which
is valid (in the sense that it preserves all Boolean axioms
and theorems) only for a two-valued realization of Boolean
algebra. On the other hand, the structure functional principle
is valid in general case [40]. Therefore, the principle of truth
functionality is a special case of the principle of structural
functionality from the aspect of the Boolean laws.

3.2. IBA Symbolic Level. From the mathematical point of
view, any logical function on IBA symbolic level is repre-
sented in a vector form, structure vector. The value of any
logical function can be defined as a scalar product of two
vectors:

2 (xq, . (7)

- . -
where ¢ ; is the structure vector of f(x,...,x,,) and & is
atomic vector. The structure vector is binary and it represents

- -
VXpy) = 0 £ 0,



the shape/structure of the logical function, while the atomic
vector expresses the intensities of variable. In classical binary
case, the intensity of variables is {0, 1}, so it is clearly a special
case of IBA approach.

The structure vector is a binary vector defined by the
following expression [40]:
T

Gy =los(a5) | S e P()] (8)

where o, are the structure function of logical function
f(xy,...,x,,), & is an atom of BA(Q) = P(P(Q))), and P(Q2)
is the power set of a set of free variables Q = {x,,...,x,,}.

The structure vector o ; contains information about
which atoms are relevant/included in a logical function. Such
information is given by the structural function o/, which is
defined by the following expression [40]:

Oy (o)
L oag(xp,...
B 0, o (xp,...
An atom in IBA is defined by the following expression [40]:

VXpy) = /\xi /\ -X;, (10)

x;€S xjeQ\S

X)) = A (x50 %) (9)

JXm) A f (x5
’xm)/\f(xl"">xm) :Q'

L CT

where S € P(Q). For instance, atomic elements of BA
generated by two attributes Q) = {a, b} are aAb, an-b, ~a b,
and ~a A -b.

In accordance with the structural functionality principle,
any logical function can be uniquely represented by the
following disjunctive canonical form [39]:

 Xpp) = U

0 (as)=1|S€P(Q)

f(xpe.. og (x5 ..

EE (1)

In order to obtain the real value realization of any logical
function, IBA uses generalized Boolean polynomials (GBPs).
GBP is a sum of the relevant atomic Boolean polynomials:

o (X100 X,)

o Xpy) =
Uf(lxs):1|SEP(Q)

2 (x5

(12)

- 3 (@@ 0-)).
af(ocs):IISeP(Q) x;€8 xjeQ\S

where x; € [0, 1] and ® is a generalized product.

3.3. IBA Structural Transformation and Valued Level. IBA
is technically based on the mapping procedure of logical
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function to GBP. Any Boolean function can be mapped into
corresponding GBP using the following rules [40]:

(ACTNE S VN ACTE )

= S (X n %) © F2 (100 %,)
(fi rae e )V (X X))

= £2 (%10 X)) + £ (X1

— £ (..

(2 fi (x5 r ) = 1= 2 (xys ...

%)

’xm)®f}8 (xl""’xm)
(13)

» Xpn)

X ® X, it j

(xinx;) =
X5 i=j

®
(x,-ij) =Xt XX ®X;

(—vci)® =1-x;.

The generalized product ® is any function that maps ® :
[0,1] x [0, 1] — [0, 1] and satisfies all four axioms of t-norms
(commutativity, associativity, monotonicity, and boundary
condition) and the condition which ensures that the values
of atomic Boolean polynomials are nonnegative [39, 40].
Therefore, the generalized product ® for Q = {x;,x,} may
be realized as any t-norm that produce the value from the
following interval:

max (x; +x, - 1,0) < x; ® x, < min (x,x,). (14)

Three cases may be distinguished as particularly important
realizations of the generalized product: minimum function,
ordinary product, and Lukasiewicz operator.

4. Interpolative Boolean Networks

In this section, we present the Boolean consistent [0, 1]-
valued generalization of Boolean networks, interpolative
Boolean network. In the proposed model, states of nodes take
value from the unit interval, while the Boolean functions are
mapped into generalized Boolean polynomials according to
(13). Such polynomials are the [0, 1]-valued realizations of
Boolean functions with respect to the structure functionality
principle. The proposed generalization provides a drastic
increase of the descriptive power of BNs. It allows the model
to be used for gaining quantitative insight into the behavior of
complex systems. For the purpose of this paper, we assumed
that interpolative Boolean networks evolve in discrete time,
although continuous time models can be generalized in the
same way. Formally, in the IBN, the state of node x; takes the
value of its generalized Boolean polynomial whose arguments
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are the states of node x; predecessors in the previous time
step:

X (t+1) = f2 (x,-l ()50 (t))

= 2 <®xp<t>®<1—xq<t>)>, "

07, (as)=1ISeP(N) \ x,€S x,€N\S

where x;(t + 1) € [0,1] and f;(x; (£),...,x; (t)) € BA(N)
are the state and the Boolean function of node x; € N,
x; (£),...,x;_(t) € [0, 1] are the states of node x; predecessors
in the previous time step, o is the structure function of
f; € BA(N), x; ®x;: [0,1] x [0, 1] — [0, 1] is the generalized
product, and K; is the number of predecessors of the node x;.

The state of node x; can be defined as the scalar product
of two vectors:

x(t+1) =70 d @), (16)

where @ 7 is the structure vector of f; € BA(N) and @ (t)isa
vector of atomic Boolean polynomials of BA(N) at time t.

Dynamics of interpolative Boolean network is defined by
the following equations:

xt+n] [ e (xl1 (€)X, (t))
X+ D | 12 (% (O, ()
. " 17)
[0 (1)
[0, ()

where x(t +1) = [x,(t+1) | i=1,...,m]", x(t +1) € [0,1]™,
is the state of IBN at time ¢ + 1 and m is the number of nodes.

The interpolative Boolean network evolves according
to the principle of structure functionality. This secures
the Boolean frame and the logical validity of the model’s
dynamics. The global dynamics is characterized by the
existence of point, cycle, and/or chaotic attractors, with the
corresponding basins of attraction. The behavior of IBN can
be fundamentally different depending on which basin of
attraction the initial states are located. If the initial state of
each node is two-valued, IBN reduces to the classical model;
that is, the structure functionality principle reduces to the
truth functionality principle. IBN can be used for modeling
complex systems which may or may not exhibit the threshold
behavior.

The behavior of IBN depends on the way how generalized
product operators are treated. The adequate generalized
product operator for the two variables is determined with
respect to the nature of the variables. Two logical variables
x;(t) € [0,1] and x]-(t) € [0,1] are of the same nature
if they represent the same quality. If this is the case, the
adequate generalized product operator is minimum function;

Logical functions

Input to the
system

Validation
module

!

jFuzzylBATranslator

!

Simulation
module

Initial states

Module for
displaying results

Internal
commands

FIGURE 1: Software support tool architecture.

that is, x;(t) ® x;(£) = min(x;(t), x;(t)). If two variables are of
the same nature, but negatively correlated, the Lukasiewicz
operator is used; thus, x;() ®xj(t) = max(x;(t) + x]-(t) -1,0).
On the other hand, if two variables are not correlated, that is,
these variables are of the different nature, the proper operator
is ordinary product, and thus, x;(t) ® xj(t) = x;(t) - xj(t).

In IBN, different operators for generalized product can
be used for any pair of variables. In this way, the nature of the
variables can be fully taken into consideration. Comparing
to the Boolecube/Hillcube approach, in which it is assumed
that all variables are of the different nature, IBN offers more
descriptive power. The Boolecube/Hillcube implicitly take
into account the structure of elements; its Boolean indicator
functions have the role of IBN structure vector, but the only
ordinary product is applied as the t-norm. In other words,
if each generalized product operator in IBN is treated as
ordinary product, the proposed approach reduces to the
Boolecube/Hillcube approach (see (4), (6), and (15)). Further,
IBN utilize comprehensible and direct IBA transformation
procedure from logical function to GBP given in (13), which
provides an easier interpretation of the model.

4.1. Software Support. For the task of modeling and analysis
of complex dynamical systems, the software tool imple-
menting interpolative Boolean networks is developed. The
architecture of the software is shown in Figure 1. The software
is based on jFuzzylBATranslator, the very first software
realization of IBA, which can also process conventional fuzzy
expressions [45]. jFuzzylBATranslator is an application writ-
ten in the Java programming language using NetBeans 6.9
development environment. The task of jFuzzyIBATranslator
is to transform logical functions into corresponding gener-
alized Boolean polynomials according to the transformation
rules given in (13). Logical functions are validated (syntax
validation, nested parentheses, etc.) and then forwarded to
jFuzzyIBATranslator. The minimal GBPs are obtained after
application of the distributivity law and the rule of idempo-
tency. The developed software tool is covered by jUnit tests,
a popular testing framework for Java [46], to verify software
correctness.

The procedure for complex systems modeling and analy-
sis using the software tool is the following. The input to the
software is the number of nodes of IBN, where each node
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FIGURE 2: Structure of WNT5A gene regulatory network.

represents a system’s component, and an initial state and a
logical function for each node. The states take initial values
from the unit interval. Logical functions are validated and
transformed into GBPs. The nodes evolve in discrete time,
governed by the GBPs. Since the initial states and the GBPs for
each node are obtained, IBN can be simulated. The software
tool predicts the future behavior of a complex system. After
a number of iterations, an attractor is reached, while the
dynamics of each node are presented in the graphical form.
The software can be used for analysis of classical Boolean
networks. In this case, it is sufficient to enter the binary initial
states for each node.

5. Illustrative Examples

To illustrate the proposed approach, two classical BN models
are taken from the literature as examples and generalized
using IBA. The obtained IBN models are then simulated
with the software tool presented in Section 4.1. Further,
the obtained IBN results are compared to the results of
conventional fuzzy BN and Boolecube approach.

5.1. Comparing the IBN Approach to the Conventional Fuzzy
BN Approach. To compare the proposed IBN approach with
the conventional fuzzy BN approach, the example of WNT5A
gene regulatory network (Figure 2) is used. The WNT5A gene
regulatory network is related to melanoma and thoroughly
studied as BN in [47, 48]. First, the basic model is generalized
to obtain both fuzzy BN and IBN models. Further, these real-
valued networks are simulated using two ¢-norms: minimum
and ordinary product. Finally, the obtained results are com-
pared and discussed.

The basic WNT5A gene regulatory network dynamics is
described with the following logical expressions [48]:

x; (t+1) = x4 ()

x, (E+ 1) = (=, (£) Axy (t) A xg (1))

Complexity

V (%, (1) A (x4 (1) V x4 (1))
x5 (E+1) = =x; (£)
Xy (t+1) = x,(t)
x5 (t+1) = x, (t) Ax, (2)
Xg(t+1) = x5 (t) Vx, ()

X7 (E+1) = 2x, () V x5 (1),
(18)

where x(t +1) = [x,(t +1) |i=1,...,7)7, x(t + 1) € {0,1}.

The corresponding IBN model, presented in (A.1) of
Appendix A, is obtained by mapping Boolean functions from
(18) into the generalized Boolean polynomials. To translate
the obtained GBPs, two operators of generalized product are
used and their results are compared. In the first case scenario,
a minimum function is used as an operator of generalized

product; that is, x; ® x; = min(x;, x;), where i, j = 1,...,7.In
the second case scenario, generalized product is replaced with
an ordinary product, x; ® x; = x; - x;, where i, j = 1,...,7.

For both of selected operators, the proposed IBN model is
reduced to the classical fuzzy network model and results are
compared.

Casel. Inthefirst case scenario, we investigate the differences
between IBN and classical fuzzy BN approach in the case of
the Godel (minimum) ¢-norm. The following equations (19)
and (20) present, respectively, IBN and conventional fuzzy
BN generalizations of the classical BN given in (18), obtained
with minimum operator.

IBN model with minimum operator (® := min) for
WNT5A gene regulation is defined with the following set of
equations:

X, (t+1)=1- x4 (t)
X, (t+1) = min (x4 (£), x4 (£)) — 2

-min (x, (£),, x4 (t) , x6 (t))

+min (x, (), x, ()

+min (x, (), x4 (1)) (19)
X3 (t+1)=1-x,(t)
x, (E+1) = x, ()
x5 (t+1) = x, (t) — min (x, (£), x; (£))
X6 (t+1) = x5 (1) + x, (£) — min (x5 () , x4 (1))

x; (t+1) =1-x,(t) + min (x, (t), x, (£)),

where x(t) = [x;(t) | i = L...,7]" and x(¢) € [0,1]".
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TABLE 1: Final state values for WNT5A gene regulation network nodes in IBN and fuzzy BN models obtained with minimum operator.
X, X, X5 X, X5 Xg X,
Initial states 0 0.6 0 0.6 0 0 0
Final states (IBN) 0.4 0.6 0 0.6 0 0.6
Final states (fuzzy BN) 0.4 0.6 0.6 0.6 0.6 0.6 0.4
1 1
0.8 1 0.8 1
0.6 0.6
0.4 A 0.4 1
0.2 1 0.2 1
0 ) 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
t t
N xl(i) _ xs(i) — X () o x5(t)
e R — %) — x(0)
o Y — x50 (1)
- x4( ) — Xy t)

FIGURE 3: Dynamics of the IBN model for WNT5A gene regulation
with initial state conditions X(0) = [0;0.6;0;0.6;0;0;0] and
minimum operator used as t-norm. The IBN model reaches the
point attractor in 4th iteration X(4) = [0.4; 0.6; 0; 0.6; 0; 0.6; 1].

The conventional fuzzy BN model with minimum opera-
tor for WNT5A gene regulation is defined with the following
set of equations:

x (t+1)=1-x4(t)
X, (£ + 1) = max (min (1 — x, (), x4 (), x4 (£)),

min (x, (t), max (x, (t), x4 (¢))))

x;(t+1)=1-x,(t)

(20)
Xy (1) = x, (1)

Xs (t+1) =min (x, (£),1 - x, (t))
Xg (t+ 1) = max (x; (t), x4 (t))
x; (t+1) =max (1 - x, (), x, ().

Both IBN and fuzzy BN models are simulated for the same
initial conditions. The obtained dynamics are presented in
Figures 3 and 4.

The final results of the experiment are presented in
Table 1.

Although the dynamics of the state variables are similar
in two approaches, state variables x;(t), x5(t), and x,(t)
reach significantly different point attractors in IBN model as
compared with fuzzy BN model (values are bold in Table 1).
These differences are due to inconsistency (in a Boolean
sense) of the conventional fuzzy logic approach.

FIGURE 4: Dynamics of the fuzzy BN model for WNT5A gene reg-
ulation with initial state conditions X(0) = [0;0.6;0;0.6;0; 0; 0] and
minimum operator used as t-norm. The fuzzy BN model reaches the
point attractor in 4th iteration X(4) = [0.4; 0.6; 0.6; 0.6; 0.6; 0.6; 0.4].

Case 2. In the second case scenario, we investigate the dif-
ferences between IBN and classical fuzzy BN approach in the
case of the ordinary product t-norm. The following equations
(21) and (22) present, respectively, IBN and conventional
fuzzy BN generalizations of the classical BN given in (18),
obtained with product operator.

The IBN model with product operator (® := -) for
WNT5A gene regulation is defined by the following set of
equations:

x (t+1)=1-x4(t)
X, (B+1) =x, () - x5 (£) =2+ %, () - x4 (t) - x4 (1)
+x, (F=1) x4 (8) + %, () - x4 (2)
x;(t+1)=1-x,(t)
(21)
xq (t+1)=x,(t)
x5 (t+1) =x, (t) —x, () - x; (t)

Xg (t+1) = x5 (t) + x4 () — x5 (£) - x4 ()

x; (t+1)=1-x,()+x,(t) x, (1),

where x(t) = [x;(t) | i = L...,7]" and x(¢) € [0,1]".
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TABLE 2: Final state values for WNT5A gene regulation network nodes in IBN and fuzzy BN models obtained with product operator.

X1 ) X3 Xy Xs X6 X7
Initial states 0 0.6 0 0.6 0 0 0
Final states (IBN) 0.4 0.69 0 0.6 0 0.6
Final states (fuzzy BN) 0.4 0.55 0 0.6 0 0.6 1
14 1 -
o b -
0.6 414 0.6 L
0.4 0.4
02 02 |
0 0
STAMTNOR®AISNNSRAREARENRS NN INON ORI NONBARIN]T
¢ t
— x;(t) — x5(t) — x,) — x5(t)
—— x,(t) — x4(t) —— x,(t) — xg(t)
— x5(t) x7(t) —— x5(t) x7(t)
— x%(0) — x4(t)

FIGURE 5: Dynamics of the IBN model for WNT5A gene regulation
with initial state conditions X (0) = [0; 0.6; 0; 0.6; 0; 0; 0] and product
operator used as t-norm. The IBN model reaches the point attractor
in 22nd iteration X(22) = [0.4; 0.69; 0; 0.6; 0; 0.6; 1].

On the other hand, the conventional fuzzy BN model with
the same product operator for WNT5A gene regulation is
defined as

X, (t+1)=1-x(t)

Xy (E+1) = x4 (£) - x6 (£) = 2+ %, (£) - x4 (£) - x4 (2)
40, (1) %, (1) + x5 (1) - x6 (1) — (1 = x5 (8))
EAOREAGREA )

(%4 (1) + x6 () = x4 () - x5 (1))

x3(t+1)=1-x,(t)

(22)

x (t+1)=x,(t)
X5 (t+1) =x, () — x5 (£) - x5 ()
Xe (t+1) =x5 () + x4 () — x5 (t) - x4 (t)

X, (t+1)=1—-x, () +x,(t) - x,(1).

Notice that in this case the only difference between the two
models is in the second equation. The Boolean function for
state variable x, (t) from (18) is too complex to be generalized
in the Boolean consistent way with the conventional fuzzy
approach.

Models are simulated for the same initial conditions, and
obtained dynamics are presented in Figures 5 and 6.

FIGURE 6: Dynamics of the fuzzy BN model for WNT5A gene reg-
ulation with initial state conditions X(0) = [0;0.6; 0; 0.6; 0; 0; 0] and
product operator used as t-norm. The fuzzy BN model reaches the
point attractor in 22nd iteration X (22) = [0.4; 0.55;0; 0.6; 0; 0.6; 1].

The final results of the experiment are presented in
Table 2.

In this case scenario, the dynamics of the state variables of
the two models are much more similar than in the previous
case. There is only one state that significantly differs in the
value of the point attractor reached, and it is x, (). It is a direct
consequence of the difference between IBN and fuzzy BN
model for x, state space equations. However, this difference
is important since it indicates inconsistency in the classical
fuzzy BNs. It is also important to mention that the presented
WNTS5A gene regulation models based on product operator
need more time to reach its point attractors comparing to the
previous models based on minimum operator. This is due to
the characteristics of the operator itself.

5.2. Comparing the IBN Approach to the Boolecube Approach.
To compare the proposed IBN approach with the Boolecube
approach, the example of modeling gene interaction is used.
The starting point is the classical BN model used in [7]
to describe interactions between the Drosophila segment
polarity genes. The following equations specify its dynam-
ic:

0, ie{l,2}

SLP; (t+1) =
1, ie{3,4)

wg; (t + 1) = (CIA; (t) A SLP; (t) A -CIR,; (£))
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TaBLE 3: Final state values for Drosophila segment polarity genes model variables in IBN approach and Boolecube approach.
SLP, wq, WG en; EN; hh; HH; pt; PTG ci; CI, CIA; CIR;
Initial states 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Final states (IBN) 0.5 0 0 0.35 0.35 0.12 0.12 0 0 0.65 0.65 0 0.65
Final states (Boolecube) 0.5 0 0 0.45 0.45 0.2 0.2 0 0 0.55 0.55 0 0.55

Vv (wg; (t) A (CIA; () V SLP; (1)) A =CIR; (1))
WG; (t +1) = wg; (t)
en; (t+1) = (WG,_, (t) V WG, (t)) A —SLP, (t)
EN; (t + 1) = en; (t)
hh; (¢t + 1) = EN; (£) A =CIR, (¢)
HH, (t + 1) = hh, ()
ptc, (£ + 1) = CIA, (£) A =EN; () A ~CIR, (£)
PTC; (t + 1) = ptc; (t) V (PTC; (t) A ~HH,_, (¢)
A-HH,, (1))
ci; (t+1) = "EN; (¢)
CL(t+1) =ci; (t)
CIA; (t + 1) = CI; (t) A (=PTC; (t) VHH,_, (¢)
vV HH,,, (#) Vhh,_, (t) v hh,,, (t))
CIR, (t + 1) = CI, (t) APTC, (t) A ~HH, , (¢)
A -HH,;,, (t) A =hh,_, (t) A =hh,,, (1),
(23)

where (£) = [SLP;(t), wg,(t), WG;(t), en;(t), EN,(¢), hh;(t),
HH; (t), ptc,(t), PTC;(t), ci;(t), CL(t), CIA,(t), CIR; ()] " is the
network state at time ¢, and x(t) € {0, 1}"°.

The IBN model, presented in (B.1) of Appendix B, is
obtained by mapping the Boolean functions into generalized
Boolean polynomials. Operators of generalized product in
this model are treated in the following way. Since the variables
WG;_,(t) and WG, (t), HH,_, (t) and HH,,, (¢), hh,_,(¢) and
hh;,,(t) are of the same nature, the adequate generalized
product operator for these pairs of variables is minimum
function. Thus,

WG, (1) @ WG, (1)

= min (WG,_, (t), WG;,, (1)),
(24)
HH,_, (t) ® HH,,, (t) = min (HH,_, (t), HH,,, (1)),

hh, , () ® hh;,, (t) = min (hh,_, (), hh,,, (1)).

The remaining variables are of different nature and, therefore,
the adequate operator of generalized product is the ordinary
product. The final IBN model is presented in (B.2) of
Appendix B.

1.0 §
0.9 1
0.8 1

0.7 4=\
0.6 \
05 - \

0.4 1

0.3 1
0.2 1
0.1 A
0.0

—— SLP;() — ptei(1)
— wq,(t) PTC,(t)
— WG;(t) — ci;(t)
— en;(t) — CL(t)
— EN;() CIA(t)
—— hh;(t) CIR;(t)
— HH,(®)

FIGURE 7: Dynamics of the IBN model of Drosophila seg-
ment polarity genes interactions with initial state conditions
X(0) = [0.5;0.7;0.7;0.7;0.7;0.7; 0.7;0.7; 0.7; 0.7; 0.7; 0.7; 0.7]. 'The
IBN model reaches the point attractor in 7th iteration X(7) = [0.5;
0; 0; 0.35; 0.35; 0.12; 0.12; 0; 0; 0.65; 0.65; 0; 0.65].

On the other hand, in the Boolecube/Hillcube approach,
each generalized product in (B.1) is replaced with an ordinary
product. The final Boolecube/Hillcube model is presented in
(B.3).

Both IBN and Boolecube/Hillcube models are simulated
using the following initial conditions (0) = [0.5,0.7,0.7,0.7,
0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7]. The obtained models’
dynamics are presented in Figures 7 and 8.

The final results of the experiment are presented in
Table 3.

It is easy to see differences in IBN and Boolecube models
dynamics and their point attractors reached. This difference
is a direct consequence of the nature of the model variables
that is taken into account when selecting an appropriate
operator in the IBN approach, unlike the Boolecube/Hillcube
approach. For this reason, the IBN offers superior descriptive
power and it is adaptive with respect to nature of inputs.
In fact, the IBN approach can be considered as the general-
ization of the Boolecube/Hillcube approach since it can be
reduced to it when only the product t-norm is used as an
operator of the generalized product.
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1.0 4
0.9 4
0.8 4
0.7 4

AN
o] WA

0.1 A
0.0

—— SLP;(t) — pte;(t)
— wg,(t) PTC,(1)
— WG;(t) — ci;(t)
— en;(t) — CL(®)
— EN;(t) CIA(t)
—— hh;(t) CIR;(t)
—— HH;(1)

FIGURE 8: Dynamics of the Boolecube model of Drosophila
segment polarity genes interactions with initial state conditions
X(0) = [0.5;0.7;0.7;0.7;0.7;0.7; 0.7;0.7;0.7; 0.7; 0.7; 0.7; 0.7]. 'The
Boolecube model reaches the point attractor in 7th iteration X(7) =
[0.5; 05 0; 0.45; 0.45; 0.2; 0.2; 0; 0; 0.55; 0.55; 0; 0.55].

6. Conclusion

Logical approaches are widely used for modeling and analysis
of complex dynamical systems. Classical models are within
the Boolean frame, which secures the validity of their
dynamics. Such models are adequate for modeling system
which exhibit threshold behavior. If more detail is required,
the Boolean networks should be generalized to include real-
valued case.

In this paper, interpolative Boolean networks are pro-
posed. They are based on interpolative Boolean algebra and
represent a Boolean consistent real-valued generalization of
classical Boolean networks. The validity of their dynamics
is secured thanks to the principle of structure functionality.
Furthermore, the proposed approach is a generalization of
the current state-of-the-art approaches (e.g., Boolecube/Hill-
cube) and offers a guideline for the appropriate realization of
generalized product. Also, IBN utilizes comprehensible and
direct IBA transformation procedure from logical function
to GBP.

Interpolative Boolean networks can be used to predict
behavior of complex systems. For the purpose of their
practical application, a simple software support tool is devel-
oped. The proposed approach is applied on two examples
from the literature and compared against other real-valued
logical approaches. Interpolative Boolean networks offer
superior descriptive power compared to other approaches.
This approach facilitates modeling and analysis of sys-
tems too complex for quantitative mathematical approach-
es.

Complexity

Appendix

A. WNT5A Gene Regulatory Network Realized
Using IBN

The WNT5A gene regulatory network realized as IBN is
defined by the following equations:

x, (t+1)=1-x4(t)
X, (t+1) = x, (1) ® x4 (1) — 2x, () @ x4 () ® x4 (£)

+ 2, (1) @ x4 (1) + x, () ® x4 (1)
x3(t+1)=1-x,(t)

(A1)

xg (t+1)=x,(t)
X5 (t+1)=x, () —x,(t) ® x5 ()
Xe (t+1) =25 () +x,(2) — x5 () ®x, (F)

X, (t+1)=1-x,) +x,(t) ®x, (1),

where x(t) = [x;(t) | i = L...,7]  and x(t) € [0,1].

B. Drosophila Segment Polarity Genes
Regulatory Network Realized Using IBN

The Drosophila segment polarity genes network realized as
IBN is defined by the following equations:

SLP, (t + 1) = SLP; (£)

wg; (t + 1) = (CIA, (t) A SLP; (t) A =CIR,; (t))
V (wg; (t) A (CIA, () V SLP; (1)) A =CIR; (1))
= CIA, (t) ® SLP, (t) — CIA, (t) ® SLP, (t)
® CIR; (1) + CIA, (t) ® wg, (t) + SLP, (t) ® wg, ()
—2 % CIA, (t) ® SLP, (t) ® wg; (t) — CIA, (¢)
® CIR; (t) ® wg; (t) — CIA; (t) ® CIR; (t) ® wg; (t)
+2 % CIA, (t) ® SLP, () ® CIR, (1) ® wg, (t)

WG; (t + 1) = wg; (t)

en; (t +1) = (WG,_, (t) V WGy, (£)) A =SLP; (¢)
= WG, , (t) + WG, (t) - WG,_, (t) ® WG,,, ()
- WG, , (t) ® SLP, (t) - WG, (t) ® SLP; (t)
+WG,_, (t) ® WG,,, (t) ® SLP, (t)

EN, (t +1) = en; (t)

hh; (£ + 1) = EN, (t) A -CIR, (t) = EN, (t) - EN; (¢)
® CIR; (1)

HH, (¢ + 1) = hh, (1)
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ptc, (t + 1) = CIA, (£) A =EN,; (£) A ~CIR, (1)
= CIA, (t) - CIA, (t) ® EN; (t) — CIA, (t)
® CIR, (t) + CIA, () ® EN, (1) ® CIR, (t)
PTC; (t + 1) = ptc; (t) V (PTC; (t) A =HH,_, (¢)
A=HH,,, (¢)) = pte; (t) + PTC; () - PTC; (t)
® HH, , () - PTC, (t) ® HH,,, (t) + PTG, (t)
® HH,_, () ® HH,,, (t) - ptc, (t) ® PTC; (t)
+ ptc; () ® PTC; (t) ® HH,_, () + ptc; (t)
® PTG, (t) ® HH,,, (t) - ptc, (t) ® PTC; (t)
® HH, , (t) ® HH,,, (t)
ci; (t + 1) = =EN, (t) = 1 — EN; (¢)
CL(t+1) =ci; ()
CIA; (t + 1) = CL (t) A (=PTC; (t) v HH,_, (¢)
v HH,,, (t) vhh,_, (t) vhh,,, (t)) = CL (t)
- CI (t) ® PTC, (t) + CI (t) ® PTC, (t)
® HH, , (t) + CI, () ® PTC, (f) ® HH,,, (f)
+CI, (t) ® PTC, () ® hh,_, (t) + CI, (¢)
® PTC, () ® hh,,, (t) - CI, (t) ® PTC; (t)
® HH, , (t) ® HH,,, (t) - CI, (t) ® PTC, (t)
® HH, , (t) ® hh, , (t) - CI, (t) ® PTC; (£)
®HH, , (t) ® hh,,, (t) - CI, (t) ® PTC, (¢)
®HH,,, (t) ® hh, , (t) - CI, (t) ® PTC, (¢)
® HH,,, (f) ® hh,,, (t) - CI, (t) ® PTC; (£)
®hh, , (t) ® hh,,, (t) + CI, (t) ® PTC, (¢)
® HH, , (f) ® HH,,, (t) ® hh, , () + C, (1)
® PTC; (t) ® HH, , (t) ® HH,,, (t) ® hh,,, (t)
+CI () ® PTC, (t) ® HH, , () ® hh, , (t)
®hh,,, (t) + CI, (1) ® PTC, (t) ® HH,,, (¢)
®hh, , (t) ®hh,,, (t) - CI, (t) ® PTC; (£)
® HH;_, (t) ® HH,,, (1) ® hh,_, (t) ® hh,,, ()
CIR, (t + 1) = CI, (t) APTC; (t) A ~HH,_, (t)
A=HH,,, (t) A =hh,_, () A =hh,,, (t) = C (¢)
® PTG, (t) - CI, (t) ® PTC; (t) ® HH,_, (t)
- CI, (t) ® PTC, (t) ® HH,,, (t) - CI, (¢)
® PTC, (t) ® hh,_, () - CI, (t) ® PTC, (t)

1

®hh,,, (t) + CI, (1)  PTC, (t) ® HH, , (¢)
®HH,,, (t) + CI, (t) ® PTC, (t) ® HH, , (¢)
®hh, | (t) + CI, (1) ® PTC, () ® HH, , (t)
®hh, , (t) + CI, (1) ® PTC, (t) ® HH,,, (¢)
®hh, | () + CI, (1) ® PTC, (t) ® HH,,, (t)
®hh,,, (t) + CI, (t) ® PTC, (t) ® hh, , (£)
®hh,,, (t) - CI, (1) ® PTC, () ® HH, , (t)
® HH,,, (t) ® hh, , (t) - CI, (t) ® PTC, (¢)
®HH, , (t) ® HH,,, (t) ® hh,,, (t) - CI, (¢)
® PTC,; (t) ® HH,_, (¢) ® hh,;_; (t) ® hh,,; (¢)
- CI, (t) ® PTC, (t) ® HH,,, (t) ® hh, , (¢)
®hh,,, () + CI, (1) ® PTC, () ® HH, , (t)

® HH,,, (t) ® hh,_, (t) ® hh;,, (1),
(B.1)

where x(t) = [SLP;(t), wg;(t), WG;(t), en;(t), EN,(¢), hh;(t),
HH;(¢), ptc;(¢), PTC,(¢), ci;(¢), CL,(t), CIA i(1), CIR,; 17 is the
network state at time t, and x(t) € [0,1]"

Taking into account the nature of the Variables, this IBN
is realized as follows:

SLP, (t + 1) = SLP, ()
wg; (t + 1) = (CIA; () ASLP; (1) A -CIR,; (1))
Vv (wg; (t) A (CIA; (t) V SLP; (1)) A =CIR; (1))
= CIA, (t) * SLP; (t) — CIA, (t) * SLP, ()
« CIR; (t) + CIA, (t) * wg, () + SLP; (t) * wg, (t)
~2 % CIA; (t) * SLP, () * wg, (t) — CIA, ()
% CIR; (t) * wg; () - CIA, () * CIR; (t)
+ wg, () +2 = CIA, (t) * SLP; (t) * CIR; (t)
* wg, (t)
WG, (t +1) = wg, (t)
en; (t+1) = (WG, (t) VWG, (t)) A =SLP; (t)
= WG, (t) + WGy, ()
- min(WG,_; (t),WG,,; (t)) - WG,_, (t)
% SLP; (t) - WG, (t) * SLP; (t)
+min (WG,_; (t), WG, (t)) * SLP; (t)
EN; (t+1) =en; (t)
hh; ( + 1) = EN; (t) A ~CIR, (t) = EN; (t) - EN; (t)
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« CIR, (1) « PTC, (t) - CI, (t) * PTC, () » HH,_, (t)

HH; (t + 1) = hh; (¢) - CI, (t) * PTC; (t) * HH,,, (t) — CL (t)

ptc; (t + 1) = CIA, (t) A =EN, (£) A ~CIR, (£) « PTC, () = hh, , (t) - CL (t) * PTC, (¢)

= CIA, (t) - CIA, (t) * EN, (t) - CIA, (t) « b, (6) + CI (£) = PTC, (8
x CIA; (t) + CIA,; (t) * EN. (t) = CIR; (t
(8)+ CIA; (1) i) /() + min (HH,_, (t), HH,,, (t)) + CI, () * PTC, (t)
PTC; (t + 1) = ptc; (t) V (PTC; (t) A =HH,_; (¢)
« HH, | (t) * hh, , (t) + CL (t) * PTG, (t)
A=HH,,, (t)) = ptc; (t) + PTG, (t) - PTC; (t)
* HH,_, (t) * hh,_, (t) + CL (t) * PTC; (t)
« HH, , (t) - PTC, (t) » HH,,, (t) + PTC, (t)
+* HH,, (t) = hh;_, (¢t) + CI,; (t) = PTC; (t)
+ min (HH,_; (¢), HH,,, (t)) - ptc; (t) * PTC; (¢)
« HH,,, () = hh,,, (t) + CI, (t) * PTC, (t)
+ ptc; (¢) = PTC,; (t) =« HH;_; (t) + ptc; (¢)
x min (hh,_; (t),hh;,, (t)) - CI, (t) = PTC; (t)
« PTC, (t) * HH,,, (t) - ptc; () * PTC, (t)
i (HHL_, (6, HEL, () * min (HH,_; (t),HH,,, (t)) = hh,_; (¢) — CL, ()
* min i , it
(4 1) EI\; =1 IEN ) + PTC; (1) * min (HH,_, (), HH,,, (1))
Cy =eN; (1) = 1 =Bl
CLt+1) = ch () « hh,,, (t) - CL (t) * PTG, (t) * HH, , (¢)

CIAL (4 1) = CI, () A (~PTC, (v HEL , () « min (hh,_, (£),hh;,, (t)) = CI, (t) = PTC, (t)

V HH,,, (t) V hh_, (£) v hhy,, (1)) = CI, (¢)
— CI, (t) * PTC; () + CI, (t) * PTC, (¢)
* HH,_, (t) + CI, (t) * PTC; (t) * HH,,, (¢)

# HH,,; () * min (hh;_; (), hhy,, (1)) + CL ()
* PTG, (t) » min (HH,_, (), HH,,, ()
+ min (hh,_, (¢),hh;,; (t)),

(B.2)
+ CI, (t) = PTC; (¢) = hh,_, (t) + CL, (¢)
where x(t) = [SLP;(t), wg;(t), WG;(t), en,(t), EN;(¢), hh, (),
HH; (t), ptc;(t), PTC,(t), i (£), CL,(t), CIA,(t), CIR;(£)]" is the
network state at time ¢, and x(¢) € [0,1]".
The final Boolecube model of the Drosophila segment
polarity genes network is defined by the following equations:

+ PTC; (t) * hh,,, (t) - CL (¢) * PTC, (t)

+ min (HH,_; (¢),HH,,, (t)) — CI, (¢) = PTC; (¢)
+ HH,_, (t) * hh,_, (t) - CL (t) * PTC; (t)

+ HH,_, (t) * hh,,, (t) - CL (t) * PTC; (t) SLP, (t + 1) = SLP, (¢)
* HH;,, (t) * hh,_, (t) — CI, (t) * PTC; (t)

. = (CIA; SLP; -CIR;
« HH,., () * By, (6) — CI, t) % PTC, () g (t+1) = (ClA; () A SLE; () A ~CIRy (1)

« min (hh,_, (6), hh,,, (1)) + CL () * PTC, () v (wg; (1) A (CLA; (1) v SLP; (1)) A =CIR; (1))

« min (HH,_, (6), HH,_. () = hh,_ (6 + CI, (© = CIA, (t) * SLP, (t) - CIA, (t) * SLP, (¢)

+ hh,,, (t) + CL, (t) = PTC; (t) * HH,_, (t) — 2+ CIA; (t) * SLP; () * wg; (t) — CIA, (1)

« min (hh; | (t),hh,,, (t)) + CL, (t) * PTG, () * CIR; (1) * wg; (t) — CIA,; (t) * CIR, (t) * wg; (t)

« HH,,, (t) * min (hhi_l (t),hh,,, (t)) ~CI () +2 % CIA; (t) = SLP; (t) * CIR; (t) * wg; (t)

« PTC, () * min (HH,_, (), HH,,, ()) WG; (£ +1) = wg; (1)

« min (hh,_, (), hh,,, () en; (t+1) = (WG, (t) VWG, (t)) A =SLP; (t)

CIR, (t + 1) = CI, (£) APTC, (t) A -HH,_, (¢) = WGy () + WGy, (1) = WG, (B)

A=HH,,, (t) A =hh,_, (£) A =hh,,, (t) = CI, () * WGy, (8) = WG, (1) * SLP; (£) = WG;y, (1)
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% SLP, () + WG,_, () * WG,,, (t) = SLP, ()
EN, (t + 1) = en; (f)
hh, (¢ + 1) = EN; (t) A =CIR,; (¢) = EN; (t) — EN; ()
« CIR, (t)
HH, (¢ + 1) = hh, ()
ptc; (t + 1) = CIA, (£) A =EN, (£) A ~CIR, (£)
= CIA, (t) - CIA, (t) * EN, (t) — CIA, (£)
# CIR, (t) + CIA, (t) * EN; () * CIR,; (t)
PTC; (t + 1) = ptc; (¢) V (PTC; (t) A =HH,_, (t)
A-HH,,, () = ptc; (t) + PTC, (t) — PTC, (t)
« HH, , (t) - PTC, (t) » HH,,, (t) + PTC, (£)
« HH, | (t) » HH,,, (t) - ptc; (t) * PTC, (t)
+ptc; (t) = PTC, (t) » HH, | () + ptc; (£)
« PTC, (t) » HH,,, () — ptc; (t) * PTC; (£)
« HH, | (t) * HH,,, ()
ci; (t + 1) = =EN, (t) = 1 - EN; (¢)
CL(t+1)=ci(t)
CIA; (t + 1) = CL (t) A (=PTC; (t) V HH,_, (t)
Vv HH,,, (#) Vhh,_, (t) v hh,,, (t)) = CI, (¢)
— CI, () * PTC, (t) + CI, () * PTC, (¢)
« HH, | (t) + CI, (t) * PTC, (t) » HH,,, ()
+CI, (t) % PTC, (t) » hh, , (t) + CIL, (¢)
* PTG, (t) * hh,,, (t) - CI, () * PTG, (t)
« HH, | (t) * HH,,, (t) - CI, () * PTG, (t)
« HH,_, (t) * hh,_, (£) - CI, (t) * PTC, (t)
* HH, | () * hh,,, (t) - CI, () * PTG, (t)
« HH,,, (t) * hh,_, (t) - CI, (t) * PTC, (t)
« HH,,, (t) * hh,,, (£) - CI, (t) * PTC, (t)
«hh, | (t) * hh,,, (t) + CIL, (t) * PTC, (t)
« HH, | (t) = HH,,, (t) * hh,_, (t) + CL (¢)
« PTC, (t) * HH, | (t) » HH,,, (t) * hh,,, ()
+CL (t) * PTC; (t) » HH,_, (t) = hh,_, (£)
« hh;,, (t) + CI, () * PTC, (t) » HH,,, (£)
«hh, | (t) * hh,,, (t) - CI, (t) * PTG, (t)
« HH, | (t) = HH,,, (t) * hh,_, (t) * hh,,, (t)
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CIR; (t + 1) = CI; (t) APTC; (t) A ~HH,_, (¢)
A -HH;,, (t) A =hh;_; (t) A =hh;,, (t) = CIL, (1)
« PTC; (t) — CL (t) = PTC; (t) * HH,_, (¢)
- CI; (¢) = PTC; (¢) * HH,;,, () — CL; (¥)
# PTC; (t) * hh;_, (t) — CIL (t) * PTC, (1)
x hh;,, (t) + CL () * PTC; (t) = HH,_, (¢)
* HH; 4

«hh,_| (t) + CL () » PTC, (t) » HH,_, (£)

(t) + CI; () * PTC; (t) * HH,_, (¢)

«hh,_, (t) + CL () * PTC, () * HH,,, (t)
«hh,_| (t) + CL (t) * PTC, (t) » HH,,, (£)

« hhy,, (£) + CL (t) * PTC, (£) * hh,_, (1)
«hh;,, (t) - CL (t) * PTC, (t) « HH, , ()

« HH,,, (t) = hh,_, (t) - CL, (£) * PTC, (£)

« HH, | () * HH,,, () = hh;,, () - CL (t)
« PTC, (t)  HH,_, (t) * hh,_, () = hh,,, (£)
—CI, () * PTC, () * HH,,, () * hh,_, (£)
«hh,,, (t) + CL () * PTC, (t) » HH, | (£)

* HH;,y () = hhy_, (£) = hhy,, (£),
(B.3)

where x(t) = [SLP;(t), wg,(t), WG;(t), en;(t), EN,(¢), hh;(t),
HH, (t), ptc;(¢), PTC,(¢), ci; (£),CL(¢), CIAé(t), CIRi(t)]T is the

network state at time ¢, and x(t) € [0,1]".
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