Skip to main content
Log in

Ramsey degrees of ultrafilters, pseudointersection numbers, and the tools of topological Ramsey spaces

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

This paper investigates properties of \(\sigma \)-closed forcings which generate ultrafilters satisfying weak partition relations. The Ramsey degree of an ultrafilter \({\mathcal {U}}\) for n-tuples, denoted \(t({\mathcal {U}},n)\), is the smallest number t such that given any \(l\ge 2\) and coloring \(c:[\omega ]^n\rightarrow l\), there is a member \(X\in {\mathcal {U}}\) such that the restriction of c to \([X]^n\) has no more than t colors. Many well-known \(\sigma \)-closed forcings are known to generate ultrafilters with finite Ramsey degrees, but finding the precise degrees can sometimes prove elusive or quite involved, at best. In this paper, we utilize methods of topological Ramsey spaces to calculate Ramsey degrees of several classes of ultrafilters generated by \(\sigma \)-closed forcings. These include a hierarchy of forcings due to Laflamme which generate weakly Ramsey and weaker rapid p-points, forcings of Baumgartner and Taylor and of Blass and generalizations, and the collection of non-p-points generated by the forcings \({\mathcal {P}}(\omega ^k)/\mathrm {Fin}^{\otimes k}\). We provide a general approach to calculating the Ramsey degrees of these ultrafilters, obtaining new results as well as streamlined proofs of previously known results. In the second half of the paper, we calculate pseudointersection and tower numbers for these \(\sigma \)-closed forcings and their relationships with the classical pseudointersection number \({\mathfrak {p}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arias, A., Dobrinen, N., Girón-Garnica, G., Mijares, J..G.: Banach spaces from barriers in topological Ramsey spaces. J. Log. Anal. 10(5), 42 (2018)

    MATH  Google Scholar 

  2. Bartoszyński, T., Judah, H.: Set Theory on the Structure of the Real Line. A. K, Peters, Ltd (1995)

    MATH  Google Scholar 

  3. Baumgartner, J.E., Taylor, A.D.: Partition theorems and ultrafilters. Trans. Am. Math. Soc. 241, 283–309 (1978)

    Article  MathSciNet  Google Scholar 

  4. Bell, M.: On the combinatorial principle p(c). Found. Math. 114, 149–157 (1981)

    Article  Google Scholar 

  5. Blass, A.: The Rudin-Keisler ordering of P-Points. Trans. Am. Math. Soc. 179, 145–166 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Blass, A.: Ultrafilter mappings and their Dedekind cuts. Trans. Am. Math. Soc. 188(2), 327–340 (1974)

    Article  MathSciNet  Google Scholar 

  7. Blass, A.: Ultrafilters related to Hindman’s finite-unions theorem and its extensions. Contemp. Math. 65, 89–124 (1987)

    Article  MathSciNet  Google Scholar 

  8. Blass, A.: Selective ultrafilters and homogeneity. Ann. Pure Appl. Logic 38, 215–255 (1988)

    Article  MathSciNet  Google Scholar 

  9. Blass, A., Dobrinen, N., Raghavan, D.: The next best thing to a P-point. J. Symb. Logic 80(3), 866–900

  10. Carlson, T.J.: Some unifying principles in Ramsey theory. Discret. Math. 68(2–3), 117–169 (1988)

    Article  MathSciNet  Google Scholar 

  11. Carlson, T.J., Simpson, S.G.: A dual form of Ramsey’s theorem. Adv. Math. 53(3), 265–290 (1984)

    Article  MathSciNet  Google Scholar 

  12. Carlson, T.J., Simpson, S.G.: Topological Ramsey theory. In: Mathematics of Ramsey theory, volume 5 of Algorithms and Combinatorics, pp. 172–183. Springer (1990)

  13. DiPrisco, C., Mijares, J.G., Nieto, J.: Local Ramsey theory. An abstract approach. Math. Logic Q. 63(5), 384–396 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Dobrinen, N.: High dimensional Ellentuck spaces and initial chains in the Tukey structure of non-p-points. J. Symb. Log. 81(1), 237–263 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dobrinen, N.: Infinite dimensional Ellentuck spaces and Ramsey-classification theorems. J. Math. Logic 16(1), 37 (2016)

    Article  MathSciNet  Google Scholar 

  16. Dobrinen, N.: Topological Ramsey spaces dense in forcings. In: Structure and Randomness in Computability and Set Theory, p. 32. World Scientific (2021)

  17. Dobrinen, N., Hathaway, D.: Classes of barren extensions. J. Symb. Logic. 86(1), 178–209 (2021)

    Article  MathSciNet  Google Scholar 

  18. Dobrinen, N., Mijares, J.G., Trujillo, T.: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points. Archive for Mathematical Logic, special issue in honor of James E. Baumgartner 56(7-8), 733–782. (Invited submission)

  19. Dobrinen, N., Todorcevic, S.: Tukey types of ultrafilters. Ill. J. Math. 55(3), 907–951 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Dobrinen, N., Todorcevic, S.: A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 1. Trans. Am. Math. Soc. 366(3), 1659–1684 (2014)

    Article  MathSciNet  Google Scholar 

  21. Dobrinen, N., Todorcevic, S.: A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 2. Trans. Am. Math. Soc. 367(7), 4627–4659 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ellentuck, E.: A new proof that analytic sets are Ramsey. J. Symb. Log. 39(1), 163–165 (1974)

    Article  MathSciNet  Google Scholar 

  23. Erdős, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. Lond. Math. Soc. 3(2), 417–439 (1952)

    Article  MathSciNet  Google Scholar 

  24. Galvin, F., Prikry, K.: Borel sets and Ramsey’s Theorem. J. Symb. Logic 38 (1973)

  25. Gowers, W.T.: An infinite Ramsey theorem and some Banach-space dichotomies. Ann. Math. 156(3), 797–833 (2002)

    Article  MathSciNet  Google Scholar 

  26. Henle, J.M., Mathias, A.R.D., Woodin, W.H.: A barren extension. In: Methods in mathematical logic. Lecture Notes in Mathematics, 1130, Springer (1985)

  27. Hindman, N.: Finite sums from sequences within cells of a partition of \(n\). J. Combinat. Theory. Ser. A 17, 1–11 (1974)

    Article  MathSciNet  Google Scholar 

  28. Kurilić, M.S.: Forcing with copies of countable ordinals. Proc. Am. Math. Soc. 143(4), 1771–1784 (2015)

    Article  MathSciNet  Google Scholar 

  29. Laflamme, C.: Forcing with filters and complete combinatorics. Ann. Pure Appl. Logic 49(2), 125–163 (1989)

    Article  MathSciNet  Google Scholar 

  30. Malliaris, M., Shelah, S.: General topology meets model theory, on \(\mathfrak{p}\) and \(\mathfrak{t}\). Proc. Natl. Acad. Sci. USA 110(3), 13300–13305 (2013)

    Article  MathSciNet  Google Scholar 

  31. Malliaris, M., Shelah, S.: Cofinality spectrum theorems in model theory, set theory, and general topology. J. Am. Math. Soc. 29(1), 237–297 (2016)

    Article  MathSciNet  Google Scholar 

  32. Matet, P.: Partitions and Filters. J. Symb. Logic 51(1), 12–21 (1986)

    Article  MathSciNet  Google Scholar 

  33. Mathias, A.R.D.: Happy families. Ann. Math. Logic 12(1), 59–111 (1977)

    Article  MathSciNet  Google Scholar 

  34. Mijares, J.G.: A notion of selective ultrafilter corresponding to topological Ramsey spaces. Math. Log. Q. 53(3), 255–267 (2007)

    Article  MathSciNet  Google Scholar 

  35. Mildenberger, H.: On Milliken-Taylor ultrafilters. Notre Dame J. Formal Logic 52(4), 381–394 (2011)

    Article  MathSciNet  Google Scholar 

  36. Milliken, K.R.: A partition theorem for the infinite subtrees of a tree. Trans. Am. Math. Soc. 263(1), 137–148 (1981)

    Article  MathSciNet  Google Scholar 

  37. Nash-Williams, C.S.J.A.: On well-quasi-ordering transfinite sequences. Proc. Camb. Philos. Soc. 61, 33–39 (1965)

    Article  MathSciNet  Google Scholar 

  38. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–296 (1929)

    MathSciNet  MATH  Google Scholar 

  39. Silver, J.: Every analytic set is Ramsey. J. Symb. Log. 35, 60–64 (1970)

    Article  MathSciNet  Google Scholar 

  40. Szymański, A., Xua, Z.H.: The behaviour of \(\omega ^{2^*}\) under some consequences of Martin’s axiom. In: General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981) (1983)

  41. Todorcevic, S.: Introduction to Ramsey Spaces. Princeton University Press (2010)

  42. Trujillo, T.: Topological Ramsey spaces, associated ultrafilters, and their applications to the Tukey theory of ultrafilters and Dedekind cuts of nonstandard arithmetic. Ph.D. thesis, University of Denver (2014)

Download references

Acknowledgements

Dobrinen was supported by National Science Foundation Grants DMS-14247 and DMS-1600781. Navarro Flores was supported by CONACYT, and Dobrinen’s National Science Foundation Grants DMS-14247 and DMS-1600781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Navarro Flores.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dobrinen was supported by National Science Foundation Grants DMS-1600781 and DMS-1901753. Navarro Flores was supported by CONACYT, and Dobrinen’s National Science Foundation Grant DMS-1600781.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrinen, N., Navarro Flores, S. Ramsey degrees of ultrafilters, pseudointersection numbers, and the tools of topological Ramsey spaces. Arch. Math. Logic 61, 1053–1090 (2022). https://doi.org/10.1007/s00153-022-00823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-022-00823-9

Keywords

Mathematics Subject Classification

Navigation