
Synthese (2022) 200:189
https://doi.org/10.1007/s11229-022-03691-1

ORIG INAL RESEARCH

Structuralism, indiscernibility, and physical computation

F. T. Doherty1 · J. Dewhurst2

Received: 31 March 2021 / Accepted: 31 March 2022 / Published online: 27 April 2022
© The Author(s) 2022

Abstract
Structuralism about mathematical objects and structuralist accounts of physical com-
putation both face indeterminacy objections. For the former, the problem arises for
cases such as the complex roots i and −i , for which a (non-trivial) automorphism
can be defined, thus establishing the structural identity of these importantly distinct
mathematical objects (see e.g. Keränen in Philos Math 3:308–330, 2001). In the case
of the latter, the problem arises for logical duals such as AND and OR, which have
invertible structural profiles (see e.g. Shagrir in Mind 110(438):369–400, 2001). This
makes their physical implementations indeterminate, in the sense that their structural
profiles alone cannot establish whether a given physical component is an AND-gate
or an OR-gate. Doherty (PhilPapers, https://philpapers.org/rec/DOHCI-3, 2021) has
recently shown both problems to be analogous, and has argued that computational
structuralism is threatened with the absurd conclusion that computational digitsmight
be indiscernible, such that, if structural properties are all that we have to go on, the
binary digit 0 must be treated as identical to the binary digit 1 (rendering pure struc-
turalism absurd). However, we think that a solution to the indiscernibility problem for
mathematical structuralists, drawing on the work of David Hilbert, can be adapted for
the analogous problem in the computational case, thereby rescuing the structuralist
approach to physical computation.

Keywords Structuralism · Computation · Indeterminacy · Indiscernibility · Hilbert

Introduction

Structuralist accounts of physical computation are those that ground computational
identity in local physical structure, such as classical causal accounts and more recent
mechanistic accounts. One particular line of objection to such accounts has received

B J. Dewhurst
joseph.e.dewhurst@gmail.com

1 Independent scholar, Glasgow, Scotland

2 LMU Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03691-1&domain=pdf
http://orcid.org/0000-0002-3497-2508
https://philpapers.org/rec/DOHCI-3

189 Page 2 of 26 Synthese (2022) 200 :189

substantial attention in the literature, namely that structuralists cannot provide an ade-
quate account of basic computational individuation, i.e., an account ofwhich (physical)
component implements which (abstract) logical function. Critics point to the structural
indeterminacy of logical duals, such as OR and AND, to demonstrate that structure
alone cannot successfully individuate computational states and processes. Additional
ingredients, such as semantic content, must therefore be required to provide an ade-
quate account of computation (Sprevak, 2010; Shagrir, 2001, 2018).

In response, computational structuralists have, for the most part, embraced such
indeterminacy as consistent with their broader structuralist thesis, rejecting the seman-
ticist’s assumption that there is always a fact of the matter about which physical
component implements which logical function (see e.g. Piccinini, 2015; Dewhurst,
2018a). However, Doherty (2021) has recently shown that the indeterminacy objec-
tion to computational structuralism is actually symptomatic of an underlying and far
more serious indiscernibility problem, according to which structuralists are at risk of
counting logical duals (and even binary digits) not only as indeterminate but in fact as
identical—a presumably absurd conclusion that even the structuralist would wish to
avoid.

Given Doherty’s demonstration that functional indeterminacy implies structural
identity, structuralists are no longer able to bite the bullet regarding functional inde-
terminacy, and a new defence of computational structuralism is therefore required. In
this paper we provide such a defence by drawing on an analogous debate in the philos-
ophy of mathematics and the early mathematical structuralism of David Hilbert. We
thereby rescue computational structuralism, not only from the absurd indiscernibility
that Doherty claims to reduce it to, but also from the original indeterminacy objection.
The ‘Hilbertian computational structuralism’ that results from our analysis is able to
bypass concerns about indiscernability or indeterminacy, but might still imply a form
of pancomputationalism, which we do not address directly here and aim to return to
in future work. Our analysis lays the groundwork for a pure structuralist account of
computational individuation, and also indicates some interesting parallels between the
philosophy of computation and the philosophy of mathematics.

In Sect. 1 we review computational structuralism and the indeterminacy objection,
before presentingDoherty’s newchallenge to computational structuralism inSect. 2. In
Sect. 3we introduce theHilbertian response to an analogous challenge tomathematical
structuralism. In Sect. 4 we apply this response to the specific case of computational
structuralism, including a discussion of the practical implications of these arguments.

1 Computational structuralism and the indeterminacy objection

In this section wewill introduce structuralist accounts of physical computation and the
indeterminacy objections that have recently been raised against them. Those familiar
with the details of these debates can skip to Sect. 2.

123

Synthese (2022) 200 :189 Page 3 of 26 189

1.1 Computational structuralism

Structuralism about computational implementation (or ‘computational structuralism’)
is the view that what matters for determining the identity of (some part of) a physically
implemented computational system is just the local causal structure of the system
in question, or more precisely, some kind of mapping between that structure and an
abstract (formal) computational structure (cf. Rescorla, 2013). Classic examples of this
view include Egan (1992), Chalmers (1996), and Copeland (1996), but it can also be
found in amore contemporary guise in themechanistic accounts of computation due to
Piccinini (2007, 2015),Miłkowski (2013), and Fresco (2015).1 The opposing semantic
(or representational) view of computational implementation holds that, in addition to
possessing the right kind of causal structure, a physically implemented computational
system must also possess semantic (or representational) content. The classic example
of this view is Fodor’s (in)famous dictum that there can be “no computation without
representation” (Fodor, 1998, p. 34), but other more recent examples include Shagrir
(2001, 2018), Sprevak (2010), and Rescorla (2013, 2014).

Of course, mappings are cheap, and so while the computational structuralist claims
that a physical system implements an abstract computation if a mapping can be iden-
tified between the causal structure of the physical system and the formal structure
of the abstract computation, this requirement is typically buttressed with additional
constraints. Candidate constraints include, for example: possessing the right kind of
causal structure (Chalmers, 1996); having the (proper) function of computing (Pic-
cinini, 2015); or identifying a sufficiently simple mapping (Millhouse, 2019). None
of these constraints has yet proven to be entirely successful, and producing novel con-
straints (or objections to existing constraints) now constitutes a small cottage industry.
However, the problem that we are concerned with here does not directly target the
mapping component of computational structuralism, so we will assume for the time
being that some appropriate constraint can be found. A physical computation would
then just be a causal process whose structure in some sensemirrors the formal (logical)
structure of an abstract computation.2

Consider a simple computational component, a logic gate (or processor) with the
following physical profile: The gate takes two voltage levels as input, and produces
a single voltage level as output. For the sake of simplicity, let’s say that the gate is
sensitive only to low (0V) or high (5V) voltage levels and gives a 5V output if, and
only if, it receives two 5V inputs, otherwise giving a 0V output (see Table 1).

This table is potentially misleading in an important way: most views—and cer-
tainly structuralist views—don’t take all of the properties of the physical states, such
as precise voltage levels, to be computationally relevant. Rather it is the distinction
between voltage levels that is relevant for computation. The computationally relevant

1 Insofar as they are reliant on some notion of ‘proper’ (or teleological) functions, there is a question mark
about how purely structuralist mechanistic accounts of computation really are, but see Dewhurst (2018b)
for an attempt to formulate a version of the mechanistic account that does not rely on proper functions.
2 Semanticists such as Sprevak and Shagrir would also agree that physical computation involves amirroring
relationship of this kind, but would deny that such a relationship is sufficient for a non-semantic system to
qualify as computational.

123

189 Page 4 of 26 Synthese (2022) 200 :189

Table 1 Gate 1’s physical
profile

Input 1 Input 2 Output

5V 5V 5V

5V 0V 0V

0V 5V 0V

0V 0V 0V

Table 2 Gate 1’s structural
profile

Input 1 Input 2 Output

1 1 1

1 0 0

0 1 0

0 0 0

properties of the above physical states, i.e. that they are distinct, are conventionally
indicated by Boolean values, as depicted in Table 2 above.

Here 0/1 indicates only the computationally relevant properties of the physical
states 0V/5V. For computational structuralists these propertieswill consist in the causal
structure of the physical states within the context of the system. We stress this point
because the status of 0/1 will be important later on. Henceforth we will refer to 0/1 as
computational digits, understood as above. Note that although digits are in some sense
slight abstractions from the physical states, they should not be understood as purely
abstract states (like truth values), but rather indicate that we are only interested in the
computationally relevant features of the physical states implementing the computation.
What matters about our inputs and outputs is not their voltage level qua voltages, but
rather that the processor systematically recognises two distinct component types, and
the Boolean notation can help us tomake this clear. The computation carried out would
be the same regardless of the physical details of these component types, provided that
the processor could systematically distinguish them, but they are nonetheless physical
components. This is just to say that what matters for physical computation are certain
medium-independent properties of the physical system in question, which, according
to the structuralist, are best characterised as structural properties. In this sense 0V/5V
is also sometimes used with equal legitimacy to indicate the computationally relevant
features of the voltage levels. We simply want to be clear on the distinction between
the physical states themselves and their computationally relevant aspects (in this case,
someof their structural properties), and sowe choose to useBoolean values to highlight
this (sometimes ignored) distinction.

At any rate, a processor of this kind is conventionally treated as implementing the
(abstract) logical function AND by mapping 0 to FALSE (or F) and 1 to TRUE (or T),
as in Table 3 below.

Another physical component, with the same inputs but outputting 1 (5V) unless
both inputs are 0 (0V), is conventionally treated as implementing OR, by carrying out
the same mappings as above (see Tables 4, 5, and 6).

123

Synthese (2022) 200 :189 Page 5 of 26 189

Table 3 Gate 1 interpreted as
AND

Input 1 Input 2 Output

T T T

T F F

F T F

F F F

Table 4 Gate 2’s physical
profile

Input 1 Input 2 Output

5V 5V 5V

5V 0V 5V

0V 5V 5V

0V 0V 0V

Table 5 Gate 2’s structural
profile

Input 1 Input 2 Output

1 1 1

1 0 1

0 1 1

0 0 0

Table 6 Gate 2 interpreted as
OR

Input 1 Input 2 Output

T T T

T F T

F T T

F F F

So far so good: we have two (physical) computational components corresponding
to two different (abstract) logical functions. This approach can be extended to other
logical functions/computational components, in principle giving a full account of com-
putational implementation (see, e.g. Piccinini, 2015 for more detail). A structuralist
approach to computational implementation could offer a fully naturalistic foundation
for physical computation, one that both avoids unlimited pancomputationalism and
also avoidsmaking any appeal tometaphysically suspect notions such as semantic con-
tent or, in the case of pure structuralism, proper functions.3 If a structuralist account
were successful then it could in principle be used in turn to ground such notions – this
is the approach taken by previous mechanists such as Milkowski and Piccinini, who

3 Dewhurst (2018b) has already defended a version of the mechanistic account (which we take to be a
kind of computational structuralism) that, unlike Piccinini’s classic mechanistic account, does not make
any appeal to proper functions. An account of this kind is what we mean by ‘pure structuralism’, i.e. a
structuralism that avoids making any appeal to intrinsic, non-structural properties of computational objects,
such as semantic content or proper functions.

123

189 Page 6 of 26 Synthese (2022) 200 :189

allow that a non-semantic account of physical computation could be used to support
a downstream theory of semantic content. Alternatively, one could retain an entirely
non-semantic account of physical computation, and insist that there is no close connec-
tion between computation and representation. Either option would be consistent with
the foundation provided by computational structuralism, and the account itself does
not adjudicate between further questions about whether, for example, computational
theories of cognition should be understood as representational. Computational struc-
turalismwould therefore provide a general account of physical computation that could
remain neutral with regard to its subsequent applications. However, it is vulnerable to
a now well-know objection to do with indeterminacy, to which we turn next.

1.2 The indeterminacy objection

The indeterminacy objection to computational structuralismwas first raised by Shagrir
(2001) and then, in a simplified form, by Sprevak (2010). Both Shagrir and Sprevak
argue that computational structuralists cannot give an adequate account of compu-
tational individuation because, on a structuralist account, there are cases where it is
indeterminate which (logical) functions are performed by which (physical) computa-
tional components. This is because the local structure of a physical system does not by
itself fully constrain which specific mappings are permissible, beyond the basic struc-
tural morphism constraint.4 So in cases where there is more than one possible mapping
between a physical structure and a logical structure, computational structuralism can-
not determine which computation is implemented. The solution advocated by both
Sprevak and Shagrir is that a physical system must also possess semantic content in
order to qualify as computational, and that this semantic content will fix the identity
of otherwise indeterminate computational components. This solution is not available
to the computational structuralists, whose aim is to individuate computational states
and processes solely in terms of local physical structure.

To give a simple illustrative example; consider the hypothetical physical implemen-
tations of AND and OR described above. By mapping 1 to TRUE and 0 to FALSE, we
got the result that Gate 1 implements AND, and Gate 2 implements OR. However, this
assignment was essentially arbitrary. We could just as easily have done the opposite,
mapping 1 to FALSE and 0 to TRUE. Since AND and OR are logical duals—i.e.,
their truth tables are structural inverts of one another—this mapping would flip the
identity of the components: Gate 1 would implement OR and Gate 2 would implement
AND (see Tables 7 and 8). Thus, at least according to computational structuralism,
the computational identity of Gates 1 and 2 is indeterminate between AND and OR.

There are technically two ways that this alternative interpretation could be accom-
plished. First, the binary digits 0 and 1 could be remapped to TRUE and FALSE
respectively, flipping the identity of the components (this is what we did above). Sec-
ond, the mapping from binary digits to truth values could be kept the same, while 5V
is instead indicated by 0 and 0V is instead indicated by 1, again resulting in the com-

4 Note that this is a distinct problem from the triviality concern raised by Putnam (1988). Even if the
computational structuralist can provide additional constraints on the mapping that avoid triviality, they will
still be faced with the indeterminacy of the non-trivial mapping for every structurally dual pair.

123

Synthese (2022) 200 :189 Page 7 of 26 189

Table 7 Gate 1 interpreted as
OR

Input 1 Input 2 Output

F F F

F T T

T F T

T T T

Table 8 Gate 2 interpreted as
AND

Input 1 Input 2 Output

F F F

F T F

T F F

T T T

putational identity of the physical components being flipped. The latter indeterminacy
we see as simply coming down to the arbitrary nature of assigning Boolean values to
physical states. It is the former sense of indeterminacy which is the more interesting
kind, i.e., the fact that the computational identity of pairs of physical components
implementing logical duals is structurally invertible.

As Shagrir (2001) has demonstrated, the problem also generalises to other cases,
indeed to all pairs of structurally dual logical functions (such as IFF and XOR), and
thus constitutes a general objection to computational structuralism—at least, provided
that indeterminacy is seen as a problem. There has been much debate about whether
computational structuralists might be able to live with this indeterminacy, and that dis-
cussion is ongoing (see e.g. Dewhurst, 2018a, CoelhoMollo, 2018, Shagrir, 2018, Lee,
2018, Miłkowski & Fresco, 2019, Fresco et al., 2021). Doherty (2021) has recently
demonstrated that this indeterminacy is indeed a problem for computational structural-
ism, one that is more serious than has been previously recognised. In the next section
we will present Doherty’s argument that structural indeterminacy is symptomatic of
an underlying indiscernibility problem, one that is analogous to an objection faced by
mathematical structuralists.

2 From indeterminacy to indiscernibility

Doherty (2021) has shown that if computational structuralists are committed to func-
tional indeterminacy with respect to structural duals (as discussed in the previous
section), then they are committed to the indiscernibility, and hence identity, of the
binary digits themselves, such that the binary digit 0 equals the binary digit 1. As
this is presumably an absurd conclusion, we assume it is something computational
structuralists must avoid. In this section we will present Doherty’s argument, starting
with an analogous objection to mathematical structuralism before applying the same
objection to computational structuralism.

123

189 Page 8 of 26 Synthese (2022) 200 :189

It should be noted that Doherty targets her objection at what she calls ‘pure’ com-
putational structuralism, such as Chalmers (1996) and Dewhurst (2018a), but suggests
that it could be extended even to ‘hybrid’ structuralists such as Piccinini (2015) and
CoelhoMollo (2018), who invoke additional resources beyond causal structure—such
as (proper) functions—to individuate computational states. In Sect. 4 we will argue
that even pure structuralists can resist Doherty’s attempt to reduce them to absurdity
by appealing to a Hilbertian conception of structure found in the philosophy of mathe-
matics. We will therefore focus on pure structuralist accounts in what follows; if these
can be defended against the indiscernibility objection, then hybrid accounts will also
be safeguarded.

2.1 The indiscernibility objection tomathematical structuralism

In the philosophy of mathematics, non-eliminative structuralist accounts (such as ante
rem structuralism) hold that mathematical structures and mathematical objects both
exist and are the proper referents of our mathematical theories, but that the former
have ontological priority over the latter—objects are ‘merely’ positions in a struc-
ture. The canonical accounts of mathematical structuralism are given by Hellman
(1989), Resnik (1981), Parsons (2004), and Shapiro (1997)—only the latter two defend
a non-eliminative structuralist account. The indiscernibility objection against non-
eliminativist structuralism has recently been the focus of much attention, essentially
arguing that these accounts are committed to the structural identity of patently non-
identical mathematical objects. Versions of this objection can be found in the likes of
Burgess (1999), Keränen (2001), Parsons (2004), MacBride (2006), Linnebo and Pet-
tigrew (2014), and Wigglesworth (2018). We will briefly review the objection before
applying an analogous version of it to computational structuralism.

The classical example is given by the imaginary complex numbers i and −i (i.e.,
a + bi and a − bi). These mathematical objects are shown to have the same structural
properties by defining a (non-trivial) automorphism on the complex field; i.e., an
isomorphism from the field of the complex numbers to itself which is not simply the
identity mapping. Any structure over which we can define an automorphism is defined
in the debate as non-rigid, and the objection can be formulated using any non-rigid
structure. A simpler example is the additive integers, which are non-rigid because there
is an automorphism which maps 1 to −1: the bijective function f: (Z,+) → (Z,+)

given by f (n) = −n, ∀n ∈ Z.5 In each case it turns out that both putatively distinct
objects (i /−i and 1/−1) have in fact all the same structural properties.

Proponents of the indiscernibility objection argue that the structural identity of
these mathematical objects put a non-eliminativist structuralist between a rock and
a hard place. Either they maintain that these objects are distinct in virtue of some
non-structural (i.e., intrinsic) properties and so are more than ‘merely’ positions in a
structure—violating the characteristic structuralist metaphysics—or, they are forced
to accept embarrassing identity statements such as 1 = −1, in virtue of the structural
indiscernibility of these objects.MacBride concludes that non-eliminativist structural-

5 Technically speaking this is true only when the integers are considered as an additive group, rather than
a ring.

123

Synthese (2022) 200 :189 Page 9 of 26 189

ism is either “old news or bad news” (MacBride, 2006, p. 64). There have been attempts
to defend non-eliminativist structuralism against this objection (see e.g. Ladyman,
2005, Leitgeb & Ladyman, 2008, Shapiro, 2008), but so far none has been entirely
successful. In Sect. 3 we will consider a novel solution drawing on the early structural-
ism of DavidHilbert, but first wewill review a recent application of the indiscernibility
objection to the case of computational structuralism.

2.2 The indiscernibility objection to computational structuralism

Doherty (2021) demonstrates that a version of the indiscernibility objection to math-
ematical structuralism can also be applied to computational structuralism. She begins
by establishing that if there is indeterminacy in the computational states then there
is also indeterminacy in their logical status. Doherty defines a computational state in
terms of digits, i.e., the Boolean values 0 and 1 (in the case of binary computation).
As we clarified in the previous section, these should not be understood as abstract
states (like the truth-values TRUE and FALSE), but rather as a way of referring to the
computationally relevant properties of a physical system that implements a computa-
tion (again, for the computational structuralist these will be structural properties). If
these computational states (digits) are fixed determinately then there is no way for the
corresponding truth-values of the physical states to remain indeterminate. It might be
arbitrary which truth-value we indicate with which digit, but we will at least be able
to tell them apart.

More importantly, the logical determinacy of the digits entails that each physical
state of the computer canbe assigned a truth-value under the implementation (assuming
we have already decided which physical state corresponds to which digit). Recall, for
example, that to ensure that Gate 1 implemented AND and Gate 2 implemented OR
we mapped 1 (indicating 5V) to TRUE and 0 (indicating 0V) to FALSE. The mapping
from digits to truth-values will therefore also fully determine the identity of the truth-
functions, since the (logical) function performed by a logical dual is determined by
the assignment of truth-values to the digits it transforms. On the other hand, if there
is indeterminacy in the assignment of the digits to the physical states (i.e., functional
indeterminacy), then the truth-values will also be indeterminate.

This is all to say that the indeterminacy of the truth-values is symptomatic of
a more fundamental indeterminacy in the computational digits.6 Doherty thinks that
the functional indeterminacy problem is more worrying than the logical indeterminacy
problem, because if there is indeterminacy in the computational digits themselves (and
not just their logical values), then computational structuralists are in fact committed to
saying that the digits are structurally indiscernible. This means that they are also struc-
turally identical because, at least for the pure computational structuralist, the identity
of a computational digit is exhausted by the structure of a computational process, such

6 Papayannopoulos et al. (forthcoming) draw a very similar distinction between ‘interpretative’ and ‘func-
tional’ indeterminacy in computational systems, where functional indeterminacy relates to how physical
states are grouped together and then mapped to abstract states, while interpretative indeterminacy relates
to how these abstract states are then mapped to logical states. Our functional indeterminacy is the same as
theirs, and our logical indeterminacy appears to be equivalent to their interpretative indeterminacy.

123

189 Page 10 of 26 Synthese (2022) 200 :189

that digits with identical structural profiles are themselves identical.7 This identity
then leads to an apparent contradiction along the lines of (binary digit) 0 = (binary
digit) 1, rendering the structuralist position absurd and ultimately unsustainable—or
so Doherty argues. Pure computational structuralists are left in a similar position to
the mathematical structuralists, as they are forced to accept that there are not really
two binary digits, but rather just a single self-identical digit-type. Such a result would
clearly render computation over binary digits impossible—surely a conclusion that
the computational structuralist must avoid.

To resist this result the structuralist could find some supplementary extra-structural,
non-semanticmeansof distinguishing thedigits, asmanymodern structuralist accounts
attempt to do by appealing to mechanistic, functional, or teleological resources (Pic-
cinini, 2015, CoelhoMollo, 2018). However, Doherty doubts bothwhether there is any
mechanistic or teleo-functional asymmetry in the behaviour of the computational dig-
its, and also whether these kinds of resources (if they are available to the structuralist)
can be made compatible with the requirement that computational explanation should
be medium-independent. Of course, a proponent of the teleo-functional mechanistic
approachmight have the resources available to respond to these doubts (see e.g. Coelho
Mollo, 2019), but for our purposes the important point is that all of these resources are
going to be extra-structural, and therefore not available to the pure structuralist who
wants to avoid appealing to anything other than structural features for their account of
computation. Aswe have said previously, our focus herewill be on providing a defence
of pure structuralist accounts of physical computation, which should also suffice to
defend hybrid accounts of the likes proposed by Piccinini and Coelho Mollo, even
without appealing to any extra-structural resources such as teleological functions.

Doherty gives a formal proof of the indiscernibility of structurally individuated
computational states that we will briefly rehearse here. For our purposes nothing
much rests on the details on this proof, which simply demonstrates in formal terms the
intuitive point that logical duals are structurally indiscernible (and hence, absent any
other constraints, type-identical), but we hope that it might make clear the strength
of the indiscernibility objection to computational structuralism. Doherty begins by
defining a non-trivial automorphism on a simple system (akin to the automorphism
used to formulate the objection in the mathematical case). An automorphism is simply
a mapping which permutes the set while preserving the structure. Defining a (non-
trivial) automorphism between the computational digits, then, amounts to a formal
means of proving that they can be swapped while preserving the structure of the set,
and so also proving that their structural profiles are identical. Doherty defines the
automorphism as: f : S → S given by f (x) = ¬x, x ∈ S, for a set S of physical
states. We can take S, for example, to be the set of the binary digits 0 and 1. Doherty
then proves that f is not the identity function (so the automorphism is non-trivial) and

7 Of course, much rests on how we define "identical structural profile", which Dewhurst (2018a) takes
to imply the non-equivalence of putatively identical computational systems that differ only in terms of
incidental features of their physical implementation. Miłkowski and Fresco (2019) have argued that this
consequence is not inevitable, and we hope that structural equivalence can be defined so as to avoid it
and thereby retain computational equivalence, but the threat from indiscernibility that we discuss here will
remain even if this can be done.

123

Synthese (2022) 200 :189 Page 11 of 26 189

that f is indeed an automorphism. Thus she proves f to be a function which formally
establishes the identity of the binary digits in a simple computational system.8

In lay terms, this result obtains because the binary digits 0 and 1 have the same
structural profiles, in the same sense that i /−i or 1/−1 have the same structural profiles.
This can be seen more clearly by reflecting on the indeterminacy of the logical duals
introduced in §1. The reason that the identity of the physical components implementing
AND and OR is indeterminate is that they share the same formal structure, such that
either component could play either role, depending on how the digits are interpreted.
The digits are indeterminate in the same sense, and as a consequence they are also
structurally indiscernible, such that if structural properties are all we have to go on
they seem to be identical—which is nothing short of an absurd result!

It is worth saying a little more about how the indiscernibility objection is distinct
from the indeterminacy objections discussed in §1. In Shagrir and Sprevak’s objection
there is no issue with distinguishing the functions. The issue, rather, is that there is
nothing to decide which physical component should be cast in which computational
role, since either of the distinct computational components could play the part of either
distinct logical function. In Doherty’s objection, structuralists cannot even maintain
that the computational digits are distinct, and are thus committed an absurd identity
claim, 0 = 1 (or the identity of the binary digits). The objections are therefore different,
but, as Doherty shows, they issue from the same root of the structural indiscernibility
of the binary digits.

In the next section we will develop a response to this objection by drawing on
Hilbert’s earlier conception of mathematical structure. Before moving on, there are a
couple of additional points we would like to note.

First, there are pure structuralist accounts of computation which ground computa-
tional identity in the identity of the physical states that the implementation maps to,
such as Dewhurst (2018a). Doherty specifically addresses Dewhurst’s proposal later
in her 2021 paper. She concedes that it would avoid the indiscernibility objection by
distinguishing any two computational digits implemented by distinct physical states,
but points out that it does so at the price of failing to provide a medium indepen-
dent account of computation, in which the same computational digits can be realised
by distinct physical states across different mediums. Dewhurst was the first to point
this out regarding his own proposal, and it has later been discussed by Coelho Mollo
(2018) and Miłkowski and Fresco (2019), both of whom seek to defend a structural-
ist account of computation while avoiding this consequence. In doing so, however,
they risk becoming vulnerable to Doherty’s indiscernibility objection in a way that
Dewhurst is not, as their commitment tomedium-independencemeans that they cannot

8 Doherty is concerned here with the binary case, which will therefore also be the focus of our discussion.
Cases of indeterminacy or indiscernibility in possibly non-binary systems, such as that described by Shagrir
(2018), will introduce additional complications. Whether (and how) we can define an automorphism in
systems with the potential for more than two digit-types will depend on how we interpret their physical
states. In Shagrir’s original presentation of the (physical) tri-stable system, he offers two binary digital
interpretations, to which Doherty’s automorphism could be straightforwardly applied. A ternary digital
interpretation of this system would require a three-valued logic, such as those defined by Lukasiewicz
(1920/1970) or Kleene (1938). Both of these logics do include a NOT operator that could be used to
generate an automorphism similar to the one Doherty uses in the binary case, although each logical system
would require its own separate treatment that we will not pursue here.

123

189 Page 12 of 26 Synthese (2022) 200 :189

appeal to the specific physical details of computational components in order to render
them discernible (see (Doherty, 2021, sec. 8) for further discussion). In the next section
we will aim to give a defence of pure computational structuralism which defuses this
objection, without relying on the dead end of abandoning medium independence.

Second, we think it is independently interesting to see how the same kind of indis-
cernibility objection can be applied in two quite different areas of enquiry: abstract
mathematical ontology and the philosophy of physical computation. This is of course
not entirely surprising, as the objection targets structuralist accounts in both cases, and
the latter area is concerned with the physical implementation of abstract computations,
i.e., mathematical operations. However, these two areas have not recently interacted
much, and we take it to be a very interesting result that despite the substantial dif-
ferences between computational and mathematical structuralism, the indiscernibility
objection plays out in the same way. What is more, in both cases the objection brings
into doubt the common structuralist thesis: that the identity of an object is exhausted
by its structural identity. It attempts to force structuralists—computational and math-
ematical alike—to appeal to extra-structural resources to identify and individuate the
objects in their ontology. The indiscernibility objection is a powerful challenge to
both kinds of structuralism, one that should be understood as threatening them with a
potentially fatal reductio ad absurdum. However, the connection also offers a poten-
tial route to salvation for computational structuralism, by adapting a recent defence of
mathematical structuralism also provided by Doherty (2019). In the next section we
will introduce this defence, before finally applying it to computational structuralism
in Sect. 4.

3 Hilbertian structuralism and indiscernibility

While she is the original source of the indiscernibility objection to computational struc-
turalism, Doherty (2019) has in fact provided a defence ofmathematical structuralism
against the same indiscernibility objection by drawing on the earlymathematical struc-
turalism of David Hilbert (1862–1943). Our hope is that Doherty’s very own defence
can actually be adapted and made applicable to the computational case, in order to
resolve her own objection to computational structuralism. There is a long answer and
a short answer to the question of how Hilbert’s early mathematical structuralism is
able to avoid the indiscernibility objection. In this section we will set out both, begin-
ning with the short answer in Sect. 3.1, elaborating on Hilbert’s structuralism in Sect.
3.2, and finally presenting the long answer in Sect. 3.3. This will provide the neces-
sary background context and theoretical machinery to apply an equivalent defence to
computational structuralism in Sect. 4.

3.1 The heart of the defence

The short answer to how theHilbertian conception ofmathematical structure can avoid
the indiscernibility objection is that it resists the move from the structural indiscerni-
bility of mathematical objects to their identity. This is just to say that mathematical

123

Synthese (2022) 200 :189 Page 13 of 26 189

structuralists should reject the Principle of the Identity of Indispensables (PII), some-
times known as Leibniz’s Law, i.e.,

PII. Necessarily, for any x and any y, x is identical to y if for any P , x has P iff
y has P . Formally, ∀x∀y(∀P(Px ↔ Py) → x = y).

The PII remains a contested metaphysical principle to this day, and rejecting it
means that the mathematical structuralist can hold that there can be non-identical yet
structurally indiscerniblemathematical objects, like the two complex roots of−1. That
is to say, structuralists can claim that there are mathematical objects with identical
structural profiles but which are nevertheless distinct, in the same way that Max Black
maintains it is possible for two qualitatively identical spheres in a completely sym-
metrical universe to be numerically distinct despite being indiscernible (Black, 1952).
The structuralist can therefore accept that the automorphism proof establishes that
the structural profile of the permuted objects is identical, without conceding that this
leads to their actual numerical identity, allowing them to avoid the apparent absurdity
generated by the indiscernibility objection.

This rejection of PII provides an important insight into the argumentative structure
of the indiscernibility objection.9 However, rejecting PII can only constitute a partial
solution to defending structuralism against the indiscernibility objection. PII might be
contestable, and rejecting itmight be the key to avoiding the objection, but structuralists
need to provide a principled reason to reject it beyond the mere fact that it would be
convenient for them—one that is grounded in, and compatible with, a structuralist
ontology. Shapiro, for example, whose own ante-rem structuralism inherits much from
Hilbert, rejects PII without providing any justification, and his solution is accused of
being ad hoc (see Shapiro, 2008, p. 287; MacBride, 2006; Keränen, 2001). However,
in Hilbert’s original early conception of mathematical structuralism it is possible to
find the kind of non-ad hoc reason to reject PII that is required to buttress a robust
defence against the indiscernibility objection.10

In order to give the longer answer as to how Hilbert’s early structuralism avoids
the indiscernibility objection, we must explain his principled reasons for rejecting
PII. This will first involve detailing the relevant aspects of Hilbert’s structuralism
and, in particular, his conception of the relationship between theory and ontology in
mathematics.

9 We take Hilbert’s rejection of PII to be more powerful and comprehensive than the other defences of
structuralismoffered in the literature, such asLadyman’s appeal toweak discernibility relations, i.e. relations
that the structural duals stand in to each other but do not stand in to themselves, like is the additive inverse of
for i and −i (Ladyman, 2005). Even Ladyman admits that such relations cannot distinguish all structurally
indiscernible mathematical objects (Leitgeb & Ladyman, 2008).
10 Note that Hilbert didn’t directly propose a solution to any objection from structurally indiscernible
non-identical objects. The first of these objections was raised at least 56 years too late for Hilbert to have
even read it. However, as Doherty (2019) has argued, his early structuralist account—predating his more
infamous formalism—already provides us with a solution to the problem, because rejecting PII follows as
an immediate consequence of a central thesis Hilbert did explicitly endorse, namely Hilbert’s Principle.

123

189 Page 14 of 26 Synthese (2022) 200 :189

3.2 Hilbertian structuralism and Hilbert’s principle

The clearest formulation of Hilbert’s structuralist thesis can be found in his defence
of theGrundlagen der Geometrie (1899b) against Frege’s critique.11 Hilbert writes to
Frege,

... it is surely obvious that every theory is only a scaffolding or schemaof concepts
together with their necessary relations to one another, and that the basic elements
can be thought of in any way one likes (Hilbert, 1899a, p. 40).

Hilbert’s re-axiomatisation of classical geometry is constructed so that it contains
only six non-logical ‘basic elements’, i.e. the geometric primitives: point , line, plane,
congruence, lies on, and between (Hilbert, 1899b, §1). For Hilbert, what matters is
the structure defined by the logical relations, not the objects/relations referred to by
the theory’s primitive terms. This contrasts starkly with Frege’s conception of a theory
as a deductively organised set of true thoughts, referring to a fixed set of mathematical
objects (Frege, 1899, p. 36, 1903, p. 281). Frege goes so far as to say that Hilbert’s
primitive indeterminacy renders Grundlagen der Geometrie “a failure” (Frege, 1900,
p. 90). However, this very same feature is the key to Hilbert’s groundbreaking proofs
of the consistency and independence of the axioms of classical geometry (Hilbert,
1899b).

This feature of Hilbert’s conception of a mathematical theory is important to set
out, i.e., that Hilbert takes his primitives to be indeterminate in the sense that they are
inherently reinterpretable. The reinterpretability of the primitives makes it possible to
assign them meaning using other mathematical theories in which we can prove the
truth of the axioms. Proving the truth of the axioms establishes the consistency of the
geometric theory in virtue of the structure common to both the geometric theory and
its reinterpretation.

In particular, Hilbert reinterprets his geometric axioms using the domain �: a
fragment of the real numbers specified byHilbert in (Hilbert, 1899b, §9). For example,
he reinterprets his second axiom of connection:

I, 2. For every two points there exists at most one line which lies between those
points

as follows:

[I, 2.�] For any distinct pair of pairs of real numbers 〈〈a, b〉, 〈c, d〉〉 there is a
unique ratio [e : f : g], such that both ae + b f + g = 0 and ce + d f + g = 0

Where “distinct pair” entails that 〈a, b〉 �= 〈c, d〉, since there are infinitely many
lines through a single point. The remaining axioms are likewise reinterpreted. Hilbert’s
reinterpretation makes it straightforward to prove the truth of the reinterpreted axioms
using the reals, and this proof establishes the consistency of Euclidean geometry
relative to the real number field bymodel-theoretic reasoning. Thus, Hilbert conceives

11 The fact that Hilbert advocated a Dedekind-inspired variety of structuralism in the early 1900’s before
his invention of proof-theory is perhaps little known, but is not controversial. See Hilbert (1899a, pp. 40–41,
1900, pp. 50–51). See also Resnik (1981, p. 202), Sieg (2008, p. 467), Sieg (2014, pp. 135–138), Lindström
and Palmgren (2008, p. 17), Parsons (1990, p. 336, 2004, p. 71) and Shapiro (2005, p. 62).

123

Synthese (2022) 200 :189 Page 15 of 26 189

of a theory as a ‘conceptual scaffold’, in which the primitives are constrained only by
the requirement of satisfying the structure defined by the axioms of the theory. This
approach is described by Hilbert as “a tremendous advantage” (Hilbert, 1899a, p. 41),
vindicated by his success in proving the consistency and independence of the axioms
of classical geometry.

If what matters to Hilbert is fixing determinate reference to a structure, rather than
to the objects of a theory, then a question arises as to how Hilbert ensures that the
theory successfully refers to a structure. This brings us to the second important feature
of Hilbert’s conception of amathematical theory: according to Hilbert, all that a theory
requires to ensure that it latches on to a structure is internal consistency. This is often
known as Hilbert’s Principle12, the most famous formulation of which is:

if arbitrarily chosen axioms together with everything which follows from them
do not contradict one another, then they are true, and the things defined by the
axioms exist. For me that is the criterion of truth and existence. (Hilbert, 1899a,
pp. 39–40)

This principle requires some careful unpacking.Understood as a general ontological
principle it is of course absurd. However, in context it is clear that Hilbert restricts
the principle to the domain of mathematics where, as we have just seen, Hilbert’s
primary concern is with fixing reference to structures (1899, p. 36). It should also
be noted that Hilbert’s Principle can be read as indicating that Hilbert’s eliminative
approach tomathematical structures supports amore general eliminativismwith regard
to mathematical objects.13 In what follows we will treat Hilbert as non-eliminative
about both mathematical objects and structures, following Doherty (2019). However,
we want to make clear that nothing much hangs on this question of whether Hilbert
should be understood as an eliminativist. What variety of structuralism one wants to
advocate or attribute to Hilbert is independent of whether Hilbert’s approach can be
shown to provide a solution to problems faced by structuralists of different ilks, and
in this case the relevant objection besets non-eliminative structuralists. Regardless
of whether Hilbert’s Principle is read as ontologically inflationary or ontologically
deflationary, it amounts to an alignment of consistency and existence for mathematical
structures, such that all that is needed to ensure the existence of a structure is for it to
be defined by a consistent set of axioms.14

The indiscernibility objection to mathematical structuralism concerns structurally
identical objects. Given what we have said, what can Hilbert’s structuralist account
tell us about objects at all? For non-eliminative structuralists, mathematical objects
exist but are ontologically dependent on structures, in the sense that they are reducible
to a position in a structure. Therefore, establishing the existence of a structure is
tantamount to establishing the existence of its positions. So, on the Hilbertian view,
the consistency of the axiom set establishes the existence of the structure it defines, and

12 Ferreirós (2009) and Pudlák (2013, p. 602).
13 See e.g. Resnik (2018, p. 1).
14 It is worth noting that modern structuralist accounts tend to advocate something akin to this proposal,
but with a higher bar than mere consistency. Shapiro, for example, grounds the existence of a structure in
the coherence of the axioms (Shapiro, 2005, pp. 69–71).

123

189 Page 16 of 26 Synthese (2022) 200 :189

reifications of the positions in the structure are properly thought of as mathematical
objects.

However, the thesis that a consistent axiomatisation can guarantee the existence
of mathematical objects, in any sense, seems to be more controversial than a thesis
that merely guarantees the existence of a mathematical structure. Let us say a few
things to quell any uneasiness here. The first thing to emphasise is that this thesis
is only needed because we are providing a defence of non-eliminative structuralists
who, of course, already endorse it. Looking ahead, we don’t intend to defend or rely
on this thesis when we give a Hilbertian approach to computational individuation. We
only need to transpose the uncontroversial thesis that consistently/coherently defined
structures exist. Furthermore, it should be noted that the thesis comes along with a
certain conception of mathematical objects such that they are, contra Platonism, only
‘thin’ idealised (or theoretical) objects. Hilbert is always very clear on this point,
for example in his Grundlagen der Mathematik he speaks of a theory as “completely
detached from concrete reality” such that it “...has nothingmore to do with real objects
or with the intuitive content of knowledge. It is a pure thought construction...” (Hilbert,
Hilbert 1922, p. 3).15

In summary, Hilbert’s Principle is that the consistency of a theory’s axioms entails
the existence of the structure they define, and thereby the existence of the positions in
the structure, which can be understood as the objects of that theory. In the next section
we will use this principle to develop a Hilbertian response to the indiscernibility
objection against mathematical structuralism.

3.3 The Hilbertian solution to the indiscernibility objection

Finally, we can now give the full presentation of the Hilbertian solution to the indis-
cernibility objection. Recall that the objection is that structuralists are forced to treat as
identical intuitively distinct mathematical objects that have the same structural profile
(i.e. are structurally indiscernible), such as the complex roots of −1.

We saw that Hilbert’s short answer to this problemwas to reject PII.We can now say
that Hilbert’s longer answer is that if the axioms of a consistent axiomatisation specify
a structure with distinct but indiscernible positions, then distinct but indiscernible
mathematical objects must unproblematically exist. As we saw, this result follows
as a consequence of Hilbert’s Principle, which entails that whatever is defined by a
consistent set axioms must exist. What the axioms define are structures, and objects
are merely the structure’s positions such that, if a structure exists so do its positions,
and if a position exists, then so does a mathematical object. Therefore, if there is even
one consistent axiomitisation which defines a structure with at least two indiscernible
positions, then it will be the case that there exists, without absurdity, distinct but
structurally indiscernible mathematical objects. This is the principled justification for

15 Of course, Hilbert doesn’t take mathematical theory to be irrelevant to real objects or knowledge about
the world, but again takes a structuralist approach. He continues on in the same passage to say that:
“Nevertheless, this framework has a meaning for knowledge of reality, in the sense that it presents a
possible form of actual connections.” (Hilbert, 1922, p. 3, emphasis added).

123

Synthese (2022) 200 :189 Page 17 of 26 189

Hilbert’s rejection of PII, going right to the heart of his conception of a mathematical
theory.

Due to its importance, let us unpack this principled justification a little more. For an
illustrative analogy of Hilbert’s conception of a theory, consider an isosceles triangle
(defined by a consistent set of axioms) constructed by projecting the lines and angles
of intersection of the right-hand side of the triangle to the left-hand side. We can
define a rotation of 180◦ around its axis of symmetry, mapping the right-hand side
of the triangle to the left-hand side. The right-hand side and the left-hand side of
the triangle have the same structural profiles in the sense that they are congruent.
However, this is not in tension with the fact that there are two distinct sides composing
the triangle, specified axiomatically. In such a case there is no absurdity in the claim
that the symmetric sets of points and lines composing each side of the triangle are
made up of distinct but structurally indiscernible geometric objects. Drawing back
from the analogy, we can say that all that the existence of a non-trivial automorphism
establishes is that there is a symmetry in the relevant set. On Hilbert’s conception of
a theory we require a further reason to collapse this symmetry into an identity.16

Hilbert himself even discusses a relevant example:

...The proposition ‘There are two square roots of −1’ is true, and the existence
of two such roots is proven, as soon as the axiom ‘There are two roots of −1’
can be added to the other arithmetical axioms, without raising the possibility of
contradiction, no matter what conclusions are drawn. (Hilbert, Hilbert 1899a,
pp. 39–40, emphasis added)

Of course, it was Hilbert who was to establish—by means of this conception of a
theory—the model-theoretic (and later, proof-theoretic) consistency of the complex
numbers. Thus the (relative) consistency of complex analysis acts not as a counterex-
ample to structuralism but, if anything, as a counterexample to PII for the case of
structurally individuated mathematical objects.17

To summarise, Hilbert is able to avoid the indiscernibility objection because his
conception of a theory justifies his rejection of PII. In particular, Hilbert can reject PII
on account of his conception of the primitives of a mathematical theory as inherently
reinterpretable, such that the only thing a consistent theory determinately refers to is a
structure, and the only objects it can be said to determinately refer to are the positions
in that structure (thought of as a ‘thin’, idealised kind of object). Hilbert thereby turns
the tables on proponents of the indiscernibility objection, because on this view it is
no absurdity to point out that there is a symmetry in the structure as shown by the
presence of an automorphism. Furthermore, if it was a consequence of the axiom
set that i = −i , this would give a very immediate contradiction with the axioms of
complex analysis, demonstrating that the higher-order structure and associated ideal
objects of any theory containing such a theorem do not in fact exist.

16 Note that were we to identify the elements of a non-trivial automorphism with each other, this would
demote the function to a trivial automorphism.
17 Of course, the swathes of indiscernibility objections against mathematical structuralism—e.g. the com-
plex roots, additive integers, cyclical rings, and even simple unlabelled graphs in graph theory—all serve
to provide further examples where this approach could be applied.

123

189 Page 18 of 26 Synthese (2022) 200 :189

4 Applying the Hilbertian solution to the computational case

We come now to our final task of applying Hilbert’s conception of a theory to compu-
tational structuralism, in order to provide a defence against the novel indiscernibility
objection raised by Doherty. Again, our sights will be set on defending pure structural-
ists like Dewhurst (2018a), since it is they who are most vulnerable to the objection.
Hybrid structuralists like Piccinini (2015) andCoelhoMollo (2018) are able to draw on
other resources, such as proper functions, but the Hilbertian solution will also ensure
that they can safeguard the medium independence of physical computation.

We should emphasise at this point that it doesn’t matter that the two indiscernibility
objections presented in Sect. 2 target very different kinds of ‘structuralist’ accounts:
the broad church of mechanistic/causal accounts of computation on the one hand and
non-eliminative structuralism about mathematical objects on the other. Our intention
here is not to transfer the specific technical details of Hilbert’s re-axiomatisation of
classical geometry to the case of physical computation, but rather to draw an analogy
between the solution he proposes for the case of indiscernibility in pure mathematics,
and a potential solution to the case of indiscernibility in physical computation.18 As
we aim to show in this section, the details of Hilbert’s solution—and to some extent
even his wider conception of a theory—are general enough to facilitate its adaption to
the computational case.

Our demonstration that Hilbert’s structuralism has the potential to absolve pure
computational structuralists from the charge of absurdity falls into three parts. First,
we will show that if pure computational structuralists adopt the central insight of
Hilbert’s conception, namely, the rejection of PII, then they will avoid the indiscerni-
bility objection. Next, we will offer some reflections as to whether different accounts
of computational structuralism can reject PII without being ad hoc. Finally, we will
consider some further implications of this approach, cashed out in terms of the practical
implications of our Hilbertian solution to the indiscernibility objection.

4.1 The Hilbertian solution applied to computational structuralism

In the case of mathematical structuralism, Doherty (2019) advocates a Hilbertian
solution to the indiscernibility objection that amounts to rejecting PII and thereby
accepting that there can be structurally indiscernible but numerically distinct mathe-
matical objects (such as i and −i). For pure computational structuralists, the rejection
of PII amounts to endorsing a particular view of the non-semantic individuation of
basic components in a physical computing system.On this view, there can be two struc-
turally indiscernible computational components which are nonetheless non-identical,
such that the original problem of indeterminacy is also undercut. In this way, our
response to the indiscernibility objections raised by Doherty (2021) can also be seen
as a solution to the original indeterminacy objection raised by Shagrir (2001) and Spre-

18 It is possible that the technical details of Hilbert’s structuralism might also be applicable to the case
of physical computation, and demonstrating this applicability is a project that we would be interested to
pursue in future work, but our present aim is more modest: simply to demonstrate that a solution which is
Hilbertian in spirit can be applied to the case of computational structuralism.

123

Synthese (2022) 200 :189 Page 19 of 26 189

vak (2010). Put into Hilbertian terms, our theory of physical computation requires that
there are two positions in the abstract computational structure (corresponding to the
truth functions AND and OR) that must be filled by physical components, but it does
not matter which component fills which position, or that they are structurally invert-
ible.19 We will now discuss this solution in a little more detail.

In the mathematical case, the Hilbertian solution meant accepting that there can
be objects (like i and −i) that are structurally indiscernible but axiomatically dis-
tinct, in so far as a consistent theory implies that there are two such indiscernible
spaces in the structure which must be filled by distinct objects. The situation is analo-
gous in the computational case, where we can have consistent models that imply the
existence of structurally indiscernible digits (0/1) and structurally invertible functions
(logical duals like AND and OR), which are nonetheless both distinct. The physical
implementations of these digits and functions will therefore also be structurally indis-
cernible/invertible, while nonetheless requiring two distinct objects in each case. The
crucial point to realise is that it is their distinctness, not their discernibility, that is
important for avoiding both the indiscernibility and indeterminacy objections. Just as
it doesn’t matter to Hilbert which (mathematical) object is i and which is −i , but only
that there are two such objects, it also shouldn’t matter to the computational structural-
ist which (physically implemented) gate is AND and which is OR, only that there are
two such gates - and nor should it matter which (physically implemented) digit is 0 and
which is 1, but only that there are two such digits to form the basis of binary compu-
tation. The computational structuralist should thus embrace both both indeterminacy
and indiscernibility, while insisting that the distinctness of the components/digits is
sufficient for a theory of computational implementation.

From this point of view, Doherty’s objection can actually be seen as an advantage
for the computational structuralist, since it diagnoses the root cause of the indeter-
minacy of logical duals as being found in their structural indiscernibility. Thus, by
following Hilbert in responding to the indiscernibility objection by rejecting PII, the
computational structuralists can also deflate the original indeterminacy objection. Pure
computational structuralists are therefore justified in biting the bullet regarding pre-
cisely the kind of harmless indeterminacy that is to be expected on a structuralist
account of computation. Dewhurst (2018a) presents a similar solution that Miłkowski
and Fresco (2019) have recently argued bites one bullet too many, by implying that
the equivalence of computational components might be impossible. The bullet that we
advocate biting here is a distinct one, requiring that we accept there is no non-arbitrary
way to assign truth values to logical duals, but we believe that logical indeterminacy
of this kind is harmless, as physical components will continue to carry out the same
computational role regardless of the truth value we assign to them. Our approach has
no specific implications for computational equivalence, and is thus able to avoid biting
the original bullet bitten by Dewhurst (2018a). It turns out that both indeterminacy
and indiscernibility are harmless consequences of pure computational structuralism,
just as Hilbert’s original structuralist conception of mathematical objects implied a
harmless kind of indiscernibility for some mathematical objects.

19 The same of course goes for other logical duals, such as IFF and XOR.

123

189 Page 20 of 26 Synthese (2022) 200 :189

4.2 Rejecting the PII for computational structuralism

So far things are looking up for pure computational structuralism. However, as was
the case for mathematical structuralists, the computational structuralist should also
provide a principled reason for rejecting PII, lest they be vulnerable to the charge
that their solution is merely ad hoc. Computational structuralism is a broad camp,
including not only mechanistic accounts but also causal and syntactic accounts more
generally, and each will have to provide their own particular justification for rejecting
PII, compatible with their own theoretical commitments. Detailing what each of these
might look like would take us outwith the scope of this paper, but in what follows
we provide some suggestions and reasons for optimism that such justifications can be
provided.

The first thingwewant to note is that there is nothing incompatible between the core
commitments of computational structuralism and the rejection of PII. To reject PII is
simply to take a stance on whether structurally indiscernible objects are necessarily
identical or not. The computational structuralist cannot simply stop there, as they
should provide some internal justification for rejecting PII, but there is no reason to
think that this won’t be possible. In order to maintain a pure structuralist attitude,
this justification should ideally also be structural in nature, i.e., it should not have to
appeal to any external, non-structuralist metaphysical principles. Structuralists could
of course engage with the details of the ongoing metaphysical debates around PII,
and provide a more general argument for rejecting it. However, we believe that they
can get away with much less, by simply providing a principled reason to reject PII
that is consistent with, and internal to, their structuralist account of computational
implementation.

Once again we think that the broader Hilbertian conception of a theory can provide
some promising resources for a computational structuralist to justify the rejection of
PII. The essence of our suggestion is to adopt a Hilbertian conception of the relation-
ship between an abstract computational model and its physical implementation. In the
mathematical case, we saw that any mathematical structure that satisfies (is consistent
with) the axioms of the theory can be said by Hilbert to exist.20 Analogously, in the
computational case we can simply say that any (physical) structure (or system) that
satisfies (is consistent with) the abstract model is an implementation of that model.
Of course, this will result in a very promiscuous account of computational imple-
mentation, but here we are interested primarily in the question of individuation, not
triviality, and so we can allow that some other means of restricting the range of admis-
sible implementations might be required. One possibility here would be to appeal to
the kind of information-theoretic “simplicity criterion” proposed byMillhouse (2019),
which could allow us to measure in objective terms the relative complexity of the rela-
tionship between specific physical and mathematical structures. While this might still
result in a form of unlimited pancomputationalism, it would at least allow us to rank
(in non-arbitrary terms) which computational models are more or less interesting for
each candidate physical implementation. This kind of constraint would be consistent

20 And consequently, that any object/reified position of that structure can also be said to exist. Note that at
the time Hilbert was writing he aligned the concept of consistency with that of satisfiability, since model-
theoretic proofs (which he invented) were the only known means of establishing consistency.

123

Synthese (2022) 200 :189 Page 21 of 26 189

with the structuralist account on offer here, as it doesn’t appeal to intrinsic properties
of computational objects, but rather just to the formal relationship between physical
implementation and computational model. The Hilbertian solution to indiscernability
is also available to hybrid structuralists, who can appeal to additional non-structural
resources such as proper functions in order to block pancomputationalism. These
resources are not available to the pure structuralist, who might therefore have a harder
time dealing with pancomputationalism, even if they are able to avoid indiscernability.
Some pure structuralists might even be willing to accept pancomputationalism, but
this would certainly be a controversial move (see e.g. Schweizer, 2019 for an example
of this kind of approach). In any case, we do not want to commit either the pure or
hybrid structuralist to any particular way of dealing with triviality here, and will just
note that it is a further issue they may need to address once the current problem of
indiscernibility has been resolved.

According to the Hilbertian structuralist account, then, Gate 1 can be said to imple-
ment either AND or OR, but not both at once, as its structure is consistent with either
of these models, and vice versa for Gate 2. All that matters is that there is a pair of
physical components structured such that they can fill either position in the computa-
tional model, and interact with each other such that they satisfy the structure of this
model (i.e. transform digits in the correct way). This approach serves to justify reject-
ing PII in the following way – we can adapt Hilbert’s Principle to create an equivalent
principle for computational structuralists, essentially a restatement of simple mapping
accounts of physical computation:

Computational Structuralist Principle The existence of a physical computa-
tional structure is established when there is a homomorphism between an abstract
computational structure and a physical structure, such that the physical structure
can be interpreted as an implementation of the abstract computational structure.

Hilbert’s justification for rejecting PII came from the fact that Hilbert’s Principle
entailed the falsity of PII. Likewise, here the Computational Structuralist Principle
entails the falsity of PII for physical computation. For, if there is an abstract compu-
tational model that defines a system with a structural symmetry—i.e., two or more
digitswith indiscernible structural profiles—and can bemapped to a physical structure,
then there exists a physical computational structure with structurally indiscernible but
numerically distinct component-types, contra PII.We can take any example here, such
as the implementations of the digits of the AND-gates and OR-gates described in Sect.
1. This constitutes a counterexample to PII for physical computation, and hence offers
computational structuralists a principled reason to reject PII, paralleling Hilbert’s own
rejection of PII in the case of mathematical structuralism.

In this way computational structuralists can also turn the indiscernibility objection
on its head; if there was a physical structure with only a single, self-identical com-
ponent type and a single, self-identical digit type, then this structure would not count
as an implementation of any abstract (binary) computational structure, and so could
not be classified as a physical computational structure in the first place.21 The compu-
tational structuralist has a principled internal reason for rejecting PII, and while this

21 Note that a NOT-gate requires two distinct digit types, and thus still qualifies as a binary computational
system, although as (Fresco et al., 2021, sec. 2.2) note, such a system by itself is able to avoid indeterminacy

123

189 Page 22 of 26 Synthese (2022) 200 :189

justification might not be shared by their opponents, it at least saves them from the
threat of contradiction via the absurd conclusion that the digit type "1" equals the digit
type "0".

4.3 Forward- and reverse-engineering indeterminate components

The final thing we want to discuss are some practical implications of using Hilbert’s
conception of a theory to avoid absurdity and embrace the indeterminacy of compu-
tational systems with localised symmetries. For some, in particular the semanticists
who originally raised the indeterminacy objection, this approach might seem unsat-
isfactory. After all, it is still the case that pure computational structuralists cannot
determine which structural dual is which for any non-rigid computational system.

We want to question why such indeterminacy is still seen as a problem, rather
than simply a harmless (though perhaps initially counter-intuitive) consequence of
the structuralist conception of physical computation. To examine this issue further we
will imagine two hypothetical characters, corresponding to two different kinds of the-
oretical project. The forward engineer is interested in computational implementation
because she wants to build a physical system that implements an abstract computa-
tional model. The reverse engineer, on the other hand, is interested in computational
implementation because she wants to determine which abstract computations a par-
ticular physical system implements. The former corresponds to the kind of challenge
faced by those involved in the engineering project of creating a functioning physical
computer, while the latter corresponds roughly to the challenge faced by computa-
tional neuroscientists, who are tasked with determining what computations the brain
might be performing, but could also include regular computer scientists trying to, e.g.,
reverse engineer a rival’s technology.

For forward engineers, one might think that establishing the determinate computa-
tional identity of the components would be important, because they want the physical
system to carry out specific computational operations. On closer inspection, forward
engineers should not be concerned by our Hilbertian indeterminacy, as they can sim-
ply stipulate which component fulfils the role of each logical function, provided that
this remains consistent with how they individuate the other components of the system
they are designing. More specifically, this stipulation must be consistent with their
assignment of truth values to whichever physical component plays the role of each
digit in their system, such that the physical inputs and outputs of each gate match their
corresponding function in the logical model. We saw already that any non-rigid com-
putational structure could be rendered fully determinate if the computational digits
were assigned a truth-value, and that this would in turn determine the computational
identity of gates implementing structural duals. For forward engineers, the arbitrary
nature of how we interpret logical duals should feel quite natural—these are after all
systems we have designed. The Hilbertian solution is a comfortable one here since

Footnote 21 continued
concerns. Unary digital computation would of course only include a single, self-identical digit type, but we
are concerned here only with binary digital computation, and unary computation is anyway an edge-case
that is likely to appear somewhat strange under any account (see Maley, 2020 for some recent discussion).

123

Synthese (2022) 200 :189 Page 23 of 26 189

there is no inherent problem in the fact that the computational system doesn’t inter-
nally determine truth functions across its structural symmetries and, furthermore, the
truth functions can be easily specified if one’s engineering goal requires it.

Indeterminacy may initially seem more problematic for the reverse engineers, who
cannot simply stipulate the identity of each indiscernible gate in the system they are
studying—they are, after all, trying to discover the identity of its components, not
merely label them. This problem, however, dissolves under the Hilbertian conception
of a computational structure. Crucially, if we are not to beg the question against the
computational structuralist, we must acknowledge that their view entails that all that
matters for the identity of a (physical) computational component is that its structure
corresponds with the structure of an (abstract) computational model. In the case of
logical duals, this correspondence can be achieved without determining which compo-
nent is which, provided that two such components can be identified and distinguished
from one another. For example, Gates 1 and 2 fulfil this criteria for the logical duals
AND/OR, which should be sufficient for computational individuation. Any further
labelling or interpretation (of one as AND and the other as OR) is strictly not part
of the core process of computational individuation, even if it might be pragmatically
convenient or useful for some further process (such as the development of a theory in
computational neuroscience). In this case a determinate assignment can also be arbi-
trarily specified—just the same as with the forward engineer—since there is no fact
of the matter for the reverse engineer to discover. In other words, for computational
structuralists engaged in reverse engineering there is nothing to discover beyond the
inverse homomorphism (technically speaking, the coding) between an abstract compu-
tational structure (including any symmetries) and the physical structure that is thought
to implement a computation.22

Thus, our Hilbertian solution should satisfy both the forward and reverse engineers,
even though it concedes that certain computational components are both structurally
indeterminate and indiscernible. Such components must nonetheless be numerically
distinct in order to satisfy the requirements of the abstract computationalmodel, even if
there is no fact of the matter about the ‘correct’ assignment of truth-functions to either
component. There are simply two equally viable candidates for two computational
roles, but each role can only be fulfilled by one candidate at a time, and both roles must
be filled. Fixing the identity of one component as AND, for example, determines that
the other componentmust play the role ofOR.Given this, it can no longer be considered
an objection to computational structuralists that logical duals are indeterminate or
indiscernible. It is instead simply an explicit consequence of their view, according to
which the structural profile alone is all that can fix the computational identity of a
physical component. This, we think, should satisfy any theoretical requirements of
both our forward and reverse engineers.

22 Codings are inverse homomorphisms which are injective (one-to-one) and as such can be ‘decoded’ as
the reverse engineer requires.

123

189 Page 24 of 26 Synthese (2022) 200 :189

5 Conclusion

Our central result is to have shown that it is possible to rescue even pure computational
structuralism from the indiscernibility objection recently presented byDoherty (2021).
It follows from this that hybrid accounts of computational structuralism can also
escape this objection. To do sowe recommend that computational structuralists of both
kinds should reject the Principle of the Identity of Indiscernibles, but we recognise
that they require some internal justification for doing so. We suggested that such a
justification can be found by adopting and adapting certain key aspects of Hilbert’s
conception of the relationship between a theory and its subject matter. Computational
individuation should be grounded not only in the structural profile of components, but
also in other aspects of the structure, in particular the fact that the physical structure
is an implementation of an abstract computational model with localised structural
symmetries.

Another outcome of our argument is to demonstrate that Hilbert’s early structural-
ism is a fruitful resource for computational structuralists, although it is clear that
Hilbert’s conception of mathematical theories will have to be carefully adapted if it
is to be made use of in this way. Finally, we also take it to be very interesting that
the very same indiscernibility objections that arise for mathematical structuralists can
also be applied to computational structuralism, and that a similar solution to the first
objection can be adapted for the second. This suggests that there might be some deeper
connections between the two kinds of structuralist approach that deserve further study
in future projects.

Our proposal for a wholesale adoption of an adapted Hilbertian approach to compu-
tational structuralism may seem radical, but we take it to be well-motivated given the
power and influence of his approach to mathematical structuralism. It is easy to forget
that it was Hilbert’s conception of reinterpretable partially underdetermined theoret-
ical primitives which gave birth to his now standard consistency and independence
proofs, paved the way for the theory of general relativity, and not least, is the standard
approach among working mathematicians and computer scientists to this day.

Acknowledgements We would like to thank the organisers and audience of the Indeterminacy and Under-
determination workshop held at University College Dublin in January 2020, the editors of this topical
collection, and especially the two anonymous reviewers for this journal, whose comments helped us improve
the paper significantly.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Synthese (2022) 200 :189 Page 25 of 26 189

References

Black, M. (1952). The identity of indiscernibles. Mind, 61, 153–64.
Burgess, J. (1999). Review of Shapiro (1997). Notre Dame Journal of Formal Logic, 40, 283–91.
Chalmers, D. J. (1996). Does a rock implement every finite-state automaton. Synthese, 108, 309–333.
Coelho Mollo, D. (2018). Functional individuation, mechanistic implementation: the proper way of seeing

the mechanistic view of concrete computation. Synthese, 195, 3477–3497. https://doi.org/10.1007/
s11229-017-1380-5

Coelho Mollo, D. (2019). Are there teleological functions to compute? Philosophy of Science, 86(3), 431–
452. https://doi.org/10.1086/703554

Copeland, B. J. (1996). What is computation? Synthese, 108, 335–59.
Dewhurst, J. (2018). Individuationwithout representation.TheBritish Journal for the Philosophy of Science,

69(1), 103–16. https://doi.org/10.1093/bjps/axw018
Dewhurst, J. (2018). Computing mechanisms without proper functions.Minds and Machines, 28, 569–88.

https://doi.org/10.1007/s11023-018-9474-5
Doherty, F. T. (2019). Hilbertian structuralism in the Frege-Hilbert controversy. Philosophia Mathematica,

3(27), 335–361. https://doi.org/10.1093/philmat/nkz016
Doherty, F. T. (2021). Computational Indeterminacy. PhilPapers. https://philpapers.org/rec/DOHCI-3.
Egan, F. (1992). Individualism, computation, and perceptual content. Mind, 101, 443–459.
Ferreirós, J. (2009). Hilbert, logicism, and mathematical existence. Synthese, 170(1), 33–70.
Fodor, J. A. (1998). Concepts. Blackwell.
Frege. G. (1899). Frege toHilbert. In: G.Gabriel, H. Hermes, F. Kambartel, C. Thiel, A. Veraart, B.McGuin-

ness, & H. Kaal (Eds.), Gottlob Frege: Philosophical and mathematical correspondence (pp. 34–38).
Blackwell

Frege, G. (1900). Frege toHilbert. In: G.Gabriel, H. Hermes, F. Kambartel, C. Thiel, A. Veraart, B.McGuin-
ness, & H. Kaal (Eds.), Gottlob Frege: Philosophical and mathematical correspondence (pp. 49–50).
Blackwell.

Frege, G. (1903). On the foundations of geometry: First series. In E. H. W. Kluge (Ed.),On the foundations
of geometry and formal theories of arithmetic (pp. 22–37). Yale University Press.

Fresco, N. (2015). Mechanistic computational individuation. Erkenntnis, 80, 1031–53.
Fresco, N., Copeland, J. B. & Wolf, M. J. (2021). The indeterminacy of computation. Synthese
Hellman, G. (1989). Mathematics without numbers: Towards a modal-structural interpretation. Oxford

University Press.
Hilbert, D. (1899a). Hilbert to Frege . In: G. Gabriel, H. Hermes, F. Kambartel, C. Thiel, A. Veraart,

B. McGuinness, & H. Kaal (Eds.), Gottlob Frege: Philosophical and mathematical correspondence
(pp. 38–43). Blackwell

Hilbert, D. (1899b). Grundlagen der Geometrie. Teubner. English translation of 10th edition by L. Unger,
Chicago: Open Court.

Hilbert, D. (1900). Hilbert to Frege. In: G. Gabriel, H. Hermes, F. Kambartel, C. Thiel, A. Veraart,
B. McGuinness, & H. Kaal (Eds.), Gottlob Frege: Philosophical and mathematical correspondence
(pp. 50–51). Blackwell

Hilbert, D. (1922). Grundlagen der Mathematik, lecture notes by Bernays. In W. B. Ewald, M. Hallett,
M. Ulrich, & W. Sieg (Eds.), David Hilbert’s lectures on the foundations of arithmetic and logic
1917–1933 (pp. 431–527). Springer.

Keränen, J. (2001). The identity problem for realist structuralism. Philosophia Mathematica, 3, 308–30.
Kleene, S. C. (1938). On notation for ordinal numbers. Journal of Symbolic Logic, 3, 150–155.
Ladyman, J. (2005). Mathematical structuralism and the identity of indiscernibles. Analysis, 65(3), 218–21.
Lee, J. (2018). Mechanisms, wide functions, and content: Towards a Computational Pluralism. British

Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axy061
Leitgeb, H., &Ladyman, J. (2008). Criteria of identity and structuralist ontology.PhilosophiaMathematica,

16(3), 388–396.
Lindström, S., & Palmgren, E. (2008). Introduction: The three foundational programmes. In: S. Lindström,

E. Palmgren, K. Segerberg, & V. Stoltenberg-Hansen, (Eds.), Logicism, intutionism and formalism:
What has become of them? (pp. 1–25). Springer

Linnebo, Ø., & Pettigrew, R. (2014). Two types of abstraction for structuralism. Philosophical Quarterly,
64, 267–283.

123

https://doi.org/10.1007/s11229-017-1380-5
https://doi.org/10.1007/s11229-017-1380-5
https://doi.org/10.1086/703554
https://doi.org/10.1093/bjps/axw018
https://doi.org/10.1007/s11023-018-9474-5
https://doi.org/10.1093/philmat/nkz016
https://philpapers.org/rec/DOHCI-3
https://doi.org/10.1093/bjps/axy061

189 Page 26 of 26 Synthese (2022) 200 :189

Lukasiewicz, J. (1920/1970). O logice trojwartosciowej. Ruch Filozoficny, 5: 170–171. English translation
in L. Borkowski (Ed.), Jan Lukasiewicz, Selected Works. PWN

MacBride, F. (2006). What constitutes the numerical diversity of mathematical objects? Analysis, 66(1),
63–69.

Maley, C. (2020). Analog computation and representation. British Journal for the Philosophy of Science
Miłkowski, M. (2013). Explaining the computational mind. MIT Press.
Miłkowski, M., & Fresco, N. (2019). Mechanistic computational individuation without biting the bullet.

The British Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axz005/5305023
Millhouse, T. (2019). A simplicity criterion for physical computation.TheBritish Journal for the Philosophy

of Science, 70(1), 153–78. https://doi.org/10.1093/bjps/axx046
Papayannopoulos, P., Fresco, N., & Shagrir, O. (forthcoming). On two different kinds of computational

indeterminacy. The Monist.
Parsons, C. (1990). The structuralist view of mathematical objects. Synthese, 84, 303–346.
Parsons, C. (2004). Structuralism and metaphysics. The Philosophical Quarterly, 54, 56–77.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526.
Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford University Press.
Pudlák, P. (2013).Logical foundations of mathematics and computational complexity: A gentle introduction.

Springer.
Rescorla, M. (2013). Against structuralist theories of computational implementation. British Journal for

the Philosophy of Science, 64, 681–707.
Rescorla, M. (2014). The causal relevance of content to computation. Philosophy and Phenomenological

Research, 88, 173–208.
Resnik, M. D. (1981). Mathematics as a science of patterns: Ontology and reference.Noûs, 15(4), 529–550.
Resnik, M. D. (2018). Non-ontological structuralism. Philosophia Mathematica, 1093(10), 1–13.
Schweizer, P. (2019) Computation in physical systems: a normative mapping account. In: D. Berkich, &

M. V. d’Alfonso (Eds.), On the cognitive, ethical, and scientific dimensions of artificial intelligence
(pp. 24–47). Springer.

Shagrir, O. (2001). Content, computation and externalism. Mind, 110(438), 369–400.
Shagrir, O. (2018). In defense of the semantic view of computation. Synthese, 190, 4083–108. https://doi.

org/10.1007/s11229-018-01921-z
Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford University Press.
Shapiro, S. (2005). Categories, structures, and the Frege-Hilbert controversy: The status of meta-

mathematics. Philosophia Mathematica, 13(1), 61–77.
Shapiro, S. (2008). Identity, indiscernibility, and ante rem structuralism: The tale of i and −i . Philosophia

Mathematica, 16(3), 285–309.
Sieg, W. (2008). Beyond Hilbert’s reach? In S. Lindström, E. Palmgren, K. Segerberg, & V. Stoltenberg-

Hansen (Eds.), Logicism, intutionism and formalism: What has become of them? Springer
Sieg, W. (2014). The ways of Hilbert’s axiomatics: Structural and formal. Perspectives on Science, 22(01),

133–157.
Sprevak,M. (2010). Computation, individuation, and the received view on representation. Studies in History

and Philosophy of Science Part A, 41(3), 260–70.
Wigglesworth, J. (2018). Non-eliminative structuralism, Fregean abstraction, and non-rigid structures.

Erkenntnis, 86, 113–27.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1093/bjps/axz005/5305023
https://doi.org/10.1093/bjps/axx046
https://doi.org/10.1007/s11229-018-01921-z
https://doi.org/10.1007/s11229-018-01921-z

	Structuralism, indiscernibility, and physical computation
	Abstract
	Introduction
	1 Computational structuralism and the indeterminacy objection
	1.1 Computational structuralism
	1.2 The indeterminacy objection

	2 From indeterminacy to indiscernibility
	2.1 The indiscernibility objection to mathematical structuralism
	2.2 The indiscernibility objection to computational structuralism

	3 Hilbertian structuralism and indiscernibility
	3.1 The heart of the defence
	3.2 Hilbertian structuralism and Hilbert's principle
	3.3 The Hilbertian solution to the indiscernibility objection

	4 Applying the Hilbertian solution to the computational case
	4.1 The Hilbertian solution applied to computational structuralism
	4.2 Rejecting the PII for computational structuralism
	4.3 Forward- and reverse-engineering indeterminate components

	5 Conclusion
	Acknowledgements
	References

