
'

&

$

%

Formalization of O Notation
in Isabelle/HOL

Kevin Donnelly (Jeremy Avigad)
Carnegie Mellon University

July 2004

1

'

&

$

%

Asymptotics
First, the motivation:

Theorem: [The Prime Number Theorem]

π(x) ∼ x

ln x

The number of primes less than x is asymptotic to x
ln x .

We are working on formalizing a proof of the prime number
theorem using Isabelle/HOL. In support of this project we
formalized a very general notion of O notation.

2

'

&

$

%

Definition: f is asymptotic to g

f(n) ∼ g(n) ⇐⇒ lim
n→∞

f(n)
g(n)

= 1

Definition: f is big-o of g

f(n) = O (g(n)) ⇐⇒ ∃C ∀n |f(n)| ≤ C · |g(n)|

This differs slightly from some definitions of O in that it does not
rely on having an ordered domain, only an ordered codomain.

3

'

&

$

%

Alternative Definitions

Definition: f is big-o of g eventually

f(n) = O (g(n)) eventually ⇐⇒ ∃m ∃C ∀n ≥ m |f(n)| ≤ C · |g(n)|

Definition: f is big-o of g on S

f(n) = O (g(n)) on S ⇐⇒ ∃m ∃C ∀n ∈ S |f(n)| ≤ C · |g(n)|

4

'

&

$

%

Uses of O notation:

• Computer Science/Algorithms

• Mathematics

– Number Theory

– Combinatorics

Examples

• Quicksort sorts in O (n log n)

• ∑n
i=1

1
i = ln n + O (1)

(identity used in proving PNT)

5

'

&

$

%

O notation in the proof on the PNT:

Definitions:
θ(x) =

∑

p≤x

ln p

ψ(x) =
∑

pα≤x

ln p

Lemma:
ψ(x) = θ(x) + O

(√
x ln x

)

Lemma:

π(x) =
θ(x)
ln x

+ O

(
x

ln2 x

)

Theorem:
π(x) ln x

x
∼ θ(x)

x
∼ ψ(x)

x

6

'

&

$

%

O notation

Keys to a good formalization of O notation:

• Generality - O notation makes sense on a large range of
function types, even on unordered domains.

• Perspicuity - The formalization should support reasoning at a
relatively high level.

In addition we must make choices in how to deal with ambiguity
and abuse of notation (an = which is not an equivalence!)

7

'

&

$

%

Isabelle

Isabelle (developed by Larry Paulson and Tobias Nipkow) is a
generic theorem proving framework based on a typed λ-calculus.

Syntax is standard typed lambda calculus, with the addition of sort
restrictions on types (t :: (T :: S))

Isabelle has several features well-suited to our formalization.

8

'

&

$

%

Polymorphism

Isabelle provides powerful polymorphism:

• Parametric polymorphism: (α)list, α ⇒ bool, etc

(λf g x. f(g(x))) :: (ρ ⇒ β) ⇒ (α ⇒ ρ) ⇒ α ⇒ β

• Sort-restricted polymorphism through the use of type classes

(λx y. x ≤ y) :: (α :: order) ⇒ (α :: order) ⇒ bool

where order is the class of types on which ≤ is defined

9

'

&

$

%

Type Classes

Order-sorted type classes, due to Nipkow, provide a more restricted
polymorphism.

= :: (α :: term) ⇒ (α :: term) ⇒ bool

Type classes form a hierarchy with the pre-defined logic class,
containing all types, at the top. We can declare types to be a
member of a class with arity declarations

fun :: (logic, logic)logic

nat, int, real :: term

list :: (term)term

10

'

&

$

%

Type Classes

Type classes can also be used to handle overloading

axclass plus < term
axclass one < term

+ :: (α :: plus) ⇒ α ⇒ α

1 :: α :: one

This would declare the constants + and 1 for any type in the class
plus and one respectively.

11

'

&

$

%

Axiomatic Type Classes
Type classes can also be given axiomatic restrictions. This is
extremely useful in defining general functions like summation over
a set.

axclass plus_ac0 < plus, zero
commute:"x + y = y + x"
assoc: "(x + y) + z = x + (y + z)"
zero: "0 + x = x"

setsum :: (α ⇒ β) ⇒ (α)set⇒ (β :: plus_ac0)

Subclasses of axiomatic classes inherit axioms as expected.

12

'

&

$

%

Axiomatic Type Classes

We can use axiomatic type classes to prove generic theorems that
will then apply to any type in the class

theorem right_zero: "x + 0 = x::’a::plus_ac0"

Since the class was defined axiomatically, we have to prove each
type as a member of the class (or each class as a subclass)

instance semiring < plus_ac0

instance nat :: semiring

13

'

&

$

%

Isabelle/HOL
Isabelle/HOL is a formalization of higher order logic similar to the
Church’s Simple Theory of Types with polymorphism It provides

• higher order equality: =

• the familiar logical operations and quantifiers: ∀,∃,→, &, |,̃ ,∃!
• base types: nat, bool, int

• constructed types: α× β, (α)set, (α, β)fun

• a set theory similar to Russel and Whitehead’s Theory of
Classes

• nice automated theorem proving and simplification tactics

• The ring and ordered_ring axiomatic type classes (Bauer,
Wenzel and Paulson)

14

'

&

$

%

HOL-Complex

HOL-Complex is a formalization of parts of analysis, due to
Jacques Fleuriot, in Isabelle/HOL which provides

• The type real of real numbers and associated operations and
functions: +,−, ∗, −1, log, ln, eˆ , etc

• Derivatives and Integrals

• A summation operator over nat ⇒ real function types well
suited to things like infinite sums

sumr :: nat⇒ nat⇒ (nat⇒ real) ⇒ real

sumr n m f =
∑

n≤x<m

f(x)

15

'

&

$

%

Formalizing O notation

O formulas are not really equations.

f(x) = x

f(x) = O (x)

f(x) = O
(
x2

)

O
(
x2

) 6= O (x)

16

'

&

$

%

Ambiguity

O notation is ambiguous.

While it presents itself as a function on terms, it is really a higher
order function, on a lambda term with an implicit binder:

ax2 + bx + c = O
(
x2

)

is true if we read it as

λx. ax2 + bx + c = O
(
λx. x2

)

but not as
λb. ax2 + bx + c = O

(
λb. x2

)

17

'

&

$

%

Solution: set inclusion and higher order function

f(x) = O (g(x)) really means f ∈ O (g) where O (g) is the set of all
functions bounded by a constant multiple of g.

I will use this notation from now on
Definition:

O (g) = {h | ∃C ∀x |h(x)| ≤ C ∗ |g(x)|}

In order to make it as general as possible, we define O on functions
from any type into a (non-degenerate) ordered ring.

O :: (α ⇒ β :: ordered_ring) ⇒ (α ⇒ β)set

18

'

&

$

%

This is enough machinery to prove a few simple things like
f ∈ O (f) but to formalize something more complex like

“
n∑

i=1

1
i

= ln n + O (1) ”

and to make our O notation usable easily in proofs, we need more.
Specifically, we need arithmetic operations functions, set and
elements

19

'

&

$

%

Defining Arithmetic Operations

We want to define *, +, etc on functions of type α ⇒ β and sets of
type (β)set such that these operations are defined on β

instance fun :: (type, times)times
instance set :: (times)times

This is simply asserts the existence a function of the right type
with the corresponding symbol (∗).

20

'

&

$

%

We then give that symbol a definition

defs
func_times: "f * g == (λ x. (f x) * (g x))"
set_times: "A * B == {c | ∃a∈A.∃b∈B.c = a * b}"

Similarly we declare fun and set in the classes plus and minus
and provide similar definitions for the constants + and −

21

'

&

$

%

We then define a zero for both classes

instance fun :: (type,zero)zero
instance set :: (zero)zero
defs
func_zero: "0::(’a => ’b::zero) == (λx. 0::’b)"
set_zero: "0::(’a::zero)set == {0::’a}"

And now we can prove each of these classes in plus_ac0

instance fun :: (type,plus_ac0)plus_ac0
instance set :: (plus_ac0)plus_ac0

22

'

&

$

%

Also, in order to facilitate easier use of O notation we define the
arithmetic functions that take an element and set argument

constdefs
elt_set_plus::"’a::plus => ’a set => ’a set" (infixl
"+o" 70)
"a +o B == {c | ∃b∈B. c = a + b}"

+o :: (α ⇒ β) ⇒ (α ⇒ β)set⇒ (α ⇒ β)set

We similarly define ∗o and −o

23

'

&

$

%

O Formulas

We now have enough to formally state a wide range of O

“equations"

The standard form is
f ∈ g +o O (h)

This form suffices to express almost any statement of O notation
(and all that we need for the PNT) so most of the theorems we have
proved about O formulas are proved about formulas of this form.

24

'

&

$

%

“
n∑

i=1

1
i

= ln n + O (1) ”

Can be stated in this form as
(

λn.
n∑

i=1

1
i

)
∈ ln +o O (λn. 1)

In Isabelle syntax

theorem sum_inverse_eq_ln_1:
"(λn.sumr 0 n (λx.1/(x + 1))) ∈ (λn.ln (real (n + 1)))
+o O(λn.1)"

25

'

&

$

%

(
λn.

n∑

i=1

1
i

)
∈ ln +o O (λn. 1)

This is slightly more cumbersome than standard O notation
because you have to convert terms in the equation into functions,
but this is really always part of O notation, it is just left implicit.

26

'

&

$

%

O Variations

O (g) = {h | ∃C ∀x |h(x)| ≤ C ∗ |g(x)|}
Interpreting the O as a function from functions to function sets also
lets us easily handle other interpretations of O notation. One such
other interpretation would be, on an ordered domain:

O (g) eventually = {h | ∃C ∃n ∀x > n |h(x)| ≤ C ∗ |g(x)|}

Another would restrict the set of interest as a subset of the domain,
as in:

O (g) on S = {h | ∃C ∀x ∈ S |h(x)| ≤ C ∗ |g(x)|}

We can get both of these variations just by adding a function from
function sets to function sets!

27

'

&

$

%

We introduce the weakly binding postfix function

eventually :: ((α :: linorder) ⇒ β)set⇒ (α ⇒ β)set

A eventually == {f | ∃k ∃g ∈ A ∀x ≥ k (f(x) = g(x))}
Which we can use to get fairly textbook looking O formulas

λx. x2 ∈ O (λx.x + 1) eventually

We also introduce the binary

on :: (α ⇒ β)set⇒ (α)set⇒ (α ⇒ β)set

A on S == {f | ∃g ∈ A ∀x ∈ S (f(x) = g(x))}

28

'

&

$

%

Using O notation

In order to use our O notation in proofs there are two important
classes of lemmas that we proved.

• manipulating sets and elements

• asymptotic properties

29

'

&

$

%

Manipulating set and elements
Normalization
set-plus-rearrange (a + C) + (b + D) = (a + b) + (C + D)

set-plus-rearrange2 a + (b + C) = (a + b) + C

set-plus-rearrange3 (a + C) + D = a + (C + D)

set-plus-rearrange4 C + (a + D) = a + (C + D)
These rewrite rules give us a term of the form
(a + b + ...) +o (O (a′) + O (b′) + ...)

Example:

theorem set-rearrange:
"(f +o O(h)) + (g +o O(i)) = (f + g) +o (O(h) + O(i))"
by(simp only: set-plus-rearranges plus-ac0)

30

'

&

$

%

Monotonicity of arithmetic operations over sets and elements

set-plus-intro [|a ∈ C, b ∈ D|] ⇒ a + b ∈ C + D

set-plus-intro2 b ∈ C ⇒ a + b ∈ a + C

set-zero-plus 0 + C = C

set-plus-mono C ⊆ D ⇒ a + C ⊆ a + D

set-plus-mono2 [|C ⊆ D, E ⊆ F |] ⇒ C + E ⊆ D + F

set-plus-mono3 a ∈ C ⇒ a + D ⊆ C + D

set-plus-mono4 a ∈ C ⇒ a + D ⊆ D + C

31

'

&

$

%

Asymptotic properties

Direct set-theoretic properties of O sets

bigo-elt-subset f ∈ O(g) ⇒ O(f) ⊆ O(g)

bigoset-elt-subset f ∈ O(A) ⇒ O(f) ⊆ O(A)

bigoset-mono A ⊆ B ⇒ O(A) ⊆ O(B)

bigo-refl f ∈ O(f)

bigoset-refl A ⊆ O(A)

bigo-bigo-eq O(O(f)) = O(f)

32

'

&

$

%

Addition properties of O sets

bigo-plus-idemp O(f) + O(f) = O(f)

bigo-plus-subset O(f + g) ⊆ O(f) + O(g)

bigo-plus-subset2 O(f + A) ⊆ O(f) + O(A)

bigo-plus-subset3 O(A + B) ⊆ O(A) + O(B)

bigo-plus-subset4 [|∀x(0 ≤ f(x)),∀x(0 ≤ g(x))|] ⇒
O(f + g) = O(f) + O(g)

bigo-plus-absorb f ∈ O(g) ⇒ f + O(g) = O(g)

bigo-plus-absorb2 [|f ∈ O(g), A ⊆ O(g)|] ⇒ f + A ⊆ O(g)

33

'

&

$

%

theorem bigo_bounded2: "[|∀n.(lb n <= x n) & (x n <= lb
n + f n); f∈O(g)|] ==> x∈(lb + f) +o O(g)"

This last theorem lets us prove that a function is in an O set by
proving appropriate lower and upper bounds for the function. This
is the method used to prove

(
λn.

n∑

i=1

1
i

)
∈ ln +o O (λn. 1)

34

'

&

$

%

References

• Knuth et. al. Concrete Mathematics, 2nd Edition, Ch. 9.

• Paulson, Lawrence C. “Introduction to Isabelle,”
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/
Isabelle2004/doc/intro.pdf

• Nipkow, Tobias and Lawrence C. Paulson and Markus Wenzel.
“Isabelle’s Logics: HOL,”
http://www.cl.cam.ac.uk/Research/HVG/
Isabelle/dist/Isabelle2004/doc/logics-HOL.pdf

• Wenzel, Markus. “Using axiomatic type classes in Isabelle,”
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/
Isabelle2004/doc/axclass.pdf

35

