Formalization of O Notation
in Isabelle/ HOL

Kevin Donnelly (Jeremy Avigad)
Carnegie Mellon University
July 2004

/ Asymptotics

First, the motivation:

Theorem: |The Prime Number Theorem|

T
W(ﬂf) ~ m

The number of primes less than x is asymptotic to .

We are working on formalizing a proof of the prime number
theorem using Isabelle/HOL. In support of this project we

formalized a very general notion of O notation.

_

-~

Definition: f is asymptotic to g

~~

)

f(n) ~g(n) < lim n)

n—aoo g

/N

Definition: f is big-o of g

fn)=0(g(n)) < 3CVn [f(n)] <C-|g(n)|

This differs slightly from some definitions of O in that it does not
rely on having an ordered domain, only an ordered codomain.

_

-~

Alternative Definitions

Definition: f is big-o of g eventually

f(n) =0 (g(n)) eventually <= Jm 3C Vn >m [f(n)| < C-|g(n)|

Definition: fis big-o of gon S

fn)=0(g(n)) on S <= Im 3ICVn S [f(n)] <C-[g(n)|

_

/

-~

Uses of O notation:
e Computer Science/Algorithms

e Mathematics
— Number Theory

— Combinatorics
Examples

e Quicksort sorts in O (nlogn)

e > 1=Inn+0(1)

)

(identity used in proving PNT)

_

O notation in the proof on the PNT:

Definitions:

Lemma:

Lemma:

Theorem:

X X X

/ O notation \

Keys to a good formalization of O notation:

e Generality - O notation makes sense on a large range of

function types, even on unordered domains.

e Perspicuity - The formalization should support reasoning at a

relatively high level.

In addition we must make choices in how to deal with ambiguity

and abuse of notation (an = which is not an equivalence!)

_

/ Isabelle \

[sabelle (developed by Larry Paulson and Tobias Nipkow) is a
generic theorem proving framework based on a typed A-calculus.

Syntax is standard typed lambda calculus, with the addition of sort
restrictions on types (¢t :: (T :: .5))

Isabelle has several features well-suited to our formalization.

/ Polymorphism

Isabelle provides powerful polymorphism:

e Parametric polymorphism: (a)list, @ = bool, etc
(Af gz flg@) = (p=B)=(a=p)=>a=p
e Sort-restricted polymorphism through the use of type classes
(Az y. z <y) :: (o :: order) = («a :: order) = bool

where order is the class of types on which < is defined

_

/ Type Classes \

Order-sorted type classes, due to Nipkow, provide a more restricted

polymorphism.

= :: (o :: term) = («a :: term) = bool

Type classes form a hierarchy with the pre-defined logic class,
containing all types, at the top. We can declare types to be a

member of a class with arity declarations

fun : (logic,logic)logic
nat,int,real :: term
list :: (term)term

_ /

10

/ Type Classes

Type classes can also be used to handle overloading

axclass plus < term

axclass one < term

+ = (a:plus)=a=«

1 1 «::one

This would declare the constants + and 1 for any type in the class

plus and one respectively.

_

/

11

/ Axiomatic Type Classes \

Type classes can also be given axiomatic restrictions. This is
extremely useful in defining general functions like summation over
a set.

axclass plus_acO < plus, zero
commute:"x + y =y + x"
assoc: "(xt+ty)+tz=x+(y+2)"

zero: "0 + x = x"

setsum :: (o =) = (a)set = (8 :: plus_ac0)

Subclasses of axiomatic classes inherit axioms as expected.

_ /

12

/ Axiomatic Type Classes \

We can use axiomatic type classes to prove generic theorems that
will then apply to any type in the class

theorem right_zero: "x + 0 = x::’a::plus_acO"

Since the class was defined axiomatically, we have to prove each

type as a member of the class (or each class as a subclass)
instance semiring < plus_acO

instance nat :: semiring

_ /

13

-~

Isabelle/HOL is a formalization of higher order logic similar to the
Church’s Simple Theory of Types with polymorphism It provides

Isabelle/ HOL \

higher order equality: =

the familiar logical operations and quantifiers: V, 3, —, &, |, 3!
base types: nat, bool, int

constructed types: a x 3, («a)set, (o, §)fun

a set theory similar to Russel and Whitehead’s Theory of

Classes
nice automated theorem proving and simplification tactics

The ring and ordered ring axiomatic type classes (Bauer,

Wenzel and Paulson)

/

14

/ HOL-Complex

HOL-Complex is a formalization of parts of analysis, due to

Jacques Fleuriot, in Isabelle/HOL which provides

e The type real of real numbers and associated operations and

functions: +, —, %, 1, log,ln,e" , etc
e Derivatives and Integrals

e A summation operator over nat = real function types well

suited to things like infinite sums

sumr :: nat = nat = (nat = real) = real

sumr n m f = Z f(x)

n<zr<m

15

/ Formalizing O notation

O formulas are not really equations.

16

/ Ambiguity \

O notation is ambiguous.

While it presents itself as a function on terms, it is really a higher

order function, on a lambda term with an implicit binder:

ax2—|—bx—|—c:O(x2)

is true if we read it as
\z. ax® +br+c=0 ()\:L'. x2)

but not as
\b. ax’ +bz+c=0 ()\b. xQ)

_ /

17

(. N

Solution: set inclusion and higher order function

f(x) = O (g(x)) really means f € O (g) where O (g) is the set of all
functions bounded by a constant multiple of g.

I will use this notation from now on

Definition:

O(g) = 1h | 3C Yz |h(z)] < C* |g(z)|}

In order to make it as general as possible, we define O on functions

from any type into a (non-degenerate) ordered ring.

O :: (o= [:: ordered ring) = (a = ()set

_ /

18

4 N

This is enough machinery to prove a few simple things like

f € O (f) but to formalize something more complex like

n

1
S Cwntoqy
i1
and to make our O notation usable easily in proofs, we need more.
Specifically, we need arithmetic operations functions, set and
elements

_ /

19

/ Defining Arithmetic Operations \

We want to define *, +, etc on functions of type o = 3 and sets of
type (3)set such that these operations are defined on 3

instance fun :: (type, times)times

instance set :: (times)times

This is simply asserts the existence a function of the right type
with the corresponding symbol (x).

_ /

20

-~

We then give that symbol a definition

defs
func_times: "f *x g == (A x. (f x) * (g x))"
set_times: "A x*x B == {c | dacA.db€B.c = a * b}"

Similarly we declare fun and set in the classes plus and minus

and provide similar definitions for the constants + and —

_

21

-~

We then define a zero for both classes

instance fun :: (type,zero)zero

instance set :: (zero)zero

defs

func_zero: "0::(’a => ’b::zero) == (Ax. 0::°b)"
set_zero: "O::(’a::zero)set == {0::’a}"

And now we can prove each of these classes in plus ac0

instance fun :: (type,plus_ac0O)plus_acO

instance set :: (plus_acO)plus_acO

_

22

4 N

Also, in order to facilitate easier use of O notation we define the

arithmetic functions that take an element and set argument

constdefs

elt_set_plus::"’a::plus => ’a set => ’a set" (infixl
"+O" 70)

"a 40 B == {c | IbEB. ¢ = a + b}"

+o: (a=f) = (o= [)set = (a = ()set

We similarly define xo and —o

_ /

23

/ O Formulas \

We now have enough to formally state a wide range of O

“equations”

The standard form is

feg-+oO(h)

This form suffices to express almost any statement of O notation
(and all that we need for the PNT) so most of the theorems we have
proved about O formulas are proved about formulas of this form.

_ /

24

4 N

n

1

S Cntoq)y
]

=1

Can be stated in this form as

(An. E 1) €ln +0 O (An. 1)
i
i=1

In Isabelle syntax

theorem sum_inverse_eq_ln_1:
"(An.sumr 0 n (Ax.1/(x + 1))) € (An.1n (real (n + 1)))
+o 0(An.1)"

_ /

25

()\n. i 1) €ln +o0 O (An. 1)

1=1

This is slightly more cumbersome than standard O notation
because you have to convert terms in the equation into functions,

but this is really always part of O notation, it is just left implicit.

_

26

4 N

(O Variations

O(g) = {h | 3C Vz [h(z)| < O |g(x)|}

Interpreting the O as a function from functions to function sets also
lets us easily handle other interpretations of O notation. One such
other interpretation would be, on an ordered domain:

O (g) eventually = {h | AC In Vx > n |h(x)| < C *|g(z)|}

Another would restrict the set of interest as a subset of the domain,

as in:

O(g) on S={h|3IC Ve S |h(x) < Cx*|g(x)|}

We can get both of these variations just by adding a function from

\function sets to function sets! /

27

-~

We introduce the weakly binding postfix function
eventually :: ((« :: linorder) = ()set = (a = [)set

A eventually =={f |k dg € AVx >k (f(x) = g(x))}

Which we can use to get fairly textbook looking O formulas
\z. 22 € O (Az.x + 1) eventually
We also introduce the binary
on: (o = ()set = (a)set = (a = J)set

Aon S=={f|3ge AVz €S (f(z) = g(z))}

_

28

Using O notation

In order to use our O notation in proofs there are two important

classes of lemmas that we proved.

e manipulating sets and elements

e asymptotic properties

_

29

-~

Manipulating set and elements

Normalization

set-plus-rearrange (a+C)+(b+D)=(a+b)+ (C+ D)

set-plus-rearrange2 | a+ (b+C)=(a+b)+C

set-plus-rearranged | (a+C)+ D =a+ (C + D)

set-plus-rearrange4 | C + (a+ D) =a+ (C+ D)

These rewrite rules give us a term of the form

(a+b+..) 40 (O(d)4+0O(®)+...)
Example:

theorem set-rearrange:
"(f +o 0(h)) + (g +o 0(1)) = (£ + g) +o (OCR) + O(i))"

by(simp only: set-plus-rearranges plus-acO)

_

/

30

-~

Monotonicity of arithmetic operations over sets and elements

set-plus-intro

laeCibe D|]=a+beC+D

set-plus-intro2

beC=a+bca+C

set-zero-plus

O+C=C

set-plus-mono

CCD=a+CCa+D

set-plus-mono2

ICCD,ECF||=C+ECD+F

set-plus-mono3

aeC=a+DCC+D

set-plus-mono/

aeC=a+DCD+C

_

31

-~

Asymptotic properties

Direct set-theoretic properties of O sets

bigo-elt-subset

f€0(g) = O(f) CO(g)

bigoset-elt-subset feO(A) = 0O(f) CO(A)
bigoset-mono ACB= 0(A) CO(B)
bigo-refl feo(f)

bigoset-refl ACO(A)

bigo-bigo-eq O(0(f)) = O(f)

_

-~

Addition properties of O sets

bigo-plus-idemp O(f)+0O(f) =0(f)
bigo-plus-subset O(f+g9) CO(f)+ O(g)
bigo-plus-subset?2 O(f+A) CO(f)+0(A)
bigo-plus-subsets O(A+ B) CO(A)+ O(B)
bigo-plus-subset/ [Vz(0 < f(2)),V2(0 < g(2))]] =
O(f+9)=0(f)+0(g)
bigo-plus-absorb feO(g) = f+0(g) = O()
bigo-plus-absorb2 |f€O0(g),ACO(g)|]| = f+ACO(g)

_

33

4 N

theorem bigo_bounded2: "[|Vn.(lb n <= xn) & (xn <=1b
n +f n); £fc0(g)|] ==> x€(1b + £) +o 0(g)"

This last theorem lets us prove that a function is in an O set by
proving appropriate lower and upper bounds for the function. This
is the method used to prove

()\n. g 1) €ln +o0 O (An. 1)
i
i=1

34

~

References

Knuth et. al. Concrete Mathematics, 2nd Edition, Ch. 9.

Paulson, Lawrence C. “Introduction to Isabelle,”
http:/ /www.cl.cam.ac.uk/Research/HVG /Isabelle /dist /
Isabelle2004 /doc /intro.pdf

Nipkow, Tobias and Lawrence C. Paulson and Markus Wenzel.
“Isabelle’s Logics: HOL,”

http:/ /www.cl.cam.ac.uk/Research/HVG/

Isabelle /dist /Isabelle2004 /doc/logics-HOL.pdf

Wenzel, Markus. “Using axiomatic type classes in Isabelle,”

http:/ /www.cl.cam.ac.uk /Research/HVG /Isabelle /dist /
Isabelle2004 /doc /axclass.pdf

/

35

