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Some years ago I was pleased to attend a colloquium at my university 

presented by the first author, the psychologist Randy Gallistel. After describing 

some behavioral studies with rats, he concluded that the animals had counted their 

responses. Following the talk, I ventured that surely he was speaking 

metaphorically when he said that the rats were counting. To my surprise, he 

assured me that he was not; he meant it literally! The book under review, co-

authored with the computer scientist Adam King, describes the thinking behind 

this and related assertions about the behavioral and neural processes involved in 

complex behavior, especially memory. In the authors’ words:  

There must be an addressable read/write memory mechanism in brains that 

encodes information received by the brain into symbols (write), locates the 

information received by the brain (addresses), and transports it to computational 

machinery that makes productive use of the information (reads). (p. viii) 

In short, living organisms are made in the image of a digital computer of the 

sort described by John von Neumann and envisioned by Alan Turing. Note that the 

claim is not that behavior may be so conceived, but that it must be: 

If one believes that the brain is an organ of computation—and we take that to be 

the core belief of cognitive scientists—then to understand the brain one must 

understand computation and how it may be physically implemented. (p. 125) 

After reading the book, I now better understand the authors’ theoretical 

position but continue to find their arguments unpersuasive. This review contrasts 

their views with a biobehavioral approach that is informed by experimental 

analyses of behavior and neuroscience. The authors and the reviewer agree on at 

least one important point: ―All contemporary attempts to spell out how 

computations are realized in the brain are speculative‖ (p. 170). 

Before moving to the specific content of the book and examining the 

reasoning behind the claims, a few preliminary comments are called for. First, the 

book is a ―point-of-view‖ book—as are, unavoidably, all books to some extent. 
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This one is avowedly and explicitly so. As a result, findings and interpretations 

that provide alternative accounts of complex behavior in terms of well-understood 

simpler processes are typically given short shrift. In their hands, Occam’s razor has 

become a blunt instrument. However, because the authors are too knowledgeable 

(and clever) to ignore competing formulations altogether, the alternatives are 

sometimes mentioned en passant before being dismissed. Second, the review 

divides the book into two main sections. Section one (Chapters 1 through 9) is 

largely conceptual in nature with empirical content introduced primarily to 

illustrate the conceptual points. Section two (Chapters 10 through 16) is largely 

empirical and intended to exemplify and support the earlier conceptual claims. 

Finally, I would note that the prose is eminently clear and carefully written 

throughout. 

The Conceptual Foundations 

The book opens with a commitment to an information-processing view of 

behavior/brain science, a view espoused earlier in cognitive science (Atkinson & 

Shiffrin, 1968).
1
 Organisms are said to have access to ―information‖ contained in 

the neural inputs initiated by stimuli, where information is used in the technical 

sense of Claude Shannon’s information theory. On this view, information is a 

change in uncertainty when an estimate of the probability of an event following an 

observation is compared to its probability before the observation. To the extent that 

the current observation changes that probability, the observation is informative. To 

apply the information metric, two sets of values are needed—all possible states and 

the probabilities of each state prior to the observation. As an example, the states 

might be whether a light or a tone occurred in a Pavlovian conditioning 

experiment. Bayes’ inverse-probability theorem provides a measure of the 

probability of the state following the current observation. Some fifty years ago, 

psychologists thought that this formulation showed promise as a general approach 

to behavior (e.g., Attneave, 1959; Bakan, 1953). In fact, the relation between 

information theory and Bayes’ theorem was included in a graduate course in 

experimental design that I taught in the 1960s. However, it became apparent that 

although this formulation might be useful for guiding the behavior of theorists (cf. 

Chamberlin, 1880; Platt, 1964), it was inadequate for guiding the ongoing behavior 

of organisms. When a state is encountered for the first time, neither its prior 

existence (by definition) nor its a priori probability could be known. The second 

deficiency may be tolerated because it can be shown that, over repeated 

occurrences in at least simpler cases, the probability estimate of a state will 

converge to the population value regardless of its initial value (LaPlace’s principle 

of insufficient reason). The first deficiency is fatal because it presupposes that the 

organism has foreknowledge of all the states that could ever occur. The authors 

appreciate this difficulty: ―It. . .implies that the receiver has a representation of the 

                                                           
1
 This review follows the practice of citing only references that were not included in the 

book. 
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source probabilities, which is itself a controversial assumption in behavioral 

neuroscience and cognitive psychology‖ (p. 10). Nevertheless, the authors take the 

position that ―communication between the brain and the world is only possible, in 

a rigorous sense, if the brain is assumed to have a representation of possible states 

of the world and their probabilities‖ (p. x). In communication theory, the possible 

states are known to the theorist (e.g., the letters of the alphabet) but all the events 

that an organism may ever encounter in its lifetime are unknowable. The authors 

make an effort to address the problem by considering a state as the presence or 

absence of a nerve impulse (or of a particular interval between nerve impulses) in a 

given neuron, but this presupposes that such events constitute the critical 

information. On this point, the authors concede: ―Generally speaking, 

neuroscientists do not know what it is about trains of action potentials that carries 

the information, nor exactly what information is being communicated‖ (p. 21). In 

spite of this uncertainty, they proceed heedless of Sherlock Holmes’s admonition, 

―It is a capital mistake to theorize before one has data. Insensibly one begins to 

twist facts to suit theories, instead of theories to suit facts.‖ Given the centrality of 

information theory in their formulation, it is surprising that it does not resurface in 

any serious fashion until much later in the book (Chapter 13) where the events are 

external stimuli, not neural impulses.  

The remaining chapters in this section of the review reflect the authors’ 

(pre)conception that organisms are information-processing machines in the mode 

of a digital computer: ―Our hunch is that information transmission and processing 

in the brain is. . .essentially digital‖ (p. 24). If this ―hunch‖ is correct, then the 

behavioral/neural capabilities of organisms are appropriately constrained by 

principles that have been developed in computer science. These principles are 

explicated in Chapters 3 through 9. 

Among these principles is that the inputs to the processor must be in the 

proper form for use by the computational system. An especially egregious 

nonbehavioral example of a failure to comply with this computing principle was 

the 1998 demise of the $125 million Mars orbiter, whose inputs to the processor 

were in English units instead of International Standard units (pounds force instead 

of newtons), which the processor required. An important corollary of this principle 

is that, because different events may be coded in different ways by their inputs, 

different processors are required for these inputs. As stated later in Memory and 

the Computational Brain (MCB), this implication leads to the conclusion that there 

can be no single general processing system: 

For computational reasons learning mechanisms must have a problem-specific 

structure, because the structure of a learning mechanism must reflect the 

computational aspects of the problem of extracting a given kind of 

representation from a given kind of data. Learning mechanisms are problem-

specific modules—organs of learning. (p. 219) 

At this point the linguist Noam Chomsky is cited with approval.  

As the preceding comments indicate, events in the world are said to have 

―representations‖ within the information-processing system: ―The entities in the 
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brain that represent possible messages are symbols‖ (p. 55) and ―symbols. . .are 

physical entities in a physically realized representational system‖ (p. 72). In 

computational work in artificial intelligence, symbols have traditionally been 

thought to be important to simulate complex behavior (Newell & Simon, 1976), 

although this assumption is now often questioned (Brooks, 1990; Dawson, 1998). 

If a symbol merely indicates that different events in the world produce 

distinguishable physical events within the nervous system and that these intra-

organismic events lead to other physical consequences within the nervous system 

and ultimately to observable behavior, then they are at worst conceptually 

superfluous. They function as shorthand terms for what are undoubtedly complex 

neural sequelae. If a symbol refers a stable state stored in a specific location in the 

nervous system from which it may be retrieved, then the formulation becomes 

problematic. No one doubts that experienced organisms can behave such that a 

single behavior (e.g., saying ―dog‖) may be guided by any one of many inputs 

(e.g., seeing chihuahuas or mastiffs); this is the province of what is conventionally 

called concept formation. However, it is a different matter to claim that there 

resides in the nervous system a stable neuronal array whose pattern of activity 

constitutes the concept and the output of which is transmitted to a processor where 

it is integrated with other symbols to guide behavior. 

Inferences based on behavioral observations about the cognitive processes 

that are said to underlie behavior have proven notoriously difficult to sustain 

(Minsky & Papert, 1988). These include such distinctions as between propositional 

and imaginal coding (Anderson, 1978) and between serial and parallel processing 

(Townsend, 1972). Even in the most thoroughly studied form of human behavior, 

verbal behavior, the fundamental construct of a lexicon has encountered 

difficulties. For example, a person who has suffered damage to a particular region 

of the brain may be able to appropriately use the words ―up‖ and ―down‖ to 

describe emotional states but not to indicate the locations of objects (see Donahoe, 

1991 for this and other examples). Are ―up‖ and ―down‖ stored as symbols in a 

lexicon, or not? More generally, are there representations of these words? A 

seemingly attractive tactic to preserve the notion of a lexicon is to claim that 

polysemic words are stored in multiple places in the lexicon, one related to mood 

and a second related to location in the cases of ―up‖ and ―down.‖ The context then 

disambiguates which entry in the lexicon is accessed. But this tactic undermines 

the very notion of a single stable entity and approximates the position that different 

events in the world simply produce distinguishable physical events within the 

nervous system. Put briefly, the issue is whether symbols and representations are 

inferences from behavioral observations that are simply convenient terms for the 

effects of more fundamental biobehavioral processes (i.e., they are instrumental 

fictions) or whether they are among the causes of behavior. MCB takes the latter 

view. On this issue the authors observe:  

Roughly speaking the more committed theorists are to building psychological 

theory on neurobiological foundations, the more skeptical they are about 

hypotheses that there are symbols and symbol processing operations in the brain. 

(p. 101) 
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However, instead of sounding a cautionary note for MCB, this state of affairs is 

taken as indicating that the information-processing approach is largely unknown to 

such theorists. 

The last of the fundamental concepts considered here concerns the nature of 

memory. As already noted, a ―read/write memory‖ is seen as central to the 

information-processing approach presented in MCB. Read/write memory is 

shorthand for the following process: Experience with the environment leads to the 

storage of symbols (write). These stored symbols are then retrieved at an 

appropriate later time (read) and they, together with other symbols retrieved 

through the direct action of the contemporaneous environment, provide inputs to 

the processor. The processor then computes the output and behavior occurs. In 

keeping with the computer model, each stored memory can be retrieved because it 

has an address (a location in the brain), and that location also contains the address 

of a related memory. Thus one memory can lead to another. The read/write view of 

memory is contrasted with what might be called a write-only memory, in which the 

products of experience are stored and then later retrieved if the contemporaneous 

environment contains events that were present when the memory was originally 

stored. In the terminology of computer science, this latter form of memory 

employs a ―look-up table‖ in which the appropriate output for every experienced 

input is stored. Such a memory system is said to constitute a ―finite-state 

automaton‖ because it can process only the finite number of inputs to which it has 

been exposed. Write-only memory is held to have two major limitations. First, the 

look-up table becomes unmanageably large if every output must be stored for 

every conceivable input. In the authors’ words, a finite-state memory becomes 

―overwhelmed by the infinitude of the possible‖ (p. 177). Second, a finite-state 

memory is inflexible because the organism can behave only in ways already found 

to be appropriate for that particular input. Write-only memory is said to be the only 

sort of memory consistent with associationist psychology and—by extension—

with behavior analysis, which is not distinguished from associationism by MCB. 

Associationist psychology is not the only target of this criticism:  

Contemporary neuroscience is committed to the thesis that the brain had the 

functional architecture of a finite-state automaton rather than that of a Turing 

machine: it lacks a read/write memory. (p. 176) 

MCB greatly underestimates both the economy and fruitfulness of write-only 

memory as it is realized in living organisms. With regard to economy, stimulus 

generalization permits the effects of specific environments to transcend their 

particular features. At the behavioral level of analysis, the processes involved in 

stimulus generalization are quite well understood when subjected to experimental 

analysis (Guttman & Kalish, 1956). Any newly encountered configuration of 

environmental stimuli likely contains stimulus elements that have previously 

occurred when some behavior was reinforced. As a result, new environments (i.e., 

new combinations of previously sensed stimuli) guide the occurrence of new 

combinations of previously selected responses (Bickel & Etzel, 1985; Donahoe & 

Wessells, 1980). These new mixtures of behavior then become subject to whatever 
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contingencies of reinforcement prevail in the new environment. In this way, 

response topographies can also change. At the neural level, the processes 

mediating stimulus generalization are well known for simpler stimuli (Thompson, 

1965) and appear to be similar for more complex stimuli (DeValois & DeValois, 

1988). These processes have been simulated in neural networks using coarse 

coding in which stimuli activate overlapping groups of units. The behavior that is 

guided by the stimulus is also not well characterized as a response of a single 

topography. The contingencies of reinforcement are most commonly satisfied by a 

range of responses, not a single response. That is, what is selected is an operant. 

The outcome of selection by reinforcement is typically that a range of stimuli 

come to guide a range of responses. Reinforcement affects the relation between 

classes of environmental and behavioral events (Skinner, 1935). Thus, the outcome 

of selection by reinforcement is also more fruitful than characterized by MCB’s 

view of write-only memory. The net effect of selection by reinforcement of 

relations between classes of stimuli and responses is that the functional dimensions 

of the look-up table become much larger than the particular environmental and 

behavioral events that were previously experienced. 

Be that as it may, MCB is onto something important when it asserts that not 

all memory can be understood as the expression of previously selected 

environment–behavior relations. If I were asked ―What did you do yesterday 

afternoon?‖ the correct response is ―I worked on the review of Memory and the 

Computational Brain.‖ But I have not been asked this question before and, hence, 

could not have received a prior reinforcer for the response. Moreover, the correct 

answer to the question changes with time (at least I hope so!). How is this example 

of memory to be understood? MCB proposes that the question initiates 

computations in which stored memories are retrieved together with the addresses 

of other stored memories and the contents of these new addresses are then accessed 

and processed until the sequence produces the normatively correct response. In this 

way, the results of experience in a prior environment (yesterday afternoon’s) that 

differ from today’s environment may affect current behavior. The processor has 

access not only to current inputs (write) but also to the effects of prior inputs 

(read)—in short, a read/write memory. (This specific example is an instance of 

what is conventionally labeled ―episodic memory‖—not ―semantic memory,‖ to 

which the account is most often applied; however, the basic point remains the 

same.) A read/write memory attempts to solve an important problem in memory, 

but in so doing it raises other problems: How do the addresses coordinated with the 

symbols activated by the present environment come to point to the addresses of 

appropriate other symbols stored as the result of earlier experience? These 

addresses are needed to support ―indirect addressing,‖ ―linked lists,‖ ―pointers,‖ 

and the like that allow the read process to continue. In computer programs the 

required addresses can be specified by the programmer, but how is the on-line 

programming needed for memory accomplished, and how is it implemented in the 

brain? MCB is silent on such questions. 

The last point considered here is MCB’s view of an alternative, neurally-

inspired approach to memory—neural networks. Neural networks are 
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interconnected units of neuron-like elements whose strengths of connections are 

modified by the simulated experience of the network (Donahoe & Palmer, 1989; 

Rumelhart & McClelland, 1986). Neural networks of interest have input units 

activated by external events, output units whose activations constitute the behavior 

of the network, and interior units (so-called ―hidden‖ units) that intervene between 

input and output units. Most often, the units in neural networks are sub-symbolic 

with behavior emerging from which symbols are sometimes inferred. The relative 

slowness of neurons in comparison to the logic gates of digital computers is 

circumvented in read/write memory through the postulated storage of 

informationally compact symbols. Any adequate treatment of memory must 

engage the speed issue because tasks, such as the perception of complex stimuli 

and memory for vast sets of heterogeneous events, can be parsed more rapidly by 

living organisms than by even sophisticated programs implemented on modern 

computers. Neural networks attempt to meet this challenge through the 

simultaneous action of many units working in concert, that is, through units acting 

in parallel. The generally high levels of ―spontaneous‖ activity observed in cortical 

neurons are consistent with this view. Of the neural-network approach to the speed 

problem, MCB comments ―Massive parallelism. . .[is]. . .mostly a cloak for 

ignorance‖ (p. 174) and ―Contemporary neuroscience is committed to the thesis 

that the brain had the functional architecture of a finite-state automaton rather than 

that of a Turing machine: it lacks a read/write memory‖ (p. 176). Whether neural 

networks are, in fact, committed to a finite-state memory is a matter to which I 

shall return. 

Implications of the Conceptual Foundations 

MCB’s commitment to a digital-computer architecture leads the requirements 

for a functioning read/write memory to be described as follows:  

The architecture of the computing machine must make provision for values to be 

retrieved from physically different locations in memory and brought to the 

processing machinery that implements the primitive. . .functions. (p. 284) 

We need to first extract one value, hold it in a memory register while we extract 

the second value, then bring the two sequentially extracted values to the 

machinery that can realize the specified. . .function, and then out the value thus 

obtained. . . (p. 285)  

The difficulty is that current neuroscience provides no support for such 

requirements. This state of affairs does not discourage MCB. MCB’s reaction is not 

to question their formulation but to posit that neuroscience has not been asking the 

right questions, and that when the right questions are asked the digital-computer 

machine architecture will be uncovered. The theoretical tail is ever more 

vigorously wagging the experimental dog. Let us briefly assess the relevant current 

knowledge in computer science, neuroscience, and behavior to see whether MCB 

has fully appreciated the implications of this knowledge for memory. 
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Neural Networks 

First, are neural networks—which posit a richly interconnected set of neuron-

like units—Turing-machine competent, or are they restricted to a finite-state 

conception of memory? Neural networks can be Turing-machine capable. If a 

neural network has recurrent connections (i.e., feed-back connections whereby 

units later in the network can affect the activity of more ―upstream‖ units) then a 

neural network can have the functionality of a Turing machine. In this way, the 

effects of previous activity can influence current neural activity. This has been 

proven (Siegelmann & Sontag, 1991) for networks that have units with the 

nonlinear thresholds needed for nontrivially modifying the strengths of 

connections to hidden units (Rumelhart & McClelland, 1986) and which occur in 

neurons as shown by the Goldman equation (Junge, 1981). Furthermore, 

neuroanatomy has documented that rich sets of connections (cortical tracts) exist 

whereby activity in, say, motor-association areas may affect activity in sensory-

association areas (Fuster, 2008; Fuster, Bodner, & Kroger, 2000).
2
 

Feed-Back Connections 

Next, do biobehavioral accounts of memory exploit the presence of feed-back 

connections? Again, the answer is yes. Biobehavioral accounts distinguish between 

memory that may be understood when the present environment evokes behavior 

that has been previously conditioned to that or similar stimuli and memory in 

which the present environment does not contain such stimuli. This former type of 

memory is termed ―reminding‖ and the latter ―remembering‖ (Donahoe & Palmer, 

1993/2005; Palmer, 1991). In MCB’s terms, these distinctions correspond to the 

functionality of finite-state and Turing machines, respectively. The salient 

characteristics of remembering may be traced back to comments by B. F. Skinner: 

When a person recalls something he once saw, or engages in fantasy, or dreams 

a dream, surely he is not under the control of a current stimulus. Is he not then 

seeing a copy? Again, we must turn to his environmental history for an answer. 

After hearing a piece of music several times, a person may hear it when it is not 

being played, though probably not as richly or as clearly. So far as we know, he 

is simply doing in the absence of the music some of the things he did in its 

presence. Similarly, when a person sees a person or place in his imagination, he 

may simply be doing what he does in the presence of the person or place. Both 

―reminiscing‖ and ―remembering‖ once meant ―being mindful of again‖ or 

―bringing again to mind‖—in other words, seeing again as one once saw. . . 

(Skinner, 1974)  

                                                           
2
 Turing-capable computation has also been proven for neural networks more generally 

(Hyötyniemi, 1996) and for finite-state machines with multiple write capabilities as well as 

production systems (Minsky, 1967). Productions are roughly analogous to discriminated 

operants in which the productions are edited by a process that is roughly analogous to the 

blocking of conditioning. 
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Experimental evidence supports the biobehavioral account (Cabeza & 

Nyberg, 2000; Farah, 1989; Farah & Aguirre, 1999). In a particularly elegant 

experiment, monkeys were first conditioned using a matching-to-sample procedure 

in which computer-generated sample stimuli were very briefly presented to one 

side of a fixation point. The sample stimulus was followed after a short delay by 

two differing comparison stimuli (Tomita, Ohbayashi, Nakahara, Hasegawa, & 

Miyashita, 1999). Responding was reinforced if the correct comparison stimulus 

for that sample stimulus was selected. Technically, the task may be described as a 

delayed arbitrary matching-to sample task (see Figure 1). 

 

 
Figure 1. Arbitrary delayed matching-to-sample procedure showing the brain 

regions whose neurons were activated either directly or indirectly by the sample 

and comparison stimuli. The activated brain areas were restricted by presenting 

the sample stimulus briefly only when the eyes were foveating the fixation 

point. See the text for a more complete description of the procedure (Figure 

adapted from Tomita, et. al., 1999).  

With an intact brain, the activity initiated by sample and comparison stimuli 

occurred in neurons in both the right and left sensory-association cortices. Because 

of the partial crossing of the optic nerve at the optic chiasma, stimuli to the left of 

the fixation point were projected comparatively directly to the right visual cortex 

(inferotemporal lobe) and then, via a feed-forward transcortical tract, through the 

posterior corpus callosum (CC) to the left visual cortex. Thus neurons in both 

sensory-association areas were activated by the visual stimuli in the intact brain. 

There is also a less direct pathway by which sensory-association neurons can be 
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activated by the visual stimuli: A transcortical tract arising from neurons in the 

sensory-association cortex projects to neurons in the ipsilateral (same-side) motor-

association cortex (prefrontal cortex). Of particular importance for present 

purposes, the motor-association area is the origin of feed-back tracts from neurons 

in the prefrontal cortex along a transcortical tract traversing the anterior CC and 

activating neurons in the contralateral sensory-association cortex. Thus there are 

both relatively direct and more indirect means by which neurons in one sensory-

association cortex are normally activated by visual stimuli regardless of the side of 

the fixation point on which the visual stimulus appears. 

After behavioral responding had stabilized at high accuracy levels, the 

posterior CC was cut. This prevented sample stimuli briefly presented to one side 

of the fixation point from directly activating neurons in the ipsilateral primary 

visual cortex. However, it did not prevent neurons in the ipsilateral sensory-

association cortex from being indirectly activated by neurons in the contralateral 

motor-association cortex via the feed-back tract coursing through the anterior CC 

(see Figure 1). Behavioral evidence that this feed-back pathway was effective is 

shown by the fact that matching-to-sample performance did not deteriorate after 

transection of the posterior CC: An intact feed-back tract was sufficient to mediate 

correct performance. Further evidence that the feed-back pathway was critical to 

performance was found when tracts in the anterior CC were cut. Without this feed-

back, performance fell to chance levels. Thus, in an intact animal, any stimulus 

that can activate the appropriate neurons in the motor-association cortex permits 

the organism to remember the stimulus even though that stimulus is no longer 

present. In humans, verbal stimuli are especially well suited to fulfill this function. 

Verbal stimuli can generate activity in the motor-association area coincident with 

the activity generated by other contemporaneous stimuli. For example, if a visual 

stimulus prompts the subject to overtly or covertly respond verbally to the 

stimulus, then the motor activity generated by the verbal response can partially 

overlap with the activity generated by the visual stimulus in the motor-association 

cortex. Then, on some later occasion, the verbal stimulus may evoke, through feed-

back connections, some of the same neural activity in sensory-association areas 

that was originally produced by the visual stimulus. Feed-back connections in the 

brain are competent to implement the functional capability of a Turing machine, 

and they do so without retrieving stored information to a read/write memory for 

processing (for a more complete interpretation of remembering, see Donahoe & 

Palmer, 1993). MCB holds that  

Brains must possess a mechanism for carrying a large amount of information 

forward in time in a computationally accessible form. . . .As of this writing, 

neuroscience knows of no plausible mechanism for carrying a large amount of 

information forward over indefinitely long intervals in a form that makes it 

accessible to the mechanisms. . .that are at the heart of computation. (p. 287) 

The feed-back pathways just described accomplish this goal. 
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In addition to behavioral observations in the matching-to-sample experiment, 

Miyashita’s group monitored the firing of individual neurons in the sensory-

association cortex. These findings are shown in Figure 2.  

 

 

 

Figure 2. The number of spikes per second evoked in a sensory-association 

neuron in the inferotemporal cortex by a sample stimulus when tracts in corpus 

callosum were intact (initial perceptual response) and when only the posterior 

tracts arising from the contralateral motor-association area (prefrontal cortex) 

were intact (feed-back perceptual response). Adapted from Tomita, et. al., 1999.  

Note two aspects of these findings especially. First, the perceptual response 

mediated by feed-back fibers in the anterior CC arising from neurons in the 

contralateral motor-association cortex arrived approximately 200 ms after the feed-

forward perceptual response mediated by posterior fibers arising from neurons in 

the contralateral sensory-association cortex. The more circuitous route to neurons 

in the sensory-association cortex took a longer time to traverse. Second, the 

temporal pattern of firing of the sensory-association neuron by the feed-back 

pathway corresponded closely to the pattern produced by the feed-forward 

pathway. Thus the neuron responded similarly to the remembered and the 

perceived stimulus. It is important to keep in mind that the similarities in the 

temporal firing pattern of the neuron via feed-forward and feed-back pathways 

reflects interactions between that neuron and neighboring neurons with which it 

also makes synaptic contact. The same is true of the firing patterns of neurons in 

the motor-association cortex, whose axons give rise to the feed-back pathway. The 

temporal pattern of firing does not reflect a purely endogenous process. Whatever 

the nature of these interactions, they enable the organism, in Skinner’s words, ―to 

see again as. . .[it]. . .once saw‖ (Skinner, 1974). Note that in this conception of 

memory, memories do not exist except when they are occurring. What exist are 
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synaptic efficacies that permit the present environment to generate the remembered 

activity. A memory is not stored in some fixed location in the brain. Instead, only 

the capability for memory exists, ready to be realized when environmental events 

set in motion the behavioral and neural processes subsumed by memory. 

MCB’s criticisms of feed-back pathways (recurrent connections) in neural 

networks did not consider the possibility that these pathways might carry already 

highly processed neural signals that could be activated an indefinitely long time 

after they were originally established. Feed-back mechanisms considered in MCB 

are largely restricted to time-limited, reverberating circuits. Be that as it may, a 

strength of MCB’s discussion is its emphasis on the temporal pattern of firing of 

neurons. The role of inter-spike intervals is a relatively neglected topic in 

neuroscience. Variations in temporal firing patterns are known to occur, but 

whether they are appreciated by the organism is not yet clear (e.g., Richmond, 

2009; Wiener, Oram, Liu, & Richmond, 2001). The opportunistic character of 

natural selection encourages the conjecture that they may well be. Much of the 

work on temporal patterns of firing cited in MCB is with the sensory neurons of 

insects, but technology is increasingly permitting comparable observations in more 

complex neural systems. As an example, very recent work with cortical neurons 

has shown that a single cortical neuron can respond differentially to various 

sequences of temporal inputs to its dendrites (Branco, Clark, & Gausser, 2010). 

Such a neuron provides a basis for the detection of different features of 

environmental stimuli; that is, the neuron becomes functionally a ―place cell‖ for 

those features. 

Synaptic Mechanisms of Neural Plasticity 

MCB is skeptical of the ability of neural systems with feed-back pathways to 

function as Turing machines. Unfortunately, this skepticism has encouraged a 

companion effort to undermine long-term potentiation (LTP) as the major 

mechanism of synaptic plasticity. Some such mechanism is needed to enable the 

effective functioning of feed-back pathways: 

 Neuroscientists justify the study of LTP by citing associative learning as an 

established psychological fact. While psychologists justify associative learning 

models by citing ―associative‖ LTP as an established neurobiological fact, both 

groups and the progress of cognitive neuroscience would benefit from a fuller 

appreciation of the shakiness of the experimental foundations. . .to which each 

field appeals. (p. 179) 

This is not the place to survey the vast LTP literature. However, a brief 

overview is warranted as an amendatory supplement to the account given in MCB, 

whose most recent LTP-related citation is more than 10 years old. The primary 

excitatory transmitter in the cortex is glutamate. Glutamate acts on two types of 

receptors in the post-synaptic membrane—a fast responding receptor (the AMPA 

receptor) and a slower responding receptor (the NMDA receptor; see Figure 3 for a 
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schematic representation of the major steps in the production of long-lasting 

changes in synaptic efficacy).  

 

 

Figure 3. Schematic representation of the effects of the neurotransmitter 

(glutamate) on the glutamate receptors (AMPA and NMDA) that play a critical 

role in the development of long-term potentiation (LTP). If activation of these 

receptors is coincident with the release of the neuromodulator dopamine (DA) 

due to the occurrence of a reinforcer, then a long lasting increase in synaptic 

efficacy occurs between the presynaptic and postsynaptic neuron. 

If the action of the AMPA receptor sufficiently changes the voltage across the 

cell membrane (depolarizes the cell), then the NMDA receptor allows the influx of 

calcium unto the cell. One effect of calcium influx is to place a ―molecular tag‖ 

specifically on recently active AMPA receptors. The tag sensitizes these receptors 

to the action of glutamate for a few hours (so-called early LTP). If a reinforcer 

occurs, the neuromodulator dopamine (DA) is released concurrently. Because of 

the widespread distribution of DA fibers and their method of release of DA 

(volumetric release from varicosities along the axon), many synapses can be 

affected simultaneously. If the DA receptor is activated shortly after the NMDA 

receptor, then the tagged AMPA receptors ultimately become permanently more 

sensitive to glutamate. If the DA receptor is not activated, the tagged AMPA 
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receptors ultimately become less sensitive to glutamate (i.e., long-term depression 

or LTD occurs). DA initiates a chain of intracellular events (second messengers) 

that stimulate the synthesis of proteins through their effects on DNA. Protein 

synthesis may take several hours. The newly synthesized proteins migrate down 

the dendrite indiscriminately, and when they contact tagged AMPA receptors they 

change the configuration of these receptors. The specific receptors become 

permanently more responsive to the effects of glutamate (i.e., late LTP occurs). 

Although the understanding of LTP is clearly incomplete and important factors 

have been omitted from this brief summary, the current experimental evidence is 

not well characterized as ―shaky‖ (for relevant references see Frey, 1997; 

Redondo, et. al., 2010; Sweatt, 2010). 

MCB not only questions LTP as the major mechanism of synaptic plasticity in 

the ―real‖ nervous system but also a commonly used technique for altering the 

strengths of connections between units in the artificial nervous system of neural 

networks. This technique is called back-propagation (Rumelhart, Hinton, & 

Williams, 1986). Back-propagation is rejected as biologically implausible, and I 

agree. However, there are other techniques for adjusting the strengths of 

connections in neural networks that are not subject to this criticism, notably some 

forms of reinforcement learning (Donahoe, 1997; cf. Sutton & Barto, 1998). In 

addition, even those who employ back-propagation agree that conclusions about 

the capabilities of neural networks are generally not dependent on the use of this 

technique (Rogers & McClelland, 2004). MCB’s reluctance to contemplate a 

system of memory based on connections between neurons (or units) has prompted 

an effort to undermine all of the major factors on which such an alternative account 

depends. Instead of LTP, MCB hypothesizes that an as-yet-unknown intracellular 

molecular process is responsible for storing memories. This is redolent of a much 

earlier and rejected proposal (Gaito, 1963, 1976) for which there remain rare 

proponents (Hameroff & Penrose, 1996) and no experimental evidence.  

Concluding Comments 

The treatment of memory in MCB is informed—but also strongly colored—by 

the conviction that memory is the product of computation by a machine having the 

architecture of a digital computer. This belief arises primarily from the formal 

tenets of computation theory, which hold that such an architecture is required—or, 

at least, highly likely—to implement a read/write memory. Read/write memory, or 

its functional equivalent, is needed for remembering. In remembering and other 

complex behavior such as problem solving, of which remembering is a special case 

(Donahoe & Palmer, 1993), current behavior is guided not only by the present 

environment but also by the effects of prior environments. Darwin cautioned 

biologists to be wary of formal restrictions after the Scots engineer Fleeming 

Jenkin (1867) ―proved‖ that natural selection could not underlie evolution because 

rare beneficial variants would be swamped by more numerous, but less beneficial, 

variants (neither Darwin nor Jenkins knew of the gene, of course). Major 

contemporary contributors to the literature on memory have also expressed 
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reservations about the digital computer as a model for memory (e.g., McClelland, 

2009), a judgment that this review shares. In defense of its theoretical 

commitment, MCB challenges even widely held views of brain function. As an 

example: ―The synaptic plasticity hypothesis. . .fundamentally misrepresents the 

nature of what it is we should be looking for‖ (p. 278). 

The theoretical orientation of MCB also affects the instances of memory that 

are examined in detail—navigating between food sources and the nest by desert 

ants and honey bees, and retrieving seeds cached in hundreds of different locations 

by certain species of birds. These examples hardly leap to mind when one thinks of 

memory, but they are well-chosen from a computational perspective. That is, 

algorithms can be readily implemented in digital computers to determine efficient 

paths for ants to traverse using dead reckoning and for bees to fly using solar 

positioning. Further, the locations of hundreds of seed caches can be readily stored 

in the memory of a digital computer where they are available to be retrieved later. 

Such phenomena may not be paradigmatic of memory, but biobehavioral science 

must ultimately find a place for them. Toward that goal, an alternative 

interpretation of seed-caching by birds is offered that makes no appeal to memory 

whatsoever. 

The core aspect of caching that must be explained is how a bird, such as 

Clark’s nutcracker, can retrieve seeds with substantial accuracy—perhaps 70%—

that have been inserted below the surface many weeks before at hundreds of 

different locations over an area perhaps as large as 400 square kilometers. This 

remarkable behavior is interpreted by MCB, and by others, as a prodigious feat of 

memory. There is, however, a possible alternative account of major aspects of this 

behavior that does not involve memory at all. The visual system of birds and other 

animals is sensitive to a range of spatial frequencies, which—to an 

approximation—may be thought of as bars differing in width, spacing, and 

orientation (DeValois & DeValois, 1988; Donahoe & Palmer, 1993). The two eyes 

of birds (except birds of prey) have essentially non-overlapping fields of vision 

because their eyes are located on the sides of their heads. Further, the optic tracts 

are completely crossed so that the two eyes innervate different sides of the brain. 

This is an effective arrangement for the detection of predators over a very large 

field of view, but it has another consequence. When a bird views its environment, 

the particular combination of spatial frequencies that it senses with the two eyes 

specifies the bird’s location in that environment. If there is a stable preference for 

caching when certain combinations of spatial frequencies are sensed, then that 

combination can evoke cache-recovering behavior at a later time when those 

combinations are again encountered. According to this interpretation of cache 

retrieval, the bird does not remember the location of the cache; the location 

reminds the bird of caching. The natural environment in which Clark’s nutcracker 

caches seeds is at altitudes near the tree line, where trees are relatively sparse, 

thereby providing many sites with distinctive combinations of spatial frequencies. 

Furthermore, the trees are evergreens so that the spatial frequencies are relatively 

unchanged during the winter when the environment may be snow-covered and 

when reasonably accurate cache-retrieval still occurs. Laboratory studies of cache 
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retrieval are consistent with the proposed account. Landmarks nearest the location 

where the cache is buried are most important for retrieval, and changing their 

position most disrupts retrieval (Goodyear & Kamil, 2004). Near objects most 

precisely specify location because they provide the most discriminative spatial 

frequencies: Displacement of near objects changes the spatial frequencies more 

than equal absolute displacements of more distant objects. Again, the alternative 

account requires no memory whatsoever! It simply requires an innate preference 

for caching under specific visual conditions (and the preference should vary among 

birds to limit competition). The ability to locate caches based on visual cues is not 

specific to seed-caching birds but is present and similarly affected in other avian 

species, for example pigeons, although to a lesser degree (Jones, Antoniadis, 

Shettleworth, & Kamil, 2002). Thus, the exploitation of spatial frequencies to 

specify location does not require a great evolutionary leap by seed-caching birds; 

retrieval of caches requires only a preference for certain combinations of spatial 

frequencies that evoke caching. A complete account of cache retrieval undoubtedly 

involves additional variables, but the basic finding may be the result of processes 

that do not involve remembering—and, hence, a read/write memory. 

The alternative account of the retrieval of caches illustrates a final general 

concern with the approach taken by MCB—an inadequate appreciation of the full 

contribution of the environment to behavior. In several places MCB refers to ―the 

poverty of the stimulus,‖ a phrase acknowledged as originating with Chomsky. 

Chomsky’s phrase was prompted by his contention that the environmental events 

encountered during exposure to language were not sufficient to account for 

language acquisition. Chomsky used the claim to argue that an endogenous process 

compensated for the paucity of experience—a language-acquisition device 

implementing universal grammar. MCB similarly uses the poverty-of-the-stimulus 

argument to justify inferences about underlying memory processes—storage, 

retrieval, and read/write memory as implemented by a digital computer. When 

Chomsky originally made his claim, comparatively little was known about the 

details of language acquisition. The situation is much different now, when the 

verbal environment has been shown to provide a much richer source of stimulation 

to promote language acquisition (e.g., Donahoe & Palmer, 1993; Jusczyk, 1997; 

Lewis & Elman, 2002). Nevertheless, Chomsky’s claim persists and is used to 

motivate conjectures about a variety of presumed internal processes in other 

contexts. Poverty-of-the-stimulus is an instance of ―functional autonomy,‖ a phrase 

introduced by the social psychologist Gordon Allport to describe concepts whose 

justification has disappeared but which nevertheless endure. One should exhaust 

the explanatory variance in the environment and its interactions with behavior 

before seeking internal events as the causes of behavior (Gibson, 1979). 

Sometimes it is not the stimulus that is impoverished but the theorist’s conception 

of it. MCB identifies important problems that biobehavioral science must confront, 

but its proposed solutions should be regarded with extreme caution. 
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