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Abstract

Mathematical cognition is one of the most important cognitive

functions of human beings. The latest brain and cognitive research

have shown that mathematical cognition is a system with multiple

components and subsystems. It has phylogenetic root, also is related

to ontogenetic development and learning, relying on a large-scale

cerebral network including parietal, frontal and temporal regions.

Especially, the parietal cortex plays an important role during

mathematical cognitive processes. This indicates that language and

visuospatial functions are both key to mathematical cognition. All of

those advances have important implications for basic mathematical

education.
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Numbers are one of the most important symbol systems for human beings.

Understanding and appreciating numbers, acquiring a certain level of arithmetic

knowledge and numeracy skills, and acquiring basic mathematical literacy are

essential for individuals to live, study and work normally. In the new century, as
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technology, economy and society progress, and as the world becomes

increasingly computerised and digitised, mathematical literacy is of even greater

importance to a competent citizen[1]. For this reason, mathematical literacy has

received worldwide attention, with countries and international organisations such

as the USA, the European Union and the OECD attaching great importance to it,

organising special research teams and investing considerable resources in the

development and development of mathematical literacy.

The development and science of mathematical literacy must be based on the

study of mathematical cognition, its development and its brain mechanisms. In

the last 30 years, research findings in cognitive psychology, neuropsychology,

developmental psychology and animal psychology have revealed that

mathematical cognition is a cognitive system with complex components and

structures, based on the evolution of the lineage and the development of the

individual. In particular, since the 1990s, with the flourishing of brain and

cognitive science, researchers have conducted more in-depth and systematic

research on the brain mechanisms of mathematical cognition, establishing a

preliminary correspondence between the cognitive and brain levels. These

findings have undoubtedly provided valuable insights for current basic

mathematics education. In the light of recent advances in brain and cognitive

science and some of our recent research findings [2] [3] [4], this article will discuss

the components and structure of mathematical cognition, evolution and

development, the structural and functional basis of the brain, impairment and its

brain mechanisms, learning and brain plasticity, and analyse their implications

for basic mathematics education.

I. Components and Structures of Mathematical Cognition

Broadly speaking, all mathematics-related thinking activities can be consid‐

ered as mathematical cognition. Current research findings indicate that math‐

ematical cognition consists of three basic components: (1) number processing, i.

e. how individuals encode different number symbols, such as Arabic numbers (1,

2, 3, etc.), verbal numbers (one, two, three, etc.), into understandable cognitive

representations; (2) arithmetic knowledge, i.e. the various types of computation-

related knowledge that individuals acquire through learning, such as multiplica‐
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tion knowledge; (3) calculation, i. e. the knowledge that individuals acquire

through performing calculations, especially mental arithmetic; However, the rela‐

tionship between these three components, i.e. the structure of mathematical cog‐

nition, has remained an important question for researchers to date.

A large body of current research suggests that the three components of

mathematical cognition are relatively independent cognitive processing modules.

For example, studies of brain-damaged patients have found that some patients

can understand numbers despite their loss of numeracy, while others can use

Arabic numerals to complete tasks despite their inability to do so in verbal

numerical conditions[5][6]. Some researchers have suggested that this phenomenon

indicates that arithmetic knowledge and computation require the use of

numerical processing as a basis. They suggest that all forms of numbers will be

entered into the same numerical representation and further support the storage

and computation of arithmetic knowledge[7]. Other researchers have argued that

numbers do not have just one quantitative representation, but three

representations: phonological, morphological and denotational. This multi-

representational view sees the three representations as relatively independent

cognitive modules, with different forms of numbers being entered into different

modules. For example, Arabic numerals are entered into glyphic representations,

verbal numerals are entered into phonological representations, and quantitative

stimuli that are not in symbolic form, such as dots, are entered into semantic

representations. In addition, arithmetic knowledge and computation are

associated with different modules and show some representational specificity[8][9].

For example, multiplication may rely on phonological representations as it is

learned more by rote, whereas subtraction requires more numerical operations

and is therefore more likely to be associated with semantic representations.

In recent years, research in brain and cognitive science has continued to

suggest that the structure of human mathematical cognition may be more

consistent with the idea of multiple representations. For example, some studies

of brain-injured patients have found that there is a relative separation between

the phonological and morphological representations of numbers, with damage to

one representation not affecting the processing of the others [10]. Recent

functional brain imaging studies also suggest that the processing of these

representations may have different cortical support networks, with less overlap

between them [11]. Thus, although not fully supported by all studies, the idea of
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multiple representations is still accepted by most researchers.

II. Evolution and development of mathematical cognition

The main difference between mathematical cognition and language lies in

the fact that the former has a strong evolutionary basis in the species. Numerous

animal experiments have shown that animals such as orangutans, apes, dolphins,

parrots, rats and even amphibians are able to understand the quantitative proper‐

ties of stimuli and can even perform some arithmetic processing. In one experi‐

ment, for example, hungry rats were placed in a box with two levers and had to

press one of the levers a certain number of times before they could press the

other lever for food. It was found that after a period of practice, the rats were

able to differentiate between different amounts of stimuli and respond accord‐

ingly. In addition, the rats were able to integrate and abstract stimuli from differ‐

ent sensory channels (e.g. visual and auditory) and extract the numerical charac‐

teristics of the stimuli, indicating that they were able to understand the quantita‐

tive characteristics of external stimuli[12]. However, these findings also suggest

that animals' understanding of number is an imprecise representation, high‐

lighted by the distance effect and magnitude effect, i.e. as the distance between

numbers decreases and the number itself increases, the accuracy of the animal's

number representation decreases.

In developmental psychology studies, it has been found that as early as

infancy, humans already show quantitative understanding similar to that of

animals. For example, one study found that at around six months of age, infants

can distinguish between large quantitative differences, such as the difference

between 8 and 16 dots[13]. It has also been found that at almost the same age,

infants can determine the correctness of simple arithmetic relationships such as "

1 + 1 = 2", "1 + 1 = 1", "2-1=1", "2-1=2", etc. [14]. Similarly to animals, infants'

number representations have both distance and size effects. For example, in the

former study, infants' ability to discriminate between quantities depended on the

ratio of the two quantitative stimuli, with almost all infants unable to

discriminate between 8 and 10 points. In the latter study, however, it was found

that as the number of items in the experiment increased, the infants' correct

judgement declined rapidly.
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In addition, some researchers have found that humans continue to have such

generalised quantitative representations even in adulthood. For example, one

study found that subjects also showed significant distance and size effects when

judging the magnitude of two single-digit numbers, e.g., it was easier to judge 3

and 7 than 3 and 4, with significantly less reaction time and a significantly

higher correct rate; and when distances were equal, it was easier to judge large

numbers such as 7 and 9 than small numbers such as 3 and 5 [15]. This feature is

very similar to the number representations of animals and infants, and thus

suggests that human mathematical cognition has a clear evolutionary origin.

Of course, human mathematical cognition is not limited to its evolutionary

basis. Current research in brain and cognitive science also suggests that human

mathematical cognition consists of at least two subsystems, a general

representation system based on evolution and a precise representation system

based on long-term learning experience. From the perspective of multiple

representations, the approximate representation system is mainly concerned with

the semantic representation of numbers, while the precise representation system

is related to symbolic features such as sounds and shapes. While the approximate

representational system shows less age-related changes during the development

of the individual, the precise representational system undergoes significant

changes with age. Our findings suggest that the cognitive development of early

childhood mathematics involves four main areas: number, quantity, shape and

pattern perception. This development is influenced not only by the evolutionary

basis of mathematical cognition, but also, and more importantly, by ecological

factors such as the family and the kindergarten, which contribute more directly

to this development[2]. The emphasis on early informal mathematical learning

experiences has therefore become the consensus of current researchers. The

development of mathematical cognition is now beginning to be the focus of

research in the brain and cognitive sciences, and is likely to provide a richer

body of research over time.

III. The structural and functional basis of mathematical

cognition in the brain

As early as the end of the 19th century, some neuropsychological studies
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found that after damage to specific parts of the brain, patients' mathematical cog‐

nition would be impaired, but not their other functions such as language and

memory. This has led researchers to wonder whether there are specific areas of

mathematical cognition within the brain. However, it is difficult to pinpoint the

exact cortical location because of differences in the depth and size of the dam‐

age. With the maturation of imaging techniques with high spatial resolution,

such as PET and fM RI, the structural and functional basis of mathematical cog‐

nition has been investigated in more depth in recent years.

Current findings consistently suggest that the human parietal cortex,

particularly the area around the bilateral intraparietal sulcus, is strongly

associated with mathematical cognition. Some researchers have found that this

area is significantly activated when subjects compare the size of numbers, and

that its activation tends to decrease monotonically as the distance between

numbers increases [16]. This "distance effect" on cortical activity suggests that the

intraparietal sulcus may be responsible for a large amount of processing and

manipulation. Furthermore, it has also been found that this area is activated after

seeing a number even if the subject does not perform any number manipulation
[17], suggesting that its activation is highly automatic. Our results also show that

Chinese people also use this area during digital processing, suggesting that its

function is not affected by cultural differences [18].

Using single-cell recording techniques, some researchers have found that

neurons in the parietal cortex of apes show significant selective firing in

response to different quantitative stimuli, demonstrating sensitivity to

quantitative differences [19]. This cortical network correspondence is strong

evidence for a close link between human and animal numerical abilities.

Some studies have also shown that the parietal lobe is not the only brain

region that supports mathematical cognition. An fMRI study showed that when

subjects performed two different arithmetic tasks, one for exact calculation and

one for estimation of results, the activation patterns of the brain regions showed

significant differences. The exact calculation activated more of the left prefrontal

and angular gyrus regions associated with language function, whereas the

estimation results triggered more activation in the bilateral parietal cortex [20].

This difference in activation patterns suggests that the cortical support network

for mathematical cognition in humans is distributed, supporting the idea that

there are multiple representations of mathematical cognition with multiple
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subsystems.

In the light of current research findings, some researchers have suggested

that the main processes of digit processing are supported by a large network of

prefrontal, parietal and temporal regions [21], as shown in Figure 1. Of these, the

bilateral parietal areas, especially the area around the intraparietal sulcus, are

mainly associated with the semantic representation of numbers, which has a

strong evolutionary basis and is more visuospatial in character than a precise

linguistic representation. The prefrontal lobe, especially the left inferior frontal

gyrus, has a large overlap with brain areas associated with verbal working

memory, reflecting a link between numerical processing and language function.

The bilateral temporal lobes, especially the bilateral syrinx, are mainly

associated with the processing of numerical forms. From the present findings, it

appears that Arabic numeral stimuli may be processed in the right cingulate

gyrus and then transmitted through the right middle temporal gyrus to the right

parietal area, whereas verbal numerals may be processed more through the left

channel. According to the multiple representations view, the above-mentioned

brain areas are responsible for processing not only the morphological,

phonological and semantic features of numbers, but also for different

arithmetical and computational tasks, such as estimation, which are mainly

carried out bilaterally in the parietal areas, and the storage and retelling of

mathematical facts, which depend on the involvement of the prefrontal areas.

Some numerical manipulation tasks, such as complex numbers, negative

numbers and fractions, require the processing of numerical forms and are

therefore more closely linked to temporal areas, especially the cingulate gyrus.

IV. Disorders of mathematical cognition and their brain

mechanisms

In general, there are two main types of mathematical cognitive disorder: ac‐

quired dyscalculia, which is a mathematical cognitive disorder caused by brain

damage, and dyscalculia, which is a mathematical cognitive disorder that occurs

during an individual's development without apparent brain damage. In this sec‐

tion, we focus on developmental dyscalculia and its brain mechanisms.

The current research findings indicate that developmental dyscalculia has
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two basic characteristics: (1) a significant delay in the development of numerical

processing and computation; and (2) no significant impairment in cognitive

functions other than numerical processing and computation, such as intelligence

and speech. In the International Classification of Diseases, 10th Revision (ICD-

10) and the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition

(DSM-IV), developmental dyscalculia is defined as a mismatch between the

development of mathematical ability and the development of general

intelligence. As can be seen, developmental dyscalculia is highly idiosyncratic

and is characterised by impairments in the core components of mathematical

cognition. Developmental dyscalculia is a worldwide problem in terms of its

prevalence, which is approximately the same across countries, at around 6% [22].

This far exceeds estimates and is on a par with the prevalence of developmental

dyslexia. As a result, developmental dyscalculia has been a focus of interest for

researchers in this field. Our first survey of developmental dyscalculia in

Chinese children found a prevalence of 5.5% and three basic types of

impairment: auditory, visual and semantic [4]. This suggests that impairments in

developmental dyscalculia may also be diverse, supporting the idea of multiple

representations of mathematical cognition.

Early studies of the brain mechanisms underlying developmental

dyscalculia have focused on the relationship between dyscalculia and

unilateralisation of brain function due to the lack of fine-tuned localisation tools.

In the early days, because developmental dyscalculia was not associated with

language impairment, and because language function was primarily in the left

hemisphere of the brain, researchers often attributed the impairment to

developmental problems in the right hemisphere of the brain. In recent years,

researchers have begun to refine the cortical networks associated with

developmental dyscalculia, using techniques with high spatial and temporal

resolution such as ERP, PET and fMRI. For example, some studies using M RS

found that neurometabolic levels in the left temporoparietal region were

significantly lower in patients with developmental dyscalculia than in normal

subjects [23]. Another morphological brain analysis using VBM also showed that

low weight new-borns with dyscalculia had significantly lower grey matter

density in the left intraparietal sulcus [24]. This suggests that developmental

dyscalculia is more likely to be associated with abnormalities in the parietal

region, which in turn suggests that the parietal cortex plays a key role in the
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development of mathematical cognition. In recent years, some studies have

begun to establish a correspondence between subtypes of developmental

dyscalculia and developmental abnormalities in different brain regions, in order

to further explore the causes of the disorder.

Based on these studies, the effective diagnosis and correction of

developmental dyscalculia has become an important issue for researchers. There

are currently two main approaches to the diagnosis of developmental

dyscalculia: clinical diagnosis and standardised testing. The former is a clinical

mathematical task that is age-appropriate and can be diagnosed as dyscalculia if

the child fails to meet the requirements of his or her age group. This diagnostic

approach tends to be too crude. For this reason, standardised tests of numeracy

are more commonly used by researchers. The former are mainly specialised tests

of mathematical ability, or numeracy subtests included in broad achievement

tests, while the latter directly examine children's cognitive abilities in

mathematics, such as the Neuropsychological Test Battery for Number

Processing and Computation in Children developed by the European Group for

the Study of Mathematical Cognition (ESMEC). The Neuropsychological Test

Battery for Number Processing and Calculation in Children. In the last two

years, some researchers have further argued that because developmental

dyscalculia is associated with early brain abnormalities, it should be reflected

primarily in basic mathematical cognitive abilities rather than in later

mathematical achievement. This has led to the emergence of more effective

diagnostic tools [25].

The correction and training of developmental dyscalculia is still in its

infancy. Some researchers have pointed out that the correction and training of

developmental dyscalculia must focus on restoring parietal function and

promoting connections with other areas, such as the frontal lobe. On this basis,

some experimental remediation tools are beginning to be used.

V. Learning and Facilitation of Mathematical Cognition and its

Brain Mechanisms

Learning and brain plasticity has been an important theme in brain and cog‐

nitive science research. In recent years, with the growing understanding of the
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brain mechanisms underlying mathematical cognition, mathematical learning

and facilitation has begun to receive widespread attention. Researchers are not

only interested in the brain mechanisms underlying the acquisition of mathemati‐

cal knowledge and abilities, but also in the structural and functional changes in

the brain brought about by different learning styles and strategies.

Current research findings suggest that there are at least two ways in which

individuals learn mathematics: mechanical learning and strategic learning. In

mechanical learning, the individual stores arithmetic facts directly in his or her

mind. For example, an fM RI study showed that with mechanical learning,

activation in the parietal cortex shifts from the intraparietal sulcus to the

language-related angular gyrus [28], suggesting that mechanical learning is closely

linked to verbal function. In contrast, in strategic learning, individuals learn the

rules of computation without directly storing arithmetic facts. In some recent

studies, researchers have compared the differences between these two learning

styles. In experiments, subjects learn artificially constructed arithmetic facts such

as 4#5 = 7, 5 § 7 = 9, etc. These arithmetic facts include the following Each of

these arithmetic facts contains different rules, e. g. #: {[(second number - first

number) + 1] + second number}, § : {[(second number + first number) - 10] +

second number}. During the learning process, one group of students learned by

mechanical memory, while the other group learned their computational

strategies. The fM-RI scans revealed that mechanical memory was more

activated in the language-related left prefrontal and angular gyrus regions,

whereas strategy learning elicited more activation in the right frontal, bilateral

cingulate and cuneate regions [30]. This result suggests that mechanical memory

and strategy learning have completely different neural mechanisms and that

strategy acquisition may be more closely linked to visuospatial function.

In terms of the effectiveness of both learning styles, strategic learning may

be more effective. Some cross-cultural studies of Chinese mathematical

dominance have found that Chinese subjects are more likely to extract facts

directly and less likely to be strategic in their calculations than in Western

countries[27]. However, one of our fM RI studies found that Chinese subjects did

not show activation of language areas in their calculations[17], suggesting that

their mathematical advantage does not come from mechanical learning, but may

be due to a more skillful mastery of strategies. Another fM RI study also showed

a tendency for the higher-performing subjects to show reduced activation in
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language-related gyrus areas compared to the lower-performing subjects[29]. This

further suggests that strategy learning is rarely based on language.

In recent years, specific forms of mathematics learning or training have also

come to the attention of researchers. For example, in East Asian countries such

as China, Japan and Korea, beadwork is often used as a means of mathematical

training in basic mathematics education. One fMRI study showed that

beadmakers have a greater ability to remember numbers and draw more on

cortical networks of visuospatial memory than the general population [31].

Another fM RI study also found that beadmakers produced more activation in

the left superior parietal region compared to the average person's calculation

process [32]. This suggests that individuals are likely to make greater use of

visuospatial functions during bead calculation, thus contributing to the

acquisition of computational strategies.

VI. Implications of Brain and Cognitive Science Research for

Mathematics Education

In recent decades, basic mathematics education in China has made remark‐

able achievements and has accumulated a wealth of experience in teaching and

learning. However, to date, we still lack an understanding of the scientific basis

of mathematics education. In today's educational practice, students have a heavy

burden of learning mathematics, their learning efficiency is not high, there is a

disconnect between the acquisition of mathematical knowledge and the develop‐

ment of their abilities, the application of mathematics is lacking, students are not

interested in mathematics, and the phenomenon of "rote learning" still exists

widely. Therefore, it is necessary and urgent to strengthen the research on brain

and cognitive science of mathematics cognition, to pay attention to some new de‐

velopments in current research, and to better understand students' cognitive de‐

velopment, learning rules and effective learning styles in mathematics.

First, we need to understand the components and structure of mathematical

cognition in a scientific way. The previous studies have shown that mathematical

cognition is a complex cognitive system that not only contains multiple

components, such as number processing, numerical knowledge and computation,

but also has a complex pattern of how these components are organised. For
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example, the multiple representation perspective suggests that there may be

differences in the internal structure of mathematical cognition in terms of

representation and that there is a clear separation between different

representational modules. These facts suggest that in the design of mathematics

education curricula and classroom teaching, the components and structures of

students' mathematical cognitive abilities, the different roles of different learning

contents and task designs on the requirements and development of different

components of mathematical cognition, and the relationships between the

different components must be carefully analysed in order to design materials and

select appropriate teaching methods in a more scientific way.

Secondly, we need to take a scientific view of the development of students'

mathematical cognition. Current research has shown that there are two sets of

mathematical cognitive systems in the individual: a general representation

system given in the early years, and a precise representation system acquired

through learning. The developmental pattern of children's numeracy is a gradual

transition from the former to the latter. In this process, the general representation

system provides an important basis for the development of the precise

representation system, while at the same time building on the latter and playing

an important role in everyday mathematical problem solving. Therefore, we

should provide children with a rich informal mathematical learning environment

and experiences at an early stage to facilitate their early cognitive development,

and attach great importance to the synergy between the precise and approximate

representational systems to avoid one-sidedness and to develop a well-rounded

and balanced mathematical quality in children.

Thirdly, we need to take a scientific view of how mathematics is learned

and taught. In mathematics education in China, there is still some 'language

orientation' and 'practice orientation'. For example, when comparing the

mathematics textbooks in Shanghai with those in Japan, we find that the amount

of exercises and problems in China is almost three times that of Japan, despite

the fact that both countries have the same amount of time for the same content[33]

and that most mathematics teachers tend to use language as a teaching tool and

adopt a lecture approach. At the same time, in some schools, there are still

competitions and mechanical training in mathematics, with less attention paid to

the formation of strategies and skills and the development of mathematical ways

of thinking and abilities. Research in brain and cognitive science has shown that
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these training methods tend to promote mechanical memorisation of arithmetic

facts and procedures, relying more on verbal functions and less on the

development of computational strategies, and neglecting the role of visual-

spatial functions, thus hindering the overall cognitive development of students.

Fourthly, we need to take a scientific view of the difficulties and barriers to

learning mathematics. The aforementioned research findings amply demonstrate

that dyscalculia is a common cognitive disorder among primary school children,

highly specific and less related to their intellectual and linguistic development.

This helps us to better understand the prevalence of 'bias' in students and to

develop better educational responses. However, the impact of developmental

dyscalculia should not be overestimated. Current research suggests that some

children with developmental disabilities can gradually improve their

impairments over the course of their development and eventually reach normal

levels. Students with learning difficulties in mathematics should be accurately

diagnosed and the causes of their impairment understood, while at the same time

attention should be paid to developing appropriate and targeted programmes for

learning mathematics.

Fifthly, we must also take a scientific approach to the assessment of

mathematics education. The choice of assessment methods and approaches must

be appropriate to the processing and developmental characteristics of children's

mathematical cognition. The complexity of mathematical cognition in terms of

its components and structure requires that there should not be a single method of

assessment, but rather that reasonable assessment tools should be developed

according to the components and structure of mathematical cognition and its

brain mechanisms, so that assessment in mathematics education is more

scientific and practical. It is also important to note that the developmental

processes and patterns of different components of mathematical cognition differ,

and therefore the selection of reasonable evaluation criteria and developmental

evaluation in line with the laws of brain and cognitive science will be an

important part of future research in mathematics education evaluation.

In conclusion, the current research findings in brain and cognitive science

have provided many useful insights for mathematics education research and

reform, and the establishment of a "brain-based and brain-friendly" approach to

mathematics education and learning has become an important concern for

researchers in brain and cognitive science, psychological science and educational
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science around the world. At present, as quality education and curriculum reform

continue to progress, we should pay more attention to incorporating the findings

of brain and cognitive science to explore new ways to improve the efficiency and

quality of mathematics education and learning.
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