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Abstract We discuss Kunen’s algorithmic implementation of a proof for the Paris–
Harrington theorem, and the author’s and da Costa’s proposed “exotic” formulation
for the P = NP hypothesis. Out of those two examples we ponder the relation between
mathematics within an axiomatic framework, and intuitive or informal mathematics.
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1 Introduction

We will be interested here in the differences between arguments that are made within
formal mathematics, and their informal counterparts.

– By formal mathematics we understand mathematics done within axiomatic sys-
tems, based on some formal language, and with proofs that follow the usual practice
in logic. (For an example see Scholium 3.22 in this paper.)

– Informal mathematics is mathematics done with the usual standards of rigor, some-
times with verbose arguments. The usual example is the exposition style in Rogers’
textbook (Rogers, 1967); in the present paper, informal arguments are presented
in Proposition 3.6 and in Remark 3.33.

We sometimes refer to “intuition,” “intuitive.” This is only to be taken as a synonym
for “naïve,” without any specific philosophical intent.

The author is Visiting Researcher at IEA/USP, Professor of Communications, Emeritus, at the
Federal University in Rio de Janeiro, and a full member of the Brazilian Academy of Philosophy.

F. A. Doria (B)
Institute for Advanced Studies, University of São Paulo,
Av. Prof. Luciano Gualberto, trav. J, 374,
São Paulo 05655-010,
SP, Brazil
e-mail: fadoria@gmail.com



402 Synthese (2007) 154:401–415

The questions we wish to consider and illustrate are: how different are the formal
and informal approaches? Can we reconcile them?

We first present a short discussion of Kunen’s algorithmic implementation (Kunen,
1995) of a proof of the Paris–Harrington theorem (or more pedantically, Ramsey–
Paris–Harrington theorem, to emphasize its origin). We then present and elabo-
rate on the author’s proposal (with N. C. A. da Costa) of an “exotic” formalization
of the P = NP hypothesis (Costa & Doria, 2003) in Zermelo–Fraenkel set theory.
Our formalization satisfies some previously given (DeMillo & Lipton, 1979, 1980;
Joseph & Young, 1981; Kowalczyk 1982) conditions for a consistency result, but for
an unexpected twist, so to say.

Kunen’s construction (Kunen, 1995) looks deceptively naïve: Kunen describes an
algorithmic theorem prover, the Boyer–Moore prover, and then uses it to verify the
Paris–Harrington (PH) theorem (Paris & Harrington, 1977). One immediately jumps
and asks: what is going on here? Does that mean that there is an algorithm that proves
the consistency of Peano Arithmetic, as the Paris–Harrington theorem implies that
consistency? Then, how is that possible?

A different conundrum appears in our second example (Costa & Doria, 2003).
Here the first difficulty appears when we go from intuitive to formal, as there appar-
ently are several nonequivalent formal versions of the same intuitive formulation for
the P = NP hypothesis. We pick up two of those, the “standard” and “exotic” ones.
Both are informally equivalent, but may not be so within even a rich, strong axiomatic
framework such as Zermelo–Fraenkel set theory plus the Axiom of Choice; we only
get a weakened equivalence result with respect to ZFC. Namely, we get that the for-
mal sentence that states the equivalence between the exotic version [P = NP]F and
the standard one, [P = NP], turns out to be consistent with ZFC, supposed consistent,
and true of standard arithmetic. Moreover, [P = NP]F itself is consistent with ZFC.

What are we to make out of that? On which grounds can we claim that this and
similar results about the exotic formulation are legitimate results, that further our
knowledge about the P versus NP question?

1.1 Background

This work is part of an ongoing joint research program with N. C. A. da Costa, friend
and mentor, on computational complexity. Main results in this paper are the prod-
uct of that joint effort, while flaws are the author’s responsibility. An approach to
the P versus NP question along similar lines is reviewed in Ben David and Halevi
(Ben-David & Halevi, 1991); however, they do not show specific consistency results
as we do in (Costa & Doria, 2003) and here, and as they are presented in the papers
that precede our work. Papers which offer results in the same direction as the ones
described here are (DeMillo & Lipton, 1979, 1980; Fortune, Leivant, & O’Donnell,
1983; Joseph & Young, 1980, 1981). A full discussion will appear in (Costa, Doria,
& Bir, 2007). The author owes to E. Bir for a detailed review of the literature on
P versus NP and metamathematics.

1.2 A note

We must certainly quote Kreisel’s remarkable essay on informal rigor (Kreisel, 1969);
however, as stated above, our goals are immensely more modest. Also we notice
Suppes’ observations on naïve set theory (Suppes, 2002, p. 30):
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The only important distinction between axiomatic and naive set theory is that
in axiomatic set theory one continually must consider questions about the
existence of sets, since it is precisely around such questions that problems of par-
adox and inconsistency arise. In naive set theory one proceeds as if there were
no paradoxes and blithely assumes that all sets exist in the intended intuitive
fashion.

However, our discussion will be restricted to the questions made explicit above.

2 The Ramsey–Paris–Harrington–Kunen theorem

Since the Ramsey–Paris–Harrington theorem is a well-known and much discussed
result, we will just summarize its main features out of the reference (Smoryński,
1985). The Ramsey theorem is an elaboration on the Pigeonhole Principle:

If we have k balls and n boxes, k > n, and distribute the balls in the boxes, there
will be a box with more than one ball. �

For its infinite version:

If we partition the set of natural number into n disjoint subsets, then at least one
subset in the partition must be infinite. �

(For their counterpart in the Kunen paper, see Kunen (Kunen, 1995), Lemmas 5 and
6.) Now let us be given a set X of integers and let [X]n be the set of all n-element
subsets of X. If we understand integer c as c = {0, 1, 2, . . . , c − 1}, then a colouring of
[X]n is a map C : [X]n → c.

Remark 2.1 The Infinite Ramsey Theorem is: given n, c, positive integers,

For any colouring C: [X]n → c there is an infinite Y ⊂ ω so that C is constant
in Y. �

Remark 2.2 The Finite Ramsey Theorem is: given positive integers s, n, c, with s ≥
n + 1, then there is a number R(s, n, c) so that:

For all r ≥ R(s, n, c) and for all colourings C : [r]n → c there is a set Y ⊆ r
of cardinality s so that C is constant in Y. �

Remark 2.3 For the Paris–Harrington theorem one requires a single modification: we
say that a X ⊂ ω is large if the cardinality of X ≥ min X, that is, X has at least as many
elements as its smallest element. Then, given positive integers s, n, c, s ≥ n + 1, there
is a number H(s, n, c) so that:

For all h ≥ H(s, n, c) and all colourings C: [h]n → c, there is a large Y ⊂ h of
cardinality at least s so that C is constant on Y. �

Let’s now take a look at those successively more complex statements. The two
Pigeonhole Principles are trivial and highly intuitive. The infinite Ramsey theorem,
less so. Smoryński notices (see Smoryński, 1985) that the diagonal function R(x +
1, x, x) from the finite Ramsey theorem is bounded by a function that grows as F3 in
the Kreisel–Wainer hierarchy (Kreisel, 1951, 1952; Wainer, 1970). So, it can be proved
in Primitive Recursive Arithmetic (PRA).

As it is well-known, the diagonal function H(x + 1, x, x) grows about the same as
Fε0 , that is, Peano Arithmetic (PA) doesn’t prove the Paris–Harrington theorem.

We notice two things about the preceding statements, in Remarks 2.1–2.3:
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– Each one can be formalized as a �0
2 sentence, that is, they fit neatly and precisely

within a particular slot in the arithmetic hierarchy.
– Statements in Remarks 2.2 and 2.3 are each equivalent to the existence of a fast

growing, total recursive function.

2.1 The Kunen theorem

In his paper (Kunen, 1995), Kunen starts from a simplified proof of the Paris–
Harrington theorem. That proof can be fully implemented in PRA but for a single
inductive step (Lemma 14) which asserts that, for each ordinal α < ε0 there exists
a certain set parametrized by α. The fact that one uses constructive ordinals, as it
is well-known, doesn’t mean that we have directly introduced infinite quantities in
our reasoning—actually we are dealing with a recursive notation system (see Rogers,
1967) as we handle them with the help of ordinal notation systems, which essentially
turn out to be quite simple recursive functions for the α < ε0.

The point here is: Kunen’s algorithm establishes a proof for the Paris–Harrington
theorem. We know that Peano Arithmetic proves the implication:

[Paris–Harrington] → [PA is consistent].
Then: does that mean that we have an algorithmic proof for the consistency of PA?
Kunen in fact comments in his paper that “it would be interesting to implement
[Gentzen’s proof of the consistency of PA] on Nqthm,” that is, using the Boyer–
Moore algorithmic procedures. But isn’t that in contradiction with the fact that Peano
Arithmetic cannot prove its own consistency?

No. The algorithm works—we can run it in the real world of real, concrete comput-
ers, and see that it stops and outputs Paris–Harrington, from which result one derives
the consistency of PA. However, PA cannot prove that the algorithm converges.

We are going to elaborate on the consequences of this fact in Sect. 4.

3 Exotic versus standard definitions in computational complexity

The main result we exhibit in this section can be best summarized by the following;
for the exotic formulation [P < NP]F one has:

ZFC � [P < NP]F → [ZFC is consistent].
(Cf. the Paris–Harrington example we just discussed.)

Our axiomatic framework is Zermelo–Fraenkel set theory with the Axiom of
Choice (ZFC) plus tools that allow for the introduction of constants. We present
in this section both the “standard” and “exotic” formalizations for P = NP and its
negation P < NP (standard); [P = NP]f and its negation [P < NP]f (exotic), f an ade-
quate strictly increasing total recursive function whose meaning will later be clarified.
Sat is the set (coded as usual through binary words) of all satisfiable Boolean expres-
sions in cnf (Machtey & Young, 1979). We recall that Sat ⊂ ω is a primitive recursive
subset of the set ω of all positive integers. Thus we can code Sat by ω through a
primitive recursive coding, which is supposed here.

Developments in this section are based on our work (Costa & Doria, 2003)
which benefited from many exacting criticisms and suggestions by Marcel Guillaume
(Guillaume, 2000–2002). We can informally state P = NP as:
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There is a time-polynomial Turing machine Mm that correctly “guesses”
a satisfying line of truth-values for every input x ∈ Sat.

That intuitive formulation can be made stricter in several different ways.

Remark 3.1 For example, the intuitive version of the standard formalization:

There is a Turing machine Mm of Gödel number m, and there are positive
integers a, b so that for every x ∈ Sat, the output Mm(x) is a satisfying line for x,
and the number of cycles of Mm over x, tm(x) ≤ |x|a + b. �

Most mathematicians would accept the statement in Remark 3.1 as a legitimate formal
definition. Yet we have to go a step further to reach the rigorous presentation of the
standard formalization within ZFC:

Definition 3.2 (Standard formalization for P = NP.)
[P = NP] ↔Def ∃m, a, b ∈ ω ∀x ∈ ω [(tm(x) ≤ |x|a +b)∧ R(x, m)]. �

R(x, y) is a polynomial predicate; as its interpretation we can say that it formalizes a
kind of “verifying machine” that checks whether or not x is satisfied by the output of
Turing machine m. Then:

Definition 3.3 [P < NP] ↔Def ¬[P = NP]. �

Remark 3.4 [P < NP] is a �0
2 sentence. We now impose that all formulations we deal

here for the P < NP hypothesis are given as �0
2 sentences. The reason is: we are going

to explore the connection between �0
2 sentences and fast-growing total recursive func-

tions (Kleene, 1936, 1967; Kreisel, 1951, 1952). �

3.1 The weak P < NP hypothesis

Notice that there are sensible, non-�0
2 formulations for P < NP. For instance, given

a recursive enumeration (Baker, Gill, & Solovay, 1975) of the polynomial Turing
machines, if predicate G(m, x) formalizes “polynomial machine coded by m correctly
guesses a satisfying line for x,” we can say that the infinite set of sentences:

∃x ¬G(0, x), ∃x ¬G(1, x), ∃x ¬G(2, x), . . .

intuitively translates the idea expressed in the P < NP hypothesis. However, while
this formulation is implied by the �0

2 formulation, the converse doesn’t hold. We may
call it the weak P < NP hypothesis.

3.2 Exotic formalization, I

From here on we follow our work (Costa & Doria, 2003). We have called “exotic” the
formalization in Definition 3.5 as we have an intuitive equivalence between each one
of those, and the standard formalization (see Proposition 3.6) that however doesn’t
always hold in several interesting axiomatic systems, such as PA or ZFC itself. Let f
be a 1-variable, strictly increasing, total recursive function.

Definition 3.5 (An exotic formalization for P = NP, I.)
[P = NP]f ↔Def ∃m ∈ ω, a, b ∀x ∈ ω [(tm(x) ≤ |x|f(a)+f(b))∧ R(x, m)]. �
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3.3 Main theorem, informal version

The main result is proved within informal mathematics:

Proposition 3.6 If g is total and strictly increasing, [P = NP]g ↔ [P = NP].
Proof within informal mathematics : It is enough to consider the bounding term.

– [⇒]. There are a, b ∈ ω so that [tm(x) ≤ |x|g(a) +g(b)]. As g has an infinite domain
and is strictly increasing, we have that for any a, b, there are g(a) = a′, g(b) = b′.
Thus the bounding term becomes [tm(x) ≤ |x|a′ + b′].

– [⇐]. There are a′, b′ ∈ ω so that [tm(x) ≤ |x|a′ + b′]. Since g is strictly increasing,
there are a, b ∈ ω so that a′ ≤ g(a), b′ ≤ g(b). Therefore there exist a, b ∈ ω such
that [tm(x) ≤ |x|g(a) + g(b)]. �

The argument above only requires that g have an infinite domain, and be strictly
increasing on its domain; see Remark 3.33. We will later elaborate on the meaning of
“informal mathematics” for this proof. The main reason why it doesn’t go through in
ZFC is because that theory cannot “see” all total recursive functions that exist in the
standard model for arithmetic (Kleene, 1936, 1967).

Remark 3.7 From here on we drop the “∈ ω” in quantifiers, that is, ∃x will mean ∃x ∈
ω, and the same for ∀x. Exceptions will be dealt with accordingly. �

3.4 Exotic formalization, II

Let f be in general a (possibly partial) recursive function, and let ef be the Gödel
number of an algorithm that computes f. Let p(〈ef, b, c〉, x1, x2, . . . , xk) be an universal
Diophantine polynomial with parameters ef, b, c; for convenience we may take p to
be positive definite.

The primitive recursive predicate ¬Q given below in Definition 3.9 is actually
dependent on a and b. However, to simplify things we substitute those for a single
variable a, that is, we consider a bounding term of the form |x|a + a.

Definition 3.8 Mf(x, y) ↔Def ∃ x1, . . . , xk [p(〈ef, x, y〉, x1, . . . , xk) = 0]. �

Actually Mf(x, y) stands for Mef (x, y), or better, M(ef, x, y), as dependence is on the
Gödel number ef.

Definition 3.9 ¬Q(m, a, x) ↔Def [(tm(x) ≤ |x|a + a) → ¬R(x, m)]. �

From here on we agree that all quantified variables range over the whole of ω unless
specifically noted.

Definition 3.10 (Standard formalization, II.)

[P < NP] ↔Def ∀m, a ∃x ¬Q(m, a, x). �

Definition 3.11 [P = NP] ↔Def ¬[P < NP]. �

From Definition 3.8:

Definition 3.12 ¬Qf(m, a, x) ↔Def ∃a′ [Mf(a, a′)∧¬Q(m, a′, x)]. �
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This is the way we introduce function composition, to handle cases when f isn’t total.
We will sometimes write ¬Q(m, f(a), x) for ¬Qf(m, a, x), whenever f is total. However,
one should always keep in mind that actual dependence is on the Gödel number ef,
and not on f.

Definition 3.13 (Exotic formalization, II.)

[P < NP]f ↔Def ∀m, a ∃x ¬Qf(m, a, x). �

Notice that this is a �0
2 sentence:

∀m, a ∃x, a′, x1, . . . , xk {[p(〈ef, a, a′〉, . . . , x1, . . . , xk) = 0] ∧ ¬Q(m, a′, x)}.
Q is primitive recursive. Since we decided to keep [P < NP]f a �0

2 sentence, this
requirement leads to Definition 3.12.

Definition 3.14 [P = NP]f ↔Def ¬[P < NP]f. �

Remark 3.15 For the universal polynomial p(〈ef, a, b〉, x1, x2, . . . , xk), if ef is the index
of a Turing machine that computes f:

1. [f is total] ↔Def ∀a ∃b, x1, . . . , xk [p(〈ef, a, b〉, x1, . . . , xk) = 0].
2. [f is total] ↔ ∀a ∃b Mf(a, b).
3. If ∀a ∃b Mf(a, b) then:

(a) f(a) =Def µbMf(a, b).
(b) ∀a Mf(a, f(a)). �

There are two ways we can show that a function g grows faster than function f : either
by direct comparison, as when we check that an exponential function overtakes all
polynomial functions; or by “cloning” or “embedding” some adequately fast-growing
function into the function we are considering. That last procedure is used here in an
indirect way; we will exhibit a more direct construction in (Costa et al., 2007).

3.5 Function F, [P < NP]F and [P < NP]

We use here a well-known recursive function that is diagonalized over all ZFC—prov-
ably total recursive functions. We note it F in this section. See (Costa & Doria, 2003),
and (Kaye, 1991), pp. 51–52 on it.

Remark 3.16 For each n, F(n) = max({e}(k))+1, that is is the sup of those {e}(k) such
that:

1. k ≤ n.
2. �PrZFC(�∀x ∃z T(e, x, z)�)� ≤ n.

PrZFC(�ξ�) means, there is a proof of ξ in ZFC, where �ξ� means: the Gödel number
of ξ . So, �PrZFC(�ξ�)� means: “the Gödel number of sentence ‘there is a proof of ξ in
ZFC.’ ”

Condition 2 above translates as: there is a proof of [{e} is total] in ZFC whose Gödel
number is ≤ n. (T is Kleene’s predicate (Kleene, 1967).) �

Proposition 3.17 We can explicitly compute a Gödel number eF so that {eF} = F. �

Proposition 3.18 [F is total ] isn’t proved within ZFC, supposed consistent. �



408 Synthese (2007) 154:401–415

Definition 3.19 [P < NP]F ↔Def ∀m, a ∃x ¬QF(m, a, x). �

Lemma 3.20 If I ⊆ ω is infinite and 0 ∈ I, then:

ZFC � {[∀m ∀a ∈ I ∃x¬Q(m, a, x)] → [∀m ∀a ∈ ω ∃x ¬Q(m, a, x)]}. �

This is the “size of gaps doesn’t matter” result. Its meaning is: as long as we have an
infinite succession of ever larger bounds that make the Turing machines polynomial,
our standard definitions hold. The size of the intermediate gaps between each pair of
bounds doesn’t matter.

This also shows that our exotic formalizations [P < NP]F and [P = NP]F can be
viewed as reasonable, informally equivalent, versions for [P < NP] and [P = NP].
3.6 Main theorem, formalized version

Now follows our main result. Proof is computational:

Proposition 3.21 ZFC � [P < NP]F ↔ {[F is total ] ∧ [P < NP]}.
Proof See (Costa & Doria, 2003). �

We quote and prove a scholium due to its interest:

Scholium 3.22 ZFC � [P < NP]F → [F is total]. �

Remark 3.23 The following informal argument clarifies the meaning of the scholium
and gives a proof for it: let fF(〈m, a〉) = minx [¬Q(m, F(a), x)], where we can here
look at F as a (partial) recursive function. (The brackets 〈. . . , . . .〉 note the usual
1–1 pairing function.) Now if fF is total, then F(a) has to be defined for all values
of the argument a, that is, F must be total. The function fF is the so-called exotic
counterexample function to [P = NP]F.

We can similarly define a standard counterexample function :

f(〈m, a〉) = min
x

[¬Q(m, a, x)]. �

Proof of the scholium The actual argument we present is here given in full as a sample
of the techniques used in Costa & Doria (2003).

1. ¬QF(m, a, x) ↔Def ∃b [MF(a, b) ∧ ¬Q(m, b, x)]. (Definition of ¬QF.)
2. Assume ¬QF(m, a, x). From step 1.:

(a) ∃b [MF(a, b) ∧ ¬Q(m, b, x)]. (Assumed.)
(b) [(∃bMF(a, b)) ∧ (∃b¬Q(m, b, x))]. (From step 2a., and modus ponens.)

3. ¬QF(m, a, x) → [(∃bMF(a, b)) ∧ (∃b¬Q(m, b, x))]. (The assumption in step 2a.
implies step 2b.)

4. Recall that the following is a propositional theorem: [A → (B∧C)] → [A → B].
5. [¬QF(m, a, x)] → [∃b(MF(a, b)]. (From step 4. applied to step 3. plus modus

ponens.)
6. Generalization rule applied to the unquantified variable x: ∀x {[¬QF(m, a, x)] →

[∃b(MF(a, b)]}.
7. Internalization of ∀x, and modus ponens: {[∃x¬QF(m, a, x)] → [∃b(MF(a, b)]}.
8. Generalization Rule applied to the unquantified variables m, a: ∀m, a {∃x[¬QF

(m, a, x)] → [∃b MF(a, b)]}.
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9. [∀m, a ∃x[¬QF(m, a, x)] → [∀a∃b MF(a, b)]. (Operations, modus ponens, and
elimination of empty quantifier.)

10. That is, [P < NP]F → [F is total]. �
From the properties of F and from the the scholium:

Corollary 3.24

ZFC � [P < NP]F → Consis (ZFC),

where Consis (ZFC) is the usual sentence that asserts the consistency of ZFC. �

This gives an idea of the—if we may say so—conceptual depth of the objects we are
dealing with here. We handle sentences that imply the consistency of the axiomatic
framework they are embedded into.

3.7 Results

As we have seen, intuitively and informally [P < NP]F and [P < NP] are the same
thing. The chief result we have is that ZFC, if consistent, doesn’t prove [P < NP]F,
that is, it doesn’t prove our exotic version for P < NP. The reason is clear: as we
have “cloned” F into [P < NP]F, then it cannot be proved in ZFC, as ZFC cannot
prove that F is total. However, we also show that if ZFC is consistent, then so is
ZFC∗ = ZFC + [P < NP] ↔ [P < NP]F. And the point is, how strong is this new
theory? Namely: ZFC �� [P < NP]F. What about ZFC∗ ? Formally:

Proposition 3.25 If ZFC is consistent, then ZFC doesn’t prove [P < NP]F.

Proof ZFC � [[P < NP]F → (F is total)]. (Scholium 3.22.) So, ZFC cannot prove
[P < NP]F. �

Corollary 3.26 [P = NP]F is consistent with ZFC. �

From the viewpoint of naïve wisdom, this result is unexpected: it asserts that it is con-
sistent with ZFC to assume that there is a poly algorithm—an easy, fast, algorithm. A
different construction that led to a similar result for Peano Arithmetic was presented
in May 2000 (Doria, 2000). We also note that such a result is in the line of the previous
results by DeMillo and Lipton (1979, 1980) and by Joseph and Young (1980, 1981).

Remark 3.27 Guillaume (2000–2002) pointed out to N. C. A. da Costa and the author
that the results for the P versus NP question we present here hold in any first-order
theory with a recursively enumerable set of theorems where theory I�1 can be inter-
preted. That is to say, formal sentences like [P < NP]F that intuitively translate as
P < NP cannot be derived in a whole family of very reasonable, strong, formal sys-
tems. The author is aware that this kind of result goes against the current expectations
in the field (Aronson, 2003; Ben-David & Halevi, 1991), as it is usually believed that
some formal sentence that intuitively translates as P < NP will eventually be proved
within perhaps Peano Arithmetic. This is certainly not the case with the exotic formal-
ization for P < NP presented here, while the possibility remains open that there will
be another reasonable formalization for P < NP which isn’t equivalent to the ones in
the paper, and that can be proved in arithmetic. This wouldn’t be an unusual situation,
after all, the existence of reasonable multiple nonequivalent formalizations for the
same intuitive concept (Franzen, 2004). �
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3.8 From an informal to a formal equivalence result

We start from a reformulation of Proposition 3.6:

Proposition 3.28 If ZFC has a model N with standard arithmetic, that is, if ZFC
is arithmetically sound, then ZFC + [P < NP]F ↔ [P < NP] is consistent and
holds of N. �

�1-soundness is quite natural: from the intuitive viewpoint it asks that, for a �1
sentence φ in the language of a theory T like the ones considered here, if T � φ, then
φ (φ is true of the standard model for arithmetic). That requirement can be formalized
as a Reflection Principle (Beklemishev, 1997; Feferman, 1960, 1962; Franzen, 2004;
Smoryński, 1989), but we will not require its actual explicit formulation here; suffices
to abbreviate (with some abuse of language) it as [T is �1-sound]. The next result is
standard; it is proved in the case of Peano Arithmetic in (Paris & Harrington, 1977);
the generalization to ZFC is straightforward (Beklemishev, 1997) :

Lemma 3.29 ZFC � [F is total ] ↔ [ZFC is �1–sound ]. �

Proposition 3.30 ZFC + [ ZFC is �1–sound ] � [P < NP] ↔ [P < NP]F. �

Follows as a corollary Proposition 3.28. Then, going further:

Corollary 3.31

1. ZFC + [F is total ] + [P = NP]F � [P = NP].
2. If theory ZFC + [F is total ] + [P = NP]F is consistent, then so is theory ZFC +

[P = NP].
3. If ZFC + [P = NP]F is ω-consistent, then ZFC + [P = NP] is consistent.

Proof For the last assertion see that a consistent theory T + ¬ [F is total] cannot be
ω-consistent. �

Remark 3.32 We may insist (Costa & Doria, 2003) that it still isn’t obvious why a
theory like ZFC + [P = NP]F should be ω-consistent. From the intuitive viewpoint,
our condition is equivalent to the following: there is a model for T where all bounds
|x|F(a) + F(b) in the clocks that regulate our polynomial machines do in fact converge.
So, we are here dealing with a reasonable property. But—does it hold? Is there one
such model for ZFC? �

3.9 The formal viewpoint meets the informal

Let us summarize our discussion up to this point:

– [P < NP]F and [P < NP] both translate in a reasonable intuitive way the same
concept.

– ZFC �� [P < NP]F, while we still don’t know what happens to [P < NP].
– ZFC∗ = ZFC + [P < NP] ↔ [P < NP]F is consistent, if so is ZFC. But can we

repeat with ZFC∗ our results for ZFC ?

The next discussion will appear in full and in a formal version in (Costa et al., 2007),
but we sketch it here. We essentially use Proposition 3.6 and Proposition 3.28.
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Remark 3.33 We know, from the previous results, but also from Proposition 3.28, that
theory:

ZFC∗ = ZFC + [P < NP] ↔ [P < NP]F
is consistent, if so is ZFC. Moreover, if we examine the proof of that proposition, or of
Proposition 3.6, we notice that it is sufficient to suppose that F has an infinite domain.
Therefore, one naïvely sees that ZFC∗ cannot prove [F is total].

Informally always, as we derive in the same theory the equivalence [P < NP] ↔
[P < NP]F, and again as [P < NP]F → [F is total], we cannot prove [P < NP] in ZFC∗,
and a fortiori in ZFC.

Notice that this is an informal argument, based on Propositions 3.6 and 3.28. Can
we make it formal? We discuss that matter in (Costa et al., 2007).

Finally: do we have an F′ such that it has an infinite domain, grows—over its
domain—as F, but such that it is undecidable whether [F′ is total] ? We can use here
another variant of a trick developed in 1991 to prove the undecidability of chaos
(Costa & Doria, 1991, Proposition 3.28; see also Costa & Doria, 2005, Propositions
12 and 13, and Costa et al., 2007). �

4 Informal versus formal mathematics

Our main tool in this paper are the fast-growing functions that cannot be proved to
be total by some quite strong theories like ZFC and its nonrecursive extension ZFC1.
We are now going to take a closer look at them.

One of the main trends in mathematical thought, to which the author adheres,
is that no axiomatization like those currently available for arithmetic or set theory
can exhaust, or even approximate, the wealth of intuitive mathematics. (This idea
lurks behind (Kreisel, 1969).) Yet axiomatic systems are pointers that show the way
to that wealth in the intuitive domain of mathematics, due to the incompleteness
phenomenon. This section wishes to present the case for that claim.

We start from the following example: suppose that we are given a prescription
so that, for an integer n, we can compute a finite set of numbers Sn. Then put:
F∗(n) = max Sn + 1. Most mathematicians would immediately agree that F∗ is both
computable and total. But is that really so?

Can we construct that function within ZFC? Sure—but we won’t then be able to
prove that similar functions are total, in the general case. It is enough to consider the
construction and properties of F in Remark 3.16.

Let’s take a closer look at F.

4.1 Why can’t we prove in ZFC that F is total?

Let’s substitute the construction of F in Remark 3.16 by the following one, for a
function F′ that can be proved to be primitive recursive in F:

– We suppose that ZFC is consistent; therefore, it has a nontrivial recursively enu-
merable set of theorems. Suppose that we have built the Turing machine {ZFC}
that outputs all theorems of ZFC, and only those.
This machine operates as follows: if x is the Gödel number of sentence ξx in the
language of ZFC, {ZFC}(x) ↓, that is, it stops if and only if ξx is a theorem of ZFC,
and diverges ({ZFC}(x) ↑) otherwise.
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– Turn on {ZFC}. Enumerate by dovetailing all theorems of ZFC.
– Out of the list of theorems of ZFC, pick up those of the form ∀x ∃y T(e, x, y), where

T is Kleene’s predicate and e the Gödel number of {e}.
– If e appears in the n-th theorem of the form ∀x ∃y T(e, x, y), define F′(n) =

{e}(n) + 1.
– F′ is computable—it has an algorithm, just described; it is total in the intuitive

way, and cannot be proved to be total in ZFC, as it is diagonal over all provably
total {e}.

The nonprovability of [F′ is total] in ZFC follows from a diagonal argument (see
Remark 3.16). Crucial to the diagonal argument is the recursive enumerability of the
sentences—and thus of the Gödel numbers e—that provably mean [{e} is total]. This
idea goes back to Kleene in 1936: (Kleene, 1936), (Kleene, 1967), p. 257.

4.2 �1-soundness again

The infinite set of formal sentences (Feferman, 1960, 1962; Smoryński, 1985) abbrevi-
ated as [ZFC is �1-sound] can be proved to be equivalent to [F is total]. �1-soundness
translates as an intuitive fact—if ZFC proves the sentence ∃x P(x), for primitive recur-
sive P, then there is an a so that P(a) holds. �1-unsound theories are easy to construct
(see Smoryński, 1991, p. 342ff), but the concept is again definitively non-intuitive,
when applied to the natural numbers.

Now, given a function F like the one in Remark 3.16, we can establish the following,
as noticed before:

Proposition 4.1 ZFC � [F is total ] ↔ [ZFC is �1–sound ]. �

We wouldn’t be able to get a glimpse of �1-unsound theories (or of ω-inconsistent
theories) if it weren’t for the incompleteness phenomenon; in the present case, if those
“boundary” functions like F or F′—functions that overtake infinitely many times all
provably total recursive functions in ZFC and sort of mark the “boundary” between
what we can prove and what we cannot prove in ZFC—didn’t exist with all its prob-
lems. They remind us of G. Chaitin’s algorithmic complexity version of the Gödel
incompleteness theorem (Chaitin, 1987a, b), which also offers a bound beyond which
there is formal incompleteness and to which they may perhaps be related.

�1-unsound but consistent theories, as well as consistent, ω-inconsistent theories,
point towards a mathematical world that defies many of our conventional views, like
e.g. an implicit structure for the standard natural numbers that a priori gets rid of
infinitely large naturals that appear in nonstandard constructions (or that simply give
a more precise meaning for the . . . that appear in the enumeration of the naturals that
we can actually name, such as 0, 1, 2, 3, . . .).

So here we go from a formally correct, but unexpected, phenomenon like
ω-inconsistency or �1-unsoundness, to a new, potentially richer, intuition about the
mathematical world.

4.3 Hierarchy of the F’s

Wainer (1970) gives an explicit construction for a hierarchy of fast-growing total
recursive functions along lines that first appear in Kreisel (1951, 1952). He stops at
Fε0 , but we can go much further, as long as we have a notation for the ordinal that is
ascribed to the fast-growing function. Some of those have specific meanings:
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– Ackermann’s Function has the growth-rate of Fω, and marks the “outer boundary,”
if we may say so, of Primitive Recursive Arithmetic (as every primitive recursive
function is dominated by Fω).

– Fε0 has the same rate of growth as the diagonal Paris–Harrington function, and
indicates the external boundary of PA.

– Since Ackermann required an induction up to η to prove the consistency of an
axiomatized theory of the real numbers, Fη > Fε0 indicates the external boundary
of that theory.

And so on.

All those functions can be given explicit programs, and even rather short ones
(Wainer, 1970). However the point is: while they look intuitively total, we need pro-
gressively stronger theories to show that fact. This point must be stressed: the concept
of “total recursive function” is only safely applied with reference to a given axiomatic
framework. The stronger (or perhaps more restrictive) the framework, the larger will
be the corresponding class of total recursive functions.

This again relativizes (with respect to axiomatic systems) a concept that might seem
to be safe, that of total recursive function.

And, as the cherry on top of the pie, if we intuitively accept that [F is total]
holds, then we must intuitively accept that [PA is consistent] also holds—very much
like the Kunen–Boyer–Moore algorithm that leads—informally—to [PA is consistent]
whenever it verifies the Paris–Harrington theorem.

4.4 A remark on ZFC

The situation for ZFC is more involved, as we have no knowledge of an ordinal α so
that our function F = Fα . Such an ordinal α > ω1, where ω1 is the first nonconstructive
ordinal (Rogers, 1967). Therefore we cannot argue that F is intuitively total out of a
hierarchy of total functions based on constructive ordinals.

4.5 From the intuitive to the counterintuitive

Of course we have theories that prove that all intuitively total recursive F are total:
the Turing—Feferman theorem ensures that (Beklemishev, 1997; Feferman, 1960,
1962; Franzen, 2004; Turing, 1939); actually it is enough to add Shoenfield’s recursive
ω-rule (Shoenfield, 1959) to Peano Arithmetic to ensure it (Costa & Doria, 2006).
Such theories are so close to being recursively enumerable theories like PA or ZFC
that we may call them near-recursive theories. (See also Longo, 2002.)

But how about models for some axiomatic system like ZFC where F isn’t a total
function? First, one easily sees that any consistent theory like ZFC + ¬ [F is total] is
an ω-inconsistent theory, as we have already pointed out.

But how about the behavior of F in those theories? We have several alternatives:

– Does F have a finite domain?
– Does F have an infinite domain?
– How are we to distinguish the two possible situations: our theory proves, for some

a ∈ ω, that ∃y y = F(a), but we can find no constant b ∈ ω so that b = F(a).
(So we may say—intuitively? in such a weird situation?—that one goes on com-
puting F(a) but one never manages to find a b that fits the place of F(a).)
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Or we may say that the elements of ω which aren’t in the domain of F have no names.
These, if we may say so, highly counterintuitive possibilities appear not to have

been extensively considered in the literature on the subject. We may wonder which
magnificent mathematical worlds may be uncovered when we start to explore them.

Remark 4.2 The author thanks an anonymous referee for his detailed examination
of this work plus several interesting comments on it. �
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