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Abstract !
Abecassis, et al., (2001) showed that young children represent shapes more metrically, and 

perhaps more holistically, than do older children and adults. How does a child transition from 
representing objects and events as undifferentiated wholes to representing them explicitly in terms of 
their attributes?  According to Recognition-by-Components theory (RBC; Biederman, 1987) objects 
are represented as collections of categorical geometric parts (“geons”) in particular categorical spatial 
relations.  We propose that the transition from holistic to more categorical visual shape processing is a 
function of the development of geon-like representations via a process of progressive intersection 
discovery.  We present an account of this transition in terms of DORA (Doumas et al., 2008), a model 
of the discovery of relational concepts.  We demonstrate that DORA can learn representations of single 
geons by comparing objects composed of multiple geons.  In addition, as DORA is learning it follows 
the same performance trajectory as children, originally generalizing shape more metrically/holistically 
and eventually generalizing categorically. !
Keywords: Shape bias, learning geons, relation learning, development, computational modeling. !
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Introduction !
Numerous studies have shown that both children and adults generalize labels preferentially to 

objects with similar shapes rather than, say, similar colors or textures (Imai & Gentner, 1997; Landau, 
Smith, & Jones, 1988, 1992; Smith, 1995; Woodward & Markman, 1998). That children and adults 
demonstrate this shape bias (i.e., they prefer to generalize labels to objects with shapes similar to those 
with which they are familiar) begs the question of what constitutes a “similar shape”. The answer to this 
question changes with development. 

Abecassis, Sera, Yonas, and Schwade (2001; Experiment 2) presented evidence that young 
children represent shapes more metrically and holistically than do older children and adults. For 
example, shown a slightly curved shape, a very curved shape and a straight shape (where the metric 
difference in curvature between the slightly curved shape and the straight shape is smaller than between 
the slightly curved shape and the very curved shape; e.g., compare the shapes in the bottom and middle 
vs. middle and top rows of Figure 1), adults and older children are more likely to generalize a label from 
the slightly curved shape to the very curved shape than to the straight shape. To adults and older 
children, the two curved shapes (both being categorically “curved”) are more alike than the slightly 
curved shape is like the straight shape (one of which is “curved” and the other of which is “straight”). 
By contrast younger children are more likely to generalize a label from the slightly curved shape to the 
straight shape than to the very curved shape.  This is because the slightly curved shape is metrically and 
holistically more similar to the straight shape than it is to the highly curved shape, and because these 
children are less sensitive to the visual categories “curved” and “straight”. There is evidence for an 
analogous “relational shift” in cognitive development, in which young children appear to process objects 
and events holistically but, as they develop, gradually come to represent them in terms of independent 
objects, relations and properties (e.g., Gentner & Rattermann, 1991).   !
----------------------------------------- 
Please insert Figure 1 about here. 
----------------------------------------- !

How does a child transition from representing objects and events as undifferentiated wholes to 
representing them explicitly in terms of their attributes—including categorical aspects of objects’ shapes
—and the relations among those attributes? This question is really two questions. The first is the 
question of how the categorical properties (e.g., “straight” vs. “curved” regardless of the degree of 
curvature) come to be detected from the holistic early visual input (e.g., as in V1) in the first place (see 
Hummel & Biederman, 1992). The second is the question of how these categorical invariants come to 
dominate judgments of perceptual similarity. 

This paper presents an effort to understand the answer to the second of these two questions. Our 
starting point is the hypothesis that the cognitive processes responsible for the developing reliance on 
categorical invariants in shape perception are the same as those responsible for the relational shift. That 
is, we hypothesize that the child’s emerging reliance on categorical invariants in shape perception and 
label generalization is a manifestation of her discovery that relational invariants reliably predict other 
aspects of her world (for precedents, see Biederman, 1987; Garner, 1974; Hummel, 2003; Hummel & 
Biederman, 1992). Under this hypothesis, the question ‘How do categorical invariants come to dominate 
judgments of perceptual similarity?’ becomes ‘How does the child isolate and predicate those visual 
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invariants that underlie the transition from a metric/holistic representation of object shape to a more 
categorical/analytic representation?’  1

We present DORA (Discovery Of Relations by Analogy; Doumas & Hummel, 2005a; Doumas, 
Hummel & Sandhofer, 2008), a model that uses analogical mapping and intersection discovery to 
highlight shared abstract properties between separate systems (e.g., separate shapes, or separate views of 
the same shape) to discover those similarities and represent them as explicit structures (i.e., to predicate 
them). DORA was developed as a model of how structured relational representations are learned from 
examples (e.g., how children learn the relation larger-than(x, y) by observing examples of objects of 
various sizes). The simulations presented here suggest that the same processes DORA uses to isolate and 
predicate relational concepts from examples also permit it to discover and predicate categorical visual 
invariants (such as straight vs. curved) from metrically detailed representations of multi-part objects. 
DORA’s metric-to-categorical transition provides a natural account of the developmental transition 
observed by Abecassis et al. (2001) and may therefore provide a partial account of the development of 
the role of geons (Biederman, 1987; see directly below) in shape perception.   !
Recognition by components !

As noted by Abecassis et al. (2001), the problem of knowing when to generalize a name from 
one shape to another is a special case of the problem of recognizing objects: If two shapes represent 
different instances of the same object, then it is appropriate to generalize the name from one to the other.  
According to Biederman’s (1987; Hummel & Biederman, 1992) Recognition-by-Components (RBC) 
theory of object recognition, adults visually represent object shape as a structural description that 
specifies the categorical relations among an object’s parts. For example, a coffee mug would be 
represented as a curved cylinder (the handle) side-attached to a vertical cylinder (the body). A bucket 
would be represented as a curved cylinder atop a vertical cylinder or truncated cone.   

The parts, in turn, are represented as geons: classes of generalized cylinders  that can be 2

discriminated from one another based on categorical contrasts in their 3-D shape (which, in turn, can be 
detected based on non-accidental categorical contrasts in the object’s 2-D image). For example, a 
cylinder has a curved cross section, parallel sides and a straight major axis; a cone has a curved cross 
section, nonparallel sides and a straight major axis; and a curved brick has a straight cross section, 
parallel sides and a curved major axis. Each geon is represented in terms of its general aspect ratio (i.e., 
degree of elongation: very squat [like the lid of a jar]; somewhat squat [like a tuna can]; neither squat 

 Although the issue of metric vs. categorical appears at first blush orthogonal to, or at least different than, the issue of holistic vs. analytic/1

predicate-based, in the context of representations of shape they turn out not to be (see Hummel, 2003). Holistic representations of shape—
such as the representations generated in visual area V1, or the “view-based” representations endorsed by some models of object recognition 
(e.g., Edelman & Intrator, 2003)—are metrically precise (i.e., rather than categorical) by necessity (the reason being that they are 
coordinate-based, and coordinates are necessarily metrically precise). Similarly, barring exclusively feature-list-based representations of 
shape (which provide an extremely poor account of human shape perception; see, e.g., Hummel & Biederman, 1992), representations based 
on categorical invariants of the type that constitute geons are necessarily analytic, in the sense that they explicitly predicate the invariants in 
question and represent them independently of one another. (At the same time, however, it is perfectly possible for an analytic representation 
to be metrically precise, so the metric:holistic and categorical:analytic correspondences are not absolute; see Hummel & Stankiewicz, 
1998.) Accordingly, in this paper, we tend to treat “metrically precise” and “holistic” as roughly synonymous and “categorical” and 
“analytic” as roughly synonymous. See Hummel (2003) for a much more extensive discussion of this issue.

 A generalized cylinder is the 3-dimensional (3-D) volume produced by sweeping a 2-D shape (the cross-section) along an axis in the third 2

dimension.  For example, sweeping a circle along a straight axis produces a cylinder; sweeping the same cylinder along the same axis while 
linearly reducing its size produces either a cone (if the circle eventually disappears into a point) or a truncated cone (if he circle never 
completely disappears); and sweeping a rectangle along a curved axis results in a curved brick-like shape.
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nor elongated [like a cube or ball]; somewhat elongated [like a soup can] or very elongated [like a lamp 
post]), but importantly, a geon’s metric properties (such as the precise degree of curvature of its major 
axis or the precise shape of its cross section) are otherwise completely left out of the description. The 
resulting categorical structural descriptions are naturally robust to variations in viewpoint and variations 
in an object’s precise 3-D shape and thus provide a natural basis for recognizing objects in novel 
viewpoints and for recognizing different exemplars as members of the same basic-level category (e.g., a 
Toyota Camry and a Mazda 626 have identical geon-based descriptions).   

If what allows us to recognize two objects as members of the same category is our ability to 
process and represent the geons that compose those objects (and the categorical relations among those 
geons), then it follows that as we develop more robust representations of geons and their relations, we 
will transition from more holistic to more categorical shape generalization.   !
The DORA Model !

DORA (Doumas & Hummel, 2005a; Doumas et al., 2008) is a symbolic connectionist network 
that learns structured (i.e., symbolic) representations of relations from unstructured (i.e., holistic) inputs.  
DORA derives this ability from its ability to maintain the structure of representations by dynamically 
binding distributed representations of relational roles to distributed representations of the objects (or 
geons) filling those roles.  The resulting representations enjoy the advantages of both connectionist and 3

traditional symbolic approaches to knowledge representation, while suffering the limitations of neither 
(see Doumas & Hummel, 2005b).   

DORA was developed as a model of the discovery of relational concepts.  It has been used to 
simulate a wide range of cognitive phenomena including the discovery of novel relational concepts, the 
trajectory of children’s relation learning, the idiosyncrasies of early relational concepts, the effects of 
progressive-alignment on relational learning, and relational learning in adults, among others (see 
Doumas et al., 2008).  In the present work we used DORA to simulate the discovery of categorical 
representations of geons from examples of multi-geon objects and, accordingly, the development of the 
shape-bias in children and adults as reported by Abecassis et al. (2001).  As DORA is described fully 
elsewhere (see Doumas et al., 2008), here we cover DORA in broad strokes focusing only on the aspects 
of its operation that are relevant for the current simulations.   

DORA represents relational structures (such as propositions or structural descriptions of object 
shape) using a hierarchy of distributed and localist codes adapted from Hummel & Holyoak’s (1997, 
2003) LISA model (see Figure 2). At the bottom of the hierarchy “semantic” units represent the features 
of objects and relational roles in a distributed fashion. For example, a geon would be represented by 
semantic units specifying the shape of its major axis, the shape of its cross section, its aspect ratio, size, 
orientation, and so forth. At the next level, these distributed representations are connected to localist 
predicate/object (PO) units representing individual objects (or geons) and relational roles. Localist role-
binding (RB) units link object and relational roles units into specific role-filler bindings. At the top of the 
hierarchy, localist proposition (P) units link RBs into complete propositions.   !
----------------------------------------- 

 DORA can also represent higher-order relations (e.g., cause(gravity, revolve-around(earth, sun)) by binding relational roles to other 3

relational structures.
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Please insert Figure 2 about here. 
----------------------------------------- !

DORA’s fundamental operating principle is to use analogical mapping to isolate shared 
properties of objects and to use self-supervised learning (Hummel & Holyoak, 2003) to represent them 
as explicit structures (i.e., to predicate them). When DORA maps one object or structure onto another, 
corresponding elements of the two representations fire together. As a simplified example, if DORA 
compares a mouse to a hummingbird, then the nodes representing the mouse will fire at the same time as 
those representing the hummingbird (Figure 3). Consequently, any semantic features shared by both 
objects (i.e., features common to both the hummingbird and the mouse) receive twice as much input as 
features connected to one but not the other. The network uses this firing pattern to recruit a new PO unit 
that learns connections to semantic units in proportion to their activation via simple Hebbian learning 
(i.e., DORA learns stronger connections to more active units; Figure 3b).  The new PO thus becomes an 
explicit representation of the featural overlap between the compared objects (or relational roles; see 
below). In the case of comparing a hummingbird to a mouse, the network might form an explicit 
predicate representing “small”, “animal”, (and any other features they share; Figure 3).   Importantly, 4

this new PO is now an explicit predicate (representing, e.g., small animal) that can be dynamically 
bound to new fillers.    5

!
---------------------------------------- 
Please insert Figure 3 about here. 
---------------------------------------- !

Although the new predicates DORA learns are initially “messy” in that they contain extraneous 
features (e.g., in the previous example the representation of “small animal” will also have weak 
connections to the other features of hummingbird and mouse), through repeated iterations of the same 
learning process, DORA forms progressively more refined representations. For example, consider what 
happens when DORA compares the “messy” representation of “small animal” it learned in the previous 
example to a representation of “small” it learned by comparing, say, a matchbook to a toy-car.  Both 
representations of “small” contain the essential features “small”, as well as various extraneous features 
(e.g., the representation learned by comparing a mouse and a hummingbird is also connected to the 
feature “animal”; Figure 4a). However, because only the essential “small” feature is common to both 
representations, when the two representations are compared to one another, the features they share 
(“small”) will become most active (Figure 4b). When a new PO learns connections to the active features 
(as described above) it is most strongly connected to “small” and less strongly connected to the features 
idiosyncratic to either representation (Figure 4c). In short, through a series of progressive comparisons, 

 For the current example (and the current simulations) we let DORA start with semantic representations like “small” and later “curved-4

cross-section” for the purposes of clarity and ease of expostion.  Importantly, DORA can learn representations of semantics coding for 
featrues “smaller”, “larger”, “higher”, “lower”, etc., starting with semantics coding for specific metric values and a compariter circuit (see 
Doumas et al., 2008, for full details).

 DORA uses systematic asynchrony of firing to bind roles to fillers (see Doumas & Hummel, 2005a; Doumas et al., 2008).  As this detail 5

is not important for the simulations reported here, we do not discuss binding further in this paper.  See Doumas et al. (2008) for the 
complete details of DORA’s operation, including all assumptions, equations and parameter values.
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DORA’s learning algorithm preserves what remains invariant across examples and discards everything 
else. !
---------------------------------------- 
Please insert Figure 4 about here. 
---------------------------------------- !

In the previous (highly simplified) example DORA learned and refined an explicit representation 
of the property small. However, what is important about DORA’s operation is not what each specific 
semantic unit codes, but that DORA’s learning algorithm isolates and forms explicit representations of 
any features shared by compared representations, whatever those features may be. Whether “small” is 
coded by a single feature unit or by a set of units, when DORA compares small things it will isolate and 
represent the features that are invariant in small things (i.e., whatever is integral to being small) and 
discard other features. In other words, through progressive comparisons of examples of a concept, 
DORA will, via a kind of intersection discovery, isolate the properties that remain invariant across those 
examples and come to represent those properties as explicit structures (or symbols). Given that there are 
invariant properties in the world and the human cognitive system can detect them, DORA provides a 
means to learn explicit structured representations of those properties (see Doumas et al., 2008, for many 
more examples).   !
Simulations !

We ran two simulations with DORA to simulate Abecassis et al.’s (2001) Experiment 2. In the 
first we simulated the development of representations of single geons from representations of multi-geon 
objects.  In the second, we used the representations DORA learned during the first simulation to simulate 
the behavior of Abecassis et al.’s subjects.  Importantly, these two sets of simulations were interleaved, 
allowing us to test DORA at different “ages”. A key assumption underlying these simulations is that the 
visual system represents an object’s categorical properties independently of its metric properties.  That 
is, we assume that the visual system is capable of detecting properties such as curved cross sections, 
straight cross-sections and parallel and non-parallel lines, and that these properties are represented 
independently of metric properties like size, orientation and location in the visual field. This kind of 
independence was first predicted by Hummel & Biederman (1992) and has since been supported by both 
psychophysical experiments (e.g., Stankiewicz, 2002) and single-unit recordings in the macaque visual 
system (e.g., Kayaert et al., 2005; Tanaka, 1994).   !
Simulation 1 !

To simulate the development of geon representations, we created 160 multi-geon objects. Each 
object consisted of two geons selected randomly from a pool of seven (including straight brick, curved 
brick, straight cone, straight wedge, curved wedge, straight cylinder, and curved cylinder; Biederman, 
1987). Examples of these objects appear in Figure 5. Each object was represented in DORA as a PO unit 
attached to 12 features. Of these, up to six described the invariant categorical properties of the geons that 
composed the object. For example, an object consisting of a straight cone (curved cross section, straight 
major axis and non-parallel sides) and a straight brick (straight cross section, straight major axis and 
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parallel sides) was represented by a PO attached to five categorical features (the union of the six listed 
in the previous sentence; both the cone and the brick have a straight major axis, so their union consists 
of only five features); the remaining seven features, describing the geons’ metric properties, were chosen 
at random (e.g., the object’s location in the visual field or the degree of curvature; see Figure 6). Note 
that this representation of the object is holistic in the sense that it simply lists the cone and brick features 
without specifying how they go together in geon-based sets.  !
---------------------------------------- 
Please insert Figure 5 about here. 
---------------------------------------- !
---------------------------------------- 
Please insert Figure 6 about here. 
---------------------------------------- !

Importantly the features we use to code categorical and metric properties are features that can be 
detected by Hummel and Biederman’s (1992) JIM model of object recognition from V1-like 
representations of objects.  For example, JIM can detect categorical features like “curved cross-section” 
and metric features like “x-coordinate=5”. However, JIM cannot learn which shape attributes are view-
invariant, and thus does not learn the “definition” of a geon (e.g., that straight vs. curved major axis 
matters, whereas the exact degree of axis curvature does not); rather this information is hand-coded into 
the model’s representations. As such, in the first simulation we tested whether DORA’s learning 
algorithm could discover which features define geons simply by observing examples of multi-geon 
objects. For example, would DORA discover that the features straight cross section, straight axis and 
parallel sides define bricks and that curved cross section, straight axis and non-parallel sides define 
cones, simply by comparing objects composed of bricks, cones and other geons?  

We ran three sets of comparisons. During the first set of comparisons (CS 1), DORA compared 
pairs of multi-geon objects. Each pair of multi-geon objects that DORA compared contained at least one 
of the same geons. For example, DORA might compare a cone and brick (as in Figure 5a) to a wedge 
and brick (as in Figure 5b). When DORA compared these two objects it learned a representation of what 
they had in common, namely, those features essential to bricks (along with some extraneous features the 
two objects shared by chance). CS 1 consisted of 80 comparisons, each producing a “messy” 
representation of the shared geon. For example, by comparing a cone and brick to a wedge and brick, 
DORA learned a representation most strongly connected to the features shared by the two objects (i.e., 
those features defining a brick), and weakly connected to the other features of the two objects (i.e., the 
features of cone and wedge and any metric properties of the two objects).   

After CS 1 we began the second set of comparisons (CS 2), during which we allowed DORA to 
compare the “messy” representations of geons it had learned during CS 1 to other “messy” 
representations of the same geon. For example, DORA might compare one “messy” representation of a 
brick to another “messy” representation of a brick. This process produced more refined representations 
of the geons.   

In the third set of comparisons (CS 3) we allowed DORA to compare the more refined 
representations of geons it had learned during CS 2 to other refined representations of the same geon.  
For example, DORA might compare one representation of a cone it had learned during CS 2 to another 
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representation of a cone it had learned during CS 2. CS 3 produced even more refined representations of 
the individual geons.   6

After each set of comparisons a selectivity metric (SM) was calculated on the representations of 
individual geons DORA had learned during those comparisons. SM for unit i was calculated as the mean 
connection weight between i and all the relevant semantics to which it was connected, j, normalized by 
the mean connection weight between i and all the irrelevant semantics to which it was connected, k: !

                                                            (1) 7

!
Table 1 presents the mean SM over all POs after each set of comparisons. Over the course of the 

comparisons DORA learned progressively more refined representations of the six geons. The simulation 
thus demonstrated that DORA’s learning algorithm is capable of learning representations of individual 
geons by comparing examples of multi-geon objects.  Importantly, in these simulations DORA not only 
discovered which categorical properties remained invariant over different views of a given geon (thereby 
learning a preference for view-invariant categorical properties over view-specific metric properties), it 
also learned representations of individual geons from holistic examples of multi-geon objects. That is, it 
learned what a geon “is”, both in the sense of learning which features reliably co-occur as a geon and in 
the sense of “pulling a single geon out” of an otherwise holistically-represented multi-geon object. !
--------------------------------------- 
Please insert Table 1 about here. 
--------------------------------------- !
Simulation 2 

Experiment 2 of Abecassis et al. (2001) and the results are described above. To simulate the 
experiment we used the representations of geons DORA had learned during simulation 1 to construct 
multi-geon “wug” objects.  The sets of comparisons performed in Simulation 1 necessarily took place in 
sequence (i.e., with CS 3 following CS 2, which followed CS 1). In our second set of simulations, we 
treated DORA’s progression in this sequence as its point in development (i.e., its “age”). To simulate 4-
year-olds we created all nine “wug” exemplars using the geons DORA had learned during CS 1 of the 
previous simulation. For example, to represent the exemplar from the middle row middle column of 
Figure 1 we used the representation above (curvedBrick1, curvedBrick2), where curvedBrick1 and 
curvedBrick2 were geons learned during CS 1 of Simulation 1.  To simulate adults we did the same 8

� 

SMi =
MEAN wij( )

1+ MEAN wik( )
.

 Although we trained DORA using a blocked training design for the purpose of simplicity, DORA is very capable of learning from 6

unstructured training sets where exemplars are not blocked (see Doumas et al., 2008, simulation 1).  Importantly, the SM of the 
representations it learns from unstructured training follows the exact same pattern as the one it learns from blocked training.

 One is added to the denominator to keep the SM ratio between 0 and 1 (i.e., as weights on a PO’s connections to relevant 7

semantics approach 1, and weights on its connections to irrelevant semantics approach 0, its SM approaches 1.

 See Doumas et al., 2008 for a full description of how DORA learns representations of relations like above, below, and next-8

to.  
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thing, only we constructed the exemplars using the geons DORA had learned during CS 3 of Simulation 
1.   

In order to simulate Abecassis et al.’s experiment, we placed six representations of the sample 
items into DORA’s LTM (corresponding to the training exemplars; using CS 1 geons in the case of 
children and CS 3 geons in the case of adults), along with six representations of randomly-chosen geons 
in randomly-chosen relations. On each simulation, DORA used its representation of a test exemplar (i.e., 
one of the objects from either the top or bottom row of Figure 1) to retrieve previously viewed 
exemplars from its LTM. Retrieval consists of activating the representation of the test exemplar and 
allowing it to pass activation, via the semantic units, to the representations in LTM and using the Luce 
(1959) choice axiom to retrieve these active LTM representations into working memory (WM) (see 
Doumas et al., 2008). After two or three exemplars had been retrieved into WM, DORA attempted to 
map the representation of the test exemplar onto the representations of the retrieved exemplars. During 
mapping, the retrieved exemplars compete (via lateral inhibition) to become active. If one of the 
retrieved representations matches the test item better than the others (i.e., shares a higher proportion of 
its semantic units with the test exemplar) then it will become most active and DORA will map it to the 
representation of the test exemplar. The item to which the test was mapped was taken to be DORA’s 
“categorization” of the test: If that item was one DORA had been trained on as a “wug”, then we took 
that response as DORA endorsing the test item as a “wug”; if it was any other item, or if no mapping 
was found, then we took that response as rejecting the test as a non-“wug”.  We ran 12 simulations of 
each “age”, each with six trials (the three bottom row trials and the three top row trials of Figure 1).  

The results from Abecassis et al. (2001) and our simulation are presented in Figure 7.  Like the 
younger children in Abecassis et al.’s study, DORA with earlier (CS 1) geon representations tended to 
generalize the name “wug” roughly equally often to both exemplars from the top and the bottom rows.  
By contrast, with more refined (CS 3) representations, “adult” DORA generalized the name “wug” much 
more often to items from the top row than those from the bottom.  In short, with more experience DORA 
tended to generalize a name to more categorically similar objects than to more holistically similar 
objects, as people do. Importantly, we ran these simulations using exactly the same settings and 
parameters that Doumas et al. (2008) used to simulate numerous other finding in the literature. We did 
no parameter fitting and these results reflect DORA’s first run.   !
---------------------------------------- 
Please insert Figure 7 about here. 
---------------------------------------- !
Discussion !

Through a process of iterative comparison and intersection discovery, DORA gradually comes to 
discover features that remain invariant over instances of an object category, relational role or concept. 
This process allows it to discover invariant object attributes and to form representations of geon-like 
structures from examples of objects composed of geons. The resulting representations provide a natural 
account of the developmental shift in the shape bias described by Abecassis et al. (2001). This process 
may also provide a basis for understanding how geons—clusters of co-occuring invariant features—are 
discovered by exposure to multi-geon objects.   
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An important implication of the DORA model is that comparison is central to the development of 
representations of geons (as well as other relational representations) and to the transition from holistic to 
categorical and, more generally, analytic, representations of object shape. This account predicts that the 
rate of invariant discovery and predication should closely follow the rate of comparison: The more 
comparisons a child makes, the faster she should discover whatever invariant properties characterize the 
objects so compared. And situations that invite comparison will provide rich contexts for developing 
categorical representations of shape. Such situations might include when two items share the same label, 
when the child is directed by an adult to compare, or when items are in close spatial proximity. 

A related prediction is that the class of invariants a child discovers should be a function of the 
invariants present and absent in the set of objects she has compared. This property of the model can be 
illustrated by considering the implications of comparing different views of the same object. The 
simulations reported here were simplified in the sense that we only allowed DORA to compare objects 
to other objects. In the real world, however, objects move in 3-dimensional space, providing numerous 
opportunities to compare one view of an object to other views of the same object. Such within-object 
comparisons provide a weaker set of contrasts than do the between-object comparisons used in the 
simulations reported here. For example, consider comparing one view of a cone-on-a-brick object to a 
different view of the same object. Although this comparison makes it possible to discover which aspects 
of the cone and brick remain invariant over multiple views (especially if many such comparisons are 
made), it does not make it possible to discover that cone-like things can exist independently of brick-like 
things. As a result, it does not make it possible to predicate “cone”, as a geon, independent of “brick”: If 
the child always sees cones paired with bricks (and vice versa), DORA predicts she will never learn to 
predicate them as independent geons (see Doumas, et al., 2008). 

This property of the model highlights the unusual location it occupies in the space of statistical 
vs. symbolic models of cognitive development. On the one hand, DORA is decidedly symbolic, 
possessing as it does the ability to (a) represent relational roles independently of their arguments and (b) 
dynamically bind arguments to whatever roles they happen to be filling at the time.  This property gives 
it the full inductive flexibility of any relational, i.e., non-associative, computational system—a flexibility 
that we and others argue it shares with the human cognitive architecture (Doumas et al, 2008; Holland, 
Holyoak, Nisbett & Thagard, 1989; Hummel & Holyoak, 1997, 2003; Penn, Holyoak & Povinelli, 
2008).  In this respect, DORA stands in stark contrast to purely associationist models of cognition (e.g., 
Elman, 1991; O’Reilly & Busby, 2002) and purely holistic “view-based” models of object perception 
(e.g., Reisenhuber & Poggio, 1999; Poggio & Edelman, 1991). Even Edelman and Intrator’s (2003) 
“Chorus of Fragments” model, which is nominally “part”- (i.e., “fragment”-) based cannot discover the 
kinds of invariants discovered by DORA because it cannot represent object properties independently of 
one another or of their location in the visual field (see Hummel, 2003).  

At the same time, however, the model’s reliance on intersection discovery for the discovery and 
predication of spatial and relational invariants makes it heavily dependent on the statistics of the 
examples over which the intersection discovery is performed: If DORA never sees a geon with a straight 
major axis and a straight cross section, for example, it will never predicate “brick” as a possible geon. 
The model’s “innate” endowment is thus in its ability to compare examples to discover the invariants 
they share (and in its ability to reify these invariants as explicit predicates that can be bound to novel 
arguments), not in its expectations about what those invariants will be. In running the simulations 
reported here, we were forced, by the practical realities of modeling, to endow the model with a 
population of basic semantic features with which to work. In this sense, we gave it an “innate” 
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population of (invariant and non-invariant) features as raw material. However, beyond that, we did not 
endow it with any “expectations” about which of these features would either (a) remain invariant over 
different object views or (b) occur in clusters (e.g., in the form of geons). These latter properties it had to 
discover for itself through experience with the statistical properties of the objects in its world. 
As a model of the development of categorical representations of object shape, DORA’s most 
fundamental claim is that adult-like representations of shape can be (indeed, are) learned in exactly 
this way: Adults rely on categorical shape properties precisely because those properties remain across 
diverse objects and object views—as pointed out forcefully by Biederman (1987)—and because the 
same algorithm for intersection discovery that allows us to discover abstract relational concepts 
(Doumas et al., 2008) also causes those invariants to emerge as the stable descriptors of object shape. !
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Table 1.  Simulation 1 results (SM = selectivity metric) !

! !

SM

Initial 
representations

.46

After CS 1 .64

After CS 2 .72

After CS 3 .84
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Figure Captions !
Figure 1.  Example of the stimuli used in the experiment by Abecassi et al. (2001). !
Figure 2.  Example of the proposition above(cone, brick) in DORA. For clarity, triangles denote 
relational roles and circles to denote objects, but in the model the same types of units code both roles 
and objects. !
Figure 3.  DORA learns a representation of “small animal” by comparing a hummingbird to a mouse.  
(a) When DORA compares a hummingbird to a mouse the units representing both become active 
simultaneously.  (b) Feature units shared by both become more active (small grey circles) than units 
belonging to one but not the other (small white circles).  (c) A new unit is recruited and learns 
connections to features in proportion to their activation (solid lines indicate stronger connection 
weights). The new unit codes the featural overlap between hummingbird and mouse, effectively 
representing “small animal”. !
Figure 4. DORA learns a refined representation of “small” by comparing two “messy” representations of 
“small”. (a) When DORA compares the two “messy” representations of “small” the units representing 
both become active simultaneously. (b) Feature units shared by both representations of “small” become 
more active (darker grey) than units connected to only one of them. (c) A new unit is recruited and learns 
connections to features in proportion to their activation (solid lines indicate stronger connection 
weights). The new unit codes the featural overlap of the compared representations, i.e., a more refined 
representation of “small”. !
Figure 5.  Examples of some multi-geon objects used during simulation 1. !
Figure 6.  Initial representation of a straight cone and a brick in DORA. A PO coding for the shape 
composed by the two geons is connected to 12 semantic units. Five units jointly code for the categorical 
properties of the cone and brick and the remaining seven semantic units code for random metric features 
of the object. !
Figure 7.  The experimental data from children and adults in Abecassis et al. (2001) and from DORA. !!
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Figure 1. 

!  !
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Figure 2. !

!  !
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Figure 3. 
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Figure 4. !

!  !
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Figure 5. !
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Figure 6.  !

!  !!
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Figure 7. !
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