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Abstract 

Abecassis, Sera, Yonas, and Schwade (2001) have shown that 
young children represent shapes more metrically, and perhaps 
more holistically, than do older children and adults. How does 
a child transition from representing objects and events as 
undifferentiated wholes to representing them explicitly in 
terms of their attributes—including invariant aspects of 
objects’ shapes—and the relations among those attributes?  
According to recognition-by-components theory objects are 
represented as collections of arranged geons.  We propose that 
the transition from more holistic to more categorical shape 
processing is a function of the development of geon-like 
representations.  We present a model, DORA, that was 
originally proposed to solve the problem of discovering 
relations,  but can also learn representations of single geons 
from representations of multi-geon objects.  We demonstrate 
that DORA follows the same trajectory humans do, originally 
generalizing shape more holistically and eventually, after 
more learning, generalizing categorically. 

Keywords: Shape bias, relation learning, relation discovery, 
development, computational modeling. 

Introduction 
Numerous studies have shown that both children and 

adults apply similar labels to objects with similar shapes 
(e.g., Imai & Gentner, 1997; Landau, Smith, & Jones, 1988, 
1992; Smith, 1995; Woodward & Markman, 1998).  This 
phenomenon is often referred to as the shape bias.  There is 
considerable debate about the origins of the shape bias (see 
e.g., Jones & Smith, 1993; Landau, Smith, & Jones, 1988, 
1992; Woodward & Markman, 1998), but there are also 
questions about how children and adults can and do see two 
shapes as similar in the first place.   

Abecassis, Sera, Yonas, and Schwade (2001) have shown 
that young children represent shapes more metrically, and 
perhaps more holistically, than do older children and adults.  
For example, presented with a slightly curved shape, a much 
more curved shape and a straight shape (i.e., where the 
metric difference in curvature is smaller between the 
slightly curved shape and the straight shape than between 
the slightly curved shape and the more curved shape), adults 
and older children tend to choose the more curved shape, 
rather than the straight shape, as more like the slightly 

curved shape.  That is, to adults and older children, the two 
curved shapes are more alike than the slightly curved shape 
and the straight shape.  Presumably the two curved shapes 
are more similar because they share the visual invariant 
“curved”.  By contrast younger children are more likely to 
say the slightly curved shape is like the straight shape, 
presumably because it is metrically closer and they are 
insensitive (or less sensitive) to the visual invariants 
“curved” and “straight”.  There is evidence for an analogous 
“relational shift” in cognitive development, in which young 
children appear to process objects and events rather 
holistically but, as they develop and learn, gradually come 
to represent them in terms of independent objects, relations 
and properties (see e.g., Gentner & Rattermann, 1991; 
Smith, 1989).   

How does a child transition from representing objects and 
events as undifferentiated wholes to representing them 
explicitly in terms of their attributes—including invariant 
aspects of objects’ shapes—and the relations among those 
attributes?  This question is really two questions.  The first 
is the question of how the invariant properties (e.g., 
“straight” vs. “curved” regardless of the degree of 
curvature) come to be detected from the holistic early visual 
input (e.g., as in V1) in the first place.  The second is the 
question of how the child comes to notice that these 
invariants remain constant across separate objects.  That is, 
how does the child discover that the “straightness” of one 
shape is, in some sense the same as the “straightness” of 
another?  In other words, how does the child predicate 
straightness as an explicit property that retains its identity 
across different instances?  We argue that these processes, 
discovery and predication, are necessary precursors to the 
shift from reliance on metric representations of shape to 
representations based more on abstract visual invariants. 

We present our early efforts at understanding the answer 
to the second of these two questions.  We present a model 
that relies on the processes of analogical mapping and 
intersection discovery to highlight shared abstract properties 
between separate systems (e.g., separate shapes) and 
subsequently predicates these similarities as explicit (i.e., 
symbolic) properties of the systems.  Simulations suggest 
that these basic processes may permit the discovery and 
predication of geon like representations from examples 
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containing multiple goens.  In addition, learning more 
refined representations of geons leads to the more 
categorical (i.e., adult) processing of shapes observed by 
Abecassis et al. (2001).   

Recognition by components 
As noted by Abecassis et al. (2001) the problem of 

learning to generalize shapes (i.e., understanding that two 
shapes are similar and so the same name should be applied 
to both) is similar to the problem of recognizing objects in 
the world.   

According to Biederman’s (1987; Hummel & Biederman, 
1992) Recognition-by-Components (RBC) theory of object 
recognition, adults visually represent objects in terms of a 
structural description that specifies the categorical relations 
among an object’s parts.  For example, a coffee mug would 
be represented as a curved cylinder (the handle) side-
attached to a vertical cylinder (the body).  A bucket would 
be represented as a curved top-attached to a vertical cylinder 
or truncated cone.  The parts, in turn, are represented as 
geons: classes of generalized cylinders1 that can be 
discriminated from one another based on categorical 
contrasts in their 3-D shape (which, in turn, can be detected 
based on non-accidental categorical contrasts in the object’s 
2-D image).  For example, a cylinder has a curved cross 
section, parallel sides and a straight major axis; a cone has a 
curved cross section, nonparallel sides and a straight major 
axis; and a curved brick has a straight cross section, parallel 
sides and a curved major axis.   Each geon is represented in 
terms of its general aspect ratio (i.e., degree of elongation: 
very squat [e.g., like the lid of a jar]; somewhat squat [like a 
tuna can]; neither squat nor elongated [like a cube or ball]; 
somewhat elongated [like a soup can] or very elongated 
[like a lamp post]), but importantly, a geon’s metric 
properties (such as the precise degree of curvature of its 
major axis or the precise shape of its cross section) are 
otherwise completely left out of the description.  The 
resulting categorical structural descriptions are naturally 
robust to variations in viewpoint and variations in an 
object’s precise 3-D shape and thus provide a natural basis 
for recognizing objects in novel viewpoints and for 
recognizing different exemplars as members of the same 
basic-level category (e.g., a Toyota Camry and a Mazda 626 
have identical geon-based descriptions).   

If what allows us to recognize two objects as members of 
the same category is our ability to process and represent the 
geons that compose those objects, it follows that as we 
develop more refined representations of geons and their 

                                                             
1 A generalized cylinder is the 3-dimensional (3-D) volume 
produced by sweeping a 2-D shape (the cross-section) along an 
axis in the third dimension.  For example, sweeping a circle along 
a straight axis produces a cylinder; sweeping the same cylinder 
along the same axis while linearly reducing its size produces either 
a cone (if the circle eventually disappears into a point) or a 
truncated cone (if he circle never completely disappears); and 
sweeping a rectangle along a curved axis results in a curved brick-
like shape. 

relations we transition from more holistic to more 
categorical shape generalization.   

The DORA Model 
DORA (Doumas & Hummel, 2005; Doumas, Hummel & 

Sandhofer, submitted) is a symbolic connectionist network 
that learns structured representations of relations from 
unstructured inputs. DORA dynamically binds distributed 
(i.e., connectionist) representations of relational roles and 
objects into explicitly relational (i.e., symbolic) structures. 
The resulting representations enjoy the advantages of both 
connectionist and traditional symbolic approaches to 
knowledge representation, while suffering the limitations of 
neither (see Doumas & Hummel, 2005).   

DORA was developed as a model of the discovery of 
relational concepts.  It has been used to simulate a wide 
range of cognitive phenomena including the discovery of 
novel relational concepts, the trajectory of children’s 
relation learning, the idiosyncrasies of early relational 
concepts the progressive-alignment effect, and adult relation 
learning (see Doumas & Hummel, 2005; Doumas et al., 
submitted).  In this paper we use DORA to simulate the 
discovery of simple geons from multi-geon objects and the 
development of the shape-bias in children and adults.   

DORA uses a hierarchy of distributed and localist codes 
to represent relational structures. This hierarchy is adapted 
from Hummel & Holyoak’s (1997, 2003) LISA model. At 
the bottom, “semantic” units represent the features of 
objects and roles in a distributed fashion. At the next level, 
these distributed representations are connected to localist 
units (POs) representing individual objects and relational 
roles. Localist role-binding units (RBs) link object and 
relational roles units into specific role-filler bindings. At the 
top of the hierarchy, localist P units link RBs into whole 
relational propositions (see Figure 1).   
 

 
Figure 1. Example of a proposition in DORA. Triangles 

are used to denote roles and circles to denote objects for 
clarity. In DORA, the same types of units code both roles 

and objects. 
 

At the most basic level, DORA uses analogical mapping 
to isolate shared properties of objects and to represent them 
as explicit structures.  When DORA maps one object or 
structure onto another, corresponding elements of the two 
representations fire in synchrony.  For example, if DORA 
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compares a mouse and a hummingbird, then the nodes 
representing the mouse will fire in synchrony with those 
representing the hummingbird (Figure 2).  Consequently, 
any semantic features that are shared by both compared 
objects (i.e., features common to both the hummingbird and 
the mouse) receive twice as much input as features 
connected to one but not the other. The network uses this 
firing pattern to recruit a new PO unit that learns 
connections to active semantics in proportion to their 
activation via simple Hebbian learning (i.e., DORA learns 
stronger connections to more active units; Figure 2b).  The 
new PO thus becomes an explicit representation of the 
featural overlap of the compared hummingbird and mouse.  
So, in the case of comparing a hummingbird and a mouse, 
the network might form an explicit predicate representing 
“small” (and any other features they share, for example, 
“animal”) due to their semantic overlap (Figure 2). 
Importantly, this new PO acts as an explicit predicate 
representation of the property small that can be dynamically 
bound to fillers.2   
 

 
Figure 2.  DORA learns a representation of “small” by 

comparing a hummingbird and a mouse.  (a) When DORA 
compares a hummingbird and a mouse the units 

representing both become active simultaneously.  (b) 
Feature units shared by both the hummingbird and mouse 

become most active (darker grey).  (c) A new unit is 
recruited and learns connections to features in proportion to 

their activation (solid lines indicate stronger connection 
weights).  The new unit codes the featural over-lap 

hummingbird and mouse, or a “dirty” representation of 
“small”. 

 
Although the new predicates DORA learns are initially 

“dirty” in that they contain extraneous features (e.g., in the 
previous example the representation of “small” also contains 
the feature “animal”) through repeated iterations of the same 
learning process, DORA forms progressively more refined 
representations.  For example, consider what happens when 
DORA compares the “dirty representation of “small” it 
learned in the previous example to another representation of 
“small” it learned, say, by comparing a matchbook to a 
playing card.  Both representations of “small” contain the 
essential feature “small” and an extraneous feature (Figure 

                                                             
2 DORA uses systematic asynchrony of firing to bind roles to 
fillers (see Doumas & Hummel, 2005; Doumas et al., submitted).  
As this is not important for the simulations reported here, we do 
not discuss binding further in this paper. 

3a).  However, because only the essential “small” feature is 
common to both representations of “small”.  When the two 
representations are compared the features they share will 
become most active (Figure 3b).  When a new PO learns 
connections to the active features (as described above) it is 
most strongly connected to the feature “small” (the feature 
shared by both “small” representations) and less strongly 
connected to the features idiosyncratic to either particular 
representation (Figure 3c).  In short, through a series of 
progressive comparisons DORA preserves what remains 
invariant across examples and discards everything else.   
 

 
Figure 3. DORA learns a refined representation of “small” 
by comparing a two “dirty” representations of “small”.  (a) 

When DORA compares a the two representations of “small” 
the units representing both become active simultaneously.  
(b) Feature units shared by both representations of “small” 

become more active (darker grey).  (c) A new unit is 
recruited and learns connections to features in proportion to 

their activation (solid lines indicate stronger connection 
weights).  The new unit codes the featural over-lap of the 

compared representations, or a more refined representation 
of “small”. 

 
In the previous example DORA learned and refined an 

explicit representation of the property small.  In the example 
we used a single semantic unit to code the feature “small” in 
order to make the example easier to follow.  However, what 
is important about DORA’s operation is not what each 
specific semantic unit codes, but that DORA’s learning 
algorithm isolates and forms explicit representations of any 
features shared by compared representations, whatever those 
features may be.  Whether “small” is coded by a single 
feature unit or by a set of units, when DORA compares 
small things it will isolate and represent the features that are 
invariant in small things (i.e., whatever is integral to being 
small) and discard other features.  In other words through 
progressive comparisons of examples of a concept, DORA 
will isolate the properties that are invariant across those 
examples and represent those properties with an explicit 
predicate that can take arguments.  Given that there are 
invariant properties in the world and the human cognitive 
system can detect them, DORA provides a means to learn 
explicit structured representations of these properties.   

Simulations 
We ran two simulations with DORA.  In the first we 

simulated the development of representations of single 
geons from representations of multi-geon objects.  In the 
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second we simulated the findings of Abecassis et al. (2001).  
In these simulations we make a key assumption: We assume 
that metric and categorical attributes are represented by the 
visual system independently of one another.  That is, we 
assume that the visual system is capable of detecting 
properties such as curved cross sections, straight cross-
sections and parallel and non-parallel lines, and that these 
properties are represented independently of metric 
properties like location in the visual field.  This assumption 
was predicted in the computational models of Hummel (e.g., 
Hummel & Biederman, 1992) and has been supported by 
psychophysical experimentation (e.g., Stankiewicz, 2002).   

Simulation 1 
To simulate the development of geon representations we 

created 160 multi-geon objects.  These objects consisted of 
at 2 geons selected randomly from a pool of 7 geons 
(including straight brick, curved brick, straight cone, 
straight wedge, curved wedge, straight cylinder, and curved 
cylinder; see Biederman, 1987).  Examples of these stimuli 
are presented in Figure 4.  Each multi-geon object was 
represented in DORA as a PO unit attached to 12 features.  
Half of these features described invariant categorical 
properties of the geons that composed the object (e.g., 
straight cross-section, parallel sides, curved axis-of-
symmetry, etc.).  So, for example, the object consisting of 
the cone and the brick was attached to the categorical 
features of a brick (e.g., straight cross-section, straight axis-
of-symmetry, parallel sides) and the categorical features of a 
cone (e.g., curved cross-section, straight axis-of-symmetry, 
non-parallel sides).  In addition, each object was also 
attached to 6 features describing metric properties that were 
chosen at random (i.e., the object’s location in the visual 
field or the degree of curvature).   
 

 
Figure 4.  Examples of some multi-geon objects used during 

simulation 1 
 

Importantly the features we use to code categorical and 
metric properties are features that can be detected by JIM 
from V1-like representations of objects.  For example, JIM 
can detect categorical features like “curved cross-section” 
and metric features like “x-coordinate=5”.  However, JIM 
does not learn which shape attributes are view-invariant, 
and thus form the “definition” of a geon (e.g., that straight 
vs. curved major axis matters, whereas the exact degree of 
axis curvature does not); rather this information was hand-
coded into the model’s operation.  As such in this 
simulation we tested whether DORA’s learning algorithm 

could discover which features define geons simply by 
observing examples of multi-geon objects.  More 
concretely, could DORA discover that the features straight 
cross section, straight axis and parallel sides define bricks 
and that curved cross section, straight axis and non-parallel 
sides define cones, simply by comparing objects composed 
of bricks, cones and other geons.   

We then allowed three sets of comparisons.  During the 
first set of comparisons (CS 1), we allowed DORA to 
compare multi-geon objects.  Each set of multi-geon objects 
that DORA compared contained at least one of the same 
geons.  For example, DORA might compare the cone and 
brick in Figure 4a to the wedge and brick in Figure 4b.  
When DORA compared these two objects it learned a 
representation of what they had in common, namely, those 
features essential to bricks (along with some extraneous 
features the two objects shared by chance).  That is, the first 
set of comparisons produced “dirty” representations of the 
geons.   

After CS 1 we began the second set of comparisons (CS 
2), during which we allowed DORA to compare the “dirty” 
representations of geons it had learned during CS 1 to other 
“dirty” representations of the same geon.  For example, 
DORA might compare one “dirty” representation of a brick 
to another “dirty” representation of a brick.  This produced 
more refined representations of the geons.   

Finally, after CS 2 we began the third set of comparisons 
(CS 3) during which we allowed DORA to compare the 
more refined representations of geons it had learned during 
CS 2 to other refined representations of the same geon.  For 
example, DORA might compare one representation of a 
cone it had learned during CS 2 to another representation of 
a cone it had learned during CS 2.  This produced even more 
refined representations of the individual geons.   

After each set of comparisons we tested the 
representations of individual geons that DORA had learned 
using a selectivity metric (SM).  The SM was calculated for 
each object as the mean weight between that object and the 
features essential to the geon it represented (e.g., for a cone 
curved cross-section, straight axis-of-symmetry, non-
parallel sides) divided by 1 + the mean weight between that 
object and all irrelevant features to which it was connected.3  
In short, the SM provided a metric of the refinement of the 
representation.  The higher the SM of a representation of a 
geon the more strongly that representation is connected to 
relevant features and the less strongly it is connected to 
irrelevant features.   

The SM results for the representations learned during 
each set of comparisons are presented in Table 1.  During 
each set of comparisons DORA learned progressively more 
refined representations of the six geons.  Although this is, 
admittedly, a simplified case of learning, the simulation 
demonstrated that DORA’s learning algorithm designed for 
learning relations from examples is sufficient to learn 
representations of individual geons from objects containing 
                                                             
3 One was added to the denominator to keep the SM a ratio 
between 0 and 1. 
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multiple geons.  With this in mind we proceeded to simulate 
the results of Abecassis et al. (2001).   
 

Table 1.  Simulation 1 results (SM = selectivity metric) 
 SM 

Initial representations .5 
After CS 1 .64 
After CS 2 .72 
After CS 3 .84 

 

Simulation 2 
In Experiment 2 of Abecassis et al. (2001) 4 year-old 

children and adults were presented with objects like those 
depicted in the middle row of Figure 5a.  These sample 
exemplars were given a novel label, for example “wug”.  
The participants were then given the other objects from 
Figure 5 one at a time and asked if these too were “wugs”.  
While the objects in the bottom row where, on the whole, 
more similar to the objects in the middle row in terms of 
metric properties, they differed on important categorical 
features: The items in the middle row had curved axes of 
symmetry while those in the bottom row did not.  On the 
other hand, the objects in the top row while less similar in 
terms of metric properties to the objects in the middle row, 
but were more categorically similar in that they shared 
categorical features such as curved axis of symmetry. 
 

 
Figure 5.  Example of the stimuli used in the experiment by 

Abecassi et al. (2001). 
 

As noted previously, children generalized the name of the 
sample exemplars to the test exemplars in both the bottom 
row and the top row of Figure 5.  Adults, on the other hand, 
generalized the name given to the sample exemplars much 
more frequently to the test exemplars from the top row.  The 
authors concluded that as children get older they become 
more sensitive to invariant predictive properties (e.g., 
curvature) and less sensitive to over-all similarity.   

We simulated the adults and children in the above 
experiment by varying the composition of the experimental 
stimuli presented to DORA.  To simulate children we 
created all nine “wug” exemplars using the geons DORA 

had learned during CS 1 of the previous simulation.  So, for 
example, to represent the exemplar from the middle row 
middle column of Figure 5 we used the representation above 
(curvedBrick1, curvedBrick2) where curvedBrick1 and 
curvedBrick2 were geons learned during simulation 1.  To 
simulate adults we did the same thing only we constructed 
the exemplars using the geons that DORA had learned 
during CS 3 of simulation 1.  In short, to simulate children 
we used messier representations of geons (those learned by 
DORA after less experience) and to simulate adults we used 
more refined representations of geons (those learned by 
DORA after more experience.  To simulate children we 
placed 6 representations of the sample items constructed 
using CS 1 geons and 6 representations of random geons in 
random configurations into LTM.  To simulate adults we 
placed 6 representations of the sample items constructed 
using CS 3 geons  and 6 representions of random geons in 
random configurations into LTM.   

We ran 12 simulations each with 6 trials (the three bottom 
row trials and the three top row trials).  On each trial we 
allowed DORA used its representation of the test exemplar 
to retrieve previously viewed exemplars from its LTM.  
During retrieval the representation of the test exemplar 
became active and passed activation to representations in 
LTM.  As representations in LTM became active DORA 
used the Luce choice axiom to retrieve active LTM 
representations into working memory (WM).  After two or 
three exemplars had been retrieved into WM DORA attempt 
to map the representation of the test exemplar to the 
representations of the retrieved exemplars.  During mapping 
the representation of the exemplar becomes active and 
passes activation to the representations of the retrieved 
exemplars which compete (via lateral inhibition) to become 
active.  If one of the retrieved representations matches the 
test items better than the others (i.e., shares a higher 
proportion of its semantic units with the test exemplar) then 
it will become most active and DORA will map the two 
representations.  If DORA found a strong mapping 
correspondence, the test item was labeled a “wug”, 
otherwise (i.e., if DORA found no strong mapping) the test 
item was not labeled a “wug”.   

The results from Abecassis et al. (2001) and our 
simulation are presented in Figure 6.  Like the children in 
Abecassis et al.’s study, DORA with messier geon 
representations tended to generalize the name “wug” 
roughly equally often to both exemplars from the top and 
the bottom row.  On the other hand, with more refined 
representations, DORA generalized the name “wug” much 
more often to items from the top row than those from the 
bottom.  In short, with more experience DORA tended to 
generalize a name to more categorically similar objects than 
to more holistically similar objects, as people do.  These 
simulation run using exactly the same settings and 
parameters that we used to simulate several other finding in 
the literature (e.g., Dixon & Banart, 2003; Gentner & Namy, 
1999; Kotovsky & Gentner, 1996; Smith (1984); Smith et 
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al., 1988; see Doumas et al., submitted).  We did no 
parameter fitting and these results reflect DORA’s first run.   
 

 
Figure 6.  The experimental data from children and adults in 

Abecassis et al. (2001) and from DORA. 

Discussion 
Through a process of iterative comparison, DORA 

gradually comes to discover features that remain invariant 
over instances of an object category (or concept).  This 
process allows it to discover invariant object attributes and, 
to form representations of geon like structures.  The 
resulting representations provide a natural account of the 
developmental shift in the shape bias described by 
Abecassis et al. (2001).  This process may also provide a 
basis for understanding how geons—clusters of co-occuring 
invariant features—are discovered by exposure to multi-
geon objects.   

An important implication of the DORA model is that 
comparison is central to the development of representations 
of geons and the transition from holistic to categorical 
representations of shape.  Thus, DORA predicts that 
situations that invite comparison will provide rich contexts 
for developing categorical representations of shape.  Such 
situations might include when two items share the same 
label, when the child is directed by an adult to compare, or 
when items are in close spacial proximity.   
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