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1 Introduction
In set-theoretic models of space, one begins with a dehydrated dust of points. This dust is reconstituted
using measure theory, and the result is glued together using topology. This is all quite standard, but there’s
something dissatisfying about it. It requires taking a number of philosophical stands about the nature of
space, choices which presumably could have gone another way. One major assumption is that there are,
in fact, points—unextended and indivisible regions of space. One might think, like Brentano and White-
head (Zimmerman, 1996), that space has no atomic parts. At the very least this seems to be a possibility. And
this possibility has a long philosophical pedigree, appearing in Zeno’s paradoxes, Kant’s antinomies, and
contemporary metaphysics (Sider, 1993).

Call a spatial region that is not comprised of points ‘gunky’ (after Lewis, 1991). The past few years
have seen a number of mathematical models of gunky space (Russell, 2008), but I take Arntzenius’s (2012)
“measure-theoretic gunk” to be the most promising among these. This model is of particular interest be-
cause Arntzenius is motivated in part by considerations from quantum mechanics (QM), giving philoso-
phers of physics a reason to care about mereology. After briefly reviewing the measure-theoretic gunk
model (§2.1), I tie up a few loose ends (§2.2). Arntzenius gives an axiomatic characterization of a topology
on such a model, but does not have a representation theorem on offer. I provide a characterization of these
structures in terms of locales, a generalization of topological spaces, and discuss how these relate to pointy
topological spaces.

After establishing the gunky model, I turn to physics on this space. In particular, I consider whether it
can support QM, one of the motivating cases for Arntzenius’s model. I argue that it cannot. Though parts
of the QM formalism suggest pointlessness, this apparent suggestion is the result of not taking the whole
formalism into account. I use an example from Halvorson (2004) to illustrate these claims (§3.1) and to
show that QM does not motivate a theory of gunky space after all (§3.2). A final verdict on gunk ultimately
relies, however, on an account of unitarily inequivalent representations of the algebra of observables. This
is perhaps not too surprising, because addressing the small-scale structure of space brings us into the realm
of QM∞ (Ruetsche, 2011), which is already beleaguered by these problems. Nevertheless, our investigation
will show that in fact there is nothing essentially quantum about Arntzenius’s motivations for gunk, and
similar considerations apply in classical theories. I close with some questions that arise as a result.

2 Measure-theoretic gunk
Since I will only be concerned with the measure-theoretic approach to gunk, I hereby drop the qualifier.
Arntzenius describes his model as the real number line seen through “blurry glasses”. One begins with
the real number line, and then identifies two sets if they differ only by a set of Lebesgue measure zero.
The purpose of this section is to reconstruct Arntzenius’s model in a way that makes clear the role of his
assumptions. In brief, the argument is as follows: assuming that the regions of space behave according
to standard mereology, and that every region has a determinate, non-zero size, there are very few models
available. They can each be labeled by two cardinals, (m, n), where n is either 0 or infinite. m represents the



number of spatial points, so for gunk we have m = 0. n is fixed by the further assumption that the space
must be separable, giving n = ℵ0. Thus there is one model of gunky space.

2.1 The gunky measurable locale
A suitably general framework in which to model regions should not presuppose that a space is comprised
of points, as a topology does. Looking ahead, it should also provide the tools to express Arntzenius’s gunk.
Locales provide such a framework.1 Mathematically, a locale is a lattice with all finite meets and all joins, and
in which these are compatible. One can interpret this in physical terms as follows. A locale X is a collection
of spatial regions, denoted O(X), and one can talk about region B being part of region A, written B ⊆ A.
For any two regions A and B, there is some region A ∧ B, the meet of A and B, which is the largest region
part of both A and B. For any family of regions F , there is a region

∨F , the join of F , which is the fusion
of every region in F . Finally, we have the identity

B ∧
∨

i
Ai =

∨
i
(B ∧ Ai)

Physically, this means that the largest part shared by B and the fusion of the As is the fusion of the largest
parts B shares with each A.

A locale is a generalization of a topological space. Any topological space X naturally gives rise to a
locale in which the regions are the open sets of X, ∧ is set intersection, and

∨
is set union. A locale that

can be obtained by this process is called a spatial locale. This relationship, combined with the fact that the
definition of a locale makes no reference to points, means that locale theory is sometimes referred to as
“pointless topology.” However, this nomenclature can be misleading, because some locales do have points.
Spelling this out requires some attention to the way in which locales can be related to one another. If A and
B are locales, then a continuous function f : A → B is a function f ∗ : O(B)→ O(A) such that f ∗(A ∧ B) =
f ∗(A) ∧ f ∗(B) and f ∗ (

∨
i Ai) =

∨
i f ∗(Ai). In the topological case, where ∧ and

∨
have their set-theoretic

meanings, f ∗(A) is the preimage of A, and continuity has its usual topological meaning: f is continuous
just in case the preimage of any open is open.

The notion of a point of a locale can be defined in a number of equivalent ways. The simplest uses the
abstract point 1, which is the locale obtained from the one-element set considered as a topological space. A
point of a locale X is then some region that looks like the abstract point; i.e., it is a continuous map f : 1→ X.
An equivalent definition, solely in terms ofO(X), uses a filterF onO(X). A filter is a collection of elements
of O(X) that contains X and such that if A ∈ F , then A ∨ B ∈ F when B ∈ O(X) and A ∧ B ∈ F when
B ∈ F . Call a filter completely prime if it does not contain the empty region and, whenever

∨
i Ai ∈ F , one

of the Ai is in F . A point f : 1 → X is equivalent to a completely prime filter on X. While f : 1 → X picks
out a particular region of X that looks like a point, a completely prime filter on O(X) is a nested collection
of regions which “zeroes in” on a point.

This notion of point is the one with which Arntzenius is concerned. The idea underlying his discussion is
that the points of space which appear in our mathematical representation of the wavefunction are artifacts
of this representation. In other words, they won’t appear in every representation; or at least, facts about
them are not guaranteed to be consistent across representations. Those points which do appear in every
model, and which do real representational work in Arntzenius’s sense, are those which are picked out by
maps 1→ X. Such points are really part of space, and are therefore (indivisible) regions in their own right.
So any point-sized region must be a member of O(X), and must stand in the above relations to the other
regions.

Because the pointy structure of a locale X is determined by O(X) via completely prime filters, there is a
well-defined notion of the collection of points of X, denoted pt(X). One can then construct a topology on
pt(X) usingO(X) as the frame of opens. This topological space is not necessarily a faithful representation of
the locale, because it might be the case that A, B ∈ O(X) have the same points, even though A 6= B. So if we
were to try reconstructing the locale by forgetting about the underlying points, we would not generally end

1For a textbook introductions to locales, see Mac Lane and Moerdijk (1992, Ch. IX) or Vickers (2007).

2



up back where we started. Say that a locale X has enough points if for any two regions A, B ∈ O(X), there
is a point that belongs to one but not the other. A locale has enough points if and only if it is spatial. Since
a gunky locale won’t have any points, it can’t be spatial, hence can’t be faithfully equipped with a topology.
In §3, I argue that a topological description of space is necessary in the version of QM under consideration,
hence gunk is inadmissible.

Arntzenius is concerned with a particular class of locales; namely, those which can support the standard
mereology of gunky regions (2012, p. 138). These locales must be complete Boolean algebras; that is, any
family F must have an infinite meet

∧F , in addition to all the other structure. Furthermore, it must be pos-
sible to equip the algebra of regions with a measurable structure, to verify that no region has zero extension.
So we need a way to talk about measurable structure on locales. This is obtained by generalizing measurable
spaces.

A measurable space is a triple 〈X,M,N〉, where X is a set,M is a σ-algebra of subsets of X, and N is a
σ-ideal ofM. Given a set X equipped with a measure, we can obtain its underlying measurable space by
forgetting the measures of all but the null sets. ThenM is the collection of regions which have a size, andN
is the collection of regions that have size zero. A measurable space is called localizable ifM/N is a complete
Boolean algebra. Every “reasonable” measurable space is localizable, in the sense that localizability is a nec-
essary and sufficient condition for the applicability of every major theorem of measure theory. In particular,
both the Riesz representation theorem, used throughout QM, and Maharam’s theorem, used below, apply
to all and only localizable measurable spaces (Segal, 1951).2 Call the collection of all localizable measurable
spaces LocMeas. Each of these gives a complete Boolean algebra M/N , which represents a collection of
regions, all of which have a determinate size, so they form a locale. Let MeasLoc denote the collection of
locales which are isomorphic toM/N for some localizable measurable space 〈X,M,N〉.3

MeasLoc is the collection of all the locales which can be given a measurable structure. In other words, it
is the menu of the possible mereological algebras of sizable regions. So these are the options from which
Arntzenius’s gunky models will have to draw. As it turns out, there are very few: by Maharam’s (1942)
theorem, any measurable locale can be decomposed into the disjoint union of m points and n copies of the
real line with Lebesgue measure. So the possibilities are classified by a pair of cardinals (m, n), with n zero
or infinite. But if space is gunky, then it has no points, hence m = 0. So all that is left is to determine n.

If n = 0 as well, then we are left with the empty locale, which has no regions at all. The disjoint union
of a non-zero finite number of copies of R is isomorphic to the disjoint union of countably many copies,
so we may take n to be infinite. A bound on n arises from Arntzenius’s demand that the measurable space
be separable, a requirement which deserves some attention. A topological space T is separable if it has a
countable subset {xi} that is dense in T. The fact that this subset is dense means that every point of T can
be approximated by the xi, so we can do a great deal of our reasoning about the space in terms of only
countably many of its points. This is a familiar feature of QM in separable Hilbert spaces, where states can
be decomposed into superpositions of countably many eigenvectors, each with an associated eigenvalue. In
heuristic terms, a separable topological space is one whose features are determined by countably many of
its pieces.

If we want to reason in terms of countable superpositions, then we must require that our states form a
separable space, which we may do in a number of equivalent ways. If 〈X,M,N〉 is the measurable space
underlying our state space, then the states are given by elements of L2(X); so we can require that L2(X) be
separable. This requirement is equivalent to the requirement that Lp(X) be separable for 1 ≤ p < ∞. This
is not too surprising; the Lp spaces are determined by the measurable space, so if one of them is separable—
that is, if one of them is determined by what happens in countably many places—then this indicates that
the measurable space itself is determined by what happens in countably many places. And indeed, one
can define separability for measurable spaces directly by constructing a natural topology on the algebra of
regions, and this notion of separability coincides with separability of the Lp spaces on X. A much more
direct definition, however, is in terms of the Maharam classification. As should be expected, a measurable

2The relevant form of the Riesz representation theorem says that for any measure µ on 〈X,M,N〉 and any continuous linear func-
tional φ on L1(M), there is a bounded measurable function k on X such that φ( f ) =

∫
X k f dµ for all f ∈ L1(M). This holds if and only

if 〈X,M,N〉 is localizable.
3I am not aware of any published material on measurable locales. Unpublished material is available at the nLab (2012).
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space is separable just in case m and n are each countable.
These two requirements uniquely specify the measurable locale tagged (0,ℵ0) as the algebra of gunky

regions. For ease of reference, call this measurable locale G. By construction, it does not have any points.
Moreover, it is isomorphic to the Lebesgue measurable locale; i.e., the measurable locale underlying all
second-countable smooth manifolds with nonzero dimension. I will return to this point at the end; for now,
I will wrap up a couple of the loose ends of Arntzenius’s (2012) discussion. Then I will address the argument
that we ought to take G to represent the structure of space in QM. As far as Arntzenius’s mathematical
program is concerned, the prognosis is good. Since G isn’t spatial, there is no good way to represent it
as a set equipped with extra structure.4 Rather, it must be represented as an equivalence class of objects
in LocMeas. That is, one represents it as the Lebesgue measure space while taking care to avoid accepting
anything that isn’t true in every equivalent representation. So as long as we are careful to ignore the artifacts
of our representation (i.e., the measure-zero sets), there’s no harm in using the standard Lebesgue measure
space as a stand-in for G.

2.2 Loose ends
The language of measurable locales makes the answers to some of Arntzenius’s open questions easily ac-
cessible. There is first the question of putting a topology on the gunky space. Arntzenius proposes that this
be a “connectedness” and “limitedness” structure on G satisfying certain axioms, which are motivated by
the topological case. Connectedness is a binary relation on regions that says whether the two regions share
a part. Limitedness, meanwhile, is a generalization of compactness from the topological situation. These
relations are inspired by certain topological relations, and these generalize directly to locales. Two regions
A and B share a part if their overlap A ∧ B is not the null region. As for compactness, the topological defi-
nition makes no reference to points and may be defined exactly as in the topological setting. Call a family
Ui a cover of X if

∨
i Ui = X. A locale X is compact if every cover has a finite subfamily that also covers X.

So any measurable locale, G included, naturally has a connectedness and limitedness structure, given by ∧
and compactness.

But recall that since G doesn’t have any points, it isn’t spatial. So a gunky space can’t have a nontrivial
topology on it. We can, however, do something analogous to the pointy case. There, one starts with a met-
ric and obtains a topology and a measurable space from that. Similarly, to any locale there is associated a
measurable locale, obtained in the same manner as the topological case. So if one could construct a point-
less locale that represents connectedness and limitedness information, one could also obtain an underlying
measurable locale. These would stand in relation to one another in a way analogous to topological spaces
and measurable spaces in the pointy case. The problem is that there’s no obvious choice of locale to capture
the topological information. G won’t do, because it lacks crucial information like dimension. Any smooth
manifold naturally has the structure of G as a measurable locale, but not every smooth manifold is the same
space. So, as expected, the measurable structure does not capture facts about locality. If other words, the
regions of a measurable space can be scrambled around without changing the measurable structure, as long
as their sizes are preserved.

3 Quantum mechanics isn’t pointless
In addition to the philosophical motivations from the opening, Arntzenius takes QM to motivate a gunky
model of space. His argument goes like this: the Lebesgue integral

∫
A f of f over the region A is defined by

adding up the measure of each subregion of A, weighted by the value of f there. So measure-zero regions
make no difference to the Lebesgue integral. A particle in space is represented by a function ψ in L2(R),
and the probability of finding it in a region A is given by

∫
A|ψ|

2. If ψ and ψ′ differ only on one point,
then

∫
A|ψ|

2 =
∫

A|ψ
′|2 for all regions A, so there is no observable difference between ψ and ψ′. Applying

4What counts as a “good” representation can be made precise in a number of ways. For one, Loc isn’t well-powered (Johnstone,
1982, p. 57), i.e., it has a proper class of subobjects. So there is no set of subregions.
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a principle of parsimony, we should eliminate the freeloading points of space, which do no representative
work.

In this section I argue that points do some representative work in QM. There is an easy argument for
this conclusion: physics textbooks and journal articles are replete with δ distributions, which correspond
to precise points in space. As Arntzenius notes, these cannot be captured in the standard separable Hilbert
space formulation of QM, requiring instead something like a rigged Hilbert space treatment (de la Madrid,
2005). Despite the ubiquity of δ functions in practice, one might deny their theoretical necessity, so I will
put them to the side. Still, I think, points of space can be found in QM. Though they can be eliminated from
the Hilbert space in some cases, they remain in the algebra of observables.

3.1 Pointy quantum systems
The previous section was essentially a discussion of a particular kind of duality between algebra and geom-
etry called Stone duality. This section addresses another duality, Gelfand duality. This is a duality between
spaces and the algebras of functions defined on them. Measurable locales, like G, correspond to commuta-
tive von Neumann algebras. In particular, the collection of bounded continuous functions on a measurable
locale form a von Neumann algebra, and any commutative von Neumann algebra can be written as the
collection of bounded continuous functions on a measurable locale. However, QM requires a larger class
of algebras, C∗-algebras. Since commutative C∗-algebras correspond to spatial locales, this forces QM to
involve points.

The high level picture is this (Wolters, 2013). Butterfield and Isham (1998) have shown how to formulate
the operator algebra of a QM system inside a particular mathematical universe (a topos). When formulated
in this universe, the operator algebra becomes commutative, making it more tractable. The cost is that
this universe does not obey classical logic. But this is not too heavy a burden, especially if we are already
thinking of spaces as locales, through Stone duality. When working with this logic, Gelfand duality says
that commutative C∗-algebras are dual to locales, and these locales are not necessarily spatial. So the state
space of the system is represented inside the universe as a locale, possibly without points.

When making predictions using this system, one uses an external description of the universe. That is,
in measurement contexts there is a way to represent the state space of the system as a pointy topological
space outside of the mathematical universe. However, constructing this representation requires a choice of
which operators will be represented. Since this external state space is a topological space, the operators it
supports must all commute. So, for example, it cannot represent both position and momentum states. This
is a formal expression of Bohr’s principle of complementarity, in that modeling a measurement requires a
choice of context, and in a particular context not all operators will have a non-trivial representation. It is
also a topological interpretation of the Kochen–Specker theorem, as Heunen et al. (2011) show.

Halvorson (2004) has provided a pertinent illustration of this. Let l2(R) denote the vector space of com-
plex functions supported on a countable subset S f ⊆ R with ∑S f

| f |2 < ∞. This space can be made into a
Hilbert space by equipping it with the inner product 〈 f |g〉 = ∑S f∩Sg f̄ g. Then the collection of characteristic
functions ϕλ for λ ∈ R form an orthonormal basis of l2(R), and one can come up with a representation of the
Weyl form of the canonical commutation relations (CCRs) such that there is an operator Q with Qϕλ = λϕλ.
So Q is an operator on a Hilbert space that has an uncountable spectrum, as a position operator in a contin-
uum ought.

Though one can define a position operator Q, there is no way to define a momentum operator P that
satisfies the CCRs with Q. A parallel construction allows the definition of P, but similarly rules out the
definition of Q. But this is not to say that position or momentum is completely meaningless in either rep-
resentation. Rather, in both representations there is a pair of projection-valued measures EQ and EP which
represent the position and momentum observables. In the Q representation, EP(R) is the 0 operator. More
generally, if either EQ({λ}) or EP({λ}) is nonzero for some λ ∈ R, then the other will vanish on all of R.
This is an instance of the foregoing general picture: in a particular measurement context, such as a posi-
tion measurement, we only look at the relevant commutative subalgebra of the system’s C∗-algebra. This
means that operators which don’t commute with position—such as momentum or the Hamiltonian—have
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no spectrum of eigenstates. However, their localic structure remains: EP is a map from the Borel locale on
R to the one-point locale {0}. On the other hand, the commutative subalgebra of the position operator Q
and those that commute with it (inter alia, the values of EQ) has a spectrum that is a spatial locale. In the
Halvorson construction, this is the topological space R. Note that there are two spatial locales here: there
is the topological space R of positions, and there is also the Borel locale that acts as the domain of EP. And
this latter space is the space of momentum values. So there is a real sense in which one can speak of points
in momentum space, even when a momentum operator is undefined.

The point of reviewing this construction is twofold. First, it gives an illustration of how the topological
information encoded in the algebra of observables “fits together” with the measure-theoretic information
encoded in the Hilbert space of states. More precisely, it gives a concrete example of how a measurement
context gives a commutative C∗-algebra, which gives a spatial locale. The second reason to address this
construction in particular is that Arntzenius addresses it directly as a competitor to gunk, rejecting it. His
objections, addressed presently, help draw out the consequences for gunk in QM.

3.2 Traces of points in quantum mechanics
Arntzenius (2003, p. 1454) finds this construction unsatisfying. One reason is that he finds it less mathemat-
ically attractive than denying points and sticking to separable Hilbert spaces. To this one is tempted to say
“de gustibus mathematicis non est disputandum.” For my part, l2(R) is just what I’d expect, looking at the (m, n)
menu; there are continuum-many points, and for each point there is a state representing the particle’s occu-
pying that point. However, Arntzenius points out four specific problematic features of this model. In this
subsection I argue that two of them are not problems at all. The third feature is the crux of the relationship
between gunk and QM, and I will argue that a gunky picture does not obviously square with continuous
quantities in QM. The fourth, unfortunately, extends beyond the scope of this paper.

The first problem with the l2(R) model is that it isn’t separable. Recalling the menu of measurable
spaces, this should not be at all surprising. The measurable space (m, n) is separable only if both m and n are
countable. If space is comprised of points, then there are more than countably of them, so m > ℵ0 prevents
the Hilbert space from being separable. The lack of separability is no reason to think that this Hilbert space
is pathological unless there are independent grounds supporting separability. Arntzenius suggests that
separability is nice because it supports “reasoning in terms of finite or countable superpositions,” whereas
a nonseparable space does not. But this is just a restatement of what separability means, not a reason in its
favor. Reasoning in terms of countable superpositions shouldn’t be expected if there are continuum-many
points.

The second problem is that any Hilbert space containing continuum-many points as well as a diffuse
part (i.e., the measurable space (c,ℵ0)) can be written as the disjoint union of these two parts. Again, it is
not obvious how to get from this mathematical fact to a problem with the formalism. Perhaps the idea is
that (c,ℵ0) is somehow artificial, because we created it by gluing on enough points to represent the points
of space. This artificiality claim requires some further support, however. As discussed above, a measurable
space represents no information about the locations of different regions. So to say that the space is decom-
posable like this is to say that it has c parts that are points and one part that is a diffuse region. It says nothing
about the location of these parts. So this fact is not a problem for the l2(R) model, it is simply a reflection of
how little structure is captured by a measurable locale.

Arntzenius’s third problem is that, as mentioned above, when a system is in a position eigenstate, it has
no well-defined momentum. The argument taking us from this mathematical fact to a problem must rest on
some interpretational assumptions. The first decision must be about what the various bits and pieces of the
formalism represent, physically. I take it that an element of a Hilbert space represents a possible state of the
system modeled by the Hilbert space. When we are thinking about the position operator, such a state can
be interpreted as a field on space, possibly up to measure-zero differences. This interpretation seems to be
behind Arntzenius’s contention that QM suggests space is gunky. But this is too quick, because filling in the
details matters. For one example, Bohmian mechanics further specifies the state of the system using point
particles, which are not obviously compatible with gunk. For another, a realist about configuration space
will take space to be emergent, the result of particular symmetries of configuration space. A more cautious
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approach takes the properties of a quantum system to be probative of the structure of space, rather than
determinative of it.

More explicitly, suppose that it were impossible to represent a system as being in a position eigenstate.
This suggests that, for empirical purposes, systems cannot be in precise locations. It doesn’t say anything
directly about the structure of space. If one further supposes some sort of parsimony principle, then perhaps
this impossibility suggests that space has no points. Note, however, that this approach also demands that
the EQ and EP functions be modified to take arguments that are gunky regions, rather than the pointy Borel
regions that they standardly take. Even in the standard Hilbert space L2(R), one is dealing with spatial
locales in the form of the Borel regions of R. So one must modify the standard algebra of projections given
by EQ and EP, even when working on L2(R).

All of these considerations are moot, because it isn’t impossible to represent a system as being in a posi-
tion eigenstate. I take it that Arntzenius’s objection to such a representation is that this fails to represent the
quantum system as having a well-defined momentum, and that this is problematic. If it is problematic, it’s
not obviously so. To motivate a problem here, one would have to argue for the incoherence of the position
and momentum representations. It’s not enough to simply rule out the physical possibility of these l2(R)
representations. It might well be that L2(R) is the one true state space of a system with continuously many
degrees of freedom, but the straightforward physical interpretation of this fact is that QM systems can’t
be measured to have precise values of position and momentum. And the phrase “precise values” is given
content by reference to the points of the Borel locale that is the domain of EQ and EP. So an argument that
QM doesn’t take place in a pointy space requires first an argument that rules out l2(R) on stronger than
empirical grounds, followed by justification for replacing EQ and EP with their gunky cousins.

Arntzenius’s fourth complaint starts to provide such an argument for the first of these tasks. The Hilbert
space l2(R) is unitarily inequivalent to the space L2(R). On the view that Ruetsche (2011) terms “Hilbert
space conservatism,” when we are faced with inequivalent Hilbert spaces, we ought to pick just one (presum-
ably L2(R)) and stick with it. Assuming this position, one can then build in gunk by hand, by modifying the
standard projection-valued measures EQ and EP. I lack the space to enter into this debate, hence the space
to say anything definitive about the viability of gunk in QM. However, the conclusion that gunky mod-
els of space bump up against interpretive issues in the foundations of quantum field theory is somewhat
surprising in itself.

4 Conclusion
My primary aims were to make explicit (i) the commitments of Arntzenius’s model of gunk, and (ii) the
pointy role of the algebra of observables. As for (i), I presented a framework that captures any mereological
approach to regions of space and which includes size data from measure theory. This left a possibility space
indexed by (m, n), which provides an easy way to determine how many points each has (m), as well as
making Arntzenius’s restrictions easily expressible: gunk requires m = 0 and separability requires n = ℵ0.
Turning to (ii), I evaluated the motivation for gunk from QM and found it wanting. Even if the state space for
systems with continuous degrees of freedom is the gunky L2(R), the algebra of position observables is on a
spatial locale, hence is composed of points. This is but one instance of a more general relationship between
measurable spaces and topological spaces: some measurable spaces are gunky, but in order to equip one
with a topology, points must be introduced.

From where we now stand, it looks like quantum mechanics as such has little to do with Arntzenius’s
motivations for introducing gunk. As we have seen, a space can be said to have the structure of gunk if it
has the Lebesgue measurable space underlying it. But this structure is ubiquitous: it underlies any second-
countable smooth manifold of positive dimension. So gunk appears as soon as we begin to deal with smooth
spaces. And indeed, the space which Arntzenius identifies as being gunky is configuration space, which
is a smooth manifold. So despite the connections to QM∞ that appear, what is really at issue is our under-
standing of smooth geometry. So we seem to be left with two main questions. First: what is the small-scale
structure of smooth geometry, and how does it correspond to our physical theories of space? And second:
what, if anything, does this tell us about the structure of space in QM and its relativistic cousins?
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