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Abstract

A number of authors have recently put forward arguments pro or contra various
rules for scoring probability estimates. In doing so, they have skipped over a po-
tentially important consideration in making such assessments, to wit, that the hy-
potheses whose probabilities are estimated can approximate the truth to different
degrees. Once this is recognized, it becomes apparent that the question of how to
assess probability estimates depends heavily on context.
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1. Introduction. Suppose you are giving an exam containing 10 questions, where each
question has a straightforward yes/no answer, and each question is to contribute equally
to the final score. en if a student gets 9 questions right, the reasonable grade for this
student appears to be 90%, or whatever this translates to in your grading system (e.g., an
A in the American public school system, or a 3.6 in a 4.0-based system).

When questions do not have straightforward yes/no answers, grading can be more
complicated. A student may get none of the questions completely right and yet show a
good understanding of the relevant subject matter. For example, a student may turn in
an exam that gives clear evidence of her mathematical acumen, on the one hand, and of
a certain inattentiveness when it comes to carrying out simple algebraic operations, on
the other. Most mathematics teachers would not want to fail such a student, but would
rather encourage her to address her sloppiness. What mark to give in such a case is not
so easy to say, however, and may be a decision that is to some degree subjective.

Grading can be complicated as well when we are dealing with questions that ask for
a probability estimate of some future event. Such questions may not occur so frequently
on a school exam (though see Bickel 2010), but they are the bread and butter for a vari-
ety of professionals, ranging from financial analyst to physician, from football coach to
engineer, and from foreign policy advisor to weather forecaster. Suppose one weather
forecaster predicts rain for tomorrow with a probability of .25, while a second predicts
rain for tomorrow with a probability of .75. If tomorrow stays dry, neither forecaster
can be said to have been wrong, for neither predicted rain with certainty. Yet from a

*is paper is dedicated to Gerhard Schurz, on the occasion of his 60th birthday.
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pre-theoretic perspective, it appears that the former forecaster did a better job than the
latter; that forecaster was—we would like to say—the more accurate of the two.

How to turn this intuition into a difference in grades (or scores) for the two fore-
casters—supposing our only concern is with their predictions on the issue of rain to-
morrow—might also be deemed a partly subjective matter. But researchers from various
quarters think otherwise and have sought to answer the foregoing question by providing
fully objective formal rules. More specifically, proposals for how to assess the forecasters,
and how to assess the quality of probability estimates generally, have come in the form of
so-called scoring rules. e first of these date back to the 1950s (Brier 1950; Good 1952;
McCarthy 1956), but by now a bewildering variety of scoring rules exists (Rosenkrantz
1981, Ch. 2; Cooke 1991, Chs. 8 and 9). Given that these rules may even lead to different
qualitative verdicts (e.g., on which weather forecaster did best), and given that, as said,
this kind of scoring is supposed to be objective, the further question has arisen of which
of the many scoring rules available today we are to rely on in practice.

eorists have almost invariably tried to answer this question by arguing that this or
that scoring rule uniquely satisfies certain standards of “goodness” (Winkler andMurphy
1968). ere is debate about this issue because there is no generally shared conception
of goodness in the relevant sense and hence no agreement on which criteria to impose
on scoring rules. Nonetheless, it is fair to say that most theorists are, or have been, in
favor of one of two scoring rules, namely, either the Brier rule1 (e.g., Rosenkrantz 1981;
Joyce 1998; Selten 1998; Greaves and Wallace 2006; Leitgeb and Pettigrew 2010) or the
logarithmic (or “log”) rule (e.g., Good 1952; Bernardo 1979; Bernardo and Smith 2000;
Bickel 2007, 2010; Levinstein 2012).

In this essay I argue that in the debate about scoring rules, not enough attention has
been given to the fact that probability estimates may concern hypotheses that differ in
their distance from the truth. In scoring, disregarding truthlikeness relations among the
hypotheses of interest (when present) can lead to pre-theoretically unsatisfactory scores.
Once this is recognized, however, it becomes apparent that the question of how to assess
probability estimates depends heavily on context.

Section 2 states the aforementioned scoring rules in formal detail, shows their insen-
sitivity to truthlikeness relations, and also presents a family of scoring rules that are thus
sensitive. Section 3 addresses the concern that, even if truthlikeness relations may mat-
ter to scoring pre-theoretically, scoring rules that attend to such relations may come at a
prohibitively high cost.

2. Standard scoring rules and truthlikeness. Let 󶁁𝐻𝑖󶁑𝑛𝑖=1 be a hypothesis partition, that
is, a set of mutually exclusive and collectively exhaustive hypotheses, and let 𝛿𝑖𝑗 be the
Kronecker delta, which equals 1 if 𝑖 = 𝑗 and 0 otherwise. Suppose a person assigns
probabilities p = (𝑝1,… , 𝑝𝑛) to the elements of 󶁁𝐻𝑖󶁑𝑛𝑖=1, with 𝑝𝑖 her probability that𝐻𝑖
is true. en, assuming that 𝐻𝑗 is in fact true, the Brier score for this person equals
ℬ𝑗(p) ≔ 1/𝑛∑𝑛𝑖=1(𝛿𝑖𝑗 − 𝑝𝑖)

2, whereas her log score equals ℒ𝑗(p) ≔ − ln(𝑝𝑗). It is cus-
tomary to conceive of scoring rules as assigning penalties, so that lower scores are better.

1Or the quadratic scoring rule, which is a generalization of the Brier score; see below.
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But this is a convention: if we wish, we can take the negative of any given scoring rule
and think of its scores as rewards.

Given a scoring rule 𝒮 and a probability distribution p on a hypothesis partition, the
p-expectation of the 𝒮 -score (or p-expected 𝒮 -score, for short) for a second probability
distribution p∗ on the same partition equals 𝔼p[𝒮 (p∗)] ≔ ∑𝑛𝑖=1 𝑝𝑖𝒮𝑖(p

∗). A scoring
rule 𝒮 is said to be proper iff, for all p, argminp∗ 𝔼p[𝒮 (p∗)] = p, and strictly proper
iff each of these minima is unique. Scoring rules were originally proposed for eliciting
probabilities (Cooke 1991, p. 121), and when used for that purpose, they should not give
a person an incentive to announce probabilities which she does not actually hold. is
is why many theorists regard strict propriety as an important requirement for scoring
rules.

Both the Brier and the log score are known to be strictly proper. ey also both
achieve theirminimumof 0when probability 1 is assigned to the truth, which is generally
regarded as another important desideratum. Nevertheless, the following example brings
out that the rules can lead to very different verdicts.

Suppose there will soon be an election for a new president of your university. ere
are three candidates in the running: Ashley, Bertrand, and Charlotte. Your colleagues
David, Emma, and Frank hold different views onwhich of the candidates is most likely to
become the new president. Specifically, their relevant probabilities are as given in Table 1.
Suppose Charlotte wins the election. en David and Emma have the same Brier score:
(.12+.52+.62)/3 ≈ .21; Frank’s Brier score is lower and thus better: (.32+.32+.62)/3 = .18.
On the other hand, all of them have the same log score, to wit, − ln(.4) ≈ 0.92.

at David and Emma do equally well on either scoring rule seems as it should be:
David and Emma both assign a probability of .1 to one of the false hypotheses and a
probability of .5 to the other, and it is difficult to see how it might matter that they do not
assign these probabilities to the same hypotheses, at least given the information provided
here.

at Frank’s Brier score is lower than David’s and Emma’s illustrates the general fact
that, for any hypothesis partition, given a particular probability assigned to the true hy-
pothesis, one minimizes one’s Brier score by assigning equal probabilities to the remain-
ing hypotheses. How reasonable is this?

According to advocates of the log rule, this is not reasonable at all. Why should we
care—they ask—what probabilities a person assigns to any hypothesis other than the
truth? In their view, given that David’s, Emma’s, and Frank’s probabilities for C are the
same, they should be assigned the same score (Winkler 1969; Bernardo and Smith 2000,

Table 1: Probability assignments to hypotheses A, B, and C.

David Emma Frank

Ashley wins (A) .1 .5 .3
Bertrand wins (B) .5 .1 .3
Charlotte wins (C) .4 .4 .4
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p. 72; Bickel 2010, pp. 347–348). e log rule is in fact known to be the only strictly
proper scoring rule that guarantees this outcome (McCarthy 1956).

In the debate about scoring, various other intuitions in favor of or against either of
the above rules have been called upon. For instance, Bickel (2010, p. 348) notes that
the log rule, but not the Brier rule, ensures that higher probability assignments to the
truth will result in lower penalties.2 He regards this as compelling reason to prefer the
log rule over the Brier rule. By contrast, Selten (1998, pp. 49–50) prefers the Brier rule,
because he thinks that in some situations the log rule ismore sensitive to small differences
between probability assignments than is warranted by intuition, and in other situations
not sensitive enough.3

at different authors have given different weights to intuitions regarding scoring has
partly to do with the fact that they have focused on different examples, and the problem
is that the features of the examples which have been used to make one or the other rule
look appealing are not always generalizable.

To see how different examples may steer our intuitions in different directions, note
that in our own example there is no sense inwhich either of the false hypotheses (whether
A or B) is closer to the truth than the other, again given the information provided. at
does not make this hypothesis partition special. But the designated feature is also not
altogether general, and by assuming otherwise one might be implicitly favoring some
scoring rules over others. For suppose David, Emma, and Frank were wondering how
well a student of theirs is going to do on an exam, and the probabilities given in Table 1
are the probabilities that the student will receive an A, a B, or a C, possibilities we may
take to be described by hypotheses A, B, and C, respectively. If B turns out true, then
the other hypotheses would seem equally far from the truth. But if either A or C turns
out true, then, although false, B would be closer to the truth than whichever is the other
false hypothesis. Suppose C is true indeed. Would we still want to agree with the Brier
score that David and Emma do equally well, given their probabilities for the hypotheses
at issue, or even agree with the log score that all three colleagues do equally well? While
the three colleagues assign the same probability to the truth, we are tempted to say that
David still is closer to the mark, given that he assigns a higher probability than the others
to the false hypothesis that is closest to the truth (viz., B) and a lower probability than
the others to the false hypothesis that is most distant from the truth (A).

An entire program in the philosophy of science is devoted to making the notion of
truthlikeness (or “verisimilitude”) formally precise, and by now numerous measures of

2at the Brier rule cannot guarantee this is a direct consequence of the general fact mentioned two
paragraphs back.

3Selten instead prefers the Brier rule, mainly because, as he proves, it is the only scoring rule (up to pos-
itive linear transformations) that satisfies each of what he considers to be four important desiderata for such
rules, which Selten presents as axioms. According to the first axiom, the ordering of the hypotheses should
not influence the score. According to the second, the score should not be affected by the introduction of an
additional hypothesis that receives zero probability. e third axiom is the requirement of strict propriety.
e fourth axiom, finally, concerns a type of situation that we do not consider in this essay, namely, when a
probability assignment is scored in light of another probability assignment rather than in light of the truth
of one hypothesis; the axiom requires that, in this situation, the score should be the same regardless of which
probability assignment is considered to be the “true” one.
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truthlikeness exist; see, for instance, Schurz (1987, 1991, 2011, 2014), Niiniluoto (1998,
1999), Kuipers (2000, 2001, 2014), andCevolani, Festa, andKuipers (2013). Here, wewill
not commit ourselves to any particular such measure and just note that all measures of
truthlikeness currently advocated in the literature will do for the purposes of this paper.

e idea that truthlikeness may matter to scoring has been mentioned in the litera-
ture, but mostly only to be set aside as a problem that can easily be dealt with by using
the so-called quadratic scoring rule (also known as “weighted least squares metric”). If
𝐻𝑗 is the true element of hypothesis partition 𝐻 = 󶁁𝐻𝑖󶁑𝑛𝑖=1, this rule assigns a penalty
of 𝒬𝑗(p) ≔ ∑𝑛𝑖=1𝑤𝑖(𝛿𝑖𝑗 − 𝑝𝑖)

2 to someone whose probabilities for the elements of 𝐻 are
given by p. e only general constraints on the weights𝑤𝑖 are that𝑤𝑖 > 0 for all 𝑖 and that
∑𝑛𝑖=1𝑤𝑖 = 1, so that we actually have a schema here, with the Brier score as the special
case where all hypotheses are weighted equally.

For instance, Rosenkrantz (1981, Ch. 2, p. 1) calls the above-mentioned property of
the Brier score to penalize more heavily when the probabilities assigned to the false hy-
potheses are unequal (ceteris paribus) “attractive when all false alternatives are regarded
as ‘equidistant’ from the truth.” He further states, however, that “[w]here false answers
are not equally far from the truth and we wish to weight them differently, we can use
the weighted least squares metric . . . .” In the same vein, Greaves and Wallace (2006,
p. 628) claim that the quadratic scoring rule “can take account of the value of verisimil-
itude . . . by a judicious choice of the [weights]”; specifically, their proposal is to assign
weight to a proposition depending on the extent to which it represents “a set of ‘close’
states” (ibid.).

As it stands, however, this proposal will not work. Which set or sets of states are close
depends on which state is actual; equivalently, how far from the truth a false alternative
is depends on which hypothesis is true. And the weights of the quadratic scoring rule
lack this dependence. To be sure, if we know which hypothesis is true, the dependence
can be built in by hand. For instance, given that (we said) the student will receive a C, so
that A is more distant from the truth than B, we can weight A more heavily than B. at
might give the desired result, and probably this is the kind of use of the quadratic scoring
rule that the aforementioned authors had in mind.

But which weights are we to assign when we want to use the rule not knowing the
truth, aswhenwewould like to calculate our expected score? To calculate expected scores,
we consider all possibilities of truth, calculate for each individual possibility the penalty
we would incur were that possibility to be actual, and then take a weighted average of
those penalties, the weights being our probabilities for the possibilities. When using
the quadratic scoring rule, however, there is a second set of weights involved. And the
problem is that, while truthlikeness relations shi from one possibility to the next—for
instance, in the possibility in which the student receives a C, hypothesis C is closer to the
truth than hypothesis A, but in the possibility in which the student receives a B, hypothe-
ses A and C are equally distant from the truth—the weights attributed by the quadratic
scoring rule stay the same whichever possibility is considered. Consequently, a set of
weights that adequately reflects truthlikeness relations under one supposition of where
the truth lies may well fail to do so under another such supposition.
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To avoid this problem, we may adapt the quadratic scoring rule by doubly instead of
singly indexing eachweight, where the additional index then refers to the true hypothesis,
thereby obtaining what we shall call a verisimilitude-sensitive scoring rule, or VS rule for
short. is rule imposes a penalty of 𝒱𝑗(p) ≔ ∑𝑛𝑖=1𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑝𝑖)

2 on someone assigning
probabilities p to the elements of hypothesis partition 𝐻, where 𝐻𝑗 is the true element
of that partition, and where𝑤𝑖𝑗 is the distance from𝐻𝑖 to the truth. (Again, this is really
a schema, yielding different rules for different weighting functions.)

To make the difference between the rules vivid, suppose that David, not knowing
which grade his student will get, wishes to calculate his expected score, given his proba-
bilities d = (.1, .5, .4) for hypotheses A, B, and C. First assume that he uses an instance of
the quadratic scoring rule. Without loss of generality, let 𝑤A = .1, 𝑤B = .3, and 𝑤C = .6.
David will then find that4

𝔼d[𝒬(d)] = .1󶀡(.1)(.92) + (.3)(.52) + (.6)(.42)󶀱
+ .5󶀡(.1)(.12) + (.3)(.52) + (.6)(.42)󶀱

+ .4󶀡(.1)(.12) + (.3)(.52) + (.6)(.62)󶀱 = 0.228.

Now suppose thatDavid instead assumes aVS rule, for instance, one that assigns aweight
of .1 to the truth and that weights the other hypotheses proportionally to their distance
from the truth. Suppose also that, in the present case, distances are given by the ordering
of the hypotheses; so if A is true, then C is twice as far from the truth as B, and so on.
en David’s expected score is

𝔼d[𝒱 (d)] = .1󶀡(.1)(.92) + (.3)(.52) + (.6)(.42)󶀱
+ .5󶀡(.45)(.12) + (.1)(.52) + (.45)(.42)󶀱

+ .4󶀡(.6)(.12) + (.3)(.52) + (.1)(.62)󶀱 ≈ 0.123.

We see how the doubly indexed truthlikeness weights of the VS rule vary per possibility—
as they must do, for the reason previously mentioned—while the singly indexed weights
of the quadratic scoring rule stick to their propositions across all three possibilities.

3. Truthlikeness and impropriety. While VS rules offer a seemingly straightforward
way to take account of truthlikeness relations, these rules face what may appear to be a
devastating objection. We can start to bring out the problem by considering that, rela-
tive to his current probabilities, David minimizes his expected quadratic score by having
those very probabilities; formally, argminp 𝔼d[𝒬(p)] = d. is is no coincidence. It
is known that not only the Brier score but all instances of the quadratic scoring rule
schema are proper, and even strictly proper (Rosenkrantz 1981, Ch. 2). On the other
hand, relative to David’s probabilities, 0.123 is not the minimum VS score he can incur,

4To be entirely precise, instances of the quadratic scoring rule and the VS rule would have to be embel-
lished with a super- or subscript to indicate the weighting function that is being assumed. We will not be so
fussy, however.
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for minimizing the function

.1󶀡.1(1−𝑥)2+.3𝑦2+.6𝑧2󶀱 + .5󶀡.45𝑥2+.1(1−𝑦)2+.45𝑧2󶀱 + .4󶀡.6𝑥2+.3𝑦2+.1(1−𝑧)2󶀱,

subject to 𝑥+𝑦+𝑧 = 1, yields 0.118, where this minimum is reached at (.146, .548, .306).
Hence the VS rule David assumes is improper. is might not be a matter of great con-
cern; perhaps David just made an unfortunate choice of truthlikeness weights. But the
problem is more fundamental.

e intuition behind VS rules is that, although it is bad in general to assign a pos-
itive probability to a false hypothesis, it is worse the further the hypothesis is from the
truth. So, say that a VS rule’s weights reflect truthlikeness in a minimally adequate sense iff
hypotheses are weighted as a function of their distance from the truth, with hypotheses
further from the truth being weighted more heavily than hypotheses closer to the truth.
en we have:

eorem 1 Every VS rule whose weights reflect truthlikeness in a minimally adequate
sense is improper.

(For a proof, see Appendix A.) In other words, it is not just that David was unlucky in
the weighting function he picked; he could have picked none that would not have led to
the same problem of impropriety, or at least none that is minimally adequate.

How damning is the above result for the class of VS rules? While the mainstream
holds that impropriety is totally damning, I would like to argue that the answer should
be: it all depends on the purpose of our scoring.

As mentioned, scoring rules were initially meant for eliciting probabilities. To serve
that purpose, they better not encourage the subject whose probabilities one would like
to elicit to lie about those probabilities. But if we are assessed by means of an improper
scoring rule, then by revealing our actual probabilities we may expect to incur a larger
penalty than if we pretend to have different probabilities, as was seen in the case of David.
at can make it disadvantageous to be truthful.

It is by now generally recognized that scoring rules may also be used for the purpose
of self-assessment. If David adheres to the VS rule considered above, and he wonders
about the accuracy of his current probabilities, he may conclude that he should replace
those probabilities with those that were found to minimize his expected penalty. at
appears problematic; as Moss (2011, p. 1057) notes, it implies that self-assessment by
means of an improper scoring rule “could motivate you to raise or lower your credences
ex nihilo, in the absence of any new evidence whatsoever.”

In response, it could be argued that finding out that our probabilities do not mini-
mize our expected penalty is itself new information, so that when we thereupon adapt
those probabilities, we are not acting in the absence of new evidence. is would in ef-
fect be an instance of what Lombrozo (2017) calls “learning by thinking,” occasioned by
what she calls an “observation generated inside the head.” But some might want to reply
that the evidence should bear, in an intuitively clear sense, on the hypotheses to which
our probabilities are assigned. e intuitively clear sense may be difficult to pin down
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formally, but let that pass.5 For using a VS rule, or any other improper scoring rule, for
self-assessment seems to face a threat more severe than the one Moss points toward.

Above we found that, given David’s probabilities in Table 1, he would actually mini-
mize his expected penalty by raising his probability for A to .146, raising his probability
for B to .548, and lowering his probability for C to .306. Ironically, if he shis his probabil-
ities accordingly, he will find that he actually minimizes his expected penalty by setting
his probabilities for A, B, and C to .164, .593, and .243, respectively. It does not end
there, for relative to these probabilities, David minimizes his expected penalty by setting
his probabilities for the hypotheses to .166, .630, and .204. And it goes on. And on? at
would seem to prevent David from ever having stable probabilities for A, B, and C, unless
he decides to arbitrarily stop self-assessing at some point.

However, the iterative minimization process, should David engage in it, turns out
to reach a fixed point. To be precise, David would, aer 442 steps, arrive at probabil-
ity assignment d∗ = (.083, .833, .083),6 a probability assignment that is “strongly self-
recommending” (Greaves and Wallace 2006, p. 619) in that argminp 𝔼d∗[𝒬(p)] = d∗.
(For completeness, we note that David’s expected penalty at the fixed point equals 0.057,
whereas for his initial probabilities it was 0.118, as we saw.)

We get a first sense of whatmay be the real problem here if we repeat our calculations
for Emma and Frank and find that they arrive at exactly the same fixed point as David!
Not only that; varying the weighting function a little, we find that the three colleagues
now arrive at a different fixed point, but that this fixed point is again the same for the
three of them. We can illustrate this graphically by noting that vectors in the standard
unit simplex (or probability simplex) of dimensionality 𝑛−1 can be interpreted as proba-
bility distributions on an 𝑛-element hypothesis partition, with the 𝑖-th vector component
representing the probability of the 𝑖-th hypothesis (de Finetti 1962). Figure 1 shows three
two-dimensional simplexes, in each of which the initial probability assignments ofDavid,
Emma, and Frank as given in Table 1 are represented by medium-sized dots. e smaller
dots represent their consecutive probability assignments while they go through the VS-
rule-governed minimization process, the differences among the simplexes being only
that the VS rules that are assumed in that process assign different truthlikeness weights:
the le simplex represents the process that relies on the VS rule that was assumed in
the example above; the processes shown in the other two simplexes used VS rules with
slightly different weighting functions (the details are unimportant here).

e finding is again no coincidence but follows from

5In this connection, it is also worth mentioning that, at least according to some influential Bayesian
statisticians (Gelman and Hill 2007; Gelman and Shalizi 2012, 2013; Kruschke 2013), raising or lowering
probabilities in the absence of the kind of evidence with “direct bearing” is accepted as legitimate practice,
most notably, as resulting from a so-called posterior predictive check in which a statistical model may be
rejected because it is found unsatisfactory (according to informal criteria) in light of simulated data. If
rejected, the model is to be replaced by a new one, which requires, among other things, a specification
of new prior probabilities. e simulated data that can motivate this kind of model revision—including
probability revision—is presumably not the kind of new evidence that Moss has in mind.

6is result was obtained by means of the FixedPointList function from Mathematica and therefore
holds only up to machine precision. However, that the process would reach a fixed point (even if perhaps
not aer 442 steps) is guaranteed by eorem 2, to be stated shortly.
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(1,0,0) (1,0,0) (1,0,0)

(0,0,1) (0,0,1) (0,0,1)(0,1,0) (0,1,0) (0,1,0)

FrankEmmaDavid

Figure 1: ree probability simplexes showing that David, Emma, and Frank all reach
the same fixed points (large dots) by iteratively adapting their probabilities on the basis of
VS score minimization, and illustrating the fact that these points depend on the weights
assumed by the given VS rule. (Initial assignments are marked by medium-sized dots,
intermediate assignments by small dots.)

eorem 2 Let 𝑆 be the standard unit (𝑛 − 1)-simplex, let p and p∗ range over vectors in 𝑆,
and let𝑚∶ 𝑆 → 𝑆 be defined as follows:

𝑚(p) ≔ argmin
p∗

𝑛
󵠈
𝑖=1

𝑛
󵠈
𝑗=1
𝑝𝑖𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑝∗𝑗 )2,

with 𝛿𝑖𝑗 the Kronecker delta, and with 𝑤𝑖𝑗 > 0 for all 𝑖, 𝑗, and ∑𝑛𝑖=1∑
𝑛
𝑗=1𝑤𝑖𝑗 = 1. en

there is a p+ ∈ 𝑆 such that (i) 𝑚(p+) = p+, (ii) p+ is unique, and (iii) p+ depends only on
the 𝑤𝑖𝑗.

(See Appendix B for a proof.) To see how this theorem bears on the issue at hand, it
suffices to observe that, for any VS rule 𝒱 ,

argmin
p∗

𝔼p[𝒱 (p∗)] = argmin
p∗

𝑛
󵠈
𝑖=1

𝑛
󵠈
𝑗=1
𝑝𝑖𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑝∗𝑗 )2,

with the 𝑤𝑖𝑗 being provided by the weighting function of the given rule. In other words,
the function by which David, Emma, and Frank iteratively update their probabilities in
the represented processes is an instance of 𝑚. at, as a result, their probability assign-
ments reach a fixed point follows from clause (i) of the theorem, and that, despite their
different initial probability assignments, this fixed point is the same for the three of them,
provided they use the same VS rule, follows from clauses (ii) and (iii).

Surely we have hit upon an absurd result here, one which offers a compelling reason
to refrain from self-assessment by means of a VS rule. As Winkler (1996) notes, how-
ever, scoring rules not only have a (what he calls) ex ante use; they can also be used ex
post, for evaluating performance. Potential problems with elicitation or self-assessment
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are beside the point if one is going to use an improper scoring rule for assessing people’s
performance without disclosing that rule to them. And oen there will be no require-
ment for disclosure. An investment company might hope to identify job applicants with
special capacities to predict the stock market by scoring their answers to test questions
via some custom-built scoring rule without informing the applicants about the rule be-
ing used. Similarly, if a television network wants to hire a new weather forecaster and
is now retroactively analyzing, by means of an improper scoring rule, the performance
of various candidates being considered for the job, it will make no difference whether or
not the network makes publicly known how it is conducting the analysis.7

In short, depending on the purpose of our scoring, improper scoring rulesmay be ad-
missible. But for those who remain concerned about impropriety, it will be good to know
that verisimilitude-sensitivity need not come at the expense of propriety, for there is a
scoring rule that is both verisimilitude-sensitive and proper. is is the so-called ranked
probability score (RPS), first proposed in Epstein (1969) and shown to be strictly proper
in Murphy (1969). is rule has received hardly any attention from philosophers,8 nor
is it widely discussed outside philosophy (O’Hagan et al. 2006, p. 169). Rather than com-
paring a probability distribution p on a partition of hypotheses with the vector v of truth
values of those hypotheses, it compares the cumulative distribution function of p with
the cumulative distribution function of v. Given a partition 󶁁𝐻𝑖󶁑𝑛𝑖=1 and a probability dis-
tribution p on this partition, and supposing 𝐻𝑗 to be true, the ranked probability score
associated with p is defined as

ℛ𝑗(p) ≔
∑𝑛𝑘=1 󶀢∑

𝑘
𝑖=1 𝑝𝑖 − 𝛾𝑘𝑗󶀲

2

𝑛 − 1 ,

where 𝛾𝑘𝑗 = 1 if 𝑘 ⩾ 𝑗, and 0 otherwise.
To illustrate, givenDavid’s probabilities d and still supposing C to be the true hypoth-

7A real-life example of this kind of usage is found in recent work on forecasting carried out by a group
of psychologists from various American universities (Mellers et al. 2015; Tetlock and Gardner 2015). ese
researchers have organized, over a period of several years, a number of prediction tournaments, mostly con-
cerning geopolitical questions. ey found that some otherwise ordinary people were much more accurate
forecasters than even professional intelligence analysts. A key objective of the research was to determine
what distinguishes the most accurate forecasters from the rest of the population. e researchers used a
number of different scoring rules for evaluating their participants’ performance, including the Brier score
but also the so-called AUROC, which is known to be an improper scoring rule (see, e.g., Agresti 2007, Ch. 5,
or Hastie, Tibshirani, and Friedman 2009, Ch. 9, for details). Given that the participants were never told
what the evaluation process consisted of, the use of an improper scoring rule in that process will not have
affected their responses. (Note that, although in this research both proper and improper scoring rules were
used for the purposes of selection, one could also use an improper scoring rule to select participants while
at the same time scoring them via a proper scoring rule to determine their compensation in the experiment.
Letting participants know how they will be compensated will then encourage them to post their true prob-
abilities, while the improper scoring rule—the use of which is not disclosed to the participants—may still
yield more useful information.)

8In fact, to the best of my knowledge, Konek (2016) contains the only reference to the rule (actually, the
continuous version of the RPS rule) in the entire philosophical literature.
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esis (whence 𝑗 = 3), David’s ranked probability score is

ℛ3(d) =
(.1 − 0)2 + (.1 + .5 − 0)2 + (.1 + .5 + .4 − 1󶀱2

2 = 0.185.

In the same way, we find that Emma’s ranked probability score equals 0.305, and Frank’s,
0.225.9 In the example where the three colleagues’ probabilities are about what grade
their student will receive, these outcomes make perfect sense: as we said, David appears
to do best in this case, because he assigns a higher probability to the false hypothesis
that is closer to the truth than to the one further from the truth. By the same token,
Emma would seem to do worst, given that she does exactly the opposite. Frank steers a
sort of middle course between his colleagues in assigning the two false hypotheses equal
probability.

e VS rules helped to make some points about impropriety. However, this family
of rules has some interest even in the presence of the RPS rule, which is sensitive to truth-
likeness while also being proper. e independent interest derives from the fact that VS
rules are flexible in a way that the RPS rule is not.10 Authors concerned with truthlike-
ness have advanced a number of different ways of measuring the distance from the truth,
and more generally the distance between hypotheses, and there is disagreement about
which of those is most reasonable, and even about whether there is a unique best such
measure (see, e.g., Niiniluoto 1984, Ch. 7). While VS rules can account for different ways
of measuring truthlikeness—by allowing users to choose different weighting functions—
the RPS rule can not: given this rule, relations of truthlikeness are completely fixed by
the ordering of hypotheses in the hypothesis partition.11

4. Conclusion. Our discussion has pointed toward ways in which questions concern-
ing scoring can be context-dependent. We saw that scoringmay serve different purposes
in different contexts, and depending on the purpose, we may want to impose different

9Because, as noted, the RPS rule is strictly proper, it satisfies Selten’s third axiom (see note 3). To see
that it also satisfies his fourth axiom, note that, for comparing a probability assignment (𝑝1,… , 𝑝𝑛) with a
“true” probability distribution (𝑝∗1 ,… , 𝑝∗𝑛 ), the RPS rule takes this form:

(𝑝1 − 𝑝∗1 )2 + 󶀡(𝑝1 + 𝑝2) − (𝑝∗1 + 𝑝∗2 )󶀱2 +⋯ + 󶀡(𝑝1 +⋯ + 𝑝𝑛) − (𝑝∗1 +⋯ + 𝑝∗𝑛 )󶀱2

𝑛 − 1 .

e symmetry required by the fourth axiom then follows from the fact that the addends in the numerator
are all squared. Furthermore, the fact that David’s and Emma’s rank probability scores are different, as seen
in the main text, is enough to show that the rule does not satisfy Selten’s first axiom. Finally, to show that
neither does it satisfy the second axiom, we can add to the partition consisting of hypotheses A, B, and C
the hypothesis that the student will receive a C−, where this has zero probability for David. Keeping his
probabilities for A, B, and C as they were, David’s rank probability score then becomes (approximately)
0.243, and hence the addition of the zero-probability alternative did affect the score.

10anks to Ilkka Niiniluoto for bringing this to my attention.
11It might be said that the VS rule used in this section does not do quite as well with respect to the

grading example as the RPS rule. Although David does better than Emma—David having a score of 0.117,
and Emma, of 0.189—he incurs the same penalty as Frank. However, this result depends on the particular
weights we chose for the example. It is easy to choose weights which could still be said to reflect truthlikeness
relations but which would lead to qualitatively the same result as the RPS rule.
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requirements on scoring rules. By itself, this does nothing to undermine the idea of there
being one true scoring rule. Even if the goal of our scoring is selection, so that we may
have no reason to require propriety, it might still be the case that some proper scoring
rule ismost conducive to our goal. However, our findings also suggest that, in contexts in
which the hypotheses at issue can be said to be closer to or further from the truth, the RPS
rule, and possibly also some rules from the VS family, not only make sense but yield the
more reasonable results, while if relations of truthlikeness are absent, those rules are best
avoided. e idea of a unique scoring rule appropriate in any context—an idea shared by
virtually all authors who have considered the matter of scoring12—is thence called into
question.13

Appendix A

Recall that the weights of a VS rule are all positive and add up to 1, and that they are said
to reflect truthlikeness in a minimally adequate sense iff hypotheses are assigned weights
as a function of their distance from the truth, with hypotheses farther from the truth
being assigned larger weights than hypotheses closer to the truth.

eorem 1 Every VS rule whose weights reflect truthlikeness in a minimally adequate
sense is improper.

Proof: Without loss of generality, consider a hypothesis partition of three hypotheses,
𝐻1, 𝐻2, and 𝐻3. en, where 𝒱 is some VS rule and p = (𝑝1, 𝑝2, 𝑝3) is a given per-
son’s probability assignment to the aforementioned hypotheses, with 𝑝𝑖 the probability
assigned to 𝐻𝑖, this person’s expected 𝒱 -score for a probability assignment p∗ to the
same hypotheses is given by the function

𝔼p[𝒱 (p∗)] = 𝑝1󶀡𝑤11(1 − 𝑝∗1 )2 + 𝑤21(𝑝∗2 )2 + 𝑤31(𝑝∗3 )2󶀱
+ 𝑝2󶀡𝑤12(𝑝∗1 )2 + 𝑤22(1 − 𝑝∗2 )2 + 𝑤32(𝑝∗3 )2󶀱

+ 𝑝3󶀡𝑤13(𝑝∗1 )2 + 𝑤23(𝑝∗2 )2 + 𝑤33(1 − 𝑝∗3 )2󶀱.

Again without loss of generality, assume that the hypotheses are ordered by their dis-
tances from each other, with 𝐻2 being equally far from 𝐻1 and 𝐻3, and 𝐻1 and 𝐻3
being twice as far from each other as they are from 𝐻2. en 𝑤11 = 𝑤33, 𝑤21 = 𝑤23,
𝑤31 = 𝑤13, and𝑤12 = 𝑤32, so that we can simplify notation by defining𝑤1 ≔ 𝑤11 = 𝑤33;
𝑤2 ≔ 𝑤21 = 𝑤23; 𝑤3 ≔ 𝑤31 = 𝑤13; 𝑤4 ≔ 𝑤12 = 𝑤32; and 𝑤5 ≔ 𝑤22. For 𝒱 to be proper,
it must hold that argminp∗𝔼p[𝒱 (p

∗)] = p, for any distribution p on {𝐻1, 𝐻2, 𝐻3}. To

12To my knowledge, the only other author explicitly open to the possibility of “scoring rule pluralism” is
Schurz (2018).

13I am greatly indebted to Eric Raidl, Christopher von Bülow, Verena Wagner, Sylvia Wenmackers, and
two anonymous referees for valuable comments on previous versions of this paper. anks also to Lieven
Decock, Samuel Fletcher, and Jos Uffink for helpful discussions. Versions of this paper were presented at the
Universities of Düsseldorf and Konstanz and at the IHPST (Paris). I thank the audiences on those occasions
for stimulating questions and remarks.
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see whether this does hold, we use the method of Lagrange multipliers. Specifically,
where 𝑓(p∗) = 𝑝∗1 + 𝑝∗2 + 𝑝∗3 , we must find values for 𝑝∗1 , 𝑝∗2 , 𝑝∗3 , and 𝜆 such that
∇𝔼p[𝒱 (p∗)] = 𝜆∇𝑓(p∗) and 𝑓(p∗) = 1. Calculating the first-order partial derivatives
of 𝔼p[𝒱 (p∗)], we find

(𝜕/𝜕𝑝∗1 )𝔼p[𝒱 (p∗)] = −2𝑤1𝑝1(1 − 𝑝∗1 ) + 2𝑤3𝑝3𝑝∗1 + 2𝑤4𝑝2𝑝∗1 ;
(𝜕/𝜕𝑝∗2 )𝔼p[𝒱 (p∗)] = −2𝑤5𝑝2(1 − 𝑝∗2 ) + 2𝑤2𝑝1𝑝∗2 + 2𝑤2𝑝3𝑝∗2 ;
(𝜕/𝜕𝑝∗3 )𝔼p[𝒱 (p∗)] = −2𝑤1𝑝3(1 − 𝑝∗3 ) + 2𝑤3𝑝1𝑝∗3 + 2𝑤4𝑝2𝑝∗3 .

Because ∇𝑓(p∗) = 1, we have (𝜕/𝜕𝑝∗𝑖 )𝔼p[𝒱 (p∗)] = 𝜆 for all 𝑖 ⩽ 3. So in particular,
expanding the partial derivatives in 𝑝∗1 and 𝑝∗3 and dividing both by 2, we have

−𝑤1𝑝1 + 𝑤1𝑝1𝑝∗1 + 𝑤3𝑝3𝑝∗1 + 𝑤4𝑝2𝑝∗1 = −𝑤1𝑝3 + 𝑤1𝑝3𝑝∗3 + 𝑤3𝑝1𝑝∗3 + 𝑤4𝑝2𝑝∗3 ,

and hence

𝑤1𝑝1𝑝∗1 + 𝑤3𝑝3𝑝∗1 + 𝑤4𝑝2𝑝∗1 − 𝑤1𝑝3𝑝∗3 − 𝑤3𝑝1𝑝∗3 − 𝑤4𝑝2𝑝∗3 − 𝑤1𝑝1 + 𝑤1𝑝3 = 0.

Suppose that 𝒱 is proper, so that 𝔼p[𝒱 (p∗)] reaches its minimum if 𝑝1 = 𝑝∗1 , 𝑝2 = 𝑝∗2 ,
and 𝑝3 = 𝑝∗3 . en there must be values for the 𝑤𝑖 such that

𝑤1(𝑝1)2 + 𝑤3𝑝3𝑝1 + 𝑤4𝑝2𝑝1 − 𝑤1(𝑝3)2 − 𝑤3𝑝1𝑝3 − 𝑤4𝑝2𝑝3 − 𝑤1𝑝1 + 𝑤1𝑝3 = 0.

However, factoring the le-hand side yields

(𝑝1 − 𝑝3)(−𝑤1 + 𝑤1𝑝1 + 𝑤4𝑝2 + 𝑤1𝑝3).

is equals 0 iff either (i) 𝑝1 = 𝑝3 or (ii) 𝑤1 = 𝑤4, where the latter follows from the fact
that the condition that the right-hand factor equals 0 can be rewritten as 𝑤1(1 − 𝑝1 −
𝑝3) = 𝑤4𝑝2, in conjunction with the fact that the 𝑝𝑖 sum to 1. Because, as said, for 𝒱
to be proper, it must hold for all p that argminp∗𝔼p[𝒱 (p

∗)] = p, we may pick a p such
that 𝑝1 ≠ 𝑝3, thereby violating (i). As for (ii), note that whichever precise values the 𝑤𝑖
assume,𝑤1must be smaller than 1/3 (given that it is assigned to the supposed truth) and
𝑤4 must be greater than 1/3 (given that it is assigned to the two hypotheses supposed
false). Consequently, on the supposition that 𝒱 is proper, we can minimize 𝔼p[𝒱 (p∗)]
subject to the given constraint iff the truthlikeness weights assigned by the rule do not
reflect truthlikeness in aminimally adequate sense. By assumption, theweights do reflect
truthlikeness in aminimally adequate sense. Given that wemade no further assumptions
about 𝒱 , it follows that every VS rule is improper if it assigns truthlikeness weights in a
minimally adequate fashion. □

Remark e above proof proceeds by constructing a specific counterexample involving
three hypotheses that are assumed to stand in specific relations of truthlikeness to each
other. To see that this assumption does not undermine the generality of the proof, we
note that the said relations are perfectly possible according to all modern measures of
truthlikeness (see page 5 for references). As a matter of fact, one can think of our ear-
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lier example concerning the possible grades (A, B, or C) a given student may receive as
instantiating exactly the relations of truthlikeness that are assumed to hold in the coun-
terexample. It is also to be noted, however, that not all known measures of truthlikeness
will do for the purposes of the proof. Most famously, Tichý (1974) discovered that on
Popper’s (1963) measure all false theories are equally far from the truth, contrary to what
Popper had hoped to achieve with his measure.

Appendix B

In this appendix we prove

eorem 2 Let 𝑆 be the standard unit (𝑛 − 1)-simplex, let p and p∗ range over vectors in 𝑆,
and let𝑚∶ 𝑆 → 𝑆 be defined as follows:

𝑚(p) ≔ argmin
p∗

𝑛
󵠈
𝑖=1

𝑛
󵠈
𝑗=1
𝑝𝑖𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑝∗𝑗 )2,

with 𝛿𝑖𝑗 the Kronecker delta, and with 𝑤𝑖𝑗 > 0 for all 𝑖, 𝑗, and ∑𝑛𝑖=1∑
𝑛
𝑗=1𝑤𝑖𝑗 = 1. en

there is a p+ ∈ 𝑆 such that (i) 𝑚(p+) = p+, (ii) p+ is unique, and (iii) p+ depends only on
the 𝑤𝑖𝑗.

Proof: Clause (i) follows from Brouwer’s (1911) fixed-point theorem, which (in one ver-
sion) states that every continuous function from a simplex onto itself has a fixed point.
It does not follow from Brouwer’s theorem that the fixed point is unique.

To prove clause (ii), then, one first verifies that the function that is being minimized at
each step on the way to the fixed point has the Hessian

󶀄󶀔󶀔
󶀜

2(𝑝1𝑤11 +⋯ + 𝑝𝑛𝑤1𝑛) 0 ⋯ 0
0 2(𝑝1𝑤21 +⋯𝑝𝑛𝑤2𝑛) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 2(𝑝1𝑤𝑛1 +⋯ + 𝑝𝑛𝑤𝑛𝑛)

󶀅󶀕󶀕
󶀝

is is a diagonal matrix, so its eigenvalues are the diagonal elements, which, given the
constraints on the 𝑝𝑖 and 𝑤𝑖𝑗, can be seen to be all necessarily positive. erefore, the
Hessian is positive definite everywhere, and given that a simplex is a convex set, it follows
that the function that is minimized is strictly convex, and hence the minimum it reaches
is unique. So, at each step toward the fixed point, a unique minimum is reached. As a
result, the minimum reached at the fixed point is unique as well.

For clause (iii), finally, note that at the fixed point the function that is being minimized
is of the form

𝑚+(p) =
𝑛
󵠈
𝑖=1

𝑛
󵠈
𝑗=1
𝑝𝑖𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑝𝑗)2.

Because the fixed point p+ is a minimum, it holds that ∇𝑚+(p+) = 0. We obtain a system
of 𝑛 polynomial equations with 𝑛 variables and with the 𝑤𝑖𝑗 as coefficients by setting
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(𝜕/𝜕𝑝𝑖)𝑚+(p+) = 0, for all 𝑖 ⩽ 𝑛. is system has a unique solution (in virtue of the first
two clauses), which is bound to be strictly in terms of the coefficients. □
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