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Abstract
Elay Shech and John Earman have recently argued that the common topological inter-
pretation of theAharonov–Bohm (AB) effect is unsatisfactory because it fails to justify
idealizations that it presupposes. In particular, they argue that an adequate account of
the AB effect must address the role of boundary conditions in certain ideal cases of
the effect. In this paper I defend the topological interpretation against their criticisms.
I consider three types of idealization that might arise in treatments of the effect. First,
Shech takes the AB effect to involve an idealization in the form of a singular limit,
analogous to the thermodynamic limit in statistical mechanics. But, I argue, the AB
effect itself features no singular limits, so it doesn’t involve idealizations in this sense.
Second, I argue that Shech and Earman’s emphasis on the role of boundary conditions
in the AB effect is misplaced. The idealizations that are useful in connecting the theo-
retical description of the AB effect to experiment do interact with facts about boundary
conditions, but none of these idealizations are presupposed by the topological inter-
pretation of the effect. Indeed, the boundary conditions for which Shech and demands
justification are incompatible with some instances of the AB effect, so the topological
interpretation ought not justify them. Finally, I address the role of the non-relativistic
approximation usually presumed in discussions of the AB effect. This approximation
is essential if—as the topological interpretation supposes—the AB effect constrains
and justifies a relativistic theory of the electromagnetic interaction. In this case the ends
justify the means. So the topological view presupposes no unjustified idealizations.
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1 Introduction

In a number of recent papers, Elay Shech (2015, 2018a, b, 2019) and John Earman
(2019) have argued for a re-evaluation of the AB effect, a phenomenon in the quantum
theory of electromagnetically charged particles. They argue that more careful consid-
eration of the effect can teach us lessons about foundational issues in physics and about
modelling and idealization in science more generally. On their view, important facts
about functional analysis are too often “swept under the carpet as a ‘merely technical’
issue” (Shech 2018a, p. 4841); in particular, they claim, physicists and philosophers
have not sufficiently attended to the domains of definition of relevant operators. These
conclusions about foundations of physics lead to conclusions about modelling and ide-
alization. In this paper I dispute their foundational points and argue that the topological
interpretation of the AB effect does not involve unjustified or unusual idealizations.

Shech and Earman both level complaints against the “topological view” of the AB
effect; this view is Shech’s explicit target, while Earman criticizes a general class of
analyses to which the topological view belongs. The AB effect can be seen when
operating a beam of electrons in the neighborhood of a magnet. Even if you perfectly
shield themagnet—so that the electric andmagnetic fields near the beamboth vanish—
the behavior of your electron beam will covary with the magnetic field inside the
magnet. This is striking: facts inside the magnet seem to be making a difference to the
electron beam at a distance, unmediated by the interveningmagnetic field. Topological
explanations of this effect appeal to the fact that the region outside the magnet has a
“hole” in it where the magnet should be, and argue that in the presence of such a hole,
the electric andmagnetic fields to not capture all the electromagnetic facts.1 Shech isn’t
convinced. He argues that this picture of a “hole” in space is an idealization and that if
we relax the idealization then the topological explanation no longer works. On Shech’s
view, understanding the AB effect means attending to the details of this idealization—
especially to the electron beam’s interaction with the magnet’s shielding. In this he
agrees with Earman, who complains that the philosophical literature has neglected the
role of unitarily inequivalent representations of the canonical commutation relations
in modelling the idealized shielding.

I think a version of the topological view is correct and that Shech and Earman are
barking up the wrong tree; details about the shielding belong under the proverbial rug.
It’s true that no realistic shielding is perfect, and it’s true that a careful mathematical
analysis of an electron’s interaction with an ideal shield means digging into delicacies
of functional analysis. But neither of these things is relevant to modelling the AB
effect on the topological view. Indeed, on the topological view the AB effect occurs
whether or not there is any shielding. The perfect shield in the last paragraph was
mostly for drama, much like the moon’s negligible atmosphere can be used for a strik-
ing demonstration of Galileo’s law of free fall. In Sect. 2 I argue that the topological
view’s reference to a hole in space doesn’t involve any idealization—some things,
like donuts, just have holes. To illustrate this, I describe the topological view in some
detail, reconstructing Aharonov and Bohm’s (1959) original description of the effect

1 Elements of the topological view are expressed by Aharonov and Bohm (1959), Batterman (2003), Lyre
(2004), Nounou (2003), and Wu and Yang (1975).
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as a proposal for a crucial experiment to resolve an ambiguity in the quantum theory
of charged particles: are all of the electromagnetic facts captured by the electric and
magnetic fields, or is there something more? More precisely: do two electromagnetic
potentials represent the same physical state of affairswhen they are gauge equivalent or
when they have the same field strength? In this experimental context, topological fea-
tures of the apparatus are essential for this “something more” to have an experimental
signature, but these features aren’t idealizations.

Now we’ve read our Duhem, so we know that there are no crucial experiments;
Aharonov and Bohm’s experiment relies on auxiliary assumptions, and alternative
theories of the experiment are always logically possible. In Sect. 3 I consider whether
the idealizations about the shielding that concern Shech and Earman can be found in
these auxiliary assumptions or alternative theories. On one reading, Shech criticizes
the topological view for failing to justify the assumption that imperfections in the
magnet’s shielding will have a negligible effect. On this reading his comments are
complementary to the topological view: the latter isn’t in the business of justifying
this assumption about shielding, and the functional analysis facts he cites provide the
topological view with a response to the skeptic who questions this assumption. On
another reading, Shech may be proposing an alternative explanation of the behavior
of charged particles near a magnet. This alternative explanation would be of the kind
that Earman promotes—though, as Earman argues, justifying these assumptions about
the shielding is only part of a complete explanation of the AB effect. On this reading
we face a straightforward case of contrastive underdetermination. Idealizations arise
on both readings, but they are the garden variety that arise whenever theory meets
experiment.

In the final section I address the idealization of the electron as a non-relativistic
particle. Earman complains that most discussions of the AB effect are set in “the
bastardized theory in which a quantized electron is subjected an external classical
electromagnetic field” (2019, p. 2013). He claims that this theory is inappropriate for
foundational study twice over: the electromagnetic field is really quantum, and the
electron is really an excitation in a field. From the point of view of quantum field
theory these are idealizations, and discussions of the AB effect do make them. They
are also essential for the AB effect to play the role the topological view grants it. As I
argue in Sect. 4, the topological view conceives of the AB effect as a signpost on the
way to a quantum theory of the electromagnetic field: in the non-relativistic and large-
mass limit, any such theory must reproduce the AB effect. In this case idealization is
essential to the project of constraining the low-energy limit of quantum field theory,
but it is only an idealization from the point of view of the more fundamental theory.

2 Essential idealizations

Shech charges the topological view with baldfaced absurdity: on his reconstruction,
the view says that a single spacetime region both has a hole and does not have a
hole. As I argue in this section, this isn’t a plausible reconstruction of the topological
view. In addition to its absurdity, Shech’s reconstruction neglects the aim of the view.
The purpose of the AB effect is to inform us of the “Significance of electromagnetic
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potentials in the quantum theory”, as Aharonov and Bohm’s title says. They identify
an ambiguity in the quantum theory of a charged particle and develop a crucial exper-
iment to resolve the ambiguity. The topological view is meant to supply a theoretical
context in which this experiment can be seen as crucial and a basis for justifying future
developments of the quantum theory of the electromagnetic interaction. In this section
I give a more detailed statement of the topological view to demonstrate that it involves
no singular limits.

OnShech’s reconstruction, the topological view is committed to a set of inconsistent
claims. The behavior of an electron beam in the vicinity of a magnet will depend
on electromagnetic facts inside the magnet, even when the beam doesn’t intersect
the magnet and the facts inside the magnet have a negligible effect on the electric
and magnetic fields outside of it. In particular, differences inside the magnet will
correspond to different interference patterns on a photographic plate exposed to the
beam. In quantum mechanics, interference patterns are explained by relative phases
between different parts of the wavefunction. The topological view links the phase in
the AB effect to the fact that the region outside the magnet is topologically nontrivial:
it has a “hole” where the magnet should be. Shech reconstructs this view as committed
to four claims:

1. Real systems consist of a simply connected electron configuration space.
2. Real systems display the AB effect.
3. The AB effect occurs if and only if there is a non-trivial relative phase factor.
4. A non-trivial relative phase factor arises if and only if the electron configuration

space is non-simply connected. (Shech 2018a,p. 4847)

He argues further that these claims are in tension: “[w]hile the first two propositions
imply that real systems are simply connected and display the AB effect, the last three
propositions convey that real systems are non-simply connected in virtue of displaying
the AB effect” (Shech 2018a, pp. 4847–4848). If this is right, then the topological view
is internally incoherent and should be rejected.

This reconstruction of the topological view is motivated in part by Shech’s desire to
assimilate the AB effect to the philosophical literature on singular limits. The classic
example of a singular limit occurs in discussions of how we are to give a statistical
mechanical underpinning for phenomenological thermodynamics. In thermodynam-
ics, a phase transition—such as ice melting or water boiling—is characterized by
a discontinuous jump in quantities like entropy. According to the usual statistical-
mechanical reduction recipe, the entropy is a derivative of the partition function,
which is an function of the number of particles in the statistical-mechanical model
of the system. A discontinuous jump in the entropy therefore leads to a singularity in
the partition function. But it turns out that the partition function can only be singular
when the number of particles is infinite. So we have the following set of inconsistent
claims:

1. Real systems have finite[ly many particles]
2. Real systems display phase transitions
3. Phase transitions occur when the partition function has a singularity
4. Phase transitions are governed/described by classical or quantum statistical

mechanics (Callender 2001, p. 549)
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These claims are inconsistent, because the last three imply that real systems have
infinitely many particles. You might respond to this inconsistency by rejecting the
third claim: while it’s convenient to identify phase transitions with singularities in
the partition function, it would be taking thermodynamics too seriously to insist that
a system must exhibit a singularity to undergo a phase transition. Proponents of the
third claim argue that the identification of phase transitions with singularities plays
some essential role, often concluding that the fourth claim is false and thermodynamic
behavior is emergent in a strong sense. On this essentialist view, an adequate statistical-
mechanicalmodel of phase transitionsmust involve an idealization inwhich the system
has infinitely many particles.2 Shech interprets the topological view as an essentialist
view in this spirit.

Even if Shech’s dialectical motivations are taken into account, I do not recognize
the topological view in his reconstruction. In particular, the topological view is not
analogous to the view that the infinite-particle idealization is essential for an adequate
treatment of phase transitions. For one thing, the topological view is not concerned
with topological properties of a particle’s configuration space but with topological
properties of spacetime regions.3 Of course, the possible configurations for a particle
in some region are just the points of that region that the particle can occupy, so this is
partially a verbal point. More substantively, Shech characterizes the topological view
as involving an essential idealization because it treats the region outside the magnet as
topologically nontrivial. It’s true that this topological nontriviality is essential to the
topological view. But this isn’t an idealization, it’s just a fact. The region outside of a
magnet encloses a hole occupied by the region containing the magnet, so it’s topolog-
ically nontrivial. To cast the topological view in an essentialist mold there would have
to be some theory that modelled the region outside a magnet as topologically trivial,
and there isn’t one. If the topological view involves an essential idealization, it’s not
one that’s related to the topological facts.

Walking through the details of the topological view shows that it doesn’t involve
essential idealizations anywhere else, either. To begin, recall Aharonov and Bohm’s
motivation. They aim to answer a question in the theory of charged particulate matter:
how should we model the electromagnetic field in this theory? If we work in coor-
dinates the answer can be found in any textbook on electrodynamics, at least in the
classical case. The action of aworldline x for a particle ofmassm and charge q moving
in an electromagnetic potential Aμ is

SA(x) =
∫

dτ

(
1

2
mẋ2 + qẋμAμ

)

2 Butterfield (2011), Callender (2001), Menon and Callender (2013), and Palacios (2018), for example,
argue that we should reject the third claim. Bangu (2009), Batterman (2005, 2011), and Morrison (2012)
give reasons for thinking that the infinite thermodynamic limit is essential.
3 Aharonov and Bohm refer to “singly connected regions” (1959, p. 486) and Wu and Yang to “a multiply
connection region” (1975, p. 3845); Batterman claims that “the base space must be nonsimply con-
nected” (2003, p. 542), and Nounou attributes the effect to “the topology of the base manifold” (2003,
p. 193), where these are mathematical representations of spacetime regions.
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where the integral is taken over the interval parametrizing the worldline x and ẋμ is
the worldline’s tangent vector. Interpreted as a coordinate expression, this integral has
a sufficiently clear meaning for the prediction of the particle’s motion: the curve x is a
map from some interval into spacetime that traces out the particle’s worldline, and the
physically possible worldlines are the stationary points of the action SA. To compute
these stationary points it’s enough to know that m and q are real numbers and Aμ

assigns a quadruple of real numbers to every point in spacetime. That is, it’s enough to
know that four scalar fields can serve as coordinates for the space of electromagnetic
fields. But any number of mathematical objects have such a coordinate expression, so
this doesn’t tell us what we should take the electromagnetic field to be, mathematically
speaking.

Computationally, a choice of mathematical model is a choice of which manip-
ulations are permitted and which proscribed—in particular, it is a choice of legal
substitutions. In our case there are three salient interpretations of the potential Aμ,
each having different substitution rules with respect to a choice of coordinates:4

1. The electromagnetic field is a covector field, and Aμ are the components of this
covector field in a choice of coordinates. Two covector fields Aμ and A′

μ are inter-
substitutable just in case Aμ = A′

μ for all μ.
2. The electromagnetic field is a principal U (1)-bundle equipped with a connec-

tion, and Aμ are the components of this connection in a choice of coordinates.
Every U (1)-valued function g gives a substitution rule that replaces Aμ with
Aμ − ig ∂μg

−1. We say that two potentials Aμ and A′
μ are gauge equivalent if

A′
μ − Aμ = ig ∂μg

−1 for some U (1)-valued function g.5

3. The electromagnetic field is a field strength tensor Fμν , an antisymmetric (0, 2)-
tensor, and the components of this tensor are a function of Aμ:

Fμν = ∂μAν − ∂ν Aμ

Two sets of coordinates Aμ and A′
μ are inter-substitutable just in case they give

rise to the same field strength tensor; in this case we’ll say that they’re equipotent.

These possibilities are ordered by the strictness of the corresponding substitution rule.
The equivalence relation on the set of potentials generated by the first interpretation
is just the identity relation, which is the finest equivalence relation. And the second
interpretation generates a finer equivalence relation than the third, because gauge-
equivalent potentials are always equipotent. So the ambiguity might make a practical
difference by manifesting as an ambiguity about which substitutions are permissible.

Aharonov and Bohm register that in the classical case we can take the potential Aμ

to represent the field strength tensor, as in the third interpretation. As they say, the

4 Presentations of the topological view vary in how many salient possibilities they admit. For example,
Nounou (2003) gives these three along with a non-separable interpretation in terms of holonomies assigned
to loops. Since the topological view takes the electromagnetic configuration to be separable, I omit this
option (cf. fn. 10).
5 More precisely, and because it matters for the AB effect, this description of gauge equivalence should be
relativized to the open cover that’s part of the choice of coordinates. That is, two fields are gauge equivalent
if they’re related by a connection-preserving principal bundle isomorphism that covers the identity.
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potentials Aμ and A′
μ are interchangeable for all practical purposes if they generate

the same field strength tensor Fμν . For consider the equations of motion induced by
the action. A stationary worldline satisfies the Lorentz force law

qFμν ẋ
ν = mẍμ

and in the Newtonian framework this is everything: the free modelling parameter in
this framework is the force appearing in Newton’s second law, and in this model it’s
qFμν ẋν . SinceNewtonian forces suffice tomodel systemsof this kind,wemay suppose
that the electromagnetic configuration is entirely captured by the field strength tensor
Fμν . On this reading, two equipotent potentials represent the same configuration,much
like the expressions 1/2 and 2/4 represent the same rational number.

The quantum-mechanical situation is different. The state of a quantum particle at
time t0 is given by a probability amplitude ψ(t0, x0), where the second coordinate
ranges over all of space. The dynamics are given by an integral transform

ψ(t1, x1) =
∫

dx0

∫
Dx e

i
�
S(x)ψ(t0, x0)

integrating ψ(t0, x0) against a kernel defined by an integral over all paths x such that
x(t0) = x0 and x(t1) = x1, weighted by a function of the classical action S and
Planck’s constant �. By contrast with classical matter, we have no reformulation of
these dynamics purely in terms of forces. So in the quantummodel of a charged particle
we can’t demonstrate that the field strength tensor Fμν tracks all the electromagnetic
facts by moving to a framework where Fμν is the only modelling parameter. This
does not show that two equipotent potentials can give different dynamics, but it does
prevent us from running an argument analogous to the argument we ran in the classical
case.

All is not lost: in the quantum context we can still rule out the first interpretation of
the potential—according towhich it’s a covector field—because the dynamics, “aswell
as the physical quantities, are all gauge invariant” (Aharonov and Bohm 1959, p. 485).
That is, for all practical purposes the physics is invariant under gauge equivalence, as
in the interpretation of Aμ as a connection on a principal U (1)-bundle. If Aμ and A′

μ

are gauge equivalent then the difference SA′ − SA in the actions they determine will be
independent of the path. This means that the integral transforms they determine will
differ by a constant phase, and because the probability amplitude is only defined up
to a phase this means that Aμ and A′

μ determine the same quantum dynamics. So for
all practical purposes, gauge-equivalent potentials are interchangeable.

Todecide between the equivalence relations of the remaining two interpretations,we
need a situation in which gauge-equivalent potentials are interchangeable but equipo-
tent potentials are not. This is what Aharonov and Bohm provide. Such contexts
necessarily involve a topologically nontrivial region—that is, a region that isn’t con-
tractible. For if some region is contractible then the only principal U (1)-bundle over
it is the trivial one, giving every principal U (1)-connection a global coordinate rep-
resentation as a covector field Aμ. And if Aμ and A′

μ are two equipotent potentials
then the covector field A′

μ − Aμ has vanishing field strength tensor, so by the Poincaré
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Fig. 1 The double-slit experiment

lemma there’s a U (1)-valued function g such that

A′
μ − Aμ = ig ∂μg

−1

which is to say that Aμ and A′
μ are gauge equivalent. Over a contractible region gauge

equivalence coincides with equipotence, and there can be no experiments of the kind
we seek.

A topologically nontrivial experiment is easy to find. Consider the paradigmatic
double-slit experiment in Fig. 1. Electrons are emitted from a source, pass through
two slits in a shield, and register on a detector screen. The kernel of the dynamics in
this experimental setup can be separated into one integral over paths that pass through
the slits and one over paths that intersect the shield:

∫
Dx e

i
�
S(x) =

∫
slits

Dx e
i
�
S(x) +

∫
shield

Dx e
i
�
S(x)

Treating the shield as an infinite potential barrier suppresses the second integral, so
we can safely neglect it. Thus the dynamics are given by an integral over paths in the
region outside the shield. This region is topologically nontrivial, because a loop around
the bit of the shield between the slits can’t be contracted to a point while remaining
in the exterior region.

To turn the double-slit experiment into our crucial experiment we only need to add
an electromagnetic potential Aμ outside the shield. The kernel of the dynamics then
becomes

∫
slits

Dx e
i
�
SA(x)

This expression is gauge-invariant but can change if Aμ is replaced with an equipotent
potential. For an illustration, consider the amplitude at time t1 at the point x1 on the
screen collinear with the source and the point on the shield between the slits, and
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suppose that Aμ has vanishing field strength tensor. Then SA has the same stationary
paths as the action of a free particle, since the classical equations of motion only
involve the field strength tensor. If we suppose that the slits have vanishing width
there are then two stationary paths, depicted in Fig. 1: a path x↑ that passes through
the top slit and its reflection x↓ passing through the bottom slit. Treating the electron
source as a point distribution means that the amplitude coincides with the kernel of
the dynamics, and the stationary phase approximation tells us that in the small-� limit
the amplitude is proportional to a sum over the stationary points of the action

ψ(t1, x1) ∝ e
i
�
SA(x↑) + e

i
�
SA(x↓)

The relative phase of these two terms is determined by

SA(x↓) − SA(x↑) =
∫ t1

t0
dt ẋμ

↓ Aμ −
∫ t1

t0
dt ẋμ

↑ Aμ

since the paths have the same kinetic term. This is the integral of Aμ along the concate-
nation of x−1

↑ and x↓, which encircles the portion of the shield between the slits. Since
this loop isn’t contractible, this integral may not vanish. Indeed, it can be made to take
any real value by an appropriate choice of a potential with vanishing field strength ten-
sor.6 It follows that different electromagnetic potentials can lead to different amounts
of interference between the two classical paths and thus different detection probability
distributions over the screen, even when all of the potentials under consideration have
the same field strength tensor.

Experiment can now decide between the principal connection and field strength ten-
sor interpretation. Run a double-slit experiment in the presence of an electromagnetic
field. If the potential is the coordinate expression of a principal connection then gauge-
inequivalent but equipotent potentials will lead to different patterns on the detector
screen; this is theAB effect. If there is noAB effect—that is, if equipotent fields always
lead to the same wave pattern on the detector screen—then we can continue to use
the coarser equivalence relation generated by the field strength tensor.7 Of course, as
with any experiment there are implementation details. But insofar as we are concerned
with the question of interpretation that Aharonov and Bohm set out to answer, these
details are beside the point.

This positive characterization of the topological view in hand, return to Shech’s set
of incompatible claims. The versions of these claims that the topological view actually
endorses are something like the following.

1. There is a contractible spacetime region containing the AB apparatus.

6 For example, the covector field given by dθ/2π in polar coordinates centered on the point of the shield
between the slits has unit integral around the loop.
7 Note that a null result would be a problem for the quantum theory: the theory predicts different amounts
of interference for equipotent potentials, so at most one of these predictions can be correct. If the AB effect
weren’t present then the quantum theory would make incompatible (hence false) predictions. This problem
is sometimes obscured by a focus onAharonov andBohm’s simplification to vanishing field strength tensors,
since it might naively be thought that the vanishing electromagnetic potential is somehow special among
potentials with vanishing field strength tensor.

123



12204 Synthese (2021) 198:12195–12221

2. The AB apparatus displays the AB effect.
3. The AB effect occurs if and only if there is a nontrivial phase factor.
4. A nontrivial phase factor arises only over a non-contractible region.

Only the fourth of these claims is distinctive of the topological view. Indeed, I take it
that the fourth claim is constitutive of the topological view, alongside the theoretical
context just reviewed in which the AB effect is a crucial experiment to license the
“only”. The other three claims seem both true and uncontroversial. The laboratory
room containing the AB apparatus is contractible. The second claim is empirical, and
its truth settles Aharonov and Bohm’s motivating question. The quantum-mechanical
explanation for the effect appeals to the phase between the paths through the top
slit and those through the bottom one, as in every explanation of the wave patterns
observed in a double-slit experiment, so the third claim is a commitment to modelling
the particulatematter quantum-mechanically. These four claims are non-contradictory,
and on the topological view they’re true. In particular, there is no contradiction between
the fact that the inside of the room containing the AB apparatus is contractible while
the region outside the shield isn’t; different regions can have different properties.

Shech’s general critique of the topological view fails, because the topological view
is not committed to the inconsistent set of claims he attributes to it. He thinks that the
view fails “to tell a story about why the idealized AB effect, conventionally defined
so as to necessitate a [non-simply-connected] configuration space, has anything to do
with the concrete AB effect as it is manifested in the laboratory” (2018a, p. 4845).
But this is just the story on offer: the region of the laboratory outside the shield is
topologically nontrivial. So on the topological view, the AB effect doesn’t involve
any idealizations about spacetime regions, nor does my presentation appear to involve
essential idealizations about anything else. But I glossed over the idealization that
Shech and Earman are mainly concerned with when I said that we could neglect
contributions from paths that intersect the shield. Unlike the topological features of
the magnet’s exterior, this is an idealization, and for all I’ve said it’s the kind of infinite
idealization that interests Shech. Now I’ll argue that it’s not.

3 Ancillary idealizations

In light of the last section, Shech’s complaint against the topological view seems to
misfire. He finds the topological view inadequate because it fails to address details
of the experimental implementation that Aharonov and Bohm propose—in particu-
lar, details about the shield. Earman, too, complains that the philosophical literature
doesn’t “show much awareness of the subtleties required to implement the idealiza-
tions involved in the AB effect” (2019, p. 2017). But from the perspective of the
topological view, it’s hard to see why these details are relevant. There are two possi-
bilities. If the complaint is only that the topological view doesn’t address these details
then so be it; Shech and Earman’s comments are friendly supplements to the view.
But some of their remarks seem to be arguments against the interpretation of the AB
effect mooted in Sect. 2. That is, they may instead be arguing that the field strength
tensor does indeed capture all the electromagnetic facts.
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The topological view envisions the AB effect as a crucial experiment. On a naive
reading, this means that there are two possible contradictory outcomes, one of which
is deductively entailed by the principal connection interpretation and the other by
the field strength tensor interpretation. The outcome of the experiment confirms one
interpretation and falsifies the other. There are therefore two kinds of objections to the
topological view. A narrow objection might accept the topological view’s theoretical
narrative but balk at its claims about the empirical facts. The topological view is silent
on the battery of auxiliary assumptions required to actually test the AB effect, and
you might worry that the AB effect has never in fact been realized in the laboratory.
Such worries might concern the realization of the necessary electromagnetic fields,
the magnitude of the effect, or similar. More broadly, you might reject the topolog-
ical view’s framing entirely. That is, you might argue that the principal connection
interpretation and the field strength tensor interpretation aren’t the only two options.

We can read Shech andEarman’s remarkswith either the narrow or broad objections
inmind.Theheart of their complaint is that the topological viewdoesn’t specify enough
features of the AB experiment. In particular, the topological view doesn’t reckon with
an ambiguity that arises in the context of infinite potential barriers. As an illustration
of this ambiguity, consider a quantum particle confined to the interval [0, 1] by an
infinite potential at either end. According to the Hamiltonian quantization recipe, the
configuration space for this particle is the Hilbert space L2[0, 1] of square-integrable
functions on [0, 1] and its dynamics are of the form

ψ(t1) = e−i(t1−t0)Hψ(t0)

with H a densely-defined self-adjoint operator. Furthermore, on its domain H takes
the form of the classical Hamiltonian with the momentum replaced by an operator
acting as −i�∇; in our case this means

H = − �
2

2m
∇2

with m the particle’s mass. Since H is unbounded and self-adjoint its domain must be
some strict subset of the Hilbert space, but the quantization recipe gives us no guidance
as to what this domain should be. So the Hamiltonian quantization recipe leaves the
dynamics undefined; it tells us only how H acts, not what operator it is, and so we
cannot exponentiate it to give the dynamics.

This is a real ambiguity, because in general there will be more than one self-
adjoint operator satisfying the Hamiltonian quantization recipe’s requirements (Reed
and Simon 1975, X.1). The Hamiltonian in the previous paragraph is naturally asso-
ciated with many dense domains. We might choose a relatively small domain like the
set of smooth functions with compact support in (0, 1), giving an operator H∞. Or
we might choose a relatively large domain like the set of continuously-differentiable
functionsψ such that Hψ is square-integrable, giving an operator H∗∞. We might also
consider domains consisting of smooth functions that satisfy some boundary condi-
tions. For example, choosing theDirichlet boundary conditionψ(0) = ψ(1) = 0 gives
an operator HD , and choosing the Neumann boundary condition ψ ′(0) = ψ ′(1) = 0
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gives an operator HN . Not every choice of domain gives a self-adjoint operator: for
example, the adjoint of H∞ is the distinct operator H∗∞. But some domains do give
self-adjoint operators, like HD and HN . Indeed, there are infinitely many self-adjoint
operators on L2[0, 1] that act as H on their domain, each giving rise to distinct dynam-
ics.

The discussion of Sect. 2 made no reference to the Hamiltonian’s domain, so Shech
and Earman are right that the topological view doesn’t address this ambiguity. But
it’s not obvious that this ambiguity needs addressing. As I argue in Sect. 3.1, it
would be inappropriate for the topological view to address the difference between
the Hamiltonians HD and HN because this difference isn’t relevant to the status of
the electromagnetic field. The choice between HD and HN concerns how to model
shielded magnets in particular experimental setups. It’s therefore of a piece with ques-
tions about how tomodel the source and screen in the double-slit experiment, and none
of these are the topological view’s responsibility. However, changing the theoretical
framing of the experiment might change our demands on an account of the AB effect.
In Sect. 3.2 I consider an alternative framing that Shech and Earman might have in
mind, according to which the AB experiment is set up to investigate a remote counter-
factual world. Set in this frame, Shech and Earman are proposing an alternative to the
topological view, but it’s hard to see what the virtues of this alternative are. Character-
izing the AB apparatus as a “fictional system” Earman (2019, p. 1992) and the effect
as one that “cannot be manifested in the laboratory” Shech (2018a, p. 4840) reduces
it to a curiosity disconnected from the rest of our theorizing about electromagnetism.

3.1 Auxiliary assumptions

Shech argues “that the topological approach does not offer a satisfying justification
for choosing the standard Dirichlet boundary conditions that pick out a unique self-
adjoint extension of the Hamiltonian operator representing actual systems in which
the AB effect manifests” (2018a, p. 4840). To fill this gap, Shech calls on a result of
de Oliveira and Pereira (2008). Earman agrees with Shech that this is a gap that needs
filling, adding that “[p]art of the justification is supplied by a pretty mathematical
result, but also needed is a fleshing out of the idealization with additional stories about
how the fictional attributes are realized” (2019, p. 1994).

It’s true that the topological view doesn’t try to justify Dirichlet boundary condi-
tions, but it’s not a problem. Just the opposite: I take it to be an adequacy condition
on an account of the AB effect that it not justify these boundary conditions. Boundary
conditions play no role in the AB effect as described in Sect. 2, so pronouncing on
them would be overstepping the bounds of the account. As an illustration, the rest of
this subsection surveys the constellation of approximations, idealizations, and aux-
iliary hypotheses that surround the AB effect on the topological view. You can find
boundary conditions here if you look hard enough, but the connection to the AB effect
is severely attenuated. So attenuated, in fact, that the AB effect has no necessary con-
nection to any specific boundary conditions—in particular, it does not requireDirichlet
boundary conditions. So it’s a good thing the topological view doesn’t imply them.
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The discussion of Sect. 2 was qualitative, rather than quantitative, because the
topological view is an interpretation of theABexperiment.Qualitative characterization
is one of the aims of interpretation, for a number of reasons. Quantitative descriptions
issue from qualitative ones but not vice versa, in general. Moreover, the more we
bind the AB effect to particular contexts, the less useful it is. If we understand the
AB effect as a crucial experiment as the topological view suggests then we have
learned something general about the electromagnetic interaction; if we understand
it as the behavior of electrons in a particular apparatus we have learned something
specific about a peculiar experimental setup. Relatedly, a qualitative analysis affords
a more robust network of connections between the AB effect and the laboratory. If the
AB effect were confined to the schematic cartoon of Fig. 1 then we would have no
experimental access to it: among other things, there are more than two dimensions,
and sources, shields, and screens have three-dimensional extensions. A qualitative
story about the effect gives us other setups in which the effect manifests along with
quantitative measures of how well some particular laboratory setup instantiates the
schematic double-slit experiment of Fig. 1.

Because the topological view gives a qualitative account of the AB effect, it affords
us necessary flexibility in choosingwhich approximations and idealizations to impose.
The discussion of Sect. 2 was heavily approximate and idealized so as to avoid any
explicit computations, but for convincing experiments the approximations must be
better and the idealizations weaker. For the approximations and idealizations of our
toy double-slit experiment, this is straightforward. Standard perturbation theory gives
us the kernel of the dynamics to arbitrary order in�, takinguswell beyond the stationary
phase approximation. Depending on what idealizations we impose, we may even be
able to give a non-perturbative expression for the dynamics. We can replace the point
distribution model of the electron source with something more realistic that depends
on the source’s features, making the convolution nontrivial. A more realistic model of
the slits in the screen would give them finite width, giving more paths over which to
integrate when computing the perturbative expansion of the dynamics. We can also
drop the assumption that the field strength tensor vanishes; indeed, the system will be
influenced by the Earth’s electromagnetic field, the electron’s emission and absorption
of stray Z bosons, and the gravitational influence of Sagittarius A∗.

If boundary conditions are relevant to the AB effect, they must appear somewhere
on the spectrumdescribed in the previous paragraph. It would be comically inappropri-
ate to include gravitational corrections in an account of the AB effect. For conceptual
or pedagogical purposes the level of description in Sect. 2 is adequate. It even suffices
for the laboratory, if we characterize the AB effect as covariation of the interference
fringes with the electromagnetic potential that goes beyond their covariation with the
field strength. Higher orders of the dynamics or contributions from the finite size of
the source and shield slits won’t create or obscure the effect, and all we need for confir-
mation of the AB effect is to see whether the interference fringes appreciably change
when the magnetic flux changes with everything else held effectively constant. The
de-idealizations in the previous paragraph are relevant if—and to the extent that—we
can use them to help pin down the meanings of “appreciably” and “effectively” in
this criterion of confirmation and respond to skeptical analyses of particular experi-

123



12208 Synthese (2021) 198:12195–12221

ments.8 More formally, they are useful for estimating the magnitude of the effect and
systematic errors. The size of the slits matters because it controls the envelope of the
diffraction pattern. We can’t observe the AB effect in a double-slit apparatus with
very large slits, but this isn’t disconfirmation; it’s an inappropriately high standard
for significant observable differences. The gravitational influence of celestial bodies
doesn’t matter, and it’s so weak that an informal order-of-magnitude estimate makes
this obvious; the environment of anABapparatus is effectively constant nomatterwhat
some star is doing. If Shech and Earman are right that the topological view neglects
important details about boundary conditions, then there must be some boundary effect
that threatens to swamp the size of the AB effect or generate significant systematic
error. To respond to this worry we can step through the most salient idealizations and
check that they pose no significant problems.

The idealizations in the setup of the double-slit experiment are inessential, accord-
ing to the topological view. First, shields found in the laboratory will obviously be
imperfect, so the kernel of the total dynamics will not be given by an integral over
paths confined to the exterior region. For the AB effect to decide our crucial question
we need only find some equipotent potentials Aμ and A′

μ such that

∫
slits

Dx e
i
�
SA′ (x) 	=

∫
slits

Dx e
i
�
SA(x)

for then Aμ and A′
μ won’t be interchangeable. If all the shielding is perfectly good

then these will be the only terms of the dynamics. If the shield is imperfect then the
interference observed in the lab will also have contributions from paths that penetrate
the shield. The second standard idealization sets the double slit experiment in two
dimensions rather than three. The dominant contributions to the dynamics will be the
classical paths, which lie in the plane of the source and slits, so the two-dimensional
approximation will generally be good. But contributions from the dimension perpen-
dicular to the page can be incorporated in the usual way as necessary.

So much for the approximations and idealizations of Sect. 2. That section’s discus-
sion was also silent on many details of experimental implementation. For example,
it simply assumed the possibility of a shield that could effectively prevent transmis-
sion of an electron beam. This is the proper attitude; as just noted, the topological
view makes no quantitative claims about the details of the shielding, it supposes only
that the contributions from paths that intersect the shielding can be effectively dis-
tinguished from the contributions from the paths of interest. The topological view
must be consistent with effective shields, of course. For instance, if the shielding is
effectively perfect then it must be acceptable to assume that the electron’s amplitude
effectively vanishes at the shield. But this is compatible with the topological view,
since the amplitude at the shield is given entirely by paths that intersect the shield. A
more detailed treatment of the shield must appeal to facts about the shield itself. This
might be a basic analysis in terms of reflection and transmission coefficients or might
be a more detailed analysis that accounts for the material composition of the shield

8 Thank you to an anonymous reviewer for providing a helpful framing of this point.
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and the backscatter profile of electrons off a crystal of this kind. Either way, none of
these details fall within the topological view’s remit.

In fact, the standard double-slit experiment itself is inessential. Good thing, too:
the electron’s short wavelength means the slits, their separation, and the interference
fringes would be impractically small in any experiment possible in Aharonov and
Bohm’s time (Marton et al. 1954, p. 1100). I introduced this experiment in Sect. 2 as
an illustration of an experiment inwhich a topologically nontrivial region is salient, and
I chose it because it’s a familiar and paradigmatic example. But at the time Aharonov
and Bohm were writing, electron interferometry had only recently become practical
with Möllenstedt and Düker’s (1956) development of the electron biprism. This is
the interferometry method Chambers (1960) used in the first experimental incarna-
tion of the effect. Later tests use a modified double-slit setup proposed as a “crucial
experiment” byKuper (1980). In each case the region exterior to the shield and electro-
magnetic source is still topologically nontrivial, raising the possibility of equipotent but
gauge-inequivalent potentials, and the interference pattern observed on the screen will
be invariant under gauge equivalence but not equipotence. So, again, these alternative
setups will exhibit an experimental signature of the principal connection interpretation
of the potential, if it’s correct.

The same remarks apply just as well to the detector screen. The account of Sect. 2
leads to a particular quantum amplitude for the points on the screen, but experimental
access to this amplitude is mediated by a choice of apparatus. Traditionally this would
be a photographic plate, and a completely detailed analysis would require a story about
how the quantum amplitude is transduced to a pattern on this plate. This might involve
an analysis of the interaction between the incident electron and the silver halide in
the photographic plate, the subsequent emission of an electron from the silver halide
and absorption by a nearby silver ion, the development and fixing of the image, and
so forth. Modern electron microscopes amplify and transduce the electron signal to a
digital image in any number of ways, each of which would require their own analysis.
These details are necessary for connecting the quantum amplitude to observation, but
they’re not part of the AB effect.

We can run these changes one more time on the remaining piece of the AB experi-
ment, the electromagnetic potential. The earliest experiments generated the requisite
electromagnetic potentials either with a permanently magnetized iron whisker or a
small solenoid. The solenoid affords a particularly nice qualitative picture of how you
might generate equipotent but gauge-inequivalent potentials, since it can be found
in any introductory textbook and supports a number of tricks for avoiding explicit
computation. Suppose that the plane of Fig. 1 is transverse to the midpoint of a long,
thin solenoid embedded in the shield at the point between the slits. Recall that near
the midpoint of a long solenoid the magnetic field is constant and parallel to the
axis of symmetry within the solenoid and vanishes outside of it. It follows that the
electric field vanishes everywhere, so that the field strength tensor vanishes outside
the solenoid. But by Stokes’ theorem the integral determining the relative phase of
the upper and lower paths must be the magnetic flux through the solenoid’s interior.
Since this will be constant and nonzero the potential outside the solenoid will be con-
stant and nonzero as well, making it equipotent with but gauge-inequivalent to the
vanishing potential. Schematically this is an illuminating picture, but in practice it’s
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hard to fabricate and compute the systematic error for. The potential from a ferro-
magnetic filament—or, better, toroid—is better suited to this purpose, and appears in
more experimental implementations of the AB effect.9 Like the shield and the screen,
a careful analysis of the electromagnetic potential must be able to account for the
details of the magnet’s composition and inhomogeneities in the generated potentials.
Thankfully, these details are yet again of little relevance to the topological view, which
simply requests gauge-inequivalent equipotent potentials obtained in any which way.

The noodling in the last six paragraphs is meant to show by example that these
experimental details just aren’t relevant to the topological view. It just doesn’t matter
how you generate the electromagnetic potentials, or how you detect the predicted
phase shift, or how you perform electron interferometry. It matters that you do these
things if you’d like to confirm the AB effect, but the topological view won’t tell you
what choices to make; these are determined by practical matters. It’s surely not the
case that the topological view must explain how photographic plates work, nor is it a
view about electron biprisms or permalloy toroids.

But these are just the grounds of Shech and Earman’s criticism: the topological
view doesn’t justify a particular model of a shielded solenoid, and they think this a
shortcoming. In particular, the topological view doesn’t give us a reason to make the
domain of the Hamiltonian the set of smooth functions with Dirichlet boundary con-
ditions at the shield. This is no surprise, since the topological view doesn’t talk about
boundary conditions or solenoids. Boundary conditions didn’t even arise in the pre-
ceding discussion of satellite issues of experimental implementation. We skirted close
to the context of this complaint when discussing the schematic solenoid that might
generate the needed electromagnetic potential, but at that point we’d already ranged
far from the topological view’s domain. It would be a mark against the topological
view if it made specific recommendations about how to model solenoids, since few
experimental realizations of the AB effect involve solenoids at all.

In fact, if the topological view justified Dirichlet boundary conditions then it would
not merely be overstepping its bounds, it would be flatly wrong. Not only do boundary
conditions lie outside the topological view’s purview, the boundary conditions that
Shech and Earman want justified aren’t necessary for modelling the AB effect in the
presence of a solenoid. On the topological view, the AB effect requires only that

∫
Dx e

i
�
SA′ (x) −

∫
Dx e

i
�
SA(x) 	=

∫
shield

Dx e
i
�
SA′ (x) −

∫
shield

Dx e
i
�
SA(x)

Boundary conditions might make a difference to the terms on the right hand side, but
these are details the topological view leaves aside: if an apparatus instantiates this
inequality then it instantiates the AB effect, and if it doesn’t it doesn’t. We shouldn’t
demand that the right hand side be worked out using Dirichlet boundary conditions,
because infinitely many other boundary conditions will do the job just as well. We
could use Neumann boundary conditions, as Earman (2019, p. 2006) notes, and even
more options become available if we lift the assumption of perfect shielding. It would

9 Chambers (1960), Fowler et al. (1961), and Boersch et al. (1962) used ferromagnetic whiskers or films,
and Tonomura and collaborators toroidal magnets (e.g., 1982, 1986). Möllenstedt and Bayh (1962) used a
solenoid. See Tonomura (2010) for a more detailed review of these experiments.
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be a problem for the topological view if it justified Dirichlet boundary conditions
over Neumann boundary conditions, because that would wrongly tie the AB effect to
irrelevant features of particular treatments of particular experimental realizations of
the effect.

The topological view ought not justify Dirichlet boundary conditions when mod-
elling a solenoid. So I think Shech can’t be right when he says that

it is exactly this type of work… that offers both an explanation of the AB effect
as it manifests in the physical world, and a justification for appealing to the type
of idealizations that arise in such a context. (2018a, p. 4851)

Shech envisions this work as analogous to the work you have to do in the thermody-
namic context to justifiably reject the claim that phase transitions are singularities in
the partition function. But the topological view does not appeal to any singularities.
If an explanation of the AB effect requires a close study of the boundary conditions
for the electromagnetic source then it also requires a close study of the boundary
conditions for the shield and screen. If we choose to model these as infinite potential
barriers then—as with any infinite barriers—we will encounter issues about domains
of our operators. If a justification of these domains requires a physical story that refers
to the composition of the source then it also requires a physical story about the metal
composing the shield and the emulsion of silver salts on the photographic plate. These
demands are implausibly weighty. But if they really are requirements then the topo-
logical view just doesn’t aim to explain the AB effect or justify the idealizations used
to model a particular instantiation of the AB experiment, at least not by itself. It aims
only to contribute a model of the interaction between a charged particle and an elec-
tromagnetic potential. An explanation of the AB effect will then join the topological
view with the materials science that explains the behavior of the shield and the pho-
tochemistry that explains the behavior of the screen and the classical electrodynamics
that explains the behavior of the electromagnetic source. Boundary conditions might
enter in this last explanation, or they might not. If they do then this explanation is
complementary to the topological view, which is concerned with a wholly separate
part of the AB experiment.

3.2 Alternative interpretations

My reading of Shech and Earman in Sect. 3.1 must be wrong, since they mean to offer
a competitor to the topological view rather than a complement. If we adopt the topo-
logical view then they seem to be attending to details of experimental implementation
unrelated to the topological view, but they do not see their arguments this way. So per-
haps we should reject the topological view’s framing of the matter. We can read Shech
and Earman as proposing an alternative explanation of the AB effect, undermining
its status as a crucial experiment by increasing the number of salient alternatives. In
particular, they point out that the topological view assumes a kind of locality which
you might question. If we remove this assumption then the AB effect is no longer a
crucial experiment, and we need a new framing. Earman offers a holistic one on which
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the AB effect is an epiphenomenon and Aharonov and Bohm’s question cannot arise
for realistic systems.

Earman suggests that we take the AB effect to answer a remote counterfactual: how
would an electron behave in the vicinity of a perfectly shielded, infinitely long solenoid
(2019, pp. 1994–1995)? The counterfactual nature of this question is emphasized
by both: Shech remarks that “the AB effect cannot be manifested in the labora-
tory” (2018a, fn. 1) and Earman that “the target system in the AB effect is a fictional
system” (2019, p. 1993). For both, the AB effect is a prediction about what would be
observed in a world that lacks the limitations of our world’s matter and engineering.
This world is very different from ours, but we might expect our theory of charged
quantum matter to pronounce on it anyway. For Shech and Earman, the AB effect is
one such otherworldly pronouncement. While the motivation for this counterfactual
question is unclear, this reading seems to be behind some of the reception of the early
tests of the AB effect, as Earman (2019, §7) explains.

The topological view gives a straightforward answer Earman’s counterfactual ques-
tion because the topological view assumes that electromagnetism is local. More
precisely, the salient options on the topological view are all separable: the electromag-
netic state of some region determines and supervenes on the states of its subregions.10

Any geometric object over some region restricts to a geometric object over each of
that region’s subregions, and if two geometric objects differ then there is some point at
which they differ. We can therefore sensibly attribute an electromagnetic state to any
given region on any of the three interpretations that the topological view considers,
and this state will be independent of the states of regions disjoint from our region of
interest. For a local theory of this kind, counterfactuals about worlds with nontrivial
topologies are little different from counterfactuals about regions of our world with
nontrivial topologies. So the topological view’s treatment of Earman’s counterfactual
is more or less the discussion in Sect. 2.

Non-local theories can also answer this question, but the connection between theory
and experiment is more involved. Both Shech and Earman seem to adopt a kind of
holism on which there is one spatial region, one electron configuration space, one
electromagnetic configuration space, and one indecomposable relation between the
electromagnetic field’s configuration space and the electron’s dynamics. For example,
they both speak of “the” configuration space of the electron. And as a result of this
holism, the features of theABeffect, “although compatiblewith [quantummechanics],
are never realized in the actual world” (Earman 2019, p. 1993). TheAB effect concerns
the relationship between configurations of the electromagnetic field and the dynamics
of an electron moving in that field. In particular, it concerns this relationship in the
region outside amagnet. But if we adopt the suggested holismwe are allowed only one
spatial region, one electron configuration space, and one Hamiltonian per experiment.
In particular, and contra the topological view, an electronmoving outside of a solenoid
can never inform us about the AB effect: the electron’s wavefunction will extend into
the solenoid and we will be forced to attend to the electromagnetic field at every point
of space. Or, at least, no electron can inform us about the AB effect on its own.

10 In asserting this I am agreeing with those like Dougherty (2017) over those like Healey (2007) and
those like Myrvold (2011) on the separability of the principal connection interpretation.
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On a holistic view like this, predictions about worlds featuring infinite potentials
must be obtained by appeal to a somewhat informal principle of continuity. As an
illustration, return to the particle in an infinite potential well. On the holistic view this
model is experimentally inaccessible because we can only generate finite potential
barriers. That is, we only have experimental access to particles whose configuration
space is of the form L2(R). However, we can experimentally probe the particle in a
box by considering a sequence of Hamiltonians of the form

HV =
{

− �
2

2m∇2 0 ≤ x ≤ 1

− �
2

2m∇2 + V otherwise

where V is some positive constant. It happens that in this case we can ignore ques-
tions about HV ’s domain, because there is an essentially unique choice that makes it
self-adjoint. For any V we can test the predictions of quantum mechanics; for exam-
ple, when V is very large the lowest levels of the particle’s energy spectrum will be
approximately

En � �
2

2m
n2π2

with En the nth energy level. In the limit of large V this approximate equality becomes
exact for all n and coincides with the spectrum of the operator HD on L2[0, 1]. So, you
might argue, the Hamiltonian for a particle confined by infinite potentials is HD , and
we can test this by investigating particles whose Hamiltonian is HV for increasingly
large V .

Both Shech andEarman seem to have a picture like this inmind, though they diverge
on the details. Shech argues that a story like this applies in the case of the AB effect
as well. The specifics differ: we are interested in square-integrable functions on the
exterior of the shield, rather than those on the interval [0, 1], and the relevant Hamilto-
nians are more complicated.11 But as Shech explains, the general picture is the same:
we consider a family of “more realistic” Hamiltonians on L2(R3) parametrized by the
strength of the shielding and then argue that in the limit of infinitely strong shield-
ing we recover the analogue of HD on the Hilbert space of wavefunctions supported
outside the shielding (2018a, p. 4848). So, he concludes, the correct explanation and
understanding of the AB effect appeals to the existence and uniqueness of the domains
making HV self-adjoint over L2(R3) combined with the behavior of these operators
in the limit of large V .

Earman’s conclusion ismore skeptical than Shech’s. Though he signs on to the same
general picture, Earman demands some further justification of the principle of continu-
ity. The problem is that the Hamiltonians HD and HN corresponding to Dirichlet and

11 There’s also an interesting difference in the specific realization of the technical problem this limit ismeant
to solve. The two cases are similar in that the particle’s configuration space supports unitarily inequivalent
representations of the Heisenberg algebra, and these can be classified by the boundary conditions satisfied
by the corresponding Hamiltonian. For the particle in a box the momentum operators in the different
representations differ in their domains, while for the AB setup the momentum operators in the different
representations differ only in their action on vectors. See Earman (2019, §6) for a more detailed discussion
of the connection between the multiplicity of representations and the domain of the momentum operator.
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Neumann boundary conditions are both physically possible, and they give different
physical predictions. The choice between them in any particular context is an empirical
matter. As a consequence, the choice of limiting sequence is also an empirical matter.
The original counterfactual question has no determinate answer on Earman’s version
of the holistic view, because it doesn’t specify which sequences of worlds or states
of the world we are to consider, nor the similarity relation that determines which of
various possibilities counts as the one approximated by our laboratory investigations.
That said, he grants that

while the details of the answer to the what-would-happen question may depend
on how the details of the what-if scenario are filled in, the existence of observable
effects in the behavior of the electron reflecting the strength of the magnetic flux
inside the solenoid do not so depend (2019, p. 2007).

This more conservative version of the holistic view can’t give a fully detailed answer
to the counterfactual question on the table, because this question is ill-posed by its
lights. But it does assert that there will be a nontrivial phase shift of some kind.

It’s hard to find common ground between the topological view and the holistic
one. The two views give the same answer to Earman’s counterfactual, so cannot be
distinguished on that basis. And appealing to other features of the views are likely
to presuppose the framing of one or the other. Does one of these views give a better
explanation of the AB effect, though the predictions are the same? Shech and Earman
can’t give a good explanation (says the topological view), because they don’t mention
the most important feature of the AB effect: the difference between equipotence and
gauge equivalence. Moreover, their discussion is too narrow and too broad: it is silent
on actual instances of the AB effect—inwhich no infinite barriers appear—and applies
just as well to systems with no interesting electromagnetic features, like a particle
confined to a box or an ordinary double-slit experiment. Contrariwise (Shech and
Earman might say), the topological view can’t account for the AB effect because its
neglect of boundary conditions “hides a seething complexity in the different ways the
Hamiltonian operator can be made self-adjoint” (Earman 2019, p. 2001). And it’s the
topological view that’s too broad and too narrow, because it thinks that the AB effect
can be manifested in the laboratory and does not assimilate it to other systems with
infinite barriers.

If we follow Earman in taking the AB effect to concern the behavior of an other-
worldly electron then we lose common ground on which to evaluate the topological
view and the holistic alternative. On this framing the AB effect involves an idealized
infinite solenoid by stipulation, making it essential to the effect in some sense, but on
this limited definition any view must count it essential. Part of the disagreement over
whether there is an essential idealization therefore concerns what counts as the AB
effect. The two views give the same predictions in uncontroversial cases of the AB
effect, and the virtues of each view only appear in the light of cases that the other view
doesn’t count as an instance of the AB effect at all. Barring any internal incoherence
in one view or the other, any choice between the two will be entangled with the choice
of target domain and more general principles like locality.12 So this is a case of con-

12 I’m not certain that the view I’ve reconstructed from Shech and Earman’s remarks is internally coherent.
In particular, it’s not obvious how to connect (for example) the behavior of the operator HV on L2(R) in
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trastive underdetermination. But it’s an odd one, for it concerns two ways of justifying
the answer to a remote, unmotivated counterfactual question. And from a perspective
this general it’s not obviouswhat could be gained by resolving the underdetermination.
However, on the topological view the stakes are high: the AB effect is central to our
justification for the standard quantum model of the electromagnetic interaction.

4 The non-relativistic idealization

The topological view involves no essential idealization in the sense that interests
Shech, but there’s idealization to be found in “the bastardized theory in which a
quantized electron is subjected an external classical electromagnetic field” (Earman
2019, p. 2013). This setup idealizes away relativistic effects and quantum features of
the electromagnetic field. But the topological view doesn’t claim that the AB effect
would disappear if we adopted a more fundamental description of the system. Indeed,
this is the point of taking the AB effect to be a “crucial experiment” in spite of
the fact that there are non-local alternative interpretations. This is a typical use of
“crucial” experiments. The point is not that the principal connection interpretation
has no competitors, but that we may take the principal connection interpretation to
be established for the purposes of further theory development. In particular, we can
assume the principal connection interpretationwhen arguing about quantum theories of
the electromagnetic interaction. And this is what the standardmodel of this interaction,
quantum electrodynamics (QED), does. Rejecting the topological view means giving
up part of the justification for QED and for specific applications of it. Of course, if
the topological view is wrong then this supposed justification is merely apparent. But
an alternative interpretation of the AB effect isn’t a true competitor to the topological
view unless it can also play a comparable role in our story about QED.

I have been attributing to the topological view the idea that the AB effect is a
crucial experiment, but this idea is fraught. As Duhem (1906, VI.3) argued, crucial
experiments in the strict sense are impossible in physics: hypotheses in physics can
never be tested in isolationbut only alongside awhole systemof hypotheses. Subjecting
Aharonov and Bohm’s prediction to an experimental test as in Sect. 3.1 requires a host
of hypotheses about the shield, screen, and sources, and many of these hypotheses
concern electromagnetic behavior, which is exactly what we aim to be testing. And
the AB effect can’t be strictly deciding between two options, because there are more
than two possibilities. Plausibly, the features of this case are generic. Experiments
require apparatus with their own theories, and logically possible alternatives lurk
around every corner. So the topological view can’t be saying that the AB effect is a
crucial experiment in this sense.

Footnote 12 continued
the large-V limit to the behavior of the operator HD on L2[0, 1]. It would be straightforward if you
thought that the system between the two infinite potential walls could be sensibly attributed a state space
and dynamics, and that in the limit this subsystem approximated the system with state space L2[0, 1] and
dynamics HD . But this kind of separability is exactly what Shech and Earman’s holism denies.
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But there’s a different sense of “crucial experiment” on which the topological view
can claim that the AB effect is crucial. This sense is reflected in any number of
examples; for instance, return to the double-slit experiment.

1. The paradigmatic status of this experiment begins with Young, who first described
it as a demonstration of destructive interference of light in lectures given in 1802
and 1803. He thought these experiments “simple and… demonstrative” (1804,
p. 1) evidence for the wave theory of light over the emission theory, and later
commentators often refer to these experiments as crucial. For example, Arago
found these experiments so compelling that his 1832 encomium of Young sought
in part to explain why all were not instantly converted to the wave theory.13

2. In 1819 the French Academy awarded a prize on the topic of diffraction. At the
time, Laplace’s emission theory of light was dominant in France and on the prize
committee: the only non-Laplacian judges were Arago and Gay-Lussac, and the
latter’s interests lay outside optics. Fresnel’s winningmemoir was awave-theoretic
treatment, and one of the Laplacian judges noted a simple consequence of Fresnel’s
theory: the appearance of a spot of light at the center of a circular object’s shadow.
Folklore has it that, despite the heavy opposition to the wave theory, “French
resistance collapsed suddenly and relatively completely” (Kuhn 1962, p. 155)
when Arago exhibited this white spot experimentally, and the committee bestowed
Fresnel the award.14

3. Duhem illustrates the impossibility of a crucial experiment with Foucault’s 1850
measurement of the relative speed of light in air and water. Arago explicitly pro-
posed this measurement as a crucial experiment meant to subject the emission and
wave theories to “decisive tests” that would “unequivocally” decide whether light
was composed of particles or waves (1838, p. 954, my translation).

In none of these three cases did the putatively crucial experiment lead to mass con-
version; the wave theory became dominant in the 1830s, twenty years after Young’s
experiment and twenty before Foucault’s. Nor did it lead to local conversion. Fresnel’s
prize committee mentions the bright spot only briefly, and the word “wave” does not
occur in their report. If any of the Laplacians on the prize committee converted to the
wave theory, it was not before the 1830s. Nor was this lack of conversion obviously
irrational. Young’s experiments were variations on Grimaldi’s well-known diffraction
experiments from 1665, and emission theorists had developed their own story about
destructive interference before Young came onto the scene. Moreover, the emission
theory claimed crucial experiments of its own, which Newton marshalled in favor of
his emission theory, and Young had no response to these. So none of these were crucial
experiments in the strict sense. Nevertheless, all three are indeed crucial experiments
in a relevant sense, at least if we adopt the wave theory of light.

Calling some experiment “crucial” means giving it a special theoretical status. As
Lakatos often put it, the term “crucial” is an honorific. An experiment is crucial if
it forcefully exhibits some important theoretical principle. These will necessarily be
theory-bound. When Whewell says that Young’s work “certainly ought to have con-

13 See Worrall (1976) for extensive analysis of Young’s experiments, their reception, and their status as
crucial. See Arago (1857) for a translation of his encomium.
14 On this episode and the problems with the folklore, see Worrall (1989).
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vinced all scientific men of the truth of [the wave theory]” (1837, p. 406) we should
disagree on a historical reading of the claim: the wave theory was severely underpow-
ered before Fresnel gave it a mathematical underpinning, and the emission theory had
plenty of other successes. Butwe can also readWhewell—andArago, in his encomium
of Young—as claiming that Young’s experiments isolate one of the fundamental prin-
ciples of the wave theory, and this is true. If only Young’s contemporaries had access
to Fresnel’s developed theory (the sentiment goes), they would have realized the supe-
riority of the wave theory once they were given the key empirical input of destructive
interference. And now that we have this empirical result, the opening move for any
defender of the wave theory ought to be an appeal to one of the experiments above,
even though none of them logically compel agreement with the wave theory. More-
over, this is compatible with a multiplicity of crucial experiments. Arago was right in
1838 to say that an experiment like Foucault’s would be crucial, even though he had
pronounced Young’s experiment crucial six years earlier. Finally, like most honors,
the title of “crucial experiment” is granted at least as much to increase the prestige of
the granting institution as to reward the recipient. The wave theory is superior because
it can cleanly account for the above experiments, and these experiments are important
because they demonstrate important physical principles of the wave theory of light.

The AB effect is crucial on the topological view in much the sameway that Young’s
double-slit experiment is crucial on the wave theory of light. The central principle of
the topological view is that the electromagnetic field is represented better by a principal
connection than a field strength tensor at the classical level, and one difference between
these representations is clearly evinced in the AB effect. A necessary condition for this
difference to arise is that the region under consideration be topologically nontrivial,
like the region outside amagnet. Experimental setups with imperfect shielding are still
instances of the AB effect, because they exhibit the difference between the principal
connection interpretation and the field strength interpretation. Later work by Wu and
Yang (1975) was necessary to consolidate the topological interpretation of the AB
effect and to draw further conclusions based on it, much like Fresnel’s work was
needed for the wave theory of light. But in light of this work, the empirical input of the
nontrivial phase in an AB experiment is the grounds on which the topological view
advises adopting the principal connection interpretation.

If we adopt the topological view then we can appeal to the AB effect for justi-
fication elsewhere. For example, consider the problem of quantizing gauge theories
like electromagnetism. In his attempts to quantize general relativity Feynman used the
simpler case of gauge theories as a testing ground. In both cases Feynman found he
needed the ad hoc introduction of an “artificial, dopey particle” (1963, p. 710) to obtain
physically sensible answers when calculating one-loop contributions to the dynamics.
Subsequent work by Faddeev and Popov (1967)—later refined by Becchi et al. (1976)
and Tyutin (1975)—showed that Feynman’s computations could be extended to the
general case if we demand that the quantization procedure treat gauge-equivalent con-
figurations in the sameway. The topological view offers a justification for this demand:
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we know already from the AB effect that gauge equivalence is the correct substitution
relation for gauge potentials, so our quantization procedures should respect this.15

From this perspective, Earman’s complaints about the “bastardized” setting of the
AB effect lose their sting. The AB effect concerns the behavior of an electron in an
electromagnetic field, where the electron is modelled as a quantum particle and the
electromagnetic field as a classical field. Earman remarks that this setting is “infe-
licitous”, and that a “more appropriate context would be relativistic quantum field
theory” (2019, p. 2016). Presumably the thought is that the AB effect is an issue in the
foundations of physics, and therefore we should set our discussion in our most funda-
mental description of the system at issue. But on the topological view, the AB effect
is part of the justification for our more fundamental theory of the electromagnetic
interaction, because it constrains the classical limit of theory. And even if we forget
about justification, QED presupposes that the principal connection interpretation is
right and the field strength tensor interpretation wrong. QED lacks the ambiguity that
Aharonov and Bohm set out to resolve, so we can’t devise an experimental context in
which the AB effect would be informative.

This conception of the AB effect as a crucial experiment also helps identify why
the topological view and Shech and Earman so often talk past each other. On the
topological view, the AB effect demonstrates the principle that equipotent but gauge-
inequivalent potentials represent distinct states of the electromagnetic field. The only
relevant features of such a demonstration are those required for gauge equivalence and
equipotence to come apart—namely, topological non-triviality. Shech and Earman’s
diagnoses of the topological view’s problems presume a kind of holism on which
we can only speak of one spacetime region, while the topological view assumes that
the relevant theories are separable. Talk of infinite potentials and boundary conditions
focuses on precisely the inessential features of the effect. Nomatter what we say about
self-adjoint implementations of the Hamiltonian, and even if we say nothing at all,
we will still be able to justify the usual approach to QED by appeal to the principle
established by the AB effect. In short, the topological view gives a context such that
the AB effect can serve as a premise. Shech and Earman’s treatment makes the AB
effect the answer to a question, instead. And it’s hard to see why it’s a question of any
interest.

5 Conclusion

I have sought to defend the topological view of the AB effect against Shech and
Earman’s criticisms and to argue that the AB effect doesn’t involve idealization in
any particularly interesting way. It is not relevantly analogous to the debate over the
thermodynamic limit in statistical mechanics, because it involves no limits. You might
model some features of an AB experiment using infinite limits. For example, you
might model the screen or the shielding of the electromagnetic source as an infinite

15 The chiral anomaly is in many ways a better illustration of the topological view’s use of the AB effect,
since it concerns QED more directly and makes more detailed used of the principal connection structure
that’s so important to the topological view (Bertlmann 1996, Ch. 8). However, the technical overhead for
this example is beyond the scope of this paper.
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barrier. But these aren’t part of the AB effect. This is clear from the fact that the exact
same issues arise when modelling the screen in an ordinary double-slit experiment for
an uncharged particle. Infinite barriers in quantum mechanics may involve interesting
questions of idealization, but the AB effect doesn’t involve infinite barriers. If there’s
any sense in which the AB effect involves an idealization, it’s an idealization at the
framework level. If the AB effect is to do its job in guiding the construction of a
quantum theory of the electromagnetic interaction then itmust appear in a regime that’s
well-modelled by a theory we understand, like non-relativistic quantum mechanics. If
we adopt a more fundamental theory, like QED, then the semiclassical setting of the
AB effect is an idealization of a kind. But if we adopt QED then we’ve answered the
question to be posed of the AB effect.
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