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ABSTRACT Two versions of the GRW “hitting” model for explicit wavefunction collapse, which
are consistent with preserving the symmetry of the wavefunction, are considered. The predictions of
the models for excitation of bound systems are calculated and compared with experiment and with
the predictions of other similar models. It is shown that our preferred model strongly supports the
idea that collapse, if it occurs, has gravitational origin.

1. Introduction

In the original explicit collapse model of Ghirardi, Rimini and Weber (GRW)
[1], the collapse was caused by a discrete, random, hitting process. Later, using
methods previously developed by Pearle [2], continuous versions of the model were
constructed.

A problem with the pioneering GRW model was that it did not respect the sym-
metry in the case of identical particles. This problem was solved for the continuous
collapse models 3], but there does not appear to have been any complete discussion
of how to treat identical particles in a hitting model. The first purpose of this paper
is to fill this gap.

A further motivation comes from the work of Pearle and Squires [4] where it is
shown that the original model, if applied to the quark structure of hadrons, gives an
unacceptably large rate for nucleon decay. The continuous versions, which respect
the symmetry, have two features which enable them to evade this difficulty. One is
that there is an extra factor, related to the density of particles, in the collapse rate
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for a pointer, and the other is that if the collapse is made to happen symmetrically
over all particles, and if it has a rate proportional to the mass (as might be expected
if it is caused in some way by gravity [5]), then in lowest order the excitation rate
of bound systems is zero. Here we want to investigate further the origin of these
features, and to see whether similar things arise in discrete models.

In the next section we briefly review the original GRW “hitting” model, paying
particular attention to the extent to which it is unique. Then, in the next two
sections, we consider two alternative methods for making the model consistent with
maintaining the symmetry of the wavefunction for identical particles. In section
5 we introduce a hitting process that is dependent on the masses of the particles
concerned. The consequences of the various models for collapse of a “pointer”, and
for the excitation of a bound state are then calculated. Finally, in section 8, we give
the conclusions of this work.

2. The GRW model

Consider an N-particle system with wavefunction given by ¥(qi,qa,....qn) =
¥(q). At random times this is hit so that it changes instantaneously according to

f(x —q;)¥

ol = .
U — Py ) (2.1)
where the function f is localised around the zero value of its argument. Following
GRW we choose this function to be a normalised gaussian

f(z) = (g) : exp(—%zz), (2.2)

where the parameter B gives the order of magnitude of the radius of the collapsed

wavefunction:
1
a=/=. 2.3
; (23)

The function R is chosen so that the hitting preserves the normalisation of the
wavefunction. Hence

IR = [ Pa.dan|fx - a) . (2.4)
It follows from these equations that the R functions are normalised, i.e., that
/IRj(X)[2d3X =1 (2.5)

Now we suppose that the probability of hitting particle j in time dt is given by
A;dt, and that the probability distribution of the hitting positions x is given by the
function Pj(x). Then the density matrix at time t + dt is given by

plt+dt) = (1= 3 Ad) (p(t) - —[H p t)]dt) + 3 Apltdt (2.6)
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where p]f,l is the density matrix after particle j has been hit. From eq. (2.1) this is
given by
Pi(x)f(x — qi)¥(@)" f(x ~ q;)¥(q)
’ d3 J
(a'lpfla) = / IR,(P 2.7

Eq. (2.6) leads to
dp i
3¢ = "l - YAl - ol (2.8)

The model is now completely determined when we impose the requirement that

position averages are conserved, i.e., that the diagonal elements of the density matrix
are unchanged by the hitting. Hence, from eq. (2.7), we need

Y / Px P(X)I(I{(();_Pq])) —Z A (2.9)
J

Since this equation must be true for all q, it follows that P is proportional to |R|?,
and so, because eq. (2.5) shows that |R|? is already normalised as a probability, that

Pi(x) = [R;(x)I%. (2.10)

3. A Hitting Process for Identical Particles

We now suppose that all the N particles are identical, and that the uncollapsed
wavefunction, ¥, is correctly symmetrised (or antisymmetrised). Then the obvious
generalisation of eq. (2.1) that preserves this property is

v ol = ————F(x}'é:‘)})q’, (3.1)

where

F(x,{ai}) = % ZJ: (g) % exp (—g(q;' - x)2) . (3.2)

The factor R is again included to preserve the normalisation of ¢¥. The necessity
of the factor C will be clear below.

It should be emphasised at this point that later we will take N = N,,, where N,
is the number of particles in the universe. This means that a given hit can occur
anywhere in the universe. We denote the probability of such a hit in time dt by A, dt,
where clearly A, will be very large.

The evolution of the density matrix is now given by

p(t+dt) = (1 — Audt) (p(t) - ;—;[H, p(t)]dt) + Aupfdt, (3.3)
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which leads to 2 )
p :
55 = Al = Ml = o). (34)

In these equations p¥ | the density matrix after a hit, is given by

<alpla > [ oxPOR WM P @)U (5

The requirement that the probability predictions of quantum theory are pre-
served again means that the diagonal elements of the density matrix must be un-
changed by the collapse. This implies

/ Py POOE () _ (3.6)

[R(x)?

Substituting the form for F' from eq. (3.2) and using [(qj — x)? + (qx — x)?] =
(2(x - §(aj + qr))’ + 3(q; — qu)?] we find

%2 (g)%/ s ”;)(( ))|2 Zew ( [X - %(Ob’ + Qk)r) exp (-g(%‘ - Qk)2> =1

(3.7)

The last equation shows why C must be a function of the q variables. If we

require that it only depends on differences between the q’s (which seems to be a
reasonable physical requirement), then we must again choose

P(x) = [R()P%, (3:8)

analogous to eq. (2.10). Then eq. (3.7) becomes

1

cda) [E exp (__(q, o) )r. (3.9)

N?

4. An alternative hitting model which preserves the symmetry

The extra complication in the hit wavefunction of the previous section arises
from the cross terms in, for example, eq. (3.7). We can, however, eliminate these
terms if we replace egs. (3.1) and (3.2) by

G(x, {ai})¥

—_ H:
Yo t= "

(4.1)

where

: :
G(xah) = =7 (é) [Z_ exp (-Ala; - x)z)] : (42)

Here there is no need for any extra factor analogous to the C in the previous section.
If we have a system (s) isolated from the rest of the universe (u), then we can
write

[XJ: exp (—B(x — qj)z)] ; = LZ exp (—B(x - qj)z)} %

jEu—s

H
+ l_’ exp (—ﬁ(x - q,')Z)] , (4.3))
€s

since one of these terms will be zero for all values of x. If we assume that q; = q;/
for i ¢ s, then we can write the hit density matrix,f d®xP(x)|¥¥ > < 0¥}, as

<qllpflq>= ( ( ) /d3 LZexp( B(x —q;) )] E [’ exp (_ﬁ(x_qj,)z)jli
€s
7‘1’; (g)’ /dsx L?;:_,ex" (=Ax - qf)z)b <dlpla>.  (44)

The second term in this expression may of course be evaluated exactly, giving a value
of ﬂ"N—N-'- where N, is the number of particles in the universe and N, is the number
of partlcles in the system.

5. A mass dependent symmetrical hitting model

As we shall see below there are reasons for believing that the collapse model
should treat all “matter” particles (fermions) in a symmetrical way, apart from a

dependence on the mass. In order to permit this dependence, we will replace eq.
(3.2) by

Pt = GF ey (‘;’)p (-5t - =7). (51

where a; is the “coupling” of the j th particle, and the sums now go over all particles.
The simplest mass dependence, which would be expected for a gravitational effect,
comes from taking o = %’5 Later we will consider atomic systems where we have
electrons that couple with strength « and nucleons with strength 1 — a. With eq
(5.1) as the hitting function, eq. (3.9) becomes replaced by

< {Eaa:exp( f( qu)]_%- (5.2)

Nz Y
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Similarly we shall replace eq. (4.2) by

3 3
G(x,{q.-n:-;—%(g) [Za,-exp(—ﬂ(qj—xﬁ) : (5.3)

6. Pointer Collapse

We now wish to compare the rate of pointer collapse in the various models.
In particular we shall compare the original GRW model, the continuous localisation
model (CSL), with mass dependent collapse (see ref.[4]), the symmetric hitting model
of section 3, modified as in section 5, (SHM1) and the symmetric hitting model of
section 4, again modified as in section 5 (SHM2).

We assume that the pointer is in a state that is a superposition of two macro-
scopically distinguishable states, and that it is isolated from the rest of the universe.
Thus we write:

¥ = (%)%(d)l + 1/)2)Xuniverseo (61)

We now consider the collapse rate in various models.
1. GRW.

Each particle is hit independently of all of the others. Therefore the rate of
pointer collapse is given by

Ap = NpA, (6.2)
where N, is the number of particles in the pointer.
2. CSL
We quote the result obtained in [3],
Ap = (NpDna)A, (6.3)

where Dy is the particle-number density of the pointer. Here we see the extra factor,
noted in §1, which makes the pointer collapse faster.

If we consider the model modified as in §5, then we must sum over all particles
with the o factors included. In particular, if we have electrons with coupling o and
nucleons with coupling 1 — @, then for a pointer made of one element (Z,A), this
becomes

A = (NpDya*laZ + (1 - a)AP) A, (6.4)

where N, is now the number of atoms in the pointer, and Dy is the density of atoms
in the pointer.
3. SHM1

As the pointer is isolated from the rest of the universe, we may rewrite eq. (3.9)
in the form

1

-3
C(?) = L > exp (—g(q; - Qk)z) + 3 exp (——g(qj "Qk)2>:\ . (6.5)

Nz Jk€u—p 1kep

where the first sum is over all the universe apart from the pointer and the second
sum is over the pointer. Clearly we can approximate this as:

61'\(/(;) = (El:)% [1 - 2>13., > exp (—g(q;' —m)’)] , (6.6)

skep

where
Tu= Y exp (—%(qj - Qk)2> . (6.7)
jkeu

This is a large, and approximately constant, number.
From eq. (3.5) we then have

1 1 1
< q/lpfla >=5- [1 -5y 2 ai- qk)] [1 - o5
k' u j,kes U

PI-ICHAS Qk’)}

JkEs

x (Eu + ) ®(q; ~ Qk’)) < d'lplg >, (6.8)
j.k€s
where ®(z) = exp (—gzz) .
Taking into account that I, is very large, and using eq. (3.4), we obtain for the
equation giving the evolution of the density matrix:

3 < qllpla > i A
= = / -~ <q
5t h<q|[H,p]Iq> 2<01!plq>
x 3 [®(q; — k) + &(qif —ar’) — 2&(q; ~ax’)].  (6.9)
jkes
where we have written N
5. (6.10)

The above equation for the evolution of the density matrix is identical to that
obtained in CSL, and hence the rates for pointer collapse in SHM1 will be those of
eq. (6.3) and (6.4).

It is worth noting that the SHM1 model does allow the possibility of a novel type
of superluminal signalling. This is because the effective collapse rate, proportional
to A, depends on the quantity Ty, which can be altered by changing the density
anywhere in the universe (at least in a finite universe). If such signalling is considered
unacceptable, then we would have to reject this model.

4, SHM2

As the pointer is in a superposition of two macroscopically distinguishable states,
the first term in eq. (4.4) is essentially zero, since one of the factors will vanish for
each value of x. Using eq. (3.4), and ignoring the Hamiltonian term, we obtain

o< q >
—qa%l—q— = AN, < g/lplq >, (6.11)



where we have written

Au
A= — .
N (6.12)
analogous to eq. (6.10). Therefore
Ap = Ny, (6.13)

With the modification of §5, we obtain a similar expression;

Ap =D ajh, (6.14)

P

where now we have defined \
A= 6.15
S a; (6.15)

In particular, for a pointer made of atoms (Z,A) with the coupling « for electrons
and 1 — « for nucleons, then

Ap = (Vp[Za + (1 — a)A])A. (6.16)

We can see that these values for the rate of collapse of a pointer have the same form
as those in the GRW model (i.e. linear in the number of particles).

7. Bound State Excitation

In the previous section we were concerned with the effect which we want to obtain
from our model. It thus gives a lower limit to the collapse rate. Now we consider an
effect which has not been observed, and which therefore gives an upper limit.

We suppose that the particles belong to an isolated bound state, with spatial
separation much less than a, as for example in an atom. Initially the system is in its
ground state ¢p. We consider the rate of excitation to an orthogonal excited state
4, in the various models. Since the q; are small, we expand to lowest order in B¢?.
1. GRW

The expression for the rate of excitation is given by
PV L )
R(8) = 22501 < dlaulyo > I (7.1)
k=1

2
This has the order of magnitude % (a—aﬁ) , where ag is the radius of the bound state.
2. CSL

For the continuous case, the corresponding expression to eq. (7.1) is

/\IH N, 2
R(¢) = Ti < 91 aparlo > % (7.2)
“ k=1
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where the sum is over all the particles in the bound state. If the a; are all equal, the
effect is dominated by the electrons, and the excitation rate is similar to that given
above for GRW.

A very different situation arises if we choose a; = -"1"7;, in particular for atoms,a, =

m and a, = 1 — ae. Then

me+mp

2
Ro) = (22) 221 < dlQio > I, (13)

where Q is the centre od mass operator and M, is the mass of the bound atom.
This last expression is equal to zero, as the centre of mass operator cannot excite
the internal atomic states. Thus there is no excitation to lowest order in the mass-
dependent case. The next order gives rise to an excitation rate of order A (“—an)
3. SHM1

As we noted above, the equation for the evolution of the off-diagonal elements of
the density matrix is identical to that obtained in CSL, and hence the expressions
for the rate of excitation of a bound state with be as in eqgs. (7.2) and (7.3) above.
4. SHM2

To calculate the rate of excitation, we use eq. (4.4). Whereas the second term
can be evaluated exactly, we need to make an approximation to proceed further with
the first term. With Iy = 3 ¢, exp (—ﬂ(x - q]‘)z), we may write

. 3
T =exp (—-g,ﬂ) ['Z exp (ﬂ(qu -X — qf))] . (7.4)

€3

The gaussian exp (—gﬁ) ensures that only terms with z < a will be significant.
Since we are concerned with a system with spatial separation much less than a, e
g < a, we have (z¢) < a and hence f(zq) < 1 so we can expand the exponentials:

€s

1 ﬂ %
T2 = exp (—§zz> [’Z (1 +8(2q; - x - qu-) +282(x - qj)z)] . (7.5)

We are only interested in terms that give a contribution to first order in ¢?. We
similarly expand the square root to give:

1 1 ﬁ 1 ﬁ ; ,32
T2 = NZexp <—§12> 1+8Qs x - ]—V:]% (T):qu - A(x- %‘)2) - 7(" ) Qs)z] :
(7.6)
This can be simplified by making use of
8\ ?
3 A2 2 _ L o
(;) /d x(x - qj)" exp (—51 ) = %‘Ij- (1.7)
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Eq (4.4) then becomes

<qlpfla> N.—-N, N, g\ g 2
s = e () #xe (0 (1- G- o)

_ N\ B 2
-1-(F)f@-ar (7.8)
We can substitute this expression back into eq. (3.4) to get
< q > t NS
%— = -7 <alHplla>-——(Q- Q) <alela>. (7.9)

To calculate the rate of excitation,R(¢) = Qf%’%"ﬁl, we must multiply both sides
of eq (7.10) by < ¢|g/ > < q|¢ >, and integrate over q and g/, leading to:

A N,
R#) = gl < 912 x> (7.10)
s =1

where we have included the factors a; of §5. Apart from the factor Ng,which is 2 for
hydrogen, for example, this is the same as the rate in CSL (or SHM1).

If we now denote the ratio of the excitation rates to the pointer collapse rates by
T'cst and T'gy o, for the two models, then we find that

Test N,

= , 7.11
Psppz  DnddlaZ + (1 - a)4] (T11)

which will be very small, of order 1078 when we consider a carbon pointer and take
a = 107% cm. This is the reason why the constraints on the parameters of SHM2 are
much tighter then for those of CSL.

Of course eq. (7.11) does not hold in the special case where the a;’s are propor-
tional to the mass because then, as noted in eq. (7.3), the lowest order contribution
to R(¢) is zero.

For completeness, we now consider the next order term in this special case.

The calculation for CSL and SHM1 is straightforward, leading to

A 3 add Mgk (2 2 . 2
R(¢) = ﬁ/d ad g/ ]ka—% (a2ae’® +2(a; - aw!) )

x < glar>< g ><tolg><al¢>.  (7.12)

1
For the case of SHM1, we have already expanded £7 as far as we require. Only
terms which contain both primed and unprimed coordinates will give a contribution.
Further, we may neglect any occurrence of the centre of mass, as it does not excite
the internal states. The next order will give terms that must be multiplied by SQ - x
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to give rise to §% terms after integration, and hence may be neglected. The mass-
dependence introduces a factor % into the sums in eq. (7.5), and N, — ‘;’;-. This

1
means the relevant part of £ can be written

L M,
%= (m_o) exp (—gzz) {1 - E—i}e (gqu - B (x- Qj)z)] . (7.13)

We can make further use of eq. (7.7) to simplify the expression obtained, together
with

H
(é) /d3x(x - qj)%(x - qut)? exp(—Pz?) = ‘_1% (q]?qk/z +2(q; .qk,)z) (114
leading to
_ ,\ﬂ2 mo 33 mimg, ,
#) =5 (5z.) [ £ qf%( 2w

x < dla/ >< gl >< holq >< qé > .  (7.15)

To get a numerical result, we need to substitute explicit forms for the wave-
functions into egs. (7.12) and (7.15). For simplicity we will take the system to be
a solitary hydrogen atom, and consider the collapse happening to the proton and
electron. We calculate the rate of excitation to the lowest excited states, the 25 and
2P levels. The m=0 state of the 2P level is not excited here, as it is to first order in

GRW.

GRW CSL/SHM1 SHM2

To 25 level 0 0231062 (=) af  0.3700p25p (22)” at
To 2P(m=0) level 027728 (Z¢)af 0 0

To 2P(m==1) level 0 0267082 (22)*af  1.070A25p (me)” o8

If we take my = m, + mp as suggested before, then the extra factor Ff in

SHM?2 is unity, and the excitation rates have a dependence on A3? (%)2 a}, for both
CSL/SHM1 and SHM2.

8. Conclusions

Provided we can naively extend the GRW model to quarks then the original form
appears to be ruled out by the experimental data on nucleon stability [4] (by at least
6 orders of magnitude). It is probably also ruled out by the stability of Germanium
atoms [6].



The CSL model acting independently on electrons or protons is just on the margin
of being possible with regard to the Germanium data [6]- being saved by the extra
density factor in pointer decay. The CSL model in the special case where the a’s are
proportional to the mass is certainly not ruled out by any data, the combination of
the density factor and the need to go to higher order to obtain particle excitation
means that such excitation is unlikely ever to be observed.

As we have seen the first form of symmetric hitting model has predictions essen-
tially identical to those of CSL.

For SHM2, we follow Collett et al.[6], and consider a pointer consisting of a
sphere with diameter ~ 4 x 10~%cm. We require the collapse time,r = XI; (see [6] for
discussion) to be less than 0.01 sec. The theoretical value is given in eq. (6.16) for
the case when the separation ! is greater than a,

N T l>a

TS NeZ¥(-a)4 =© (8.1)

where T' = %
We must also consider the case where the separation is smaller than a. Then we
can write

exp (—B(x — ai)?) = exp (—B(x — qi)?) exp (— %) exp (2B(Q/ — Q) - (x — q1))-
(8.2)
As |Q/ — Q| =1 < a, we can neglect the final factor in this expresssion. Using this
expression in eq. (4.4) gives

N, 2
< a/lp|q >= (1 - ]—\,i (exxa (—ﬁ) - 1)) < qflplg>. (8.3)

Modifying this expression to include the factor a of §5, and using eq. (3.4) gives

2Ta?
T ,
NP[aZ + (1 — a)A]

a>4x107% 1 < a. (8.4)

Supposing that the sphere is made out of carbon, N = 3.8 x 10° atoms, Z = 6 and
A = 12, the two constraints eqs. (8.1) and (8.4) become

T <23 x10%2 - a), (8.5)
Ta* <01(2-a), a>4x10°=1 (8.6)
We also have an experimental constraint from the Germanium data [6],

2 2
Ta® > 1.1 x 10" (1 n ’—"-) ((1 - L) (74 — 42a)7". (8.7)

My me + My
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The inequalities (8.6) and (8.7) impose very strong limits on the value of . In fact,

o

Ir71/(m-+-M) B

1] < 0.03. (8.8)

Given this result, it would be surprising were o not equal to ﬁ, i.e. mass-
proportional coupling. In other words in this model, which appears to be the most
natural hitting model consistent with preserving wavefunction symmetry, the experi-
mental requirements force a mass dependence suggestive of the effect being ultimately
connected with gravity.

With this particular coupling, the first order excitation vanishes, and we have a
new order of magnitude constraint from the second order

Ta* > 10776, (8.9)

The limits from egs. (8.5), (8.6) and (8.9) are also shown in Fig. (1), which
may be compared with the corresponding diagram for CSL (see [6]). This figure also
shows that the GRW value T = 10'® sec, is forbidden in the SHM2 model by some
8 orders of magnitude.
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Figure Caption

Figure 1. Graph of the boundaries imposed by the “theoretical constraints”, eqgs. T T T T T T
(8.5) and (8.6), in the log T(sec)-log a(cm) plane, for the case a = —2«—_  The

met+mp”
allowed region lies below each boundary. Also shown is the Germanium experimental

constraint boundary, eq (8.9), with the allowed region lying above the boundary.
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