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1. Introduction

An r.e. set A is called miftotic if there exist a pair of disjoint r.e. sets 4, A,
with A;UA,=A (in this case we write A,L1A;=A) such that A, =1A4,=1A.
We refer to such a splitting as a mitotic splitting of A. Lachlan [10] was the first
person to show that not all r.e. sets are mitotic. More extensive investigations
into (non)mitoticity were provided by Ladner [11,12] who constructed various
types of nonmitotic r.e. sets. He also proved the following very interesting
theorem: An r.e. set A is mitotic iff A is autoreducible where A is called
autoreducible (Trachtenbrot [20]) if there is a functional & such that, for all x,
®D(A U {x}; x) = A(x). Following Ladner’s investigations, there have been several
other results concerning the existence of nonmitotic r.e. sets. One example is
Ingrassia’s [8] result that the degrees containing nonmitotic r.e. sets are dense in
R, the r.e. degrees. ‘

The interest in Ingrassia’s result is that nonmitotic r.e. sets do not live in all
nonzero r.e. degrees. The most difficult of Ladner’s results establishes this. That
is, in [12] Ladner constructed a completely mitotic nonzero r.e. degree a, where a
is completely mitotic if all of its r.e. elements are mitotic. '

Our goal in this paper is to investigate the class of completely mitotic degrees.
Save for Ladner’s one construction of a low,—low (as P. Cohen observed in [12])
completely mitotic r.e. degree there are no other existence theorems for these
degrees. In particular one of the main open questions here was whether or not
there exist (even) low nonzero completely mitotic degrees.

Ambos-Spies and Fejer [2] have shown that Ladner’s construction cannot be
used to answer this, since his construction automatically gives a contiguous r.e,
degree (namely an r.e. degree consisting of a single r.e. wtt-degree). In [2] they
showed that if a0 is low and contiguous then a contains a nonmitotic r.e. set,

* Portions of this research were partially supported by the National Science Foundation.
Additionally Slaman was partially supported by a Presidential Young Investigator Award.

0168-0072/89/$3.50 © 1989, Elsevier Science Publishers B. V. (North-Holland)




120 R.G. Downey, T.A. Slaman

In Section 2 we show that no low promptly simple degree a is completely
mitotic. (We remind the reader that — with the usual notation — a co-infinite r.e.
set A is called promptly simple if there exists a recursive function f such that

Ve (|W.| == 3%, x (x € W, 00 & X € Af(y)).)

By [4] the promptly simple degrees are exactly the noncappable degrees and so
no low noncappable degree is completely mitotic. In Section 2 we also show that
lowness cannot be removed from the hypothesis of our first result, by constructing
a promptly simple completely mitotic r.e. degree.

In Section 3, using a completely different construction (which doesn’t blend
with promptness), we show that there do however exist low completely mitotic
nonzero r.e. degrees. The strategies involved are sufficiently flexible that we can
modify them to show that there also exist high completely mitotic degrees. We do
not know the exact classification of the jumps of completely mitotic degrees but
results of Cooper [5] and Shore [15] would seem to suggest that it does not
include all the degrees r.e. in and above @' (and we conjecture this).

In Section 4 we prove some further limiting results on the distribution of
completely mitotic degrees. Our results here are that

(1) there exist low,—low degrees bounding no nonzero completely mitotic r.e.
degree,

(2) if a is r.e. with a0, then there exists a nonzero r.e. predecessor b of a
such that every nonzero r.e. degree below b contains a nonmitotic r.e. set, and

(3) finally we give a new proof of Ingrassia’s theorem and also show that the
low completely mitotic r.e. degrees are nowhere dense in the r.e. degrees. That
is, we show that if a<b are low r.e. degrees, then there exist r.e. degrees e, f
with a<e <f<b and such that every r.e. degree in [e, f] contains a nonmitotic
I.e. set.

We do assume some degree of sophistication of the reader (in view of the
material being presented). Many of our arguments are ‘tree of strategy’
II,-guessing ones and we assume the reader completely familiar with this
technique. We refer him to Soare [18, 19] for expositions of this technique. The
main thrust of our arguments will thus be to discuss the strategies rather than the
formal details. Some standard notation will be that ¢ and 7 denote guesses
(mostly members of 2=“). We write the tree order as o<, 7 and mean that (for
2=%) either o7 or 3y (fOc o and flc 7). At stage s all computations are
bounded by s — 1. All other notation and terminology is completely standard.

The authors wish to thank Carl Jockusch and Mike Stob for helpful discussions
regarding this material.

2. Prompt simplicity

As a first step towards the classification of the completely mitotic degrees, in
this section we shall analyse their relationship with the promptly simple degrees.
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Our interests were aroused by the following partial answer to the question of the
existence of low completely mitotic r.e. degrees.

(2.1) Theorem. No low promptly simple r.e. degree is completely mitotic.

Proof. Let A be low, r.e. and promptly simple with witness function p. That is,
we have a recursive enumeration A =|_J, A, such that

(22) ”'Vel = 00— HwS, X (x € We,ats N Ap(;))-

We shall build B=1A with B r.e. and nonautoreducible. By Ladner’s [11]
result, B will thus be nonmitotic. We must satisfy the requirements

R.: Ix(P.(BU {x};x)=B(x)).

The argument we shall give is finite injury, and it will suffice to discuss the
strategy for the satisfaction of a single requirement. To make B=1A we shall
build B from coding markers {I'(y, s):y € w}. At each stage s, I'(y, §) rests on a
member of B;. We shall build a recursive strictly increasing function g and shall
ensure that the coding markers satisfy the rules '

() I'x,s)<I'(x+1,s),

(Ii) let z = HX (x EAg(s-l—l) '—Ag(s)), then
(a) I'(z,s)=TI(2,s+1) for <z, and B,,, = B, U{I'(z, 5)},
(b) Viz=z(I'(Z, s +1)>TI1(z, s)). :

Clearly, these rules ensure that B =1 A; the details are quite standard and are left
to the reader.

The fundamental idea for satisfying the R, is the following. Let I(e, s) =
max{z: Vy <z (P,,(B; U {y};y) = B,(y)}. Suppose that we see, at stage s,

(23) ¥y EAg(.H-I) '—‘Ag(_,.) with F(y, S) < l(e, S).
Suppose further that it is lucky enough to be a stage such that also
(24)  Ayply—1]=A[y-1].

Then we can win the R, requirement as follows. We set B, = B, U {I'(y, 5)} and
then reset ‘

r@,s) ity<y,
b T{F, $)+s» o.thCI'WiSC,

@5 TG, s+1) ={
where {b;,:i € w} lists in order the members of B,. The crucial point here is that
by (2.4) and (2.5) we have ensured that
(26)  Ba[u]l=B[u] where u=u(®, (B, U {I\(y, s); Iy, s))).
Therefore by (2.3) and definition of I(e, 5), we see that

D.(BULT(y, $)}; T'(y, 5)) = BAI'(y, 5)) =0+#1= B(I'(y, 5)).
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To complete the proof, it thus suffices to describe how we shall achieve
(roughly) (2.3) and (2.4). To achieve (2.3) we build an auxiliary r.e. set V, (whose
index is given by the recursion theorem) and use the prompt simplicity of A to
ensure that (2.3) occurs infinitely often. Specifically, at any stage we see
l(e,s)>TI(y,s) and also y ¢ Ay, and y ¢ V. ;, we enumerate y into V,, ;41— Vo ;.

Now we appeal to the Slowdown Lemma ([4, Lemma 1.5} or [19, XIII, Lemma
1.5)) to see if A ‘promptly permits’ on y. That is, using the recursion theorem we
have a recursive function g defined by

Wq(e) = {JC: (VS)[x € Ve.s - W‘I(e),s]}'

The Slowdown Lemma says that W,., so construed, has the property that
V. =W, and an element that occurs in V, occurs strictly later in Wy,

Thus we compute the least stage t>s such that y € W, and then see if
y €A, I y ¢ Ay do nothing else except continue. If y € 4, it must be that
p(t) > g(s) and we can set g(s + 1) = p(¢) to ensure that (2.3) holds. The prompt
simplicity condition (2.2) and the fact that A is infinite ensure that “y e A,(,”
must occur for infinitely many y (if I(e, 5)— o, say).

Thus, we have reduced our problem to showing that at least once within the
stages where “‘y € A, option occurs, we can also arrange that (2.4) occurs.
Actually, we need only ensure that (2.4) occurs for the least y € Agii1y— Ages).-
To do this we use the lowness of A. As with (2.3) we shall construct auxiliary r.e.
sets Wy with k recursive. This time W, will be a set of canonical indices of
finite sets. By Soare [17], as A is low we have C<i#' where

C = {e: (3u € Wy,))[D, < A]}.

By the limit lemma there is a recursive function k{e, s) such that Ve (k(e)=
lim, k(e, s)). By the recursion theorem we can use k in the construction. Now we
wait till we get a “y;€A,,” case from (2.3). At such a time we test if
Agsly — 1] = A[y, — 1} by enumerating u into our test set W), s.+1, Where D, is
the set of § € Ay with $ <y,. We search for a stage #; =>g(s), p(#) such that
either D, N A, #0 or k(e, t;) = 1. If D, N A, #8, then let y, be the least number
in A, — A, Notice that y,<y, as D,, N A, #. In this case let 4, denote the set
of § €A, with <y, Find a stage #,># such that either k(e t;)=1 or
D,,NA,#®. Continue as above until a y, <y, an index u, and a stage ¢, are
found with k(e, t,) = 1. Let y = y,. In this case we set g(s + 1) =+¢,.

We must note that y is the least number to occur in A, — A, and (2.3) holds
for y. What of (2.4)? We do not know that (2.4) holds, but since kfe, £)=1 it
appears that (2.4) holds (remember k(e, £) = 1 means it looks like A, [y —1]=
A[y —1] since k(¢) =1 means (Ju € W,,)[D, = A].). Thus we believe that we
have met R, unless we see that D, M A;5# for some # > ¢,. In this case we search
for a new y; from (2.3). The crucial observation is that we can wait for some stage
r>t with k(e, r) =0 and begin attacking R, anew. Note that R, cannot receive
attention infinitely often in this way since then lim, k(e, £} would then not exist
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(k{e, t) would change from 0 to 1 with each attack). The remaining details are
completely standard finite injury argument obtained from the above strategies
and are so left to the reader. O

It seems natural to ask if either hypothesis may be removed from the above. As
we shall see in Section 3 there are low completely mitotic r.e. degrees. As our last
result for this section we shall show that there are also promptly simple
completely mitotic r.e. degrees so both hypotheses are essential. The reader
should note that the strategies of Section 3 do not seem to combine with
promptness. Our construction here is more along the lines of Ladner’s original
one of [12].

(2.7) Theorem. There exists a promptly simple completely mitotic r.e. degree.

Proof. We shall build A=, A, together with auxiliary sets C,=J,C,, and
D, = D, , to satisfy the requirements

IJE: lml == as.!x (x € We,ats%x € As-l—l):
N.: @.(A)=V,&I(V,)=A implies
CUD, =V, A< C, and AsyD..

Here (&,, V., I.) denotes a standard enumeration of triples consisting of 2
reductions and an r.e. set. (Actually we shall be using a tree of strategies
argument and the builidng C, and D, for certain o € 2% with lh(o) =¢ + 1. We
discuss this further later.)

Of course, we must also make |A| =, but this causes no problem and can be
ensured in any of the usual ways. For definiteness we shall only ever choose
numbers larger than the e-th member of A, for the sake of .. We won’t explicitly
mention this further but assume it done implicitly.

The F; and the N, for e <j interact very strongly. For the sake of F; we put
numbers into A causing us to force numbers first into D, and then into C as we
describe in the ‘basic module’ (for the interaction of N, and F)) below. Let -

I(e, 5) = max{x: Vy <x [ /(Ves; y) = A(¥) &
Vz [z <u(Io(Ve,; ) P s(As; 2) = V. o(2)]]}
and
mi(e, s) = max{l(e, t): t <s}.

The reader should think of l(e, s) above as the ‘A-controllable’ length of
agreement. The basic module for a P, (for j>e) and N, — with I(e, s)—> o —
consists of the following steps. )

Step 1. Pick a prefollower y = y(e, j) =s, targeted for A. (The notation here is
that the “e” refers to N, and the *j” to P.)
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Step 2. Wait for the first stage s,>s, to occur with (e, s,) >mli(e, 5,) >y.
Declare y as e-confirmed and cancel all followers or prefollowers z targeted for A
with y <z (<s,). (These will be of lower priority.) Now set x =s,=x(e, j) as a
follower of P, targeted for A.

Step 3. Wait for the first stage s; > s, with I(e, 55) > mi(e, s5) = x. Declare x as
e-confirmed and cancel the (lower priority) followers and prefollowers z with
zZ>x,

Remark. At the end of Step 3 we have the situation described in Diagram 1
below.

" region 1 ' I' region 2 . I

—_

-

Yy X s
Diagram 1

Notice that the only number alive (i.e. follower or prefollower) between y and
$3 is x. Since we always assign followers or prefollowers to be the stage npmber,
we shall see that after stage 55 the regions 1 and 2 are fixed unless A4, [x] # A[x]
and region 1 is fixed unless A [y]# A[y].

Step 4. If at some stage s,>s; we see that W,, NA, =0 and there exists
z € Wi, With 2z >x (by convention z <s,), then we set A,,, =A, U {£|r<2
<54}, (An alternative here is to enumerate z and x into A, ,, — A,, and cancel all
lower priority prefollowers (=x). The extra dumping achieves a similar effect and
simplifies exposition. This idea is also used in [6].) Declare y as activated.

Step 5. Wait for a stage'ss > s, with I(e, s5) > ml(e, s5). The crucial observation
is that if we have held A,[y]=A,fy], that is A fs,—1]=A,][s,~1], then *
Ve,ss — Ve,s, must differ from V,, on region 2 of Diagram 1. We enumerate all
such changes into D, .., — D, ;.. (The other possibility here is that perhaps some
P i.e. x(e, k) for k < (of higher priority) has acted.) Now set A1 =AU {y).

Step 6. At the next stage s¢>s5 with I(e, s¢) >ml(e, s¢) —if no x(e, k) of
higher priority has acted — we will have seen a change in Ve,ss— Ve s, in region 1.
Such changes are enumerated into Ceser1 — Ce .- That is, we set Ceser1=C. ;U
(Vese = (Cose1U Dy s 00)) = CeyssU (Vo5 — Veys,). (If some x(e, k) has acted, per-
haps we are at Step 5 again.)

This process satisfies N, as follows: We wish to decide if z € A from either C, or
D,. Now we observe that z€A4,,,— A4, only if z is a follower, prefollower or
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some follower Z <z enters A at the same stage as z. It therefore suffices to argue
that both C, and D, can recognize entry of followers and prefollowers.

Suppose therefore, that z is a follower or a prefollower. Find a stage s =s(2)
by which z is cancelled, enumerated into A, or z is e-confirmed. First suppose z is
a prefollower. Let u=u(l_ (V. z)). By our remark after Step 3 of the
construction, z cannot enter A — A; unless V,{u] changes and so unless A s —1]

_changes. (In fact, A,[#] changes where £ = max{u(®, (A;;y)):y<u}.) We
claim that this cannot happen unless C, Ju] changes. But this is not too hard to
see, since the last change in any sequence of changes is always a C, change. The
intuition here is that z can enter because we enumerate it into A since its follower
goes in (at an earlier stage), or some follower 2 <z enters A causing z’s entry
into A (by dumping). In the latter case Z will then activate its prefollower § which
will try to cause a C, change. Eventually we must cause a C, change, because this
can only delay matters a finite amount of time. Thus to decide if z € A or not find
the least stage s with C, Ju]= C,[u] then z € A iff z € A,.

The D, case is similar. As z is a prefollower we can go to a stage ¢ > s such that
either z gets cancelled, enumerated or z gets a follower £ > z. Let § be the stage
where Z is confirmed or cancelled or enumerated. By essentially the same
argument we see that 2 € A iff D, Ja] # D.[i] where i = u(I, (V. 5 2)).

By Step 6 (i.e. delayed permitting) we can D,-compute if z € A as follows. Find
the least stage t; >s with I(e, t,) >ml{e, t;), and D, ,[d]= D,.[z]. Now find the
least stage £, with £,> ¢, and l(e, t,) > ml(e, ;). Then ze A iff z€ A,).

The case where z is a follower is entirely similar and left to the reader.

Cooperation

There are several problems concerning the cooperation of the various N.. In a
perfectly standard way we must arrange the N, with the usual IT,-guessing
strategy on a-tree. That is, we don’t know which I(e, §)— =, but equip followers
with guesses as to whether or not /(e, s)— o (as in a minimal pair construction),
so that the leftmost path gives the correct outcome. Thus “I(e, s)— " is
identified with those o €2=® with lh(0)=¢+ 1 and ¢=10. This changes our
sets C, and D, to C, and D, and if o is on the left-most = true path we ensure that
C, UD,=*V, and have the desired properties. In place of our notation x(e, j), if
x is a number it will have a guess o and an association T so that we write x(o, 7).
The intention is that lh(z)=j, lh(c)=e and o= (It will be the case that
=70 unless 0=1.)

Now the usual way we would implement this guessing idea for a single P,
cooperating with a single N; (j<e) is to have two versions of P,. One guesses
I(j, s)- = the other, of higher priority guesses I(j, s)— . Of course we only
appoint followers to P. guessing I(j, s)~> at stages when it appears correct.
Since there are eventually infinitely many ‘j-stages’ if I(f, s})— « eventually we
pursue the correct strategy.
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However, for more than one N, the problems are more subtle. Let us suppose
that 7=107101071, say and put 0,=10, 0,=1010 and o;=
approximation to the ‘a-strategy’ is to simply appoint a follower and a
prefollower to Ps with guess 7 at r-stages. That is at the first stage where 7 looks
correct we appoint to FP; a prefollower y with guess 7. Suppose F; requires
attention and we put x into A at stage 5. The intuitive content of the basic module
is that we wait until the next z-stage (so that all the 0,, 0, os-computations have
all recovered) and then add the prefollower y.

There is a very big problem with this. That is, suppose there is never again
another 7-stage. Perhaps o, and o3 are strictly left of the true path and there are
never again (even) any o,-stages. In that case our actions don’t matter to o5 and -
o, but really do maiter to o,. After all perhaps o, really is on the true path and
since the length of agreement corresponding to ¢; ({(oy, 5)) tends to infinity, o
expects us to build a mitotic splitting V3 = C,, LI D, . Now o, expects the strategy
to be: add a follower to A, wait till the next o,-(expansionary) stage and then add
a prefollower to A for the sake of o,. The crucial point is that this is the next
oy-stage not the next t-stage.

More generally as 0, 0, < 03 ¥ implicitly we have made certain commit-
ments to C,, and D, for i =1, 2, 3. Namely, somehow we have promised to first
change D, through some ‘confirmed region 2’ and then wait till the next
‘o;-(expansionary-) stage’ (i.e. when “I(0;, s) > mi(o;, 5)”’) occurs to then force a
C,, change. Thus implicitly our action for the sake of 7 has committed us to much
higher priority activity (namely, e.g., o;-activity). The point is from o,’s point of
view, at the next stage § with I(o3, §) > mli(0y, §), 0, expects us to attend to its
pending prefollower commitment. On the other hand o3, say, wants us to wait till
the next stage § where, not only does I(0,, §) > mi(o,, §) but I(g3, §) > ml(o;, §).
The point is that there may never be such a stage §, but there may be a stage §;
perhaps o is left of the true path but o, is on the true path.

Our solution is to abandon the single prefollower/follower arrangement and
give a t-follower an entourage of prefollowers each reflecting its own commit-
ments. f

Thus the t-follower x = x(7, 7) will need a o;-prefollower z to fulfil x’s pending
o,-commitment at the next o;-stage. We denote this by z = z(0,, 7). That is, z is
a number devoted to fulfilling a ,-commitment initiated by 7. Note that once we
add z at the o,-expansionary stage we need do nothing more for the sake of o,
unless there occurs a oz-expansionary stage. Of course we shall need a
prefollower g = g(0,, ) which will need be enumerated into A to cause a C,,
change. This in turn will create a new o;-commitment since g will take the role of
a follower as o, is concerned and so ¢ must have a o;-prefollower r(o,, 7). These
events are orchestrated as discrete events: namely o, ‘doesn’t believe’ computa-
tions until all pending o,-prefollower activities are completed. Thus the events
must happen at 5; <s,<s3<s4 with 54 a 7-stage, 5, a oj-stage that is not a
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oy-stage, 53 a oy-stage (that must be a o;-stage too), and s, a o,-stage (that
precedes the next oy-stage after s,). Of course, in our example 7 will also need a
os-prefollower which needs a g,-prefollower; etc.
The picture we eventually get, in this example, is
x1(01, T) <xx(02, T) <x3(031, T) <x4(03, T) <x5(0y, T)
<x6(02, T) <x:(03, T) <x4(T, 7).

Diagram 2 below is helpful to see the pattern.

Diagram 2

In summary, the idea is that once we put something into A for the sake of T we
fulfill our 0y-commitment at the next stage with (o, s)>ml(oy, s). We then
fulfill our o,-commitments when [(o0,, §). This § activity creates new oy-
commitments which we then fulfill, etc. (The reader should note that this means
at stages where we are putting numbers into C,, we may be putting numbers into
D,,.) The above idea is the key to the coherence of the strategies, and thus of the
whole construction. We now give some formal details, but expect that the reader
may prefer. to supply them himself.

Trace entourage

Let g €2=“. Define the rank, rk(o), of guess o as I{i:o(i)=0}|. (Thus, e.g.,

1k(1°0°1°0°1°01) = 3. We define the sequence of o, seq(o) by induction on lh(o)
as follows.

(i) rk(o)=0. Let seq(o) = (o).

(i) =71 It will be the case that seq(t)=(n,..., e 7) for some
(possibly empty) sequence (7, . . ., 7). Define seq(o) = (9, ..., N, 0). Note
th(seq(7)) = lh(seq(o)).

(iii) o=170. If k(o) =1, then set seq(0) = (0, T0)= (o, 0). If rk(o) > 1,
then we have already defined seq(t)=(yy,..., ¥,, 7). We define seq(o) =
(Yts o+ v s ¥ar TO, 71, ., ¥a, 70) (in this order).

The idea is to simply capture the situation of Diagram 2. The reader may like
to convince himself that it does. Thus for example, seq(o) has m(o) = 2°? many
elements all except the last of which are of the form y, 0 (various i). .

Now to satisfy P, at guess 7 we will wait until the entourage is complete and
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confirmed. That is, we have a prefollower/follower for each member of seq(7). In
the hope that it does not confuse, we shall denote the current i-th member of the
entourage at stage s by xj(i1, ) where here the i-th member of seq(7) is u. Finally
we say xj(u, o) connects with xj(«, o) at stage s if for all k with i <k =<}, it is the
case that for some ¥, x3(y, o) is defined, and i <j.

Remark 1. Regarding the notation xj(o, 7), note that the association (7) reflects
only what the entourage pertains to. The true guess of x; (reflecting its priority
should it become active) is 0. As we see if xj(o, 7) is alive, then x}(o, T) reflects a
pending o-commitment to any active member of x(z, T)’s entourage with which
xj(o, T) connects.

Remark 2. The point of ‘connection’ is this. Suppose we have an xi(y, ¢) and a
stage s where the guess y appears wrong. Then we shall cancel x;(y, o). However
xi(4, o) may not be cancelled by this process (perhaps u # y). In this case we will
see that xj(u, ) is no longer connected with any x;j for j > k. This will signal us to
also cancel xj.

Definition. We define the notions o-stage, o-correct length of agreement and
o-injurious number by induction on lh(o) at stage s:

(i) Every stage s is a §-stage.
(i) If 5 is a T-stage, define a number y to be t O-injurious if
(a) y =xi(p, y) for some i, g, v,
(b) y is connected with some active xj(a, y) such that all intervening
numbers between y and x; have not lower priority than t.

Remarks. (1) Note that x; =y and x; are members of the same entourage (i.e. of
7). We can write (b} as

(Vk) (i sk=<j, the guess of xi{p, 7) is =7) (that is p = 7).

(2) The idea here is that each z-injurious number represents a higher prfority
commitment which is as yet unfulfilled. Returning to the example described
earlier (in Diagram 2), suppose 7 =10"10"1. Suppose that x4(z, 7) enters A
at some stage 5. At this stage we declare x,(0o,, ) as active (as we will see). Now
nAO=a3 ‘knows’ that the numbers xs5(oy, 7), x4(02, 7) and x,{oy, T} all cor-
respond to higher priority commitments which must be completed before we want
to believe os;-computations. Thus we regard xs, x¢ and x, as 7 0 injurious
according to the above.

A slightly ‘more instructive example would be if y=10"100, in the above
example. In this case however y will cancel o5 (y < g3) (and so force x,, x, and
x; to be no longer connected with xs, and therefore cancel them too).
Nevertheless if x; were active we would regard x5, x4 and x, as y‘O—injurious.




Completely mitotic r.e. degrees 129

Now define the t© 0-correct length of agreement as the largest number .
z<l(e, s) such that for all £=<z there is no 7 O-injurious number =<u(Z, ¢, s)
where :

u(2, e, 5) = max{u(P. (A y)): y <u(L, (V.5 8)) &g <2).

Let i(z0, 5) denote the 7 0-correct length of agreement. Then if (70, 5) >
max{I(z 0, t) tis a t-stage and £ <s} we say that 5 is a 7 O-stage. Otherwise we
saysisart “1-stage.

Remark. The driving force behind the idea of 7 0-correctness is that we ‘don’t
believe’ a computation until we see all injurious ‘pending commitments’ (to add
elements to A) of higher priority are complete. -

Definition. Let o, denote the unique path of length s such that s is a o;-stage.

Definition, We say that P, requires attention at stage s +1 if W, ,N A, =6 and
one of the following options holds.

(2.8) None of P,’s entourage at guess o — o, with lh(¢) =e + 1 is defined. That is,
xi(y, @) is not defined for all v.

(2.9) P, has an incomplete entourage at guess o and if xj(, o) denotes the current
largest {defined) member of this entourage then x; is o-cénfirmed.

(2.10) P, has a t-confirmed follower x with guess 7= o, (note that it is not
necessary for < g,) and there exists y e W, ., with y >x. (Note: having a
follower means that the entourage of x is complete.)

Construction, stage s +1

Step 1. Cancel all numbers x¥(a, o) with a %, ;. For such a set C,, ., =9 and
D, +1=V,, We say that such « are initialized.

Step 2. Cancel ‘all numbers x; e, 0) with o %1 o, and x¥(«, 0) not connccted to
an active xi(y, o) still alive after Step 1.

Step 3. Find the least number xi(p, T) not vet «O-confirmed for some
a0 = 7. (Note the 7 here rather than p), such that

(i) x: is v 0-confirmed for all y 0 a0, and

@) (a0, s)>xi(p, 7).
Declare x5 as a O-confirmed. Cancel all followers and prefollowers >xi. (These
will be of lower priority.) Note a0 c g, here.

Step 4. Now for any active xj(y, o) with y < g,, enumerate xj(y, o) into
Aspr— A, If x7_1(f, o) is defined for some 9, declare xj_,(¥, o) as active.

Step 5. Find the least e, if any, such that P, requires attention. Adopt the
appropriate case below, choosing Case 3 if more than one pertains. )

Case 1: (2.8) holds. If rk(o) = 0 appoint xi(o, 0) = s as a follower of P, with
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guess o. Otherwise let « V<o be the unique & with rk(a0)=1. Appoint
xi(@¢0, 0) =s as the first member of P,’s o-entourage. Note that a0 is the first
term of seq(o). :

Case 2: (2.9) holds. Let m=2"?. If i=m declare the entourage as
complete and declare x;,(0, o) as the current follower of P.. Otherwise, set
Xi+1(Yi+1, 0) =5 as the (i +1)-st member of P,’s o-entourage, where y;,, is the
(i 4 1)-st term of seq(o).

Case 3: (2.10) holds. Set A, ., =A,U{2:£=x & £=s). Notice that this
meets F, since z <s by convention. If x = x3(7, 7) (and so rk(z) =0) do nothing
else. Otherwise find j=2%® —1 hence the j-th term y; of seq(r). Declare
x;(y;, T) as active.

Step 6 (Recovery). For each 10co,, where indicated, we ensure that
C.oll Dy is a mitotic splitting of V, (where e =1h(7)). Let § denote the last
7 O-stage <s. Adopt the first case below.

Case 1. For no o, y > 10 was x{(y, o) active at any stage with § <<t <s, or
C;o and D7 have been initialised at some stage ¢ with § < <s.

Action. In this case we set

Dr’O,s+1 = (Ve,s - (CrAO.s U D'r‘O,s)) U DtAO,s and
C'r:"O s41= Cr"O s

Case 2. There exists a <;-least 0> 0 such that at some stage ¢ with
§ =<t <s for some i, x{{0o, o) was enumerated into A4,.,, — A,.

Action. Proceed as in Case 1. :

Case 3. Cases 2 and 1 did not pertain. In this case there existed some active
xi(y, o) at stage § with 70 = y = 0. We must determine which of C,+ or D, is
appropriate for enumeration. This is done by a simple counting argument (see
Diagram 2).

Subcase (i): (i/2")=0 (mod 2).
Action. Set-

Cr 0,s+1 = Ct 0,5 9) (1/9 s (CT‘D,s U D-rAO,s)) and
Drﬁo,s-i-l - Dr Q0,5

Subcase (ii): Otherwise.
Action. Proceed as in Case 1. [0 (End of Construction)

Verification. It remains to verify that the construction indeed does what we ask.
To do this, we really only need formalize the intuitive remarks preceding the
construction. Thus, in some instances we only sketch the details.

Let B denote the leftmost path That is, we define 8 by induction: 8 ﬁ Also if
rc B, then exactly one of 70 or T1cf. It is the case that 70c B iff

*s (0 c g,).

To verify the P,, let & < B be such that lh(a) = e + 1. We show that P, receives

attention at most finitely often at a-stages, and is met. But this is quite easy to
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see. Let sy be an a-stage such that for all s > s,

(1) asL &,

(ii) whenever y<_ o and y¢ o we have for all i, 8, xi(y, 8)eA iff
xi(y, 8) €A, |

(iif) for all & c o with &+ o and for all y, i we have x} € A iff x;(y, 6) € A,,

(iv) ‘P, for j <e do not receive attention at a-stages, and

(v) for all j<e if F; has a (pre-) follower x7(y, §) with y=<; &, then this
follower never receives any further confirmation after stage so. (There are only
finitely many, after all.)

Now after stage s, any (pre-) follower appointed to F, is uncancellable. Since
o c f§ each becomes eventually a-confirmed and so P, eventually gets a complete:
entourage. It is quite easy then to see that if P, fails to receive attention, then
|W,| < or W, N A @ promptly.

Finally, we turn to the N, with « and s, as above. An induction easily shows
that for all s;>s,>s, we have C,,>C,,, and D, > D, . Moreover, if
@, (A)=W, and L(V,)=A, then it must be that =10 for some 7 with
lh(z) = e. Therefore there are infinitely many stages at which Step 6 pertains to
0, and so C, LI D, =V,, with C, and D, r.e.

Now, for example, to compute if z € A or not from D, proceed as follows. Let
2 =max{z, so}. Compute the least a-stage s, exceeding 2. If z ¢ A, , then z can
enter A after s, only at the same time as some follower Z =<z (if.z is not a
prefollower), or z is a prefollower. In both cases Z or z must already be present at
stage s, and thus, as in the intuitive discussion, it suffices to determine whether or
not a (pre-) follower will enter A.

For example, suppose z is a pre-follower. Then z =x(y, §) for some y, 6.

Now at stage s, if z is not yet cancelled and yet still can enter A it must be that
either z is a-confirmed and @ = 4, or z is connected with some active x, (¥, 8)
with $ c 0.

In the first case, in exactly the same way as in the intuitive discussion, we see
that z € A iff z € A, where s, is the least a-stage >s; with D, .[s;]= D,[s,].

In the case that z is connected, we have that either ¥ = a in which case z €'4,
or o c ¥ in which case we proceed as above since in that case z is a-confirmed.

All of the other cases are essentially similar and are left to the reader. O

We conclude this section with a brief technical discussion as to the nature of the
proof of (2.7). The reader may proceed directly to Section 3 with no loss of
continuity.

From a slightly different (higher?) point of view, what the above construction
achieves is this: in using our confirmation/tracing procedure to satisfy the N, we
actually build a wtt-reduction A, (of course A, with lh(¢) =e + 1) from V, to A.
For the sake of this discussion, let us drop all subscripts. The reduction procedure
A is a simple permitting one. To decide if x € A or not find the least o-stage s, >x
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with all followers and prefollowers <x, o-confirmed (or x € A;)). Compute the
least o-stage s,>s; with A, [s;]=A[s;]. Then in the same way as for C, we see
that x € A iff x € A,,. Now let us speed up the enumeration of A so that we have
A=, A, where A, = A, where ¢ is the s-th o-stage, and V =, V, similarly.
We can thus regard A(V) A such that I(s) > I(s + 1) where I(s) = max{x. Vy <
x (AJ(V.;y) = A,(»))} (All of this says: look at V and A only at o-stages.)

Now define a new set E = |_J, E, as follows: at stage s +1 let

Eyir= E U {”’z (Z E-‘;{.’:‘+1 - As)}

Thus z is the least number to enter A between the s-th and the (s + 1)-st o-stages.
We invite the reader to verify:

(2.12) Corollary (to the construction of (2.7)). E is mitotic.

The point of this discussion is that another proof of (2.7) can be obtained from
the above observations and the following lemma of Ambos-Spies.

(2.13) Theorem (Ambos-Spies [1, §2, Lemma 2]). Let A and B be r.e. with
recursive enumerations A =\, A, and B =\, B, for which there exists a wit-
reduction procedure T'(B)=A with I(s +1)>1(s) for all s, where I(s)=
max{x: Yy <x (IJ(Bs;y) = A;(y))}. Define an r.e. set E =\, E; via E;,,=E;U
{uz (z € A1 — A))}-

Then, if E=E'UE? is any r.e. splitting of C, there exists an r.e. splitting
A'lUA’=A of A with E'<A'fori=1,2.

Summarizing, an alternative view of the previous construction is that it consists
of two steps. First it builds a wtt-reduction from V to A. Second it ensures that
the set E is given by the Ambos-Spies theorem above (whose splittings are
‘covered’ by those of V) is mitotic and hence so too is V' (by (2.13)).

The results of [2, Corollary 3.8], namely that no low contiguous degree is
completely mitotic, show that the set A we constructed cannot be low, since by
the usual arguments it is seen to be contiguous. (And hence, as Cohen-Ladner
observed, there are low,—low contiguous degrees.) (Also see Section 4.)
Furthermore any construction which builds a mitotic least r.e. wtt-degree as part
of its strategy of ensuring complete mitoticity can’t construct a high r.e. degree by
the results of [3]: Ambos-Spies, Cooper, and Jockusch showed that no high r.e.
degree contains at least r.e. wtt-degree.

3. A low and a high completely mitotic degree
The difficulty of combining techniques along the lines of those of Section 2 with

any form of jump control led Ladner, Cooper and others to suggest that there
were —in particular —no low non-zero completely mitotic degrees. The main
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result of this section is the construction of a low nonrecursive completely mitotic
r.e. degree. The strategy used is sufficiently flexible to combine with a coding
strategy to build a high completely mitotic degree.

(3.1) Theorem. There exists a low nonzero completely mitotic r.e. degree.

Proof. We shall build A=jA,, C.=\C,, and D, =, D, to satisfy the
requirements below:

P: A%W.

R,: @A)=V,&T(V.)=A implies
C.UD,=V, and A=<.:C, D..

N: T%(E, (A e)])— E.(4;¢)].

Here (@D, I, V.).., is a standard enumeration of all triples consisting of two
functionals (@., I',) and an r.e. set (V,), and (E,)..,, is an enumeration of all
functionals. '

The principal difficulty in satisfying N; in the presence of R, (or vice-versa)
using the strategy of Section 2 is this: suppose some P, for k>j>e receives
attention. This action will probably initiate a sequence of codings that we have to
fulfil for the sake of R; of higher priority than Fy. In particular, if I(e, 5)— o, for
the sake of e we will need to enumerate some xj(00,) with Ih(a) = e into A.
Now suppose this requested coding occurs at exactly the stage when we see
5, (As;/)l. We would then like to not enumerate x; into A but preserve the
Jj-computation. We cannot do so since e <j. However, this process can occur
infinitely often. Namely we can see some P initiating an e-action injuring N;
infinitely often. Because of this N; may never be met.

Our solution, therefore, is to find a strategy that allows us to halt any sequence
of numbers being put into A —for the sake of P,’s cooperation with R, — should
N; request it. In this way we can meet the N; and the P, too since N; will only
request this finitely often. To make life simpler, we shall adopt the convention
that &, simply cancels all potentially injurious numbers of lower priority. Thus, if
x is a follower or trace associated with P, for k> j and x <u(E; ;,(A,; /), then we
cancel x. If each P, only causes finitely many numbers to enter A, then this meets
N; in a completely familiar and standard way. :

The way P lives with this and cooperates with the R, is as follows. Let I(e, 5)
denote the length of agreement as given by the previous construction. As in (2.7,
we monitor: V, at e-expansionary stages and ensure that C,LiD, =V,. We shall
build reduction procedures A,(D,) =A and AC.) = A to meet R,.

The basic idea

The reduction procedures A (=A4A,.) and A (=A.) have uses &(x, e, s) and
Mz, e, ) respectively. Before we give exact rules governing A and A, we feel that
it will be helpful to discuss a specific case first.




134 R.G. Downey, T.A. Slaman

For a single P, N;, R, with e <j <k we shall proceed as follows. For the sake
of P, we shall appoint a follower x = x,. At the first e-expansionary stage ¢ with
I{e, t) > x we appoint to x, a ‘postfollower’ or ‘trace’ x, >¢. Note that we can use
the usual tree machinery to get x, e-confirmed (i.e. cancel all numbers between x,
and x,). in general this gives a little more than we need (see Step 3 below) but it
is helpful for this construction to consider it done (and we shall).

Again we wait until a stage s >¢ when I{e, 5) >x;. We define 8(x,, e, s) and
AMxp, €, 5) to exceed u(x,, e, s) and pick a new trace x, > s. Here, as in Section 2,
u(xo, €, 5) denotes the use of the total e-computation involving x,. (The reader
should note that we now have a way of causing—roughly speaking — two
changes in V,. First enumerate x, into A, wait till an e-expansionary stage and
then enumerate x, into A. This causes two changes in V, below both d(x,, e, s)
and A(x,, e, s).)

Now we wait until the least e-expansionary stage § where I(e, §) > x, and then
define d(x,, e, §) and A(xi, e, §) so that they exceed u(x,, ¢, §) and x;>35 We
continue this process for the sake of P, cooperating with R, until x, is cancelled
(by N;) or xg occurs in Wy ;. A typical situation for x, occurs in Diagram 3 below.

8(x,€,5) 8(x,,€,5) 8(xy,e,5)
A(xo,e,s) )\(xl,e,s) A(xz,e,s)
L 1 ) I
) r ; Ve
rA /\
1
F i ! T 1 E A
g 1 X X3 X4
Diagram 3

The typical rules regarding uses are in force: x; can enter A provided both D
and C change below 8(x;, e, 5) and A(x;, e, 5) respectively. The fundamental idea
is that if we see x=x,e W,, then we try to enumerate the ‘entourage’
Xpy Xn_1, - - - » Xg iNt0 A at e-expansionary stages in reverse order.

Thus suppose xo € W, , in the situation of the diagram. When this occurs (at an
e-expansionary stage s) we first would enumerate both x; and x, into A. The
reader should note that no axioms involving x5 or x, have been enumerated into
A or A. The key point is that x,’s entry into A causes a change in V, below
u(xs, e, s) and so below both 6(x,, ¢, s) and A(x,, e, s).

Now at the next e-expansionary stage s; there are two possibilities. Either x,,
x, and x, have been cancelled for the sake of N, or they haven’t (in which case we
would wish to enumerate x, into A.

In the first case, we shall simply enumerate all V,-changes-since s-arbitrarily
into C. Although this allows us to reset A(x,, e, 5,) it doesn’t matter since x, has
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been cancelled. The point is from D’s point of view the original A(D;x,)
computation saying x, ¢ A was correct.

In the case that x, is still alive we shall enumerate all V,-changes since stage §
into D and enumerate x, into A. The reader should note that A can now be
corrected on x, as we have caused a change in D below 8(x,, e, ). However, A is
incorrect on x, so we have a pending commitment to C. The reader should note
that our enumeration of x, at stage s, will cause a change in Ves,— V.5, below
8(x1. €, 5) and A(xy, e, 5) where s, denotes the next e-expansionary stage.

Again at the next e-expansionary stage s, we must decide where to enumerate
this change. There are two possibilities, again depending on whether or not N; has
cancelled x; and x;. If N; has cancelled x; and x,, then we simply attend the
pending C-commitment and enumerate V, ;,— V, .. into C causing A to be correct
on x,. Note that both A and A correctly tell us that x,, x, ¢ A in this case. On the
other hand, if N; has not cancelled x, and x; we again enumerate all changes
Ve = Ves, into D and also enumerate x, into A causing V, to change below
u(xy, €, 52) =u(xy, €, 5) and so causing another change below A(x,, e, 5) (and a
change below both d(x, e, s} and A(xy, e, 5)). The reader should note that this
still delays our pending commitment to A regarding x, and makes another
involving x,. In the same way, at the next e-expansionafy stage 55 either N; has
acted and we have cancelled x,, in which case we enumerate Ves;— Ve, into C,
or we enumerate all changes into D as well as x, into A. In the latter case at the
e-expansionary s, stage following s; we enumerate Vesa— Ve,s, into C fulfilling all
commitments. _

The reader should note that at each e-expansionary stage we have the option of
enumerating all changes (since the last e-expansionary stage) into either C or D.
The relevant sequence thus ‘looks like’ D, D, D, ..., D, C whereas in (2.7) it
was D, C, D, C, D, C.

The basic module

More generally, Ldropping the subscript ‘e’ our procedures satisfy the following
rules. (We shall always drop the e-subscript from A or A when things are clear
from context.)

1. To ensure that A(D)= A, we only allow a number x to enter A at stage s if
A(D, x) is currently undefined. (Of course, we can make A(D, x) undefined by
enumerating new axioms pertaining to x into A at e-expansionary stages. That is,
we ensure that new elements enter D below the use of A(D, x) via A-changes, at
e-expansionary stages.)

2. To ensure that A(C)=A we only allow x to enter A at a stage when one of
the following holds.

(i) There is no current A(C, x) computation.

(ii) The current A(C, x) computation has current use A(x, e, s)and u(x, e, 5) <

Mx, e, 5); where as in Section 2, u(x, e, s} denotes the use of the R,-computations




136 R.G. Downey, T.A. Slaman

pertaining to x.

Moreover, if there is a number y with A(C;y}=0 but y € A,, then one of the
following holds. .

(iia) Some number must enter C below A(x, e, s).

(iib) Some number x less than y must enter A.

3. To ensure that A and A are total we must enumerate new axioms into A and
A at e-expansionary stages. That is for any x <I(e, s) we need relevant axioms
pertaining to x in A and A. Note that if a strategy of higher priority requests it,
the enumeration of new axioms can be delayed for finitely many expansionary
stages, and the use of new axioms can be increased. We also enumerate the
axioms so their use is increasing (as a function of argument and stage).

The reader should note that if we additionally ensure that &,(A4)=1V, and
IL(V.) = A implies that Vx (6(x, e, 5) & A(x, e, 5) are defined and are reset finitely
often), then A(D,)=A and A(C,)=A. In the first case when D, [8(x, ¢, 5)] =
D,[6(x,e,5)], then xeA iff xeA, (by rule 1). In the A case we see that
whenever y enters A at stage s,, either A(C,;y) is not defined, or u(x, e, s) <
AMx, e, 5). In the first case, there is no C-computation wrong about y. In the
second case, V, must change below u(e, x, 5). At this point either C, is changed
below A(x, e, s) by enumerating the new elements of V, into C,, or these numbers
go into D, but also a number less than y enters A. By induction, there is a least
such j to enter A; and for this  C must change below A(F, e, §).

In general, for a single P, N; and R, with e <j <k, the way we meet the P, and
respect the e-strategy is given by the following steps.

Step 1. Pick a follower x and a trace x, > x,=x. Assume these numbers are
fresh, and we have ensured that x, > u(x, e, s) at an e-expansionary stage s.

Step 2. In general, we can assume we have two numbers x,,_; and x,,, P, is not
yet satisfied, and no axioms for x,_; or x, are yet enumerated. We wait till
l(e, s) > x, and now declare that any axioms enumerated by R, for x,_, should
have use >u(x,, ¢, s). We also pick a new trace x,,.,, > s.

Step 3. So that the construction respects A and A we ask that for all i if y
enters A below u(x;, e, s) then 8(x,, e, 5) is undefined and either A(x;, e, 5) is also
undefined or u(y, e, 5) < A(x;, e, 5).

Step 4. We also ask that if V, changes below either 8(x;, ¢, s) or A(x, e, s),
then every x; with j > i is cancelled.

In general, we keep performing the above steps until we see x =x,e W, , at
some e-expansionary stage s,. At this stage we have an ‘entourage’ x,, . .., X,
say and as in the example, we try to enumerate the x; into A at e-expansionary
stages in reverse order. Thus if Step 4 did not pertain and we see x € W, with s
e-expansionary we enumerate x, into A,. In general, we can assume that at the
last e-expansionary stage § we enumerated x; into A for some i. We then adopt
the appropriate case below.

Case 1: i =0, or x;_, has been cancelled (in particular, because of the action of
an N, for j > k). Enumerate all new elements of V, since § into C,. This causes all
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of C,’s computations to be corrected. If i =0, then Fy is met and also has no
further effect on the construction.

Case 2: Otherwise.” Then i>0 and x;_, is yet defined. In this case we
enumerate all new elements of V, into D, causing A(D,, x;.,) to become
undefined. (See Steps 2 and 3.) We then enumerate x;_; into A cancelling x;_,.

The key idea of the above strategy is this. The enumeration of x,,, is organised
in such a way that it is possible to arrange that at the next e-expansionary stage
we can enumerate V,-changes into either of C, or D, and end the effect of P, (or R,
depending on your point of view). Thus we have no other pending e-
commitments than eventually putting something small (i.e. caused by x; for
j=n+1) into C,. Remember, we have fulfilled our D, commitments at the last
e-expansionary stage when we created an even smaller C,-commitment. Thus we
never have D,-commitments (although we may decide to enumerate changes into
D, delaying our C,-commitment). Consequently N; may interrupt this sequence
and R, may still remain satisfied. Thus N;’s action doesn’t injure R, any more,
only P,. (Of course, N;’s injuries to P, are finite.)

It is quite easy to see that P, can be satisfied using the above strategy (at least
for one P, R.). To see this go to a stage s, where all the N; for all J =<k cease
acting. After sy, any number appointed to P, is uncancellable. Now, if P, fails,
then eventually at some stage s, > 5, we have xo € W, ,. At this stage we have a
‘k-entourage’ xg, ..., X%, say. It is really quite easy to see that after n further
e-expansionary stages, we have put x, into A meeting P, forever,

Coherence

It remains, therefore, to give a technique to combine the above with a IT,
guessing procedure and thus give a nesting which makes the above strategies
cohere. Let us consider two mitotic requirements R, and Ry interacting with some
P.. We assume e <f < k and assume that we have &,(A)=V; and I}(V,)=A for
i=e or f: In the nested version of R, on the tree we will have f-expansionary
stages occurring- within e-expansionary stages (at least along the true path). The
important point is how to build R;’s reduction procedures cooperatively with e.

The crucial observation is this. For a single requirement e, our Friedberg
strategy gives us a method of (eventually) enumerating a number into .A should a
certain X,-event occur in the construction. For the P, case, this X;-event is
Vs (xo € Wy, & W, ;N A, =9), however any X -event will do. This provides the
key to the strategy below:

Specifically for the sake of P, we initially choose x, as before. Now the problem
is that there may be infinitely many e-expansionary stages but only finitely many
f-expansionary ones. Therefore we cannot afford to wait until the next f-
expansionary stage to define our e-axioms and still give R, an environment in
which it can survive. Thus at the next e-expansionary stage we fulfil our
commitments to R, by defining an e-sequence as if e were the only requirement:
around. We denote these numbers by y;. Thus, by the next f-expansionary stage
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s; (which is also e-expansionary) we may have the scenario
X0, Y1, Y2 ---,Yn, Where here

y; takes the role of x;., in the construction
for e alone as previously discussed.

(That is, for example y, is chosen when we see [(e, s) > x, as are 8(x,, e, s;) when
I(e, s1) > y;.) Now at this stage we simply select x; (=, 1)

When we define x, =y,,,, we simultaneously define A(x,, ¢, 5,) and 8(x,, ¢, 55)
as we do O(Y,,—1, € §2) and A(y,,—1, e, s;). The following Diagram 4 might be
helpful.

(xps£s8,)
(xy,£55,)
| Y 73 | v
~1/ {4
! P o i f,52
B(xo,e s) .
7!
As
2
n1 1 +1=%51 n +2 n2 n2+1=x2
Diagram 4

Thus at any stage if there is no cancellation we will have a sequence of numbers

Xos Y15+ - ym: yn1+1 =X1, yn1+2) LR )’nz; yn2+1 X2, - .-

The above sequence thus satisfies both R, and Ry in a perfectly standard way
except that we have the following problem. Suppose x, € W, is seen to occur at
some stage. Then in reverse order we must put the numbers above into A at the
appropriate expansionary stages. This is fine from R,’s point of view but it creates
problems from R;’s point of view due to timing problems.

For example suppose we have a sequence

(3.2) X0, Y1, Y2 = X1, V3, Ya, Y5 = X2, Y6, Y7 = X3, Y85 Yo

and xo € W, ;. Now we begin to put the y; into A in reverse order. Since f can only
operate in stages also good for e, f can afford to wait (for x, = y,) until y, for i >2
enter A before we believe an f-computation. In this way we can keep our
commitments to e for the y; for i > 1. However, there is a real problem for y, = x,
caused by conflict between e and f. The problem is that when we get a stage s for
which we wish to enumerate y, = x; into A we cannot do so unless we have seen,
in particular I(f, s) > y,. On the other hand an e-expansionary stage may not be
f-expansionary so that although e is asking us to put x; into A, f is asking us to
wait until an f-expansionary stage (or at least until /(f, s) > y,) (which from e’s
point of view might not occur). The crucial point here is that until we have seen
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an f-expansionary stage, we haven’t seen the Vi-change below u(x,, f, s;) (and so
below 8(xy, f, $1) = A(xy, f, 51)) caused by ys= x,’s entry into A. (Remember x, is
defined so these are set.)

The way we resolve this’ conflict is to notice that “there exists another
f-expansionary stage” is also a 3)-event, and so e can solve the problem induced
by f’s ‘slowness’ by beginning (say at stage ¢) a new Friedberg strategy for y, with
the -event being “there exists another f-expansionary stage” which we denote
by 3s.(P(f, s)). However this Friedberg strategy must only respect e rather than
both ¢ and f since we only create it to keep e happy whilst we are waiting for f to
reveal his actions.

Explicitly, at stage ¢ we begin a new e-sequence z, = y,, z; and continue to build
it at e-expansionary stages until we see, for s >¢, P(f, s) holds. At such a stage s
our sequence will appear as, say,

X0, yl: y2=x1=20: 21y L3y o 0 vy Zye

Now we would like to fulfil our f commitments by enumerating x, into A. Now,
however we can’t do so because of the new e-commitments we have created.
Thus we must put the z; into A in reverse order first. On the surface the same
problem may occur by stage § when we get back to y, = x; = z;. But now we have
salvation, because we know that we have seen I(f, 5) >y, and so we know that we
can enumerate axioms below 8(f, y», s) since V; must have changed there (when
I(f, 5)>y.). And so can enumerate y, into A at the next e-expansionary stage
after z; enters A (rather than the next f-expansionary stage, which is the whole
point of the procedure).

Now this idea in turn creates a new problem regarding C and D we solve by
delay. For example consider the sequence devoted to D; given by

(3- 3) X0y Vi, Y2= X1, Ya, Ya, Ys = Xa.

Now suppose we pursue the above strategy but we get stuck at y, = x, say at stage
5. Now at this stage we enumerate the last changes into C and begin a new
e-sequence z, i, 2, - - . devoted to solving the I(f, s) >y, problem. The reader
should note that only A(y,, e, 5) has changed. D[(y., e, 5)] is the same as it was
at the stage ¢ when we first began enumerating y;’s into A (or, indeed when it was
first defined). Thus we might get Diagram 5 below.

ﬁ(xo,e,s) G(Ylse,s) 6(21,8,5)

Alx ,e,s) 8y se.8)  8(y,.e,8)  A(y,.e,8) A(z;.e,8)

L 1 1 I 1 1
[/\/\'/\J ‘A'/\'ve
1
] t | ¥ i ™ A
x y y z Z z

[ 1 ’ 2 i 2 3

——

Diagram 5
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The problem here is that perhaps z,’s entry into A might not cause a V,-change
below 8(ys, ¢, s). However, we do know that if § is the stage when z; enters A,
then at the next e-expansionary stage g either our sequence will be halted and
numbers enter C, which is fine since V, does change below Ay, ¢, g), or we will
.then enumerate y, into A causing V, to change below &(y,, ¢, 5). Thus we need
only delay our C and D decisions until the least e-expansionary stage after g.

The only remaining problem concerns when to build Dy and C;. The point is
that we may be forced to stop our enumeration of the z’s because some N; for
j<e cancels them. Therefore at the f-expansionary stage s when we start to
enumerate the z;’s into A in reverse order we do not attend to R, at all but (as we
mentioned in (3.1)) delay R,’s action until all the z;’s have revealed their eventual
behaviour. That is, if no higher priority activity has upset the situation, we put
the new axioms into Dy at the e-expansion (not f-expansionary) stage § when
Zp=y, enters A. If we get interrupted (by N, say) and can’t finish the Friedberg
strategy for y,, then we put them into C;. This delay is of course fine from R;’s
point of view since (this version of) Ry is guessing that there are infinitely many
e-expansionary stages, and hence can afford to wait for all pending e-actions to
finish. -

Summarizing, when we are dealing with P, cooperating with a version of R;
guessing that R, acts infinitely often, (and with e <f < k), initially we build a
sequence for the sake of R,. However for each element of this sequence we will
want to put that number into A if a certain 2;-event is seen to occur. Thus, as we
have seen above each element of the sequence constitutes a Friedberg require-
ment that must respect only R,. Since f-expansionary stages here must also be
e-expansionary, we see that the sequences for e and for f are compatible. It
remains to observe that when the sequences become active (i.e. we start
enumerating numbers into A for the sake of P,) whenever we get to a situation
where we must wait for an f-computation, we can create a new Friedberg strategy
assigned to solving this problem. This sequence of numbers is built purely for the
sake of ¢ and once we see an f-expansionary stage we activate this new sequence
and delaying our f-commitments a finite number of steps until all pending
e-commitments are finished.

. We call a strategy designed to satisfy a Friedberg requirement (i.e. when a
- Zj-event occurs) and yet still meet a single R, of higher priority a depth-1
strategy. The depth-2 strategy is as outlined above for R, and R;. The general
depth-n strategy is defined as above, but replacing our depth-1 strategy (for R,)
by a depth-(n —1) strategy. It is clear that no new problems arise for n
requirements and we thus-have met the coherence criterion for any collection of
R;.
A more elegant version of the depth-2 strategy is obtained by not using
numbers (like y,=x3 in (3.2)) for both e- and an f-role. That is we select a
number y, and x5 for each. It is easy to see that simultaneously selecting y, and x5
in this way is quite compatible (y, and x; will enter at the same stage). This then
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allows us to visualise the y;, x; sequence as a tree of sequences with stem the
sequence for Ry and branches the sequences for R, (which are depth-1 strategies).
Such ‘a visualisation is more easily extended to depth-n. This representation
makes some of the internal logic of the system more visible at the expense of a
little more book-keeping.

Finally we should remark about the coherence of the Friedberg strategies
(interacting with some R,). Thus let e <i. We analyse the situation for B, P,,,
and P;.,. It is perhaps easiest to use distinct numbers as traces and followers of
distinct £,’s. (It is possible for them to serve dual roles, we refer the reader to the
next theorem.) Also should P, require attention, it is easiest to initialize the P; for
1>i and, in particular P,,, and P, ,.

There are various ways to mesh the P, Py and P, strategies. Although we
must modify the technique in (3.5) below, in this construction we can use a very
simple meshing which exploits the finite injury nature of the proof. It is
convenient to denote traces of P, by x7, of P..; by y5 and of P, by z;. For these
three Friedberg requirements. the relevant order is

Xo, X1, Yo, X2, ylx Zgy X3, J’2, 21, Xa, y3: 23y X5,

For this construction the idea is that if P; ;1 1s yet unsatisfied, R, delays defining
8(x0, €, 5) and A(x,, e, s) until we define y3, etc. At stage s the relevant picture
would appear as Diagram 6.

A(x,,e,5)
Alyg.e,s)
A(xo,e,s) ﬁ(xl,e,sj
8(x,se.5) Ay pr€,5)
r:/\ ./\ /\ l/\ /\ /\ I/\ /\ ’
o 1 | 1 1 r ! ) A
5 5 = 5 5 5 -1 b1 S
X * Yo % 1 g *3 Y2

Diagram 6

The only proviso is that if (e.g.) y§ <x., is enumerated, we get to reset x7 for
JZk+1 and both A(x,_,, e, 5) and 8(x,_,, e, 5). The fact that if, for example, y;
enters A for the sake of P, we might only reset A(xo, €, 5) is irrelevant since the
resulting x;-sequence would still obey the rules for A and A. The point is that the
above meshing will reset any x} only finitely often, and it is quite easy to see that
strategies meshed in this way will achieve the desired results.

As in the previous argument (2.7) the formal details are to arrange the R, on
the usual IT,-guessing tree. As this is standard and yields no new insight we leave.
these details to the reader. (We hope that the details are obvious at this stage.)
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Remark. We point out that there are other techniques of meshing Friedberg
sequences. One such technique is to use traces of some x, following F, as
followers of P for j >i. Thus for a sequence x,, X1, x3, . . . we can let any xj for
j=k follow P;,, as well as tracing x,. The only problem with this technique is
that it necessitates the further use of the delay involved in (3.3). For instance if x}
follows P, it may be that x] enters A yet x, has not yet required attention. Upon
resetting at stage §>s we would then only have that A(x,, e, §) > u(xs, e, s) —
but d(xo, €, §) <u(xi, e, §) —since d(x,, e, §) = 8(x,, ¢, 5). Indeed we might get
a stage ¢ where after x5 entered A for the sake of P.,, yet x;=x{ so that
6(xi, e, t) = 6(x4, e, §) <u(x}, e, £). Again this all involves a finite delay in the
definition of A and A (and C and C). But this causes no real problems. Actually a
mild variation of this version involves much less notation for (3.5) below. Of
course the trade-off is the added conceptual difficulty in the delay required in the
definition of C and D and the functionals A and A.

One corollary of course is the existence (by (2.1) of nonzero cappable
completely mitotic degrees. However, this is not particularly significant since the
mitotic construction of (2.7) is easily seen to blend with a minimal pair
construction. It is however clear that there seems no way to combine (3.1) with
promptness and so it seems that (3.1) always builds cappable degrees. This is
important only in that we do not know which degrees r.e. in and above @
(REA(@)) are the jumps of completely mitotic degrees. If jump inversion is
possible then— by the observations above —it would seem that another con-
struction is needed. This follows since Shore [15] and Cooper [5] have shown that
not every REA(f') degree is the jump of a cappable degree.

It is relatively easy to modify the strategy of (3.1) to show the result below
whose proof we only sketch due to its similarity with (3.1).

(3.5) Theorem. There exists a high completely mitotic degree.

Proof (sketch). The proof relies on a modification of the strategy of (3.1), or,
rather, checking that the strategy is compatible with the usual ‘piecewise thick’
highness requirements. Specifically, let H be an r.e. set such that H® is either
@ or a finite initial segment of 0@, and such that [H®| < iff e €@”". Then it
suffices — as usual — to build a thick subset A of H (i.e. Ac H and A® =* {©
for all e) to make A high. We reserve row »® for tracing and so we shall satisfy

P . A(e+1) =*H(e+1)

and ensure that A? < H? for all j = 1. We retain the R, of Section 3.

As usual the grafting of infinitary positive requirements involves guessing which
columns of A are infinite or not. R, must thus guess whether j € §” for j <e and
the behaviour of the R; for j <e. We assume the reader is familiar with this
completely standard process and refer him to (e.g.) [18] for further details.
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The important new features of our new construction are to ensure that our uses
Alx, e, 5) and y(x, e, s) settle down if lim inf; {(e, s)-> c and to deal with meeting
the P, for k > e if I(e, s)— = but lim inf; I(e, s) <.

Notice that each (e, x) must be given an entourage (taken from @) in some
fair way. The first major difference in our activities is that we can no longer
cancel followers of P, for k > j if P, acts putting some member of @Y* into A.
We describe the necessary coherence of two F;, P with one R, for k>j>e. For
definiteness, we take k=j + 1.

Initially there will be a least unrestrained number xj in @? not yet in A. When
the e-correct version of (@,, I;) gives l(e, 5) > x3 we pick x] and then take as our
<> -event’ that all members z of w® that satisfy the inequality xj <z <xj have
occurred in w® at stage §. Until this 3;-event occurs we restrain A,[x,]. Since we
are dealing with e-correct computations this will preserve the appropriate region
u(x}, e, s). The basic idea is that if @ is finite then eventually we’ll get stuck on
some xj. (The point is that should xj € wi, then eventually we’ll enumerate xj
into A, for some ¢ >s. At this time we’ll choose a new xg*'.)

Obviously for this strategy, when we pick x5>x§ when I(e, §) > x5, we can’t
similarly restrain AJx,] since perhaps x ¢ @ and in this case all of A would
eventually be restrained. Thus we must mesh the P, strategy with the F; one. In
fact we need two versions of P, to guess whether |w?®| =« or not.

The first version of P, is guessing |@?| is finite and it is played (roughly) like
the strategies of (3.1), but with an intrinsic commitment to believing x} ¢ w®.
Thus, as in (3.1) a typical situation would be Diagram 7.

6(xo,e,5) )\[xo,e,s) ag
I | ] 1
FA /\I A'A e
| !
i . ! i ; ! A
s 5 s s
*o <Xy Yo o) Y1 Xq
Diagram 7

Here a5 denotes A(y), e, 8), 6(¥3, e, 5), A(x;, e, 5) and 8(x,, e, s). We write x,
and x, to suggest that the reader think of them in their limit positions. The reader
should note that &(x,, e, s) may not respect yj as in Diagram 5 (only perhaps
A{xo, €, 5)). The reason is that y; may not be the same as y{ where y; was set at
the stage when 8(x,, €, t) = 0(x,, e, s) was set. Note that since the last in any
sequence is a C-change, at best we could have reset A(xo, e, 5), but 8(xo, €, 5)
remains the same. Of course the internal integrity of 6(x,, e, ) with x,; remains,
and hence we still remain consistent with the construction.

The most important point, however is to ensure that lim, A(x;, e, 5) exists, and
indeed lim, x} exists. The point is that x3 is constantly reset whenever yj enters A,
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and a new y} is later chosen. In the previous construction, the finite injury nature
gave us this for free. In the current construction we explicitly ensure this by
waiting until a stage s where

(3.6) For some z set aside for tracing P, we have
(i) z>u(x,, e, s) and
(ii) yo>u(z, e, s).

Notice that if truly @,(A) =V, and I (V,) = A, then such a stage § must occur
lest u(Z, e, s)— o, where £ is the least number set aside for P, with 2 > ulx,, e, s).
At this stage, we let x, =z and shift everything one position left. The relevant
picture would be Diagram 8. -

)\(x ,e,%)
'0'(x € s)l(xo,e s)é‘(x »8,8) : ag
e X X, =z yo x3 Yl
Diagram 8

Here a5 = A(x, ¢, §) = 6(x2, €, §) = A(¥, ¢, 5) = (¥}, e, 5). Note that now x,,
A{xg, e, §) and 8(x,, e, §) have reached their limits as essentially have A(x,, e, §)
and 8(xy, e, §). The reader should note that in this way eventually all the x; will
reach their limits and yet we are still able to meet F,.

Thus we have dealt with the case where |w?] < . We must also be able to deal
with the other version: namely |@?] = (i.e. P, guesses this). Roughly speaking
for this version of P, typically we’ll have the situation above reversed, but with
the added proviso that y§ can’t cause x} to enter A (i.e. P respects F;). Now in
this case P, will wdit for the action of P; to cause x; to enter A. The important
situation is when y5’s enter ©® ‘slowly’, but x§’s enter w® ‘quickly’.

Shifting occurs as outlined above, and a typical situation would be Diagram 9.

5
§(yyse,s)
s
Alyg»e,s) az
l ] t
| [ I Ve
1 |
1 ! ! t— A
s s b1 s
YO Yl xo xl y’z xs

Diagram 9
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Here a5 would denote 8(xg, e, 5) = A(xp, €, 5) = 8(y1, e, 5) =A(y}, ¢, 5). The
important point is that this version of P, ‘knows’ that eventually xj will enter A.
Thus once it sees y§ € 0® it then simply waits until xj enters A. P, then delays
picking new xg until y] and yj get enumerated into A (or stuck by an R, for ¢ <j).
Such delay is fine from P;’s point of view since it is guessing /(e, s)— o and so can
wait two more expansionary stages since it knows (e, §)— oo,

In essence, the only major problem is in ensuring that all the 8’s and A’s settle
down. The modifications above clearly ensure this for the version of R, on the
true path. The remaining details go through as before and we leave these to the
reader. O

Thus we know that completely mitotic r.e. degrees can be high, low, and
low,—low (Cohen—Ladner in [12]). We know nothing else about the jumps of
such degrees. In particular we remark that we don’t know if there are such
degrees in H,,, — H,, L,,, — L, and Int, We point out that pseudo-jumps can’t
be used here since 0' is not completely mitotic.

4. Limiting results

In. this section, we examine results which limit the existence of completely
mitotic r.e. degrees. In Section 2 we saw that no low promptly simple r.e. degree
was completely mitotic. An early result of Ladner [11] shows that 0' is not
completely mitotic either:

(4.1) Theorem (Ladner [11]). There exists a non-mitotic complete set.

Proof (sketch). For completeness, we provide a quick sketch proof. Again we
make A nonautoreducible. We satisfy the requirements

Rg &, (AU {x};x)#A(x) for some x.

At each stage s we place markers A(e, 5) on members of A,. Let K =f(w) be a
1-1 enumeration of a creative set. To meet R, wait till I(e, s) > A(e, 5) where

le, s)=max{y: Vz < (D, (A, U {z};z) =A,(2)}.

Assuming that e <f(s) set A1 =4, U{A(e,5)}, Ale+i,s+1)=Ale+i+s,5)
for all { € w, and A(j, s + 1) = A(j, 5) for j <e. If no e receives attention this way,
set A, =A;U{A(f(s), 5)}, A(f(s)+i, s+ 1)=A(f(s)+i+1,s) for all { and
Aj, s +1)= A(j, s) for j <f(s). It is really quite easy to show that lim, A(e, s) =
Ale) exists, A =7 K and that the R, receive attention at most a finite (bounded)
number of times. ]

Another limiting result is given by analysing some results from Downey and
Jockusch [6].
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(4.2) Theorem. There exists a low,—low r.e. degree a such that for all r.e. b with
0<b<a, b contains a nonmitotic r.e. set.

Proof. In [6], Downey and Jockusch construct an r.e. set A such that A is
incomplete, such that if A,lLlA;=A4 is an r.e. splitting of A, then
inf{deg(A4,), deg(4,)} =0, and such that if B<;A then B=<,A. They also
showed that such r.e. sets are low,—low.

In [1], Ambos-Spies shows that if D and C are r.e. sets with C=<,,, D, then
there exists an r.e. set €=, C such that if C,;1IC,=C is an r.e. splitting of C,
then there exists an r.e. splitting D; L1 D, = D of D with C;<,. D; (cf. (2.13)).

Putting these two results together shows that if B=<t A, then deg(B) contains_
an r.e. set B every splitting of which is a minimal pair and so is certainly not
mitotic. O ‘

It seems quite probable that all high r.e. degrees bound nonzero completely
mitotic degrees. It would be interesting therefore to know how high the top of a
‘nonmitotic cone’ (as in (4.2)) can be. Certainly every nonzero r.e. degree has a
predecessor with this property:

(4.3) Theorem. Let a be r.e. nonrecursive. Then there exists an r.e. degree b with
0 <b =< a such that for all c<b if ¢ is completely mitotic then ¢=0.

Proof. Let A be an r.e. nonrecursive set with A =|_J; A, a recursive enumeration.
We build B <1 A by simple permitting. We shall satisfy the requirements

P: B+W,

N,: ®(B)=C,implies C,=1C, and
either C, is recursive, or Ix (L(C, U {x}; x) # C.(x)).

Here (®,, C,).<; is a standard enumeration of apirs consisting of an r.e. set and a
functional, (I});c. is an enumeration of all functionals, and C, is a set we build (if
@,(B)=C,). As usual, we regard @.(B) as controlling C, and hence, if

I(e, 5) = max{z: Vy <z (P.(B;; y) = C,s(¥))} > x,
then don’t allow C, {(x) to change unless B,.[u(e, x, s)] # B,[u(x, ¢, s)] where
u(x, e, s) = max{u(®P, .(B;; z)): z <x}.
Now let
(e, i, 5) = max{x: ¥y <x (5,(Cos U {3} 9) = Cos(y))
8 ¥z (2 <u(T ., U {y}: )= e, ) > 2)),

the ‘B-controllable’ length of agreement. To ensure that C.=1 C, we add to C,
the least number to enter C, between e-expansionary stages (namely when
(e, s) > max{l(e, £):t <s}).
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To meet the N,; we attempt to preserve any perceived disagreement by

cancelling lower priority followers at e-expansionary stages. If we fail to meet N, ;

in this way, we must argue that C, is recursive. The resultant argument is a fairly
easy finite injury one which we give below.

We say P, requires attention at stage s + 1 if e is least with W, ;N B, =@ and
such that one of the options below hold:

(4.4) P, has no follower x with x ¢ W,

(4.5) P, has a follower x with x e W, ; and
A permits on x (i.e. A,.[x]# A [x]).

Construction, stage s + 1

Step 1. For each e <s if s is e-expansionary let z = uy ( Y€ C.;— C.;) where §
is the last e-expansionary stage less than s. Define C”H = C“ U {z}. Now, if for
any Z and { we have

(1) r;',s(éc,s+1 U {2}, f}l # Ce,s+}(2)’ and

(ii) e, 5) > u where & = u(L;,,(Casrr U {£}; 2)),
then cancel all followers of P, for k> (e, i) and say that N, ;, receives attention
at stage s.

Step 2. Now find e such that P, requires attention. If (4.5) holds, set
B;.1= B, U {x}. Initialize. If (4.4) holds, and (4.5) doesn’t pertain assign x =s as
a follower of P,. [I(End of Construction)

The following lemma is standard and easy.

(4.6) Lemma. (i) B<tA
(i) If the Ny for (f, i) <e receives attention only finitely often, then P,
receives attention only finitely often and is met.

Thus to complete our verification, we check
(4.7) Lemma. Each N ;, receives attention at most finitely often and is met.

Proof. Let s, be a stage such that all the P for j< (e, i) cease receiving
attention. If /(e, s)— o there are infinitely many e-expansionary stages and so
C.=1C,. First suppose that N, receives attention at some (e-expansionary)
stage 5 >5,. Then at this stage for some (least) 2 we have I (C, . U {£};2) #
C‘,,,H(f). This preserved disagreement is preserved forever since we can cancel
all potentially injurious numbers from possible entry into B, ensuring that
C..J[u] = C.[u] where u=u(L;i(C.sr1U{2};2)) and so C.[u]= C.i[u]. Thus
L(C U {2}; £) # C.(2). Hence N, can receive attention at most once after stage
So-
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Now we must argue that if N, ;, does not receive attention after stage s, and
I{e, i, s)—> o, then C, is recursive. To compute C.(2) find a stage s > s, such that
I(e, i, s)>z. Since no number enters C, between stage s and the next e-
expansionary stage s, > s, it must be that I(e, i, s;) > z also. It is clear that for all
<z, it must be that I}, (C.,U{8};2)=C.,(2)=C..(2)=C.si(5).
Otherwise in Step 1 we would kill N, ;, at some such z. These observations hold
for any s with I(e, #, s) > z and constitute a proof that €, ,(z)=C,(z). O

Finally, we turn to density properties. First we give a new proof of Ingrassia’s
theorem on the density of degrees containing non-mitotic r.e. sets. His proof is
quite complex and involves the use of ‘p-generic’ and ‘intro-reducible’ r.e. sets.
Ours is direct, simpler and rather more amenable to modification.

(4.8) Theorem (Ingrassia [8]). The degrees containing nonmitotic r.e. sets are
dense in R.

Proof. We are given r.e. sets E <p F. By Sacks density theorem [14] it suffices to
construct an r.e. set A with A @ E < F satisfying

P: Ax (PAADEU {x};x) #(A @ E)(x)).

Let (e, s)=max{x: Vy <x (D, (A, @E,U{y};y)=(A,® E,)(y)z}. The basic
strategy for satisfying F, remains the same: pick a follower x, wait till I(e, s) > 2x
and enumerate x into A, setting r(e, s + 1) = u(2x, e, s) where

(49) u(x, e s)=u(P, (ADEU{2x};2x).

In itself F-permitting causes no real problems. As in (4.3) this really only
involves an infinite collection of followers. However E-coding causes two rather
serious problems. The first problem is that E-coding can injure the computations
of (4.9). The second problem is a coherence one, which we delay discussing until
later. -

The solution to the first problem involves arranging matters so that if, for.all x,
D(ADEU {x};x)=(A D E)(x), then E can compute F, giving a contradiction.
We implement this as follows. At each stage s we have a collection x, ; <- -+ <
X, s of followers following F,. We refer to i as the permitting number of x; ;. These
followers satisfy the three rules below:

(4.10) (Cancellation). If x;, is currently active (that is, x;,, . is currently defined
or x;, € A;) but we discover that u(2x;,, e, 5) is really E-incorrect, we choose the
least such i and cancel x;; for j>i. If x;; € A;, we also cancel x;,. Declare x;, as
inactive.

(4.11) (Appointment). If x; ; is currently defined and x;., , is not, then if I(e, s) >
2x;, declare x;, as active and set x;.,,=s5. Set r(r, s +1) = max{u(x.,, e, 5):
k<i}. )
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(4.12) (Permission). If x, is active and i € F,;,, then enumerate x;, into A .
Cancel x;, for j >i. We regard x;; as still active.

The reader should note that the rules allow followers of P, to still ‘receive
attention’ whilst P, appears satisfied, provided that our new attack is more likely
to succeed. The important point is that P, cannot get new followers whilst it
appears satisfied.

The above rules are sufficient to satisfy a single P, (overcoming the first
problem), as we see below.

(4.13) Lemma. Suppose that Vx (L,(A® EU{x};x)|). Then 3y (P.(A®EU
{y};y)# (A @ E)(y)) and P, acts finitely often.

Proof. Suppose otherwise. We show F=<1 E. We show by induction that

(4.14) (i) All the x;, eventually become permanently defined, that is lim, x,; ;= x;
exists with x; ¢ A. :

(ii) Once x,,.,; is defined at stage f, Vs>r(u(2x, e, 1) =u(2x, ¢, 5)=
u(e, 2xz)).

(iil) Vs (x;qq > max{u(e, 2x.): k <i}.

(iv) E can recognise when (i) occurs. i

Once we have (4.14) we E-compute F as follows. Let g € . E-recursively
compute a stage s where x,., is defined. Then x, is active, x, ¢ A, and since x4
is final, for all j=<g, the u(2x;, ¢, s) computations are E-correct. By restraints
(unless P, acts) it must be that the u(2x;, e, s) computations are final. Hence g € F
iff q € F, since otherwise g’s entry into F would meet F..

It remains, therefore, to verify (4.14). Suppose that we have E-recursively
computed x4, . . ., x, and a stage § where Vs > § (x, , = x, s = x,). By hypothesis
also (i), (ii)* and (iii) hold for x; for j<k. Now x,¢ A, otherwise the
@, (A, D E; U {2x,}; 2x;) computations must be E-incorrect (since we have that
Vx (@.(4A ® EU{x};x) = (A ® E)(x)) and so x; would be reset (by (4.10)). Now
E-recursively find a stage s >3§ with I(e, s) >2x, via E-correct computations.
Then xgyy 541 = Xk41- D

Thus, by (4.13) we now have a way of making P,(ADEU{x};x)#(AD
E)(x) for some x: either we will meet P, by divergence for some x, or the strategy
outlined above meets P, with finite effect.

The second problem we mentioned earlier is caused by our solution to the first.
It occurs due to a combination of (4.10) and (4.11) causing disaster for the P; for
j > e although P, is met by divergence. Specifically the case we must worry about
is that for some (least) x, we have u(2x,e, s)—>«. Now we can see that
X1, ..., Xx—1 don’t matter, but infinitely our x,-list is cut back to x; (i.e. we cancel
x;; for j>k). At the next stage t>s when Ie, t)>2x, we reset r(e, t) to
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u(2x, e, ). Thus although P, is met by divergence, the unbounded use of 2x,
may cause us to not meet F,. The reader should note that this problem occurs
even if we allow r(e, £) to drop back at nondeficiency stages due to the fact that
we also need F-permitting to enumerate x; into A for (4.12). For example, P,
might wish to add some follower Yn t0 A since it sees n € F,, ,. However, it may be
that r(e, s) >2y,, although r(e, s) is really E-incorrect. Having lost our chance for
Yu, £ now declares r(e, s) incorrect and now lets it drop back. But we no longer
have a chance to put y, into A under our current permission rules.

The key observation that allows coherence of the requirements is that £ knows
if a current r(e, s) is E-correct or not (remember, in essence, r(e, 5) drops back
only due to E-incorrect computations); and whatever E knows F knows since
E =<t F. Thus our solution is to use delayed permitting for y,. That is, when we see
neF,if r(e, s) >2y,, then we declare 2y, as F-permitted. Now, should we ever
see (with 2y, still alive) r(e, s) drop back because of E-incorrectness, we then
allow y, to enter A, The whole point is that A remains < F since F can decide
(via E) if an F-permitted follower will ever enter A.

In general to satisfy P, in Py’s environment we have —as usual on a tree,
say — two versions of P;. One is guessing that P, has finite effect, and the other is
guessing that P, has infinitely many cutback stages. The first version of P, just
treats Fj as it would in a finite injury argument. The second version ‘knows’ that
liminfr(e, s) < and uses delayed permission. (More thematically the second
version (to the left of the first, of course) could ‘not believe’ an F. -permission until
the next stage it is accessible.) Notice that, although F can’t determine which is
the true version (a IT,-question), F can decide for any particular follower from
either version whether or not it will succeed in entering A, keeping A <. F.

There are clearly no further problems with the coherence of 1 > 2 requirements
than there are with 2 and we leave any further formal details to the reader. [J

Using the ideas of Ambos—Spies and Fejer [2], we can strengthen (4.8) if we
only consider low degrees: we call a class C of degrees nowhere dense if given any
interval {a,b] in R (i.e. a<b) there exists a nontrivia] subinterval [e, f] with
a<e<f<band Vg(ge[e,f]>g¢C). '

(4.15) Theorem. The low completely mitotic r.e. degrees are nowhere den;s‘e.

Proof, This proof involves not much more than combining the ideas of (4.3),
(4.8) and using low oracles. Hence we only give a sketch, referring the reader to
[2] for further information.

A@@bﬂkﬂ%ﬂ%m&w&“kmML&ABwME@A@Bgéﬁf
satisfying

P. ®(EDA)+E,
R.;: L(B)=W,®A'implies V.=, W,® 4
and Jx (P(V, U {x}; x) # V,(x)).
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Here we work with pairs (I;, W.).c,, functionals (&,).., and we build the
auxiliary sets (V).co. We need the following auxiliary functions. Let

I(e, 5) = max{x: Vy <x (L, {B;;y) = (W, ®A)(»)},
mi(e, s) =max{l(e, t): t<s}, and

(e, i, s} =max{y: Vy <x [, (V.U {y};») =V, .(¥)
&Vz(z=u(®,;U{y}; )=l 5)>z}.

Now, as in (4.3) when s is e-expansionary (i.e. (e, s)>mil(e, 5)), we
enumerate the least number to have entered W, @ A since the last e-expansionary
stage into V.. This clearly ensures that if /(e, s)—» then V,=, W, @ A.

Without the E-coding, we meet the R, ; by

(4.16) Pick a follower x;, wait till I(e, i, s + 1) >2x; + 1 with s-expansionary, set
r(e, i, 5) to preserve the “I(e, i, s) > 2x; + 1 computation and declare x; as active.

(4.17) When j is F-permitted, enumerate x; into A. Now at the next e-
expansionary stage s x’s entry into A has caused a change in W. ® A4 below
2x;+2. Let y be the last number to have entered W.® A since the last
e-expansionary stage. Then our V, action will ensure @V, ., U {y};y)#
Ve,s+1(y )'

It really only remains to show how the strategy outlined above can survive
E-coding. This is where lowness comes to the rescue. As in [2] or in our
construction (2.1) we can ask if the “I(e, i, 5)>2x;+1” computations are
E-correct. If our oracle answers us ‘“Yes” we proceed as above, whereas if we are
told they are not correct, then we don’t let x receive attention. As usual we can
be lied to with a “Yes” answer only finitely often. Thus, eventually we get a truly
E-correct follower-x;. (Note that we don’t need delayed permission here, the
argument is now finite injury.) The remaining details are to show that if we fail,
then F<rE as in (4.13). The P, requirements similarly cause no problem using
the lowness oracle to test correctness. We refer the reader to [2] for further
details. O

We do not know if we can extend (4.15) to all r.e. degrees. It seems feasible
that a variation of the above strategy might work for low, r.e. degrees, using the
oracle methods of Bickford and Mills. The general question of nowhere density of
all completely mitotic degrees would seem to require new technology. We remark
that techniques sufficiently powerful to answer this question would probably be
sufficient to answer similar questions for contignous degrees, degrees containing
sets with the universal splitting property (cf. Lerman and Remmel [13]) and
several other related degree classes.
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