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Abstract. We study completely decomposable torsion-free abelian groups of
the form GS := ⊕n∈SQpn for sets S ⊆ ω. We show that GS has a decidable

copy if and only if S is Σ0
2 and has a computable copy if and only if S is Σ0

3.

1. Introduction

There are many natural ways to code a set S ⊆ ω into an algebraic struc-
ture MS . The history of encoding sets (effectively and noneffectively) into alge-
braic structures is, of course, rather old. The investigation of classical encodings
goes back at least as far as Van der Waerden, who considered effective procedures
in field theory, but without the language of computability theory (see [20]). Van der
Waerden’s analysis was formalized by Frölich and Shepherdson (see [8]); Mal′cev
(see [15]) and Metakides and Nerode (see [19]) further analyzed the effective coding
of sets into fields. There are now a large number of investigations into computable
structure theory which rely on various codings into algebraic and combinatorial
structures, and for a general reference here we refer the reader to various articles in
the Handbook of Computability Theory (see [10]) and Volume 2 of the Handbook
of Recursive Mathematics (see [5]).

A hallmark of these investigations was the work of Feiner, who demonstrated
that sets more complicated than the Halting Problem could be effectively coded
into algebraic structures. For example, Feiner coded Σ0

3 sets into linear orderings
(see [6]) and certain ∆0

ω-computable sets into Boolean algebras (see [7]).
It seems that each familiar class of algebraic structures allows some natural

encoding. Here are some examples:
(1) undirected graphs (e.g., via the presence or absence of n cycles),
(2) linear orders (e.g., via the presence or absence of maximal discrete blocks

of size n),
(3) Boolean algebras (e.g., via the presence or absence of n in the measure),
(4) abelian groups (e.g., via the presence or absence of of elements of order pn),
(5) rings (e.g., via the presence or absence of a pnth root of unity), and
(6) fields (e.g., via the presence or absence of a pnth root of unity).
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A common feature of these encodings is that there are natural sentences ϕn for n ∈ ω
with the property thatMS |= ϕn if and only if n ∈ S. In the examples above, except
for the case of Boolean algebras, the sentences are finitary; for Boolean algebras,
the sentences are computable infinitary. The complexity of the sentences ϕn yields
an upper bound on how complex S can be if MS is to be decidable (computable).
For undirected graphs, MS has a decidable copy if and only if S is decidable,
and MS has a computable copy if and only if S is computably enumerable. For
linear orders, MS has a decidable copy if and only if S is decidable, and MS has
a computable copy if and only if S is Σ0

3. For rings and fields,MS has a decidable
copy if and only if S is decidable, and MS has a computable copy if and only if S
is computably enumerable.

The purpose of this paper is to study an encoding of sets S ⊆ ω into completely
decomposable torsion-free abelian groups.

Definition 1.1. A torsion-free abelian group A is completely decomposable if there
is a collection of groups (Ai)i∈I with

A ∼=
⊕
i∈I
Ai

and Ai ≤ (Q : +) for each i ∈ I.

It is well-known that the class of torsion-free abelian groups is classically quite
complicated. Indeed, it has no simple invariants as a consequence of work by
Downey and Montalbán (see [3]) and Hjorth (see [11]). Thus, special classes of
torsion-free abelian groups classes are central objects of study in the area. The
classic example of this is the collection of rank one torsion-free abelian groups,
equivalently the subgroups of the additive group of the rationals. This was first
studied by Baer (see [2]) and is easy to understand in the classical and effective
settings.

The class of completely decomposable groups was also introduced by Baer in 1937
(see [2]), and seems the next most tractable class to understand after the rank one
groups. This class has been well-studied and possesses a number of nice algebraic
properties (see, e.g., [9]). One such property (which we use without further mention)
is that a completely decomposable torsion-free abelian group has a unique direct
decomposition (up to permutations of the summands).

However, not as much is known about the effective properties of completely
decomposable torsion-free abelian groups. Mal′cev initiated the study of torsion-
free abelian groups (see [16]). Khisamiev and Krykpaeva introduced the class
of effectively (strongly) decomposable torsion-free abelian groups (see [14]). A
completely decomposable torsion-free abelian group A ∼=

⊕
i∈I Ai is effectively

(strongly) decomposable if it has a computable (decidable) copy in which the pred-
icates Pi(x) � x ∈ Ai are uniformly computable. Khisamiev and Krykpaeva then
studied a particular encoding of sets into completely decomposable torsion-free
abelian groups.

Definition 1.2. Let (pn)n∈ω be the sequence of prime numbers, in ascending order.
For each prime p, denote by Qp the subgroup of (Q : +) generated by the numbers
1/pk for k ∈ ω. If S ⊆ ω is nonempty, denote by GS the group

GS :=
⊕
n∈S

Qpn
.
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This group is termed S-divisible.

Khisamiev and Krykpaeva showed that GS is effectively decomposable if and
only if S is Σ0

2 (see [14]); Khisamiev showed that GS is strongly decomposable if
and only if S is Σ0

2 and not quasihyperhyperimmune (see [13]).
Khisamiev, in personal correspondence with the sixth author, asked for necessary

and sufficient conditions for GS to have a computable (decidable) copy. We answer
this question, showing GS has a decidable copy if and only if S is Σ0

2 (Theorem 2.2)
and showing GS has a computable copy if and only if S is Σ0

3 (Theorem 3.3). We
extend these results slightly to answer the same questions for completely decom-
posable torsion-free abelian groups of the form

⊕
j∈ω Qpaj

, where the primes paj

need not be distinct (this was Khisamiev’s precise question).
For background on effective algebra, we refer the reader to [1] and [4]; for

background on effective algebra and completely decomposable torsion-free abelian
groups, we refer the reader to [9], [17], and [18].

2. Characterizing the Decidable GS
It is easy to see that if GS has a decidable copy, then S is Σ0

2. The reason, of
course, is that n ∈ S if and only if

GS |= (∃x)
∧∧
k

(∃y)
[
x = pkny

]
,

and we can decide satisfaction of the formulas (∃y)
[
x = pkny

]
in a decidable copy.

We will show that if S is Σ0
2, then GS has a decidable copy. The lemma below gives

a sufficient condition for a copy to be decidable.

Lemma 2.1. If GS is an S-divisible group, a computable copy G of GS is decidable
if it is computable after expanding by the relations p|x (x is divisible by p).

Proof. As a consequence of an elimination of quantifiers result by Szmielew for
abelian groups, it suffices to demonstrate that Th(GS) is decidable and the com-
putability of the relations p|x implies the computability of the relations n|x.

We first show that Th(GS) is decidable. It is not difficult to see that the Szmielew
invariants of the groups GS are the same as those for a direct sum of |S| copies of Z.
It follows that the two theories are the same. The latter theory is decidable, since
Th(Z) is decidable (see, for example, Corollary 1.2 and Proposition 1.3 of [12]).

We next note that the decidability of the relations p|x implies the decidability
of the relations n|x. The reason is that in a torsion-free abelian group, if p|x, then
there is a unique element y with x = py. Thus, for example if n = p1p2, then n|x
if and only if p2|y, where y satisfies x = p1y. This can be ascertained by asking if
p1|x, and, if so, searching for the (unique) element y with x = p1y. �

Theorem 2.2. The group GS has a decidable copy if and only if S is Σ0
2.

Proof. Fix an infinite Σ0
2 set S ⊆ ω. We must show that GS has a decidable copy.

By Lemma 2.1, it is enough to construct copy that is computable with the added
predicates p|x. As preparation, fix an infinite ∆0

2 set S1 ⊆ S and let S2 = S − S1,
noting that S2 is Σ0

2. We assume the 0th existential witness for membership of any
number n in S2 fails to witness n ∈ S2. This assures we process all of S1.

We use a standard computable approximation for S2 such that if n ∈ S2, then
for all sufficiently large s, the number n appears to be in S2 at stage s; and if
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n /∈ S2, then there are infinitely many s such that n appears not to be in S2 at
stage s. When we believe n ∈ S2, we work towards building a copy of Qpn , using
an element to which we give the label rn. If later we believe that n /∈ S2, we trash
this work by incorporating it into the integer part of Qpa

⊕Qpb
for some a, b ∈ S1,

using elements to which we have assigned the labels ra and rb. Since S1 need not be
computable, the integers a and b also need to be approximated, so we may trash this
work as well. We then need a further pair of elements, carrying labels ra′ and rb′ ,
representing integers a′ and b′ thought to be in S1. This in turn may injure lower
priority work, but as the set S1 is ∆0

2, this injury will be finitary. The pairs do not
proliferate. That is, rn and the first pair ra, rb are all generated by the second pair
ra′ , rb′ . If later n reappears in S2, we repeat this process afresh, working with new
elements throughout, but re-using the labels as appropriate.

The priority of an element labeled rn is the stage at which it was created; the
priority of an element labeled ra or rb is the priority of the element labeled rn with
which the pair is associated.

Construction: At stage 0, we start with the trivial group.
At stage s + 1, we introduce a new nonzero element carrying the label rs. For

each n ≤ s, we act on behalf of the element carrying the label rn as follows:
(1A) If n appears to be in S2 and has at the previous k many stages, we introduce

a solution z to the equation rn = pknz.
(2A) If n appears not to be in S2 but appeared to be in S2 at the previous k

many stages, we trash the element rn. This is done by guessing the lexi-
cographically least (distinct) pair (a, b) ∈ S1 for which neither a nor b is
currently assigned to a higher priority element, introducing a pair of new
elements carrying the labels ra and rb, and declaring rn = pknra + pknrb.

If either ra or rb is assigned to a lower priority element, both are trashed
as described in (2B). We then introduce a new element carrying the label rn
(this label is removed from the old rn) to approximate whether n is in S2

via the next existential witness.
We also act on behalf of all pairs of elements carrying the labels ra and rb (associated
with each other) in existence.

(1B) If a and b appear to be in S1 and have at the previous k many stages, we
introduce a solution za to ra = pkaza and a solution zb to rb = pkb zb.

(2B) If either a or b (or both) appears not to be in S1 but appeared to be in S1

at the previous k many stages, the elements with the labels ra and rb are
trashed. This is done as follows. We guess the lexicographically least (dis-
tinct) pair (a′, b′) ∈ S1 such that neither a′ nor b′ is currently associated
with a higher priority element (as compared to the elements with the la-
bels ra and rb). Let za and zb be such that ra = pk−1

a za and rb = pk−1
b zb.

At present, we have not said that za and zb are divisible by any prime.
We have said that ra and rb are not divisible by certain primes, so za and zb
must not be divisible by these primes. We will get rid of the labels ra
and rb. We introduce a pair of new elements carrying the labels ra′ and rb′ ,
with the intention of making these elements infinitely divisible by pa′ , pb′ ,
respectively, and not divisible by any other prime. We let za = ra′ + qrb′

and zb = qra′ + rb′ , choosing q so that for α, β ∈ Z, αza + βzb will be
divisible by an arbitrary prime p only if p divides both α and β.
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If either ra′ or rb′ is associated with a lower priority element, both are
trashed as just described. This may, of course, recurse.

We also declare all small finite sums of elements with a label rn, ra, or rb, not
divisible by any prime pi with i ≤ s if it is not already divisible by pi. Here, a
coefficient r ∈ Q is small if the Gödel code ||r|| for r satisfies ||r|| ≤ s.

Finally, we introduce the sum of every two elements already in the group (if the
sum does not already exist) and the inverse of every element already in the group
(if the inverse does not already exist).

This completes the action at stage s+ 1.

Verification: It is clear that the group G constructed is computable.
It therefore suffices to demonstrate the relations p|x are uniformly computable

and G ∼= GS . The relation p|x is clearly Σ0
1, so it suffices to show it is Π0

1. However,
this is a consequence of the action at the end of every stage s. Of course, we never
violate these declarations as divisors are only introduced in Step 1A, Step 2A, and
Step 2B.

The group we are building, G, is isomorphic to GS . We establish this via a
sequence of claims. Before doing so, we make the (trivial) observation that every
labeled element either carries its label for cofinitely many stages or is trashed.

Claim 2.2.1. For every n ∈ S2, there is a unique element carrying the label rn for
cofinitely many stages. Moreover, this element is infinitely divisible by pn, and it
is not divisible by any other prime.

Proof. If n ∈ S2, an existential witness will demonstrate this in a Π0
1 fashion.

The element created on behalf of the first such witness will carry the label rn for
cofinitely many stages. Moreover, this element is infinitely divisible by pn, and it
is not divisible by any other prime by the action at Step 1A. The uniqueness of
this element is assured by the removal of the label rn in Step 1B when the label is
assigned to another element. �

Claim 2.2.2. For every a ∈ S1, there is a unique element carrying the label ra for
cofinitely many stages. Moreover, this element is infinitely divisible by pa, and it
is not divisible by any other prime.

Proof. We show that there is a (unique) element carrying the label ra for cofinitely
many stages by induction. We consider a stage s0 such that:

• for each a′ < a with a′ ∈ S1, an element carrying the label a′ cofinitely has
already been created,
• for some b > a with b ∈ S1, the approximation of all b′ ≤ b in S1 has

converged.

At this stage, if an element already carrying the label ra never gets trashed, then
this element suffices. Otherwise, consider the currently existing highest priority
element carrying a label that will eventually be trashed (the element carrying the
label rs ensures such an element exists, by our assumption on the zeroth existential
witness). When this element is trashed, elements carrying the labels ra and rb′ for
some b′ ≤ b will be created, and these elements will never be trashed. By Step 2A,
this element will be infinitely divisible by pa. As no other divisors are introduced,
this element is not divisible by any other prime. �
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Claim 2.2.3. Every element in G is a linear combination of elements carrying a
label for cofinitely many stages.

Proof. As every nonzero element in the group G is a linear combination of elements
that carry a label at some stage, it suffices to consider elements that carry a label
at some stage. Of course, we may further restrict our attention to those elements x
which are later trashed.

If x was trashed by Step 2B, then x is a linear combination of elements carrying
the labels ra′ and rb′ . If these labels persist cofinitely, then this is the desired linear
combination. Otherwise, the elements carrying the labels ra′ and rb′ are themselves
trashed. However, this process is iterated at most finitely many times since S1 is
∆0

2 and a given element is only injured by higher priority elements.
If x was trashed by Step 1B, then x is a linear combination of elements car-

rying the labels ra and rb. If these exist cofinitely, then this is the desired linear
combination; otherwise, the argument above assures the existence of such a linear
combination. �

Claim 2.2.4. If n 6∈ S, then no element is infinitely divisible by pn. Also, no
element of the group is infinitely divisible by two distinct primes, and no element
is divisible by infinitely many distinct primes.

Proof. This is an immediate consequence of the construction and the previous claim.
�

It follows from these claims that G is a decidable copy of GS . �

Remark 2.3. Let G be a direct sum of groups of the form Qpn . The character of G
is the set χ consisting of the pairs (n, k) such that G has at least k direct summands
of the form Qpn

. We write Gχ for the group with character χ.
It is not difficult to see that the construction can be easily modified to show

that Gχ has a decidable copy if and only if the character χ is Σ0
2.

3. Characterizing the Computable GS
It is easy to see that if GS has a computable copy G, then S is Σ0

3. The reason
is that n ∈ S if and only if

G |= (∃x)
∧∧
k

(∃y)
[
x = pkny

]
.

We show that if S is Σ0
3, then GS has a computable copy. This strengthens the

result of Melnikov (Theorem 3 from [18]) showing that the group GS ⊕
(⊕

i∈ω Z
)

has a computable copy if and only if S is Σ0
3.

We shall use the following lemma on Π0
2 approximations by pairs of Π0

2 sets.

Definition 3.1. Let [ω]2 be the set of two-element subsets of ω, viewed as a set of
pairs (a, b) with a < b. If X ⊆ [ω]2, let minX denote the reverse lexicographically
least pair (a, b) in X.

Lemma 3.2. For every infinite Π0
2 set T ⊆ ω, there is a uniformly computable

sequence of Π0
2 sets (Xi)i∈ω such that the sets minXi, for i ∈ ω, form a partition

of T .



DECIDABILITY AND COMPUTABILITY OF CERTAIN TORSION-FREE ABELIAN GROUPS7

Proof. Enumerate the elements of T in increasing order as a0 < b0 < a1 < b1 < . . . .
Let Xi = {aj : j ≥ i} ∪ {bj : j ≥ i}. It is not difficult to see that the sets Xi are
Π0

2 uniformly in i. Moreover, minXi = (ai, bi). �

Theorem 3.3. The group GS has a computable copy if and only if S is Σ0
3.

Proof. Fix an infinite Σ0
3 set S ⊆ ω. We construct a computable copy G of GS . As

preparation, we fix a Π0
2 set T ⊂ ω such that s ∈ S if and only if 〈t, s〉 ∈ T for

some t. Further, if s ∈ S, we assume the witnessing t is unique. Let (Xi)i∈ω be as
in Lemma 3.2.

The idea for the construction is to add an element x to G and express x as a
linear combination of elements u0 and v0 such that u0 and v0 are infinitely divisible
by primes pa0 and pb0 , respectively, where a0, b0 ∈ S. Of course, we will make
mistakes in approximating a0 and b0.

It may therefore become necessary to recycle the elements u0 and v0 when it
appears a0 6∈ S or b0 6∈ S. This will involve writing u0 and v0 as an internally
consistent linear combination of x and another element w. We then continue to
work for x using new (lower priority) elements u1 and v1 and primes pa1 and pb1
for which a1 and b1 appear in S. Similarly, we work for w using new elements u′0
and v′0. This process will, of course, possibly repeat itself in a recursive fashion.

As S is Σ0
3, it will become necessary to return to a pair of elements ui and vi

working on behalf of some element z with numbers ai and bi. When this happens,
all work on behalf of z with elements uj and vj for j > i is trashed. This includes
not only the elements uj and vj , but also any elements created to recycle it (and
so on). In addition, elements created to recycle ui and vi are also trashed.

Throughout the construction, certain elements will be termed T -elements. These
will be the elements x and w discussed above. Finite sums of these elements are
not so distinguished. At every stage, every T -element z will be associated with
one of the sets Xi. The set Xi will control the primes pa and pb such that we are
attempting to make the element z a sum of elements of Qpa

and Qpb
. Though the

index i may change finitely often for a T -element z, it will always reach a limit
(provided z remains a T -element).

The priority of a T -element is the point in the construction at which it was
introduced, with higher priority elements created earlier in the construction. In
order of priority, T -elements will constantly seek to swap their Xi for an Xj with
j < i.

Construction: At stage 0, we start with the zero group.
At stage s + 1, we introduce a new T -element. We also act on behalf of all

existing T -elements.
We act on behalf of a T -element x by searching for the reverse lexicographically

least pair (〈ta, a〉 , 〈tb, b〉) that appears in the set Xi associated to x. If no u and v
associated with this pair and x exists, we introduce new elements u and v to G with
u+ v = x, and associate them with this pair (〈ta, a〉 , 〈tb, b〉) and x. Otherwise, we
add to G a solution zu to the equation u = prazu and a solution zv to the equation
v = prbzv, where u and v are the elements associated with the pair (〈ta, a〉 , 〈tb, b〉)
and the element x, and where r is the number of times we have already worked on
behalf of these elements. We also recycle (as described below) any higher priority
elements u′ and v′ that were introduced on behalf of x which are not already being
recycled, trash (as described below) any lower priority elements u′ and v′ introduced
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on behalf of x, and, if u and v were being recycled at the previous stage, trash (as
described below) the element w introduced on behalf of u and v.

For a pair (u′, v′) of elements associated with the pair (〈ta′ , a′〉 , 〈tb′ , b′〉) and the
element x, we recycle the work for (u′, v′) by:

(1A) finding integers α and β satisfying

αpra′ + βprb′ = 1

where r is the number of times we have already worked on behalf of (u′, v′),
(1B) introducing a new T -element w′ satisfying

u′ = pra′(αx+ prb′w
′) and v′ = prb′(βx− pra′w′)

into the group, and
(1C) associating the setXi′ to w′, where i′ is minimal so thatXi′ is not associated

to any other element.
Any T -element w previously introduced on behalf of u and v is trashed as follows.

For each pair (u′′, v′′) created on behalf of w, we work by:
(2A) trashing any T -element w′′ introduced on behalf of u′′ and v′′ (this may

further recurse),
(2B) finding integers α and β satisfying

α+ β = 1 and pra′′ |α and prb′′ |β
where r is the number of times we have already worked on behalf of (u′′, v′′),

(2C) declaring

u′′ = αw and v′′ = βw.

We then remove the association of Xj with w, and no longer consider w to be a
T -element.

For each pair (u′, v′) of T -elements associated the pair (〈ta′ , a′〉 , 〈tb′ , b′〉) and the
element x, we trash the work for (u′, v′) by:

(3A) trashing any T -element w′ introduced on behalf of u′ and v′ (this may
further recurse),

(3B) finding integers α and β satisfying

α+ β = 1 and pra′ |α and prb′ |β
where r is the number of times we have already worked on behalf of (u′, v′),
and

(3C) declaring

u′ = αx and v′ = βx.

If there is ever a T -element z associated with a set Xi and a set Xj for j < i
is unassociated (such a situation is possible whenever a T -element is trashed), the
highest priority such T -element removes its association with Xi and associates itself
with Xj .

Finally, we introduce the sum of every two elements already in the group (if the
sum does not already exist) and the inverse of every element already in the group
(if the inverse does not already exist).

This completes the action at stage s+ 1.

Verification: It is clear the group G is computable, provided that integers α and β
can always be found. We demonstrate this and that G ∼= GS via a sequence of
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claims. We let U be the set of elements u and v that are never trashed and are not
recycled for cofinitely many stages.

Claim 3.3.1. Integers α and β always exist (and thus are found) satisfying the
desired constraints.

Proof. Elementary number theory assures the existence of integers α and β since
powers of distinct primes are relatively prime. �

Claim 3.3.2. For each integer i, the setXi will be associated with a fixed T -element
for cofinitely many stages.

Proof. Fix the ith highest priority T -element that is never trashed, the existence of
which is ensured by the new T -element introduced at every stage. Once all higher
priority T -elements that will ever be trashed are, the set Xi will be associated with
this element from now on. �

Claim 3.3.3. The integers in S are in 1−1 correspondence with the elements of U .

Proof. Fixing an integer n ∈ S, let i be such that 〈tn, n〉 ∈ minXi for some tn. By
Claim 3.3.2, the set Xi will be associated with a fixed T -element x for cofinitely
many stages. Consider a stage after which elements less than minXi never appear
in Xi. Then the elements u and v created on behalf of minXi and x will never
be trashed, and they will not be recycled for cofinitely many stages. One of these
elements will be working on behalf of n.

This correspondence is 1−1 because there exist a unique tn such that 〈tn, n〉 ∈ T ,
a unique Xi such that 〈tn, n〉 ∈ Xi, and a unique T -element x cofinitely associated
with Xi.

If n 6∈ S, then 〈tn, n〉 6∈ minXi for any i and tn. Thus, any u or v associated
with n will be trashed when its associated T -element is trashed, trashed when a
smaller pair appears in Xi, or recycled for cofinitely many stages when its pair
never again appears in Xi. Therefore, this correspondence is surjective. �

Claim 3.3.4. If an element u ∈ U is in correspondence with n, then u is infinitely
divisible by pn, and it is not divisible by any other primes.

Proof. Solutions to u = pr+1
n zu (or v = pr+1

n zv as the case may be) will be in-
troduced for arbitrarily large r. No other prime will divide u, by the choice of α
and β. �

Claim 3.3.5. If n 6∈ S, then no nonzero element is infinitely divisible by pn. Also,
no element of the group is either infinitely divisible by distinct primes or divisible
by infinitely many primes.

Proof. As a consequence of the construction, no element is infinitely divisible by pn
unless that element is a rational multiple of the element of U that corresponds
to pn. By construction, no nonzero element is a rational multiple of two distinct
elements of U . �

Claim 3.3.6. Every element of G is a linear combination of elements in U .

Proof. We argue by induction, treating several cases separately. It suffices to treat
those elements z that are explicitly added to the group (i.e., not implicitly added
to the group as a sum of existing elements).
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If z is a T -element that is never trashed, fix the set Xi cofinitely associated with
it. Let u and v be the elements associated with minXi and z. Then z = u+ v and
u, v ∈ V .

If z is an element u/prn created for a T -element x, and z is trashed, then z = αx
for some integer α.

If z is an element u/prn created for a T -element x, and z is cofinitely recycled,
then z = αx+ βw′ for appropriate integers α and β, and x and w′ are T -elements
which are never trashed.

If z is a T -element introduced because of the recycling of a pair (u, v) associated
with a T -element x and a pair (〈ta, a〉 , 〈tb, b〉), and z is trashed, then z = β u

pr
a
−α v

pr
b
,

for appropriate integers r, α, and β. �

From the claims, we conclude that G ∼= GS . �

Remark 3.4. Again, it is not difficult to see that the construction can be easily
modified to show that Gχ (see Remark 2.3) has a computable copy if and only if
the character χ is Σ0

3.
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