DECIDABILITY AND COMPUTABILITY OF CERTAIN TORSION-FREE ABELIAN GROUPS

RODNEY G. DOWNEY, SERGEI S. GONCHAROV, ASHER M. KACH, JULIA F. KNIGHT, OLEG V. KUDINOV, ALEXANDER G. MELNIKOV, AND DANIEL TURETSKY

Abstract

We study completely decomposable torsion-free abelian groups of the form $\mathcal{G}_{S}:=\oplus_{n \in S} \mathbb{Q}_{p_{n}}$ for sets $S \subseteq \omega$. We show that \mathcal{G}_{S} has a decidable copy if and only if S is Σ_{2}^{0} and has a computable copy if and only if S is Σ_{3}^{0}.

1. Introduction

There are many natural ways to code a set $S \subseteq \omega$ into an algebraic structure \mathcal{M}_{S}. The history of encoding sets (effectively and noneffectively) into algebraic structures is, of course, rather old. The investigation of classical encodings goes back at least as far as Van der Waerden, who considered effective procedures in field theory, but without the language of computability theory (see [20]). Van der Waerden's analysis was formalized by Frölich and Shepherdson (see [8]); Mal'cev (see [15]) and Metakides and Nerode (see [19]) further analyzed the effective coding of sets into fields. There are now a large number of investigations into computable structure theory which rely on various codings into algebraic and combinatorial structures, and for a general reference here we refer the reader to various articles in the Handbook of Computability Theory (see [10]) and Volume 2 of the Handbook of Recursive Mathematics (see [5]).

A hallmark of these investigations was the work of Feiner, who demonstrated that sets more complicated than the Halting Problem could be effectively coded into algebraic structures. For example, Feiner coded Σ_{3}^{0} sets into linear orderings (see [6]) and certain Δ_{ω}^{0}-computable sets into Boolean algebras (see [7]).

It seems that each familiar class of algebraic structures allows some natural encoding. Here are some examples:
(1) undirected graphs (e.g., via the presence or absence of n cycles),
(2) linear orders (e.g., via the presence or absence of maximal discrete blocks of size n),
(3) Boolean algebras (e.g., via the presence or absence of n in the measure),
(4) abelian groups (e.g., via the presence or absence of of elements of order p_{n}),
(5) rings (e.g., via the presence or absence of a $p_{n}^{\text {th }}$ root of unity), and
(6) fields (e.g., via the presence or absence of a $p_{n}^{\text {th }}$ root of unity).

[^0]A common feature of these encodings is that there are natural sentences φ_{n} for $n \in \omega$ with the property that $\mathcal{M}_{S} \models \varphi_{n}$ if and only if $n \in S$. In the examples above, except for the case of Boolean algebras, the sentences are finitary; for Boolean algebras, the sentences are computable infinitary. The complexity of the sentences φ_{n} yields an upper bound on how complex S can be if \mathcal{M}_{S} is to be decidable (computable). For undirected graphs, \mathcal{M}_{S} has a decidable copy if and only if S is decidable, and \mathcal{M}_{S} has a computable copy if and only if S is computably enumerable. For linear orders, \mathcal{M}_{S} has a decidable copy if and only if S is decidable, and \mathcal{M}_{S} has a computable copy if and only if S is Σ_{3}^{0}. For rings and fields, \mathcal{M}_{S} has a decidable copy if and only if S is decidable, and \mathcal{M}_{S} has a computable copy if and only if S is computably enumerable.

The purpose of this paper is to study an encoding of sets $S \subseteq \omega$ into completely decomposable torsion-free abelian groups.

Definition 1.1. A torsion-free abelian group \mathcal{A} is completely decomposable if there is a collection of groups $\left(\mathcal{A}_{i}\right)_{i \in I}$ with

$$
\mathcal{A} \cong \bigoplus_{i \in I} \mathcal{A}_{i}
$$

and $\mathcal{A}_{i} \leq(\mathbb{Q}:+)$ for each $i \in I$.
It is well-known that the class of torsion-free abelian groups is classically quite complicated. Indeed, it has no simple invariants as a consequence of work by Downey and Montalbán (see [3]) and Hjorth (see [11]). Thus, special classes of torsion-free abelian groups classes are central objects of study in the area. The classic example of this is the collection of rank one torsion-free abelian groups, equivalently the subgroups of the additive group of the rationals. This was first studied by Baer (see [2]) and is easy to understand in the classical and effective settings.

The class of completely decomposable groups was also introduced by Baer in 1937 (see [2]), and seems the next most tractable class to understand after the rank one groups. This class has been well-studied and possesses a number of nice algebraic properties (see, e.g., [9]). One such property (which we use without further mention) is that a completely decomposable torsion-free abelian group has a unique direct decomposition (up to permutations of the summands).

However, not as much is known about the effective properties of completely decomposable torsion-free abelian groups. Mal'cev initiated the study of torsionfree abelian groups (see [16]). Khisamiev and Krykpaeva introduced the class of effectively (strongly) decomposable torsion-free abelian groups (see [14]). A completely decomposable torsion-free abelian group $\mathcal{A} \cong \bigoplus_{i \in I} \mathcal{A}_{i}$ is effectively (strongly) decomposable if it has a computable (decidable) copy in which the predicates $P_{i}(x) \leftrightharpoons x \in \mathcal{A}_{i}$ are uniformly computable. Khisamiev and Krykpaeva then studied a particular encoding of sets into completely decomposable torsion-free abelian groups.

Definition 1.2. Let $\left(p_{n}\right)_{n \in \omega}$ be the sequence of prime numbers, in ascending order. For each prime p, denote by \mathbb{Q}_{p} the subgroup of $(\mathbb{Q}:+)$ generated by the numbers $1 / p^{k}$ for $k \in \omega$. If $S \subseteq \omega$ is nonempty, denote by \mathcal{G}_{S} the group

$$
\mathcal{G}_{S}:=\bigoplus_{n \in S} \mathbb{Q}_{p_{n}}
$$

This group is termed S-divisible.
Khisamiev and Krykpaeva showed that \mathcal{G}_{S} is effectively decomposable if and only if S is Σ_{2}^{0} (see [14]); Khisamiev showed that \mathcal{G}_{S} is strongly decomposable if and only if S is Σ_{2}^{0} and not quasihyperhyperimmune (see [13]).

Khisamiev, in personal correspondence with the sixth author, asked for necessary and sufficient conditions for \mathcal{G}_{S} to have a computable (decidable) copy. We answer this question, showing \mathcal{G}_{S} has a decidable copy if and only if S is Σ_{2}^{0} (Theorem 2.2) and showing \mathcal{G}_{S} has a computable copy if and only if S is Σ_{3}^{0} (Theorem 3.3). We extend these results slightly to answer the same questions for completely decomposable torsion-free abelian groups of the form $\bigoplus_{j \in \omega} \mathbb{Q}_{p_{a_{j}}}$, where the primes $p_{a_{j}}$ need not be distinct (this was Khisamiev's precise question).

For background on effective algebra, we refer the reader to [1] and [4]; for background on effective algebra and completely decomposable torsion-free abelian groups, we refer the reader to [9], [17], and [18].

2. Characterizing the Decidable \mathcal{G}_{S}

It is easy to see that if \mathcal{G}_{S} has a decidable copy, then S is Σ_{2}^{0}. The reason, of course, is that $n \in S$ if and only if

$$
\mathcal{G}_{S} \models(\exists x) \bigwedge_{k}(\exists y)\left[x=p_{n}^{k} y\right],
$$

and we can decide satisfaction of the formulas $(\exists y)\left[x=p_{n}^{k} y\right]$ in a decidable copy. We will show that if S is Σ_{2}^{0}, then \mathcal{G}_{S} has a decidable copy. The lemma below gives a sufficient condition for a copy to be decidable.

Lemma 2.1. If \mathcal{G}_{S} is an S-divisible group, a computable copy \mathcal{G} of \mathcal{G}_{S} is decidable if it is computable after expanding by the relations $p \mid x$ (x is divisible by p).

Proof. As a consequence of an elimination of quantifiers result by Szmielew for abelian groups, it suffices to demonstrate that $\operatorname{Th}\left(\mathcal{G}_{S}\right)$ is decidable and the computability of the relations $p \mid x$ implies the computability of the relations $n \mid x$.

We first show that $\operatorname{Th}\left(\mathcal{G}_{S}\right)$ is decidable. It is not difficult to see that the Szmielew invariants of the groups \mathcal{G}_{S} are the same as those for a direct sum of $|S|$ copies of \mathbb{Z}. It follows that the two theories are the same. The latter theory is decidable, since $\operatorname{Th}(\mathbb{Z})$ is decidable (see, for example, Corollary 1.2 and Proposition 1.3 of [12]).

We next note that the decidability of the relations $p \mid x$ implies the decidability of the relations $n \mid x$. The reason is that in a torsion-free abelian group, if $p \mid x$, then there is a unique element y with $x=p y$. Thus, for example if $n=p_{1} p_{2}$, then $n \mid x$ if and only if $p_{2} \mid y$, where y satisfies $x=p_{1} y$. This can be ascertained by asking if $p_{1} \mid x$, and, if so, searching for the (unique) element y with $x=p_{1} y$.

Theorem 2.2. The group \mathcal{G}_{S} has a decidable copy if and only if S is Σ_{2}^{0}.
Proof. Fix an infinite Σ_{2}^{0} set $S \subseteq \omega$. We must show that \mathcal{G}_{S} has a decidable copy. By Lemma 2.1, it is enough to construct copy that is computable with the added predicates $p \mid x$. As preparation, fix an infinite Δ_{2}^{0} set $S_{1} \subseteq S$ and let $S_{2}=S-S_{1}$, noting that S_{2} is Σ_{2}^{0}. We assume the $0^{t h}$ existential witness for membership of any number n in S_{2} fails to witness $n \in S_{2}$. This assures we process all of S_{1}.

We use a standard computable approximation for S_{2} such that if $n \in S_{2}$, then for all sufficiently large s, the number n appears to be in S_{2} at stage s; and if
$n \notin S_{2}$, then there are infinitely many s such that n appears not to be in S_{2} at stage s. When we believe $n \in S_{2}$, we work towards building a copy of $\mathbb{Q}_{p_{n}}$, using an element to which we give the label r_{n}. If later we believe that $n \notin S_{2}$, we trash this work by incorporating it into the integer part of $\mathbb{Q}_{p_{a}} \oplus \mathbb{Q}_{p_{b}}$ for some $a, b \in S_{1}$, using elements to which we have assigned the labels r_{a} and r_{b}. Since S_{1} need not be computable, the integers a and b also need to be approximated, so we may trash this work as well. We then need a further pair of elements, carrying labels $r_{a^{\prime}}$ and $r_{b^{\prime}}$, representing integers a^{\prime} and b^{\prime} thought to be in S_{1}. This in turn may injure lower priority work, but as the set S_{1} is Δ_{2}^{0}, this injury will be finitary. The pairs do not proliferate. That is, r_{n} and the first pair r_{a}, r_{b} are all generated by the second pair $r_{a^{\prime}}, r_{b^{\prime}}$. If later n reappears in S_{2}, we repeat this process afresh, working with new elements throughout, but re-using the labels as appropriate.

The priority of an element labeled r_{n} is the stage at which it was created; the priority of an element labeled r_{a} or r_{b} is the priority of the element labeled r_{n} with which the pair is associated.

Construction: At stage 0, we start with the trivial group.
At stage $s+1$, we introduce a new nonzero element carrying the label r_{s}. For each $n \leq s$, we act on behalf of the element carrying the label r_{n} as follows:
(1A) If n appears to be in S_{2} and has at the previous k many stages, we introduce a solution z to the equation $r_{n}=p_{n}^{k} z$.
(2A) If n appears not to be in S_{2} but appeared to be in S_{2} at the previous k many stages, we trash the element r_{n}. This is done by guessing the lexicographically least (distinct) pair $(a, b) \in S_{1}$ for which neither a nor b is currently assigned to a higher priority element, introducing a pair of new elements carrying the labels r_{a} and r_{b}, and declaring $r_{n}=p_{n}^{k} r_{a}+p_{n}^{k} r_{b}$.

If either r_{a} or r_{b} is assigned to a lower priority element, both are trashed as described in (2B). We then introduce a new element carrying the label r_{n} (this label is removed from the old r_{n}) to approximate whether n is in S_{2} via the next existential witness.
We also act on behalf of all pairs of elements carrying the labels r_{a} and r_{b} (associated with each other) in existence.
(1B) If a and b appear to be in S_{1} and have at the previous k many stages, we introduce a solution z_{a} to $r_{a}=p_{a}^{k} z_{a}$ and a solution z_{b} to $r_{b}=p_{b}^{k} z_{b}$.
(2B) If either a or b (or both) appears not to be in S_{1} but appeared to be in S_{1} at the previous k many stages, the elements with the labels r_{a} and r_{b} are trashed. This is done as follows. We guess the lexicographically least (distinct) pair $\left(a^{\prime}, b^{\prime}\right) \in S_{1}$ such that neither a^{\prime} nor b^{\prime} is currently associated with a higher priority element (as compared to the elements with the labels r_{a} and r_{b}). Let z_{a} and z_{b} be such that $r_{a}=p_{a}^{k-1} z_{a}$ and $r_{b}=p_{b}^{k-1} z_{b}$.

At present, we have not said that z_{a} and z_{b} are divisible by any prime. We have said that r_{a} and r_{b} are not divisible by certain primes, so z_{a} and z_{b} must not be divisible by these primes. We will get rid of the labels r_{a} and r_{b}. We introduce a pair of new elements carrying the labels $r_{a^{\prime}}$ and $r_{b^{\prime}}$, with the intention of making these elements infinitely divisible by $p_{a^{\prime}}, p_{b^{\prime}}$, respectively, and not divisible by any other prime. We let $z_{a}=r_{a^{\prime}}+q r_{b^{\prime}}$ and $z_{b}=q r_{a^{\prime}}+r_{b^{\prime}}$, choosing q so that for $\alpha, \beta \in \mathbb{Z}, \alpha z_{a}+\beta z_{b}$ will be divisible by an arbitrary prime p only if p divides both α and β.

If either $r_{a^{\prime}}$ or $r_{b^{\prime}}$ is associated with a lower priority element, both are trashed as just described. This may, of course, recurse.
We also declare all small finite sums of elements with a label r_{n}, r_{a}, or r_{b}, not divisible by any prime p_{i} with $i \leq s$ if it is not already divisible by p_{i}. Here, a coefficient $r \in \mathbb{Q}$ is small if the Gödel code $\|r\|$ for r satisfies $\|r\| \leq s$.

Finally, we introduce the sum of every two elements already in the group (if the sum does not already exist) and the inverse of every element already in the group (if the inverse does not already exist).

This completes the action at stage $s+1$.
Verification: It is clear that the group \mathcal{G} constructed is computable.
It therefore suffices to demonstrate the relations $p \mid x$ are uniformly computable and $\mathcal{G} \cong \mathcal{G}_{S}$. The relation $p \mid x$ is clearly Σ_{1}^{0}, so it suffices to show it is Π_{1}^{0}. However, this is a consequence of the action at the end of every stage s. Of course, we never violate these declarations as divisors are only introduced in Step 1A, Step 2A, and Step 2B.

The group we are building, \mathcal{G}, is isomorphic to \mathcal{G}_{S}. We establish this via a sequence of claims. Before doing so, we make the (trivial) observation that every labeled element either carries its label for cofinitely many stages or is trashed.

Claim 2.2.1. For every $n \in S_{2}$, there is a unique element carrying the label r_{n} for cofinitely many stages. Moreover, this element is infinitely divisible by p_{n}, and it is not divisible by any other prime.

Proof. If $n \in S_{2}$, an existential witness will demonstrate this in a Π_{1}^{0} fashion. The element created on behalf of the first such witness will carry the label r_{n} for cofinitely many stages. Moreover, this element is infinitely divisible by p_{n}, and it is not divisible by any other prime by the action at Step 1A. The uniqueness of this element is assured by the removal of the label r_{n} in Step 1B when the label is assigned to another element.

Claim 2.2.2. For every $a \in S_{1}$, there is a unique element carrying the label r_{a} for cofinitely many stages. Moreover, this element is infinitely divisible by p_{a}, and it is not divisible by any other prime.

Proof. We show that there is a (unique) element carrying the label r_{a} for cofinitely many stages by induction. We consider a stage s_{0} such that:

- for each $a^{\prime}<a$ with $a^{\prime} \in S_{1}$, an element carrying the label a^{\prime} cofinitely has already been created,
- for some $b>a$ with $b \in S_{1}$, the approximation of all $b^{\prime} \leq b$ in S_{1} has converged.
At this stage, if an element already carrying the label r_{a} never gets trashed, then this element suffices. Otherwise, consider the currently existing highest priority element carrying a label that will eventually be trashed (the element carrying the label r_{s} ensures such an element exists, by our assumption on the zeroth existential witness). When this element is trashed, elements carrying the labels r_{a} and $r_{b^{\prime}}$ for some $b^{\prime} \leq b$ will be created, and these elements will never be trashed. By Step 2A, this element will be infinitely divisible by p_{a}. As no other divisors are introduced, this element is not divisible by any other prime.

Claim 2.2.3. Every element in \mathcal{G} is a linear combination of elements carrying a label for cofinitely many stages.

Proof. As every nonzero element in the group \mathcal{G} is a linear combination of elements that carry a label at some stage, it suffices to consider elements that carry a label at some stage. Of course, we may further restrict our attention to those elements x which are later trashed.

If x was trashed by Step $2 B$, then x is a linear combination of elements carrying the labels $r_{a^{\prime}}$ and $r_{b^{\prime}}$. If these labels persist cofinitely, then this is the desired linear combination. Otherwise, the elements carrying the labels $r_{a^{\prime}}$ and $r_{b^{\prime}}$ are themselves trashed. However, this process is iterated at most finitely many times since S_{1} is Δ_{2}^{0} and a given element is only injured by higher priority elements.

If x was trashed by Step 1B, then x is a linear combination of elements carrying the labels r_{a} and r_{b}. If these exist cofinitely, then this is the desired linear combination; otherwise, the argument above assures the existence of such a linear combination.

Claim 2.2.4. If $n \notin S$, then no element is infinitely divisible by p_{n}. Also, no element of the group is infinitely divisible by two distinct primes, and no element is divisible by infinitely many distinct primes.

Proof. This is an immediate consequence of the construction and the previous claim.

It follows from these claims that \mathcal{G} is a decidable copy of \mathcal{G}_{S}.
Remark 2.3. Let \mathcal{G} be a direct sum of groups of the form $\mathbb{Q}_{p_{n}}$. The character of \mathcal{G} is the set χ consisting of the pairs (n, k) such that \mathcal{G} has at least k direct summands of the form $\mathbb{Q}_{p_{n}}$. We write \mathcal{G}_{χ} for the group with character χ.

It is not difficult to see that the construction can be easily modified to show that \mathcal{G}_{χ} has a decidable copy if and only if the character χ is Σ_{2}^{0}.

3. Characterizing the Computable \mathcal{G}_{S}

It is easy to see that if \mathcal{G}_{S} has a computable copy \mathcal{G}, then S is Σ_{3}^{0}. The reason is that $n \in S$ if and only if

$$
\mathcal{G} \models(\exists x) \bigwedge_{k}(\exists y)\left[x=p_{n}^{k} y\right] .
$$

We show that if S is Σ_{3}^{0}, then \mathcal{G}_{S} has a computable copy. This strengthens the result of Melnikov (Theorem 3 from [18]) showing that the group $\mathcal{G}_{S} \oplus\left(\bigoplus_{i \in \omega} \mathbb{Z}\right)$ has a computable copy if and only if S is Σ_{3}^{0}.

We shall use the following lemma on Π_{2}^{0} approximations by pairs of Π_{2}^{0} sets.
Definition 3.1. Let $[\omega]^{2}$ be the set of two-element subsets of ω, viewed as a set of pairs (a, b) with $a<b$. If $X \subseteq[\omega]^{2}$, let $\min X$ denote the reverse lexicographically least pair (a, b) in X.

Lemma 3.2. For every infinite Π_{2}^{0} set $T \subseteq \omega$, there is a uniformly computable sequence of Π_{2}^{0} sets $\left(X_{i}\right)_{i \in \omega}$ such that the sets $\min X_{i}$, for $i \in \omega$, form a partition of T.

Proof. Enumerate the elements of T in increasing order as $a_{0}<b_{0}<a_{1}<b_{1}<\ldots$. Let $X_{i}=\left\{a_{j}: j \geq i\right\} \cup\left\{b_{j}: j \geq i\right\}$. It is not difficult to see that the sets X_{i} are Π_{2}^{0} uniformly in i. Moreover, $\min X_{i}=\left(a_{i}, b_{i}\right)$.
Theorem 3.3. The group \mathcal{G}_{S} has a computable copy if and only if S is Σ_{3}^{0}.
Proof. Fix an infinite Σ_{3}^{0} set $S \subseteq \omega$. We construct a computable copy \mathcal{G} of \mathcal{G}_{S}. As preparation, we fix a Π_{2}^{0} set $T \subset \omega$ such that $s \in S$ if and only if $\langle t, s\rangle \in T$ for some t. Further, if $s \in S$, we assume the witnessing t is unique. Let $\left(X_{i}\right)_{i \in \omega}$ be as in Lemma 3.2.

The idea for the construction is to add an element x to \mathcal{G} and express x as a linear combination of elements u_{0} and v_{0} such that u_{0} and v_{0} are infinitely divisible by primes $p_{a_{0}}$ and $p_{b_{0}}$, respectively, where $a_{0}, b_{0} \in S$. Of course, we will make mistakes in approximating a_{0} and b_{0}.

It may therefore become necessary to recycle the elements u_{0} and v_{0} when it appears $a_{0} \notin S$ or $b_{0} \notin S$. This will involve writing u_{0} and v_{0} as an internally consistent linear combination of x and another element w. We then continue to work for x using new (lower priority) elements u_{1} and v_{1} and primes $p_{a_{1}}$ and $p_{b_{1}}$ for which a_{1} and b_{1} appear in S. Similarly, we work for w using new elements u_{0}^{\prime} and v_{0}^{\prime}. This process will, of course, possibly repeat itself in a recursive fashion.

As S is Σ_{3}^{0}, it will become necessary to return to a pair of elements u_{i} and v_{i} working on behalf of some element z with numbers a_{i} and b_{i}. When this happens, all work on behalf of z with elements u_{j} and v_{j} for $j>i$ is trashed. This includes not only the elements u_{j} and v_{j}, but also any elements created to recycle it (and so on). In addition, elements created to recycle u_{i} and v_{i} are also trashed.

Throughout the construction, certain elements will be termed T-elements. These will be the elements x and w discussed above. Finite sums of these elements are not so distinguished. At every stage, every T-element z will be associated with one of the sets X_{i}. The set X_{i} will control the primes p_{a} and p_{b} such that we are attempting to make the element z a sum of elements of $\mathbb{Q}_{p_{a}}$ and $\mathbb{Q}_{p_{b}}$. Though the index i may change finitely often for a T-element z, it will always reach a limit (provided z remains a T-element).

The priority of a T-element is the point in the construction at which it was introduced, with higher priority elements created earlier in the construction. In order of priority, T-elements will constantly seek to swap their X_{i} for an X_{j} with $j<i$.

Construction: At stage 0, we start with the zero group.
At stage $s+1$, we introduce a new T-element. We also act on behalf of all existing T-elements.

We act on behalf of a T-element x by searching for the reverse lexicographically least pair $\left(\left\langle t_{a}, a\right\rangle,\left\langle t_{b}, b\right\rangle\right)$ that appears in the set X_{i} associated to x. If no u and v associated with this pair and x exists, we introduce new elements u and v to \mathcal{G} with $u+v=x$, and associate them with this pair $\left(\left\langle t_{a}, a\right\rangle,\left\langle t_{b}, b\right\rangle\right)$ and x. Otherwise, we add to \mathcal{G} a solution z_{u} to the equation $u=p_{a}^{r} z_{u}$ and a solution z_{v} to the equation $v=p_{b}^{r} z_{v}$, where u and v are the elements associated with the pair $\left(\left\langle t_{a}, a\right\rangle,\left\langle t_{b}, b\right\rangle\right)$ and the element x, and where r is the number of times we have already worked on behalf of these elements. We also recycle (as described below) any higher priority elements u^{\prime} and v^{\prime} that were introduced on behalf of x which are not already being recycled, trash (as described below) any lower priority elements u^{\prime} and v^{\prime} introduced
on behalf of x, and, if u and v were being recycled at the previous stage, trash (as described below) the element w introduced on behalf of u and v.

For a pair $\left(u^{\prime}, v^{\prime}\right)$ of elements associated with the pair $\left(\left\langle t_{a^{\prime}}, a^{\prime}\right\rangle,\left\langle t_{b^{\prime}}, b^{\prime}\right\rangle\right)$ and the element x, we recycle the work for $\left(u^{\prime}, v^{\prime}\right)$ by:
(1A) finding integers α and β satisfying

$$
\alpha p_{a^{\prime}}^{r}+\beta p_{b^{\prime}}^{r}=1
$$

where r is the number of times we have already worked on behalf of $\left(u^{\prime}, v^{\prime}\right)$, (1B) introducing a new T-element w^{\prime} satisfying

$$
u^{\prime}=p_{a^{\prime}}^{r}\left(\alpha x+p_{b^{\prime}}^{r} w^{\prime}\right) \quad \text { and } \quad v^{\prime}=p_{b^{\prime}}^{r}\left(\beta x-p_{a^{\prime}}^{r} w^{\prime}\right)
$$

into the group, and
(1C) associating the set $X_{i^{\prime}}$ to w^{\prime}, where i^{\prime} is minimal so that $X_{i^{\prime}}$ is not associated to any other element.
Any T-element w previously introduced on behalf of u and v is trashed as follows. For each pair $\left(u^{\prime \prime}, v^{\prime \prime}\right)$ created on behalf of w, we work by:
(2A) trashing any T-element $w^{\prime \prime}$ introduced on behalf of $u^{\prime \prime}$ and $v^{\prime \prime}$ (this may further recurse),
(2B) finding integers α and β satisfying

$$
\alpha+\beta=1 \quad \text { and } \quad p_{a^{\prime \prime}}^{r} \mid \alpha \quad \text { and } \quad p_{b^{\prime \prime}}^{r} \mid \beta
$$

where r is the number of times we have already worked on behalf of $\left(u^{\prime \prime}, v^{\prime \prime}\right)$, (2C) declaring

$$
u^{\prime \prime}=\alpha w \quad \text { and } \quad v^{\prime \prime}=\beta w
$$

We then remove the association of X_{j} with w, and no longer consider w to be a T-element.

For each pair $\left(u^{\prime}, v^{\prime}\right)$ of T-elements associated the pair $\left(\left\langle t_{a^{\prime}}, a^{\prime}\right\rangle,\left\langle t_{b^{\prime}}, b^{\prime}\right\rangle\right)$ and the element x, we trash the work for $\left(u^{\prime}, v^{\prime}\right)$ by:
(3A) trashing any T-element w^{\prime} introduced on behalf of u^{\prime} and v^{\prime} (this may further recurse),
(3B) finding integers α and β satisfying

$$
\alpha+\beta=1 \quad \text { and } \quad p_{a^{\prime}}^{r} \mid \alpha \quad \text { and } \quad p_{b^{\prime}}^{r} \mid \beta
$$

where r is the number of times we have already worked on behalf of $\left(u^{\prime}, v^{\prime}\right)$, and
(3C) declaring

$$
u^{\prime}=\alpha x \quad \text { and } \quad v^{\prime}=\beta x .
$$

If there is ever a T-element z associated with a set X_{i} and a set X_{j} for $j<i$ is unassociated (such a situation is possible whenever a T-element is trashed), the highest priority such T-element removes its association with X_{i} and associates itself with X_{j}.

Finally, we introduce the sum of every two elements already in the group (if the sum does not already exist) and the inverse of every element already in the group (if the inverse does not already exist).

This completes the action at stage $s+1$.
Verification: It is clear the group \mathcal{G} is computable, provided that integers α and β can always be found. We demonstrate this and that $\mathcal{G} \cong \mathcal{G}_{S}$ via a sequence of
claims. We let U be the set of elements u and v that are never trashed and are not recycled for cofinitely many stages.

Claim 3.3.1. Integers α and β always exist (and thus are found) satisfying the desired constraints.

Proof. Elementary number theory assures the existence of integers α and β since powers of distinct primes are relatively prime.

Claim 3.3.2. For each integer i, the set X_{i} will be associated with a fixed T-element for cofinitely many stages.
Proof. Fix the $i^{\text {th }}$ highest priority T-element that is never trashed, the existence of which is ensured by the new T-element introduced at every stage. Once all higher priority T-elements that will ever be trashed are, the set X_{i} will be associated with this element from now on.

Claim 3.3.3. The integers in S are in $1-1$ correspondence with the elements of U.
Proof. Fixing an integer $n \in S$, let i be such that $\left\langle t_{n}, n\right\rangle \in \min X_{i}$ for some t_{n}. By Claim 3.3.2, the set X_{i} will be associated with a fixed T-element x for cofinitely many stages. Consider a stage after which elements less than min X_{i} never appear in X_{i}. Then the elements u and v created on behalf of $\min X_{i}$ and x will never be trashed, and they will not be recycled for cofinitely many stages. One of these elements will be working on behalf of n.

This correspondence is $1-1$ because there exist a unique t_{n} such that $\left\langle t_{n}, n\right\rangle \in T$, a unique X_{i} such that $\left\langle t_{n}, n\right\rangle \in X_{i}$, and a unique T-element x cofinitely associated with X_{i}.

If $n \notin S$, then $\left\langle t_{n}, n\right\rangle \notin \min X_{i}$ for any i and t_{n}. Thus, any u or v associated with n will be trashed when its associated T-element is trashed, trashed when a smaller pair appears in X_{i}, or recycled for cofinitely many stages when its pair never again appears in X_{i}. Therefore, this correspondence is surjective.

Claim 3.3.4. If an element $u \in U$ is in correspondence with n, then u is infinitely divisible by p_{n}, and it is not divisible by any other primes.

Proof. Solutions to $u=p_{n}^{r+1} z_{u}$ (or $v=p_{n}^{r+1} z_{v}$ as the case may be) will be introduced for arbitrarily large r. No other prime will divide u, by the choice of α and β.

Claim 3.3.5. If $n \notin S$, then no nonzero element is infinitely divisible by p_{n}. Also, no element of the group is either infinitely divisible by distinct primes or divisible by infinitely many primes.

Proof. As a consequence of the construction, no element is infinitely divisible by p_{n} unless that element is a rational multiple of the element of U that corresponds to p_{n}. By construction, no nonzero element is a rational multiple of two distinct elements of U.

Claim 3.3.6. Every element of \mathcal{G} is a linear combination of elements in U.
Proof. We argue by induction, treating several cases separately. It suffices to treat those elements z that are explicitly added to the group (i.e., not implicitly added to the group as a sum of existing elements).

If z is a T-element that is never trashed, fix the set X_{i} cofinitely associated with it. Let u and v be the elements associated with $\min X_{i}$ and z. Then $z=u+v$ and $u, v \in V$.

If z is an element u / p_{n}^{r} created for a T-element x, and z is trashed, then $z=\alpha x$ for some integer α.

If z is an element u / p_{n}^{r} created for a T-element x, and z is cofinitely recycled, then $z=\alpha x+\beta w^{\prime}$ for appropriate integers α and β, and x and w^{\prime} are T-elements which are never trashed.

If z is a T-element introduced because of the recycling of a pair (u, v) associated with a T-element x and a pair $\left(\left\langle t_{a}, a\right\rangle,\left\langle t_{b}, b\right\rangle\right)$, and z is trashed, then $z=\beta \frac{u}{p_{a}^{r}}-\alpha \frac{v}{p_{b}^{r}}$, for appropriate integers r, α, and β.

From the claims, we conclude that $\mathcal{G} \cong \mathcal{G}_{S}$.
Remark 3.4. Again, it is not difficult to see that the construction can be easily modified to show that \mathcal{G}_{χ} (see Remark 2.3) has a computable copy if and only if the character χ is Σ_{3}^{0}.

References

[1] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2000.
[2] Reinhold Baer. Abelian groups without elements of finite order. Duke Math. J., 3(1):68-122, 1937.
[3] Rod Downey and Antonio Montalbán. The isomorphism problem for torsion-free abelian groups is analytic complete. J. Algebra, 320(6):2291-2300, 2008.
[4] Yuri L. Ershov and Sergei S. Goncharov. Constructive models. Siberian School of Algebra and Logic. Consultants Bureau, New York, 2000.
[5] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, editors. Handbook of recursive mathematics. Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1998. Recursive algebra, analysis and combinatorics.
[6] L. Feiner. The strong homogeneity conjecture. J. Symbolic Logic, 35:375-377, 1970.
[7] Lawrence Feiner. Hierarchies of Boolean algebras. J. Symbolic Logic, 35:365-374, 1970.
[8] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy. Soc. London. Ser. A., 248:407-432, 1956.
[9] László Fuchs. Infinite abelian groups. Vol. II. Academic Press, New York, 1973. Pure and Applied Mathematics. Vol. 36-II.
[10] Edward R. Griffor, editor. Handbook of computability theory, volume 140 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.
[11] Greg Hjorth. The isomorphism relation on countable torsion free abelian groups. Fund. Math., 175(3):241-257, 2002.
[12] N. G. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1177-1231. North-Holland, Amsterdam, 1998.
[13] N. G. Khisamiev. On a class of strongly decomposable abelian groups. Algebra Logika, 41(4):493-509, 511-512, 2002.
[14] N. G. Khisamiev and A. A. Krykpaeva. Effectively totally decomposable abelian groups. Siberian Mathematical Journal, 38(6):1227-1229, 1997.
[15] A. I. Mal'cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3-60, 1961.
[16] A. I. Mal'cev. On recursive Abelian groups. Dokl. Akad. Nauk SSSR, 146:1009-1012, 1962.
[17] A. G. Melnikov. $0^{\prime \prime}$-categorical completely decomposable torsion-free abelian groups. In Mathematical Theory and Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages 362-371. Springer, Berlin / Heidelberg, 2009.
[18] Alexander G. Melnikov. Enumerations and completely decomposable torsion-free abelian groups. Theory of Comp. Sys., 45(4):897-916, 2009.
[19] G. Metakides and A. Nerode. Effective content of field theory. Ann. Math. Logic, 17(3):289320, 1979.
[20] Bartel L. van der Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen. Math. Ann., 102(1):738-739, 1930.

Department of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, Wellington 6140, NEW ZEALAND

E-mail address: Rod.Downey@msor.vuw.ac.nz
Mechanics and Mathematics Department, Novosibirsk State University, Novosibirsk 630090, RUSSIA

E-mail address: sergei@math.nsc.ru
Department of Mathematics, Statistics, and Operations Research, Victoria UniverSity of Wellington, Wellington 6140, NEW ZEALAND

E-mail address: Asher.Kach@msor.vuw.ac.nz
Department of Mathematics, Notre Dame University, South Bend, IN 46556, USA
E-mail address: knight.1@nd.edu
Department of Mathematics, Sobolev Institute of Mathematics, Novosibirsk 630090, RUSSIA

E-mail address: kud@math.nsc.ru
Department of Mathematics, University of Auckland, Auckland 1142, NEW ZEALAND
E-mail address: vokinlem@bk.ru
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
E-mail address: turetsky@math.wisc.edu

[^0]: Date: 12 April 2010.
 2000 Mathematics Subject Classification. 03D45.
 Key words and phrases. coding into groups, completely decomposable torsion-free abelian groups.

 The authors acknowledge support from the NSF Grant DMS-0554841, the Marsden Fund of New Zealand (first and third authors), RFBR Grant N 08-01-00336-a (second and fifth authors), and VIGRE and the University of Wisconsin Graduate School (seventh author).

